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Abstract—Preterm birth is one of the major contributing factors
to infant death. In the Puerto Rico Testsite for Exploring
Contamination Threats Center we explore a variety of risk factors
for preterm birth in Puerto Rico, including environmental, genetic
and demographic factors. Given the challenge of managing such
a large amount data, we have constructed a customized database
specifically designed for managing our data and for facilitating
efficient analysis. In this paper, we present our database design
and open source Mass Spectrometry Data Analysis Toolbox.
Our design allows for the efficient handling of storage and
computation during metabolomic analysis. The Toolbox enables
supports and end-to-end analysis protocol, from data processing
and feature selection, to machine learning and visualization.

Keywords–preterm birth; database; MSDA Toolbox; machine
learning.

I. INTRODUCTION

Preterm birth [1] has been identified to be a major cause of
birth defects and infant deaths [2]. When an infant is delivered
earlier than 37 weeks of pregnancy, the birth is considered
as preterm. Research has shown that since 1990, the rate of
preterm birth has been increasing worldwide, ranging from 5%
to 18%. In 2010, preterm-related deaths were reported to be
responsible for close to 35% of all infant deaths. A series of
research findings suggests that environmental factors have a
strong influence on preterm birth [3]–[8]. [9].

In our research, we focus on an area in northern Puerto
Rico where the preterm birth rate is 50% higher than that in
the rest of the United States. In the Puerto Rico Testsite for
Exploring Contamination Threats (PROTECT) Center, we col-
laborate with a cohort of over 2000 women in northern Puerto
Rico (presently 800 of the 2000 participant mothers have
been recruited). We are analyzing many potential contributing
factors, including environmental and biological factors, which
could be linked to premature birth.

Our study is highly data driven. We collect and analyze
data across a wide spectrum of sources, including:

• Environmental samples and measurements - soil sam-
ples, well and tap water samples, historical Environ-
mental Protection Agency (EPA) data, Superfund site
data,

• Biological samples - blood, urine, hair and placenta
samples, and

• Human subjects information - medical history, repro-
ductive health records, product use data surveys, and
birth outcomes.

We have developed a carefully designed relational database
system to manage this project. Up until now, we have collected
over 400 million data entries and manage over 2467 data
entities in our database. Since urine data presently dominates
the volume of data collected in our database, we focus on the
urine analysis.

In this paper, we provide an overview on PROTECT
and present the database workflow for big data management.
Particularly, we present our open source Toolbox for Mass
Spectrometry Data Analysis, targeted for efficient machine
learning and visualization on big datasets. We also provide
a detailed description on each step of the metabolomic data
analysis. Given the amount of data we need to work with,
we discuss how we reduce the processing time by leveraging
multi-core packages.

The rest of this paper is organized as follows. Section II
presents background and related work. Section III provides
an overview of PROTECT database, its current status and
detailed workflow. Section IV describes the Mass Spectrometry
Data Analysis Toolbox (MSDA), including discussions on
performance tuning and lessons learned from our analysis.
Section V concludes the paper and discusses areas for future
work.

II. BACKGROUND

Preterm birth is a worldwide issue and its leading causes
are still under investigation. P. Meis et al. identified a set of
risk factors that could contribute to preterm birth [10]. These
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factors are categorized as: i) demographic factors, ii) medical
history, iii) previous obstetric history and iv) current pregnancy.
J. Meeker et al. correlated phthalate exposure with preterm
birth by targeting specific phthalate metabolites, including
MBP, MBzp and di(2-ethyl-hexyl) [11]. The contamination of
groundwater has also been studied by T. Torres et al. [12]. They
suggested a group of Chlorinated Volatile Organic Compounds
(CVOCs), including trichloroethylene (TCE), tetrachloroethy-
lene (PCE) and chloroform (TCM), could have a strong
influence on preterm birth. Roca et al. proposed a strategy
that combines a targeted approach for pesticide metabolites
with a post-targeted screening for contaminant exposure, to
determine the biomarkers in urine [13]. Their approach facili-
tates identifying biomarkers of exposure due to environmental
pollutants.

In order to support a wide range of multidisciplinary
studies, many Electronic Data Capture (EDC) systems have
been developed to provide an automated workflow for data
collection, reporting and exploration. EDCs are mainly de-
signed to reduce the data retrieval cycle and to avoid errors
during the data collection process. The StudyTRAX system
can integrate data management with the process of generating
academic outcomes (e.g., manuscripts, presentations, book
chapters), which dramatically increases user productivity [14].
LimeSurvey is an open source package, providing a free
and secured web-based interface to leverage the capability of
customizable data collection [15]. Tools, such as Electronic
Laboratory Notebooks (ELN), are designed to facilitate the
documentation of experiments and procedures performed in a
laboratory environment [16]. Among various web-based elec-
tronic data capture systems, REDCap is one of the most user-
friendly tools that can stream captured data directly into the
database [17]. The Environmental Quality Information System
(EQuIS) from EarthSoft can integrate data collection with data
management, provide automated web-based dashboards for the
distributed environment, and support real-time data capturing
and reporting schemes [18]–[20].

Based on the high quality data collected with these systems,
previous studies have found that metabolites in urine could
provides some clues, such as the residue of environmental
pollutants in the human body that can trigger different clinical
symptoms. W. Arlt et al. applied Generalized Matrix Rele-
vance Learning Vector Quantization (GMLVQ) to discriminate
adrenocortical adenoma (ACA) and malignant adrenocortical
carcinoma(ACC), using urine steroid metabolomics as the
biomarker [21]. Y. Kim et al. proposed using multivariate
methods, decision trees and random forests, to diagnose breast
cancer using urine metabolome profiles [22]. An efficient
protocol for radiation metabolomics using urine samples was
proposed by C. Lanz et al., which applies random forest
techniques to gas chromatography, combined with mass spec-
trometry [23]. S. Reichenbach et al. proposed a new method
to extract non-targeted chromatographic features from 2D
chromatograms and showed that a Support Vector Machine
(SVM) outperforms a k-Nearest Neighbor (kNN) clustering
in their case studies [24]. In this study, we have developed a
noncommercial Mass Spectrometry Data Analysis Toolbox and
support a variety of machine learning techniques, including
Principle Component Analysis (PCA) and hierarchical cluster-
ing to facilitate large-scale metabolomic analysis.

III. URINE SAMPLE DATABASE

The PROTECT database is built to handle terabytes of
project data for our preterm birth study in Puerto Rico. We
have designed an efficient framework for data import and
cleaning, enabling the generation of detailed reports on specific
queries to facilitate research activities. In terms of urine
analysis, we store decoded raw urine data in the database and
provide users with open source tools to extend their research
ideas. Next, we will describe the goals of the PROTECT
project, present current status of our data repository, demon-
strate the workflow using proprietary software, and discuss
details of our challenges with working with urine sample data
in our study.

A. The PROTECT Center
The NIEHS Puerto Rico Testsite for Exploring Contami-

nation Threats (PROTECT) Center studies the causal effects
between exposure to environmental contamination and the high
preterm birth rates recorded in Puerto Rico. We collect a wide
range of data, including: blood, urine, ground water, tap water,
placenta and medical records. Based on this rich range of
data, we attempt to identify contributing factors associated with
preterm birth. Domain specific analyses are applied, which in-
clude non-targeted chemical analysis, mechanistic toxicology,
and targeted epidemiology. The organization of PROTECT is
shown in Figure 1. An additional goal is to develop green
remediation strategies to alleviate exposure and to reduce
future preterm birth rates. For the PROTECT database, we
support multiple research communities by facilitating data
cleaning, data storage, data security and data reporting. We
utilize software developed and marketed by EarthSoft called
EQuIS. We are presently using EQuIS Professional and EQuIS
Enterprise. Our backend database is Microsoft’s SQLserver.
We have developed a number of tools for data management
and modeling to advance our preterm birth study.

B. Data Storage
In the current database we capture human subject data,

environmental data and biological data. We currently have
more than 400 million data points in our system. The structure
of these data points is provided in Table I. In the near future,
we expect to host more than 100 billion data entries in our
system.

TABLE I. PROTECT database repository.

Data Points (In millions)
Environmental 1.3
Human Subjects 1.5
Biological 0.2
Non-targeted 400

Since each data entry can be an indicator tied to an adverse
reproductive outcome, we need the ability to carefully evaluate
relationships between data entries across the millions of data
points. Due to the sheer data volume, we leverage specialized
software to facilitate the data management process. We also
have the challenge that we are working is a geographically
distributed team of researchers in PROTECT. Our researchers
that need access to PROTECT data will have web-based dash-
boards to help them manage their data and perform customized
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Figure 1. PROTECT collects source samples (white arrows, bottom) to analyze factors that contribute to preterm birth. Core C
collects environmental and biological information. Core D handles data management and supports data analytics. Projects 1-5
utilize the collected data for their scientific studies.

queries. Our system helps to identify the linkages between
pollutants and birth outcomes through the use of advanced
machine learning algorithms.

C. Data Cleaning
After capturing the data, the integrity of each entity is

inspected. This process is called data cleaning, and is fairly
standard in any data collection campaign. The goal is to reduce
errors in the data. The checking process needs to verify that
each data field conforms to the data type and is within range for
each field. Data dependencies between fields are also checked.
This process is performed before incorporating any data into
the database. To facilitate this checking, we have a complete
data dictionary available for every entity stored in the database.

The data dictionary is developed by each domain expert.
We abide by the rules present in the data dictionary when
developing our schema, which in turn, helps to maintain a high
level of data quality. Our cleaning tools can quickly highlight
any detected anomalies in the data. Our comprehensive clean-
ing procedure can pinpoint corrupted data, and help to prevent
errors from entering the database.

D. Software Stack
For the front-end of the PROTECT database, we use Mi-

crosoft Visual Basic to configure the schema for data cleaning.
These scripts are used by EarthSoft’s EQuIS Electronic Data
Processor (EDP) to clean the input data according to the
defined constraints. After data screening, EQuIS sends the
cleaned data to Microsoft SQLserver. We leverage EQuIS Pro-
fessional [25] and Enterprise [19] to support both standalone
and distributed development environments, respectively. We
use EQUIS’s Electronic Data Processor (EDP) to import data
into the database.

Users can customize data formats, also known as Elec-
tronic Data Deliverables (EDDs), for their individual study.

EDDs can be stored in a number of popular documentation
formats including Excel spreadsheets and Comma Separated
values (CSVs). Typically, four files are needed to handle
data cleaning: 1) format definition file, 2) a custom handler
file, 3) an enumeration file, and 4) a reference value file.
The format definition file follows the rules defined in the
data dictionary. The custom handler applies the data checking
scheme and generates discrepancy reports if mismatches are
detected. Whenever a set of values need to be indexed based
on their definition in the data dictionary, the enumeration file
is used for this purpose, and so is an optional file. Users would
use the reference value file to allow them check reference
values remotely [18]. Errors are highlighted with detailed
warnings to facilitate the debugging process. Only after all
errors are resolved, then the input data values can be committed
to the database.

This automated data cleaning process is handled through
the EDP module in both EQuIS Professional and Enterprise.
Distinct from the standalone development of EQuIS Profes-
sional, EQuIS Enterprise provides web-based dashboards to
support distributed users [19]. Each dashboard is customized
to include a set of widgets specific to the needs to the data
researcher. For instance, data uploads and checking can be
performed using the EDD Upload widget. The cleaning status
can be configured to automatically inform a group of users
through the Notices widget. The Environmental Information
Agents (EIA) widget pushes reports to users on scheduled
events or dates. Online data access is shared across the PRO-
TECT center, providing access to researchers in Puerto Rico,
Massachusetts, Michigan and West Virginia. The workflow
from data collection to data reporting is shown in Figure 2.

E. Urine Samples
In our previous work, we have reported on a study of non-

targeted analysis on 6 urine samples from Puerto Rico [1].
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Figure 2. The PROTECT database collects data from different sources and includes data on: human subjects, environmental
parameters, biological analysis and non-targeted chemical/biological data. Data is cleaned before it is imported into the database.
The system supports both standalone analysis and distributed reporting capabilities through EQuIS Professional and Enterprise.
Equipped with a distributed solution, users can query customized reports through the web server. The PROTECT database also
supports data mining and modeling capabilities.

TABLE II. Urine samples from Developmental Neurotoxicity Assessment of Mixtures in Children (DENAMIC) project.

Country (Region) Type Resolution (FWHM) Raw Data Samples
ESI+ ESI- ESI+/-

Spain (Valencia) Pregnant mothers 50,000 306 306 -
25,000 - - 143

Children (4 years) 50,000 216 216 -
Spain (Sabadell) Pregnant mothers 25,000 - - 160

Slovakia Pregnant mothers 25,000 - - 52
Children (4 years) 25,000 - - 49

We discovered a range of clustering patterns present in these
samples. Due to the limited sample data, the contributing
chemicals remain to be identified.

To be prepared to compare results from our cohort to
other cohorts of expectant mothers throughout the world,
we have acquired an existing set of urine samples from
the Developmental Neurotoxicity Assessment of Mixtures in
Children (DENAMIC) Project [26] being carried out in Spain.
The details for the DENAMIC urine samples are presented in
Table II.

There are 661 mothers and 265 children across three
different regions in the Spain study. The mass spectrum data is
acquired using full scan mode (50-800 m/z), with a resolving
power of 50,000 FWHM (full width at half maximum) (scan
speed, 2 Hz), in both + and - modes of ESI (electrospray
ionization), and with and without HCD (higher-energy c-
trap dissociation fragmentation). Mass spectrum analysis is
performed on the Orbitrap ExactiveTM mass spectrometer
(Thermo Scientific, Bremen, Germany). Data acquisition is
accomplished using Thermo Scientific’s Trace Finder 3.1 soft-

ware. The raw mzXML files for these samples are rather large
(136 GB). Next, we will discuss how we work with this data
in order to identify patterns in this data set. In the following
section, we introduce our machine learning framework to deal
with the data processing challenges with this large data set.

IV. MSDA
Our urine analysis procedure relies heavily on the accuracy

of the mass spectrometer, and the supporting software. We
could choose to use applications such as MarkerView [27],
SIMCA-P+ [28] and SAS [29]. These packages provide black-
box style analysis with limited flexibility and processing
power. For example, MarkerView cannot handle large datasets
efficiently; it takes more than 20 minutes to perform PCA on
6 urine samples, and is unable to process larger datasets due to
memory storage issues. Meanwhile, there is free quantitative
metabolomics software available, such as MetaboAnalyst [30]
and MeltDB [31], which provides a comprehensive suite of
analysis recipes. However, these packages, while free, come
with a number of challenges, including limiting the maximum
file (limited to 6 MB in MetaboAnalyst), and very poor
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Figure 3. The Mass Spectrometry Data Analysis Toolbox.

runtime performance. In order to address these issues, we
have developed our own open-source Mass Spectrometry Data
Analysis Toolbox (MSDA), designed to efficiently carry out
a number of different mass spectrometry (MS) data analyses
tasks. Our MSDA Toolbox is able to analyze large datasets.

As shown in Figure 3, the Toolbox consists of three main
components: 1) data processing, 2) machine learning analysis,
and 3) visualization. The data processing component translates
the input data to the required input format for the data analysis
component. MSDA supports a wide variety of input data types,
including raw mzXML files, peak lists and spectral bins. A set
of data processing methods, such as peak detection/alignment,
bucketing, missing value imputation and data normalization are
supported. The machine learning analysis component provides
a wide range of machine learning techniques, such as feature
selection, clustering and PCA to provide insight into the data.
The visualization component generates 2D/3D plots for PCA
results, as well as heat maps and dendrograms for viewing
hierarchical clustering results. The Toolbox is an open source
software written in Python, which utilizes state of the art
statistical and machine learning libraries written in Python, R
and C. By integrating data analytics capabilities, the Toolbox
can significantly reduce data processing time, providing re-
searchers with a fast research toolset. We have modularized our
design to facilitate future contributions from the open source
community.

A. Data Processing
The data processing component filters the input data for-

mats before passing the data on to other components for the
further analysis. The first step is to check the input data
formatting, which transforms input data files into a data matrix.
Next, the user can choose to normalize the data, insert missing
values, or perform peak detection and bucketing. In this paper

we utilize the urine sample data from the DENAMIC project
to demonstrate how our toolbox facilitates data discovery.

Load mzXML

Combine Scans

R to Python
Export to CSV

CSV to Python

Pros:
  * Fast I/O          

Cons:
  * Repeated process for 
further analyses 

Pros:
  * One time effort
  * Reduce the overhead 
for  further analyses

Cons:
  * Slow I/O

Time (s) : 7*N Time (s) : 32 + 2*N

Figure 4. Compare memory exporting (bottom left) and disk
(bottom right) exporting approach for formatting one mzXML
file. N stands for the number of rounds of analysis. Reading
data directly from R consumes 7 seconds / round, whereas
reading from disk consumes 2 seconds / round, plus one time
overhead of 32 seconds.

1) Input data formatting: This step converts input data into
a data matrix, with samples in rows and features in columns.
Three different data sources are supported: MS spectra raw
files, peak list files and spectra bin files. The MS raw file
should be in the mzXML format, while the rest are stored as
CSVs. A peak list file should have either 2 columns (mass and
intensities) or 3 columns (retention time, mass and intensities),
with the first row reserved for column labels. A spectra bin
file can have any number of columns, with the first row filled
with labels for m/z buckets. The Toolbox also supports batch
processing.

We utilize the MALDIquant [32] package in R and the
Panda [33] library available in Python to transform mzXML
and CSV files into data matrices, respectively. To seamlessly
read the output of the MALDIquant package using Python,
rpy2 [34] is used to convert R objects into an accepted Python
format, which avoids performing slow disk I/O operations.
Since the mzXML files are frequently used, we convert them
to CSV files and they are saved to disk for future analysis.

This data formatting is I/O bound, and so its performance
depends on the size of the input file and output locations. To
translate one urine sample file from the DENAMIC project,
loading the mzXML file (83 MB) using MALDIquant takes 6
seconds and combining all of scans into a data matrix using
data.table consumes 1 second. In MSDA, we provide two lo-
cations for data exporting, namely memory and disk. To export
the data to memory, the rpy2 package is used to facilitate the
process, reducing runtime overhead to approximately 20 µs
when offloading data (350 MB) in R to Python. On the other
hand, we can export the data to disk first, which takes 25
seconds in R, then read it in as a Python object, which takes
2 seconds using Pandas. A comparison of both approaches is
presented in Figure 4. Given the common case that we need
to run many rounds (N being a big number) of analyses, the
disk approach would be preferred by most users.

54

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



2) Data normalization and missing value imputation:
Once a data matrix is generated, users can select whether
to perform data normalization and missing value imputation.
Many statistical and machine learning algorithms, such as
PCA, do not work properly if features have a wide range of
values or missing entries. Data normalization is used to modify
the range of independent features so that they are normally
distributed. Several data normalization methods are provided
in MSDA, such as centering by mean or median values,
scaling by the standard deviation, maximization, root square
or logarithm. A variety of methods to treat missing values
are also implemented in the Toolbox, including replacement
by zero, mean, median and discarding the whole feature in
the sample if the number of missing values is over a user-
defined threshold. The numpy [35] library is used for data
normalization and missing value imputation in our system.
The resulting execution time is less than 50 ms for each urine
sample.

MzXML File MassSpectrum Transform Intensity

Smooth Intensity

Remove Baseline

NormalizationDetect Peaks

Optional Stage

Mandatory Stage

Peak Lists (.csv) / 
Python Objects

Peak Detection

Figure 5. Peak detection pipeline. Dashed boxes represent
optional steps and the solid ones stand for mandatory steps. A
full peak detection pipeline includes all the stages, whereas a
short one only includes the mandatory stages.

3) Peak Detection: Users can choose whether to select
peaks for a given mzXML file or just leave the MS data
unchanged in CSV format. MALDIquant is used to carry out
the peak detection task. It provides a peak detection pipeline,
as shown in Figure 5. The 4 stages of the pipeline include: i.)
removing noise from the spectra, ii.) transforming intensities,
iii.) correcting the baseline, and iv.) aligning the spectra.

At the beginning of the peak detection process, we read the
mzXML data by calling the importMzXml function. Figure 6
(a) shows one scan of an input urine sample. The intensity
values are then centered and scaled, as shown in Figure 6
(b). Several scaling methods are supported, including square
root and logarithm. The smoothing stage can be implemented
using either the SavitzkyGolay or MovingAverage method, and
configurable to a half window size [36]. The SavitzkyGolay
method with a half window size of 10 is applied in Figure 6
(c). Then, the spectra baseline can be estimated and removed
by adopting SNIP [37], TopHat [38], ConvexHull [39] or me-
dian methods. These methods estimate the background signal,
iteratively. Users can adjust the iteration parameter to achieve
the best result. Figure 6 (d) shows the baseline estimation using
the SNIP method with 10 iterations. Figure 6 (e) shows the
spectra with the baseline removed. The resulting spectra can be
normalized using either Total-Ion-Current-Calibration (TIC)

or Probabilistic Quotient Normalization (PQN) [40]. Figure 6
(f) shows the normalized spectra using the TIC method. The
last and most critical stage is the peak detection step. This
step estimates noise using either the media-absolute-deviation
or Friedmans Super Smoother method. Users can adjust the
half window size and signal-to-noise ratio (SNR) to identify
the local maximum intensities. The SNR can also be estimated
automatically using the estimateNoise function. The baselines
for SNR 1 and 2 are presented in Figure 6 (g). The results of
using the full peak detection pipeline are plotted in Figure 6
(h), where an SNR 2 is applied. In addition, the short pipeline’s
results are shown in Figure 6 (i). This approach skips all the
optional stages that were present in Figure 5. The output of
the pipeline can be either directly fed to Python through rpy2,
or saved to disk as a peak list file in CSV format for faster
accesses in the future.

We show that different peak lists are generated by applying
either the full or short peak detection pipeline in Figures 6 (h)
and (i). Users can choose which pipeline to use, depending
on the trade-off between the execution time and the peak
resolution.

importMzXml transformIntensity

smoothIntensity removeBaseline

calibrateIntensity detectPeaks

exportCsv

(a) Full pipeline execution time = 25.5 s. Three dominant
factors: (1) exportCsv-36% (2) importMzXml-19% (3)
smoothIntensity-16%.

importMzXml detectPeaks

exportCsv

(b) Short pipeline execution time = 17.6 s. Three domi-
nant factors: (1) exportCsv-52% (2) importMzXml-28%
(3) detectPeaks-20%.

Figure 7. Performance breakdown for both the full and short
pipelines. The 3 most timing consuming steps are presented in
descending order.

4) Peak Detection Performance: We use an Intel i7-4790K
(4 cores / 8 threads, using hyperthreading) to evaluate peak de-
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(a) Input Spectra (b) Transform Intensity (Full) (c) Smooth Spectra (Full)

(d) Estimate Baseline (Full) (e) Remove Baseline (Full) (f) Normalize Spectra (Full)

(g) Estimate SNR (Full) (h) Detect Peaks (Full) (i) Detect Peaks (Short)

Figure 6. A pipelined Peak Detection example. The spectral results after each stage in a fully pipelined peak detection are shown
in Figure (b) to (h), whereas Figure (i) shows the detected peaks using a short pipeline. The x-axis is mass, the y-axis is intensity.

tection performance. In R, the average processing time for one
urine sample is 17 and 25 seconds for the short and full peak
detection pipelines, respectively. The detailed performance
breakdown for each case is illustrated in Figure 7. Since there
are 1448 urine samples in the DENAMIC datasets, it requires
7 hours for the short pipeline and 10 hours for the full pipeline
to detect intensity peaks. To reduce the processing overhead,
we identify the performance bottlenecks and explore multi-
threading techniques to accelerate the process. We consider the
aforementioned single-threaded performance as our baseline
for comparison.

As shown in Figure 7, the dominant performance bot-
tleneck lies in the exportCsv step, which merges a list of
mass spectrometry data into a single matrix, and then exports
the data to a CSV file. Due to the overhead of combining
rows (rbind) and columns (cbind) in R, the merging step takes
9.1 seconds, as compared to 0.1 seconds to export the CSV
file. In order to accelerate the merge step, we leverage the
optimized rbindlist function in the data.table package [41].
First, for each peak scan, as a data frame object is appended
to the pre-allocated list, the list is reduced into one data frame
using rbindlist. We observed the execution overhead of the
merge step drops from 9.1 seconds to just over 1 second. This
is because rbindlist is highly optimized in C, whereas rbind is
coded in a high level scripting language (R). We can reduce the

execution time of exportCsv from the 9.2 seconds (baseline)
to 1.1 seconds.

The next performance hot-spot is the importMzXml pro-
cess. We leverage the mzR package from Bioconductor (an
open software for bioinformatics) [42][43]. In our baseline
approach, importMzXML in MALDIquantForeign reads the
mzXML file (internally using readMzXmlFile from the read-
MzXmlData package) and creates the MassSpectrum class
accordingly [44][45]. To improve performance, we utilize the
openMSfile function from the mzR package to read the input
file more efficiently, and apply the peaks method inside mzR
to acquire the m/z and intensity values. We achieve a 2.6x
speedup over the baseline, reducing the elapsed time from 4.9
seconds to 1.9 seconds.

Besides single-threaded optimization, we also utilize par-
allel packages (e.g., a multi-threaded implementation in R) to
obtain more speedup [46]. The execution time for the three
steps (import, peak, export) by varying the number of threads
is shown in Figure 8. Here, the peak stage includes the steps
from transformIntensity to detectPeaks in Figure 5.

In our optimization scheme, we use the mclapply function
to parallelize the list operation on the MassSpectrum data. The
peak operation is applied to every MassSpectrum data list using
mclapply. The same operation is applied to the parallel creation
of MassSpectrum objects in the import stage and the export
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Figure 8. The performance for parallelizing three performance
hotspots 1) import 2) peak 3) export for the full pipeline peak
detection on an Intel i7-4790K.

stage. However, since the parallel package forks to create a
new process by taking a complete copy of the master process,
the overhead is very high for both import and export stages.
Thus, the performance flattens out after two threads for import
(red line) and export (yellow line), as shown in Figure 8. For
the peak stage, only urine sample IDs are duplicated during
the forking process. We achieved a 3.9x speedup using 4
threads. In summary, Figure 9 shows that by using data.table
(rbindlist), we can achieve a 1.5x speedup on average. Adding
mzR (openMSfile) to data.table, we can obtain on average
1.9x speedup. When using parallel (mclapply), and adding
the benefits of the two previous optimization methods, we
can achieve a 5.3x speedup by using 4 threads. Overall, we
reduced the processing time for the full pipeline peak detection
from 10 hours to 2 hours. Applying the same technique, we
shortened the processing time from 7 hours to 1 hour for the
short pipeline peak detection.
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Figure 9. The total speedup achieved by parallelizing the full
pipeline peak detection on Intel i7-4790K.

5) Bucketing Approach: The Bucketing approach is also
implemented in MSDA. For each peak list, we group multiple

Peak Lists

Scan Selection

Time Bucket Size

m/z Bucket Size

Any single scan or 
group of scans

Options

1 ~ # Scans

0.001 ~ 1 DA

Intensity Selection Integration, 
maximum

Spectral Bins

All

Defaults

6

0.001 DA

Integration

Normalization Standard Deviation,
max None

m/z Range Any range of m/zs All

Figure 10. Workflow of the Bucketing approach. Users can
specify the parameters.

scans together in a time-bucket, and multiple m/zs in a m/z-
bucket. The time-bucket size and the m/z-bucket size are
chosen based on the HPLC peak width, while considering the
mass accuracy and the resolution of the mass spectrometer. The
Bucketing approach essentially extracts the spectral features
integrated over time in order to reduce the redundancy in
the original MS data, and to improve our computational
capabilities. As shown in Figure 10, the input is a set of peak
lists in CSV format and the output is the spectral bins. The
boxes between the input and the output represent the optional
transformations that can be applied by the users. Users can
choose from the listed options in Figure 10, or specify their
own parameters. Otherwise, the default values are used. The
first parameter allows the user to choose any combination of
scans in a sample. A range of m/z sizes can be specified using
the second parameter. Users can choose how many scans they
want to put into one bucket by specifying the time-bucket
size, and the size for m/z-buckets by the m/z bucket size.
Users can also choose how to combine the bucketed scans,
by either integrating all the intensity values, or by selecting
the maximum intensity for each m/z bucket. In addition, users
can also select the normalization method for the bucketed
intensities.

To process one urine sample from the DENAMIC project,
whose scan speed is 2 Hz with normal MS scans and HCD
fragmentation scans interleaved, we choose the even-numbered
scans in the range of 40 to 1200 and use 6 as the time-bucket
size and 0.001 DA as the m/z-bucket size.

The generated spectral bins for the 306 urine samples
(spanish mothers with ESI+) consist of 97 time-buckets
and 750k m/z-buckets in each sample, corresponding to a
29,682 x 750,204 sparse matrix of 1.5% density. The Scipy [47]
library is used to store the sparse matrix in the compressed
column storage (csc) format to minimize the memory cost. The
spectral bins, represented as in a data matrix, can be directly
fed into the machine learning analysis component or stored on
disk as a CSV file.

Figure 11 plots the execution time of the bucketing ap-
proach for one urine sample consisting 600 scans and 942,397
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Figure 11. Bucketing performance while varying the bucket
size.

(m/z, intensity) pairs. We vary the time and m/z-bucket sizes to
compare their impact on the performance. It turns out that m/z-
bucket size is the dominant factor as we can see two big jumps
in the execution time when decreasing the m/z-bucket size
from 0.009 to 0.003 and from 0.003 to 0.001. The time-bucket
size, on the other hand, contributes little to the execution time,
especially when the m/z-bucket size is large.

B. Machine Learning Analysis
A general set of machine learning techniques for mass

spectrum analysis are implemented in MSDA. In this section,
three different methods are discussed: i) Principal Component
Analysis (PCA), ii) K-means clustering, and iii) Hierarchical
clustering.

1) PCA: Principal Component Analysis (PCA) [48] is a
commonly-used method to reduce a data matrix of n features
to k (k << n) features, with much of the variability in
the data preserved. The transformed k features are called
principal components. The principal components are sorted
by their variance, hence the first principal component has the
largest variance and each subsequent component has the next
largest variance. As noted by Worley and Powers, PCA is
one of the most popular multivariate analysis methods used
in metabolomics [49]. Because PCA can significantly reduce
the dimensionality of a dataset, it is often used in compression
algorithms as it provides an approximation of the original
data using only k principal components. Another common use
of PCA is visualization: datasets in high-dimensional space
can be projected onto a 2D or 3D space, while most of the
patterns in the dataset are preserved. Researchers can gain
insight into complex data by just studying the 2D and 3D
plots. In MS data analysis, the data matrix is usually a huge
sparse matrix, especially when the m/z-bucket size is small.
One of the data matrices from the DENAMIC project used in
this work contains 306 urine samples, where each sample is
represented by 97 time-buckets and 750,204 m/z-buckets. This
results in a 29,682 x 750,204 sparse data matrix with ∼ 350
million non-zero elements. Normal PCA methods that take a
dense matrix as the input cannot be used in this case, hence
MSDA uses a TruncatedSVD [50] from scikit-learn [51] for
this task. The execution time of applying the TruncatedPCA
on the aforementioned matrix is 34 seconds on average.

2) K-means Clustering: K-means [52] is one of the most
popular clustering algorithms, especially given its simplicity
and effectiveness. It is widely used in metabolomic studies due
to its capability to perform rapid subset identification from the
information-rich spectral datasets [53]–[55]. In MS analysis,
K-means (and its variants) are heavily used to cluster urine
samples to detect anomalies. It can either be applied on the
original data matrix to calculate the pairwise distances in n
dimensions, or directly on the dimensionality-reduced matrix
generated by PCA.

3) Hierarchical Clustering: In K-means, the desired num-
ber of clusterers k must be specified by the user, and deter-
mining k is not an easy job. Hierarchical clustering is another
widely used clustering algorithm that builds a hierarchy of
clusters, so that the clustering results for all k (from 1
to n) are automatically generated [56][57]. MSDA uses an
agglomerative clustering algorithm and displays the clustering
results using a dendrogram.

C. Visualization
In this section, we showcase 2D/3D plots for the PCA

results and the heat map / dendrogram for the hierarchical
clustering results.

1) 2D/3D plots: Figures 12 and 13 show the 2D and
3D plots of the PCA results generated by MSDA using
matplotlib [58] in Python. We are able to project 29,682 data
points on a 2D and 3D space in 20 seconds and 25 seconds,
respectively.

2) Heat map and Dendrogram: A heat map is a data
visualization technique to reveal the relationships among data
points, using a color scheme. A heat map applies a color-
shared matrix display, and reorders the data matrix to disclose
the underlying structure of the data [59]. It is widely applied
in data visualization in the natural and biological sciences.
This technique has been extensively used in previous urine
studies [60]–[62].

A dendrogram is a tree-based diagram that illustrates how
k clusters are grown out of n observations for any arbitrary
k (from 1 to n). To view the clustering result for a specific
k, a ”cut” can be taken horizontally on the y-axis where k
intersections are created. Each vertical line at the intersection
then leads to a cluster.

Heat maps and dendrograms are often combined to illus-
trate hierarchical clustering results. MSDA uses matplotlib to
generate the combined plot. An example of 306 urine samples
is shown in Figure 14.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented an overview of Puerto Rico
Testsite for Exploring Contamination Threats Center, and high-
lighted many of the challenges faced during data management
and analysis. We have developed a highly efficient solution
based on the EQuIS, providing for efficient data cleaning and
reporting given the diversity of the data sources.

In order to begin to understand how environmental factors
can impact preterm birth, we have developed a number of Tool-
boxes. We discuss the development of a Toolbox to streamline
metabolomic analysis of expectant mother’s urine samples. The
goal is to identify non-targeted compounds in the urine. Due to
the computational challenges of this analysis, we have built an
open source framework called the Mass Spectrometry Data
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Figure 12. A 2-D PCA plot. Figure 13. A 3-D PCA plot.

Figure 14. Example of a dendrogram and heatmap available in MSDA.
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Analysis Toolbox. The Toolbox can signficantly accelerate
metabolomic analysis. MSDA can handle a complete analysis
pipeline ranging from data processing to machine learning.
The Toolbox also provides visualization capabilities to help
the user understand sample characteristics present in a high-
dimensional feature space.

We have been able to demonstrate the saving provided by
MSDA, enabling much faster processing utilizing paralleliza-
tion, but also integrating a number of tools together into a
single framework. We believe MSDA will have a strong impact
on discovering biological patterns in the future.

To further improve the capability of MSDA, we plan to im-
plement additional machine learning and statistical techniques,
including PLS-DA, t-Tests and SVM capabilities. We also plan
to enhance the performance and scalability of the Toolbox
further, leveraging GPUs and the Spark [63] distributed com-
putation framework.
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