
Testing Self-Adaptive Software:
Requirement Analysis and Solution Scheme

Georg Püschel, Sebastian Götz, Claas Wilke, Christian Piechnick, and Uwe Aßmann
Software Technology Group, Technische Universität Dresden

Email: {georg.pueschel, sebastian.goetz1, claas.wilke, christian.piechnick, uwe.assmann}@tu-dresden.de

Abstract—Self-adaptive software reconfigures automatically at
run-time in order to react to environmental changes and fulfill
its specified goals. Thereby, the system runs in a feedback loop
which includes monitoring, analysis, adaptation planning, and
execution. To assure functional correctness and non-functional
adequacy, verification and validation is required. Hence, the
feedback loop’s tasks have to be examined as well as the adapted
system behavior that spans a much more complex decision space
than traditional software. To reduce the complexity for testers,
models can be employed and later be used to generate test
cases automatically—an approach called Model-based Testing.
Alternatively, the models can be executed directly for which
simulation-based validation can be employed. For both methods,
an engineer has to specify validation models expressing the
system’s externally perceivable behavior as well as expectations
derived from requirements. In this paper, we perform a Failure
Mode and Effects Analysis on a generic perspective on self-
adaptive software in order to derive additional requirements to
be coped within test modeling. Besides functional requirements,
we discuss non-functional requirements in particular. From these
requirements, a reference solution scheme is derived that can
be used to construct and evaluate validation methods for self-
adaptive software. For illustration, we provide an example from
the home robotics domain.

Keywords—Self-adaptive Software; Model-based Testing; Simu-
lation; Failure Modes and Effects Analysis.

I. INTRODUCTION

In our original work [1], we studied requirements that have
to be coped with in testing self-adaptive software (SAS, [2]).
This certain kind of system reconfigures automatically at run-
time according to sensed context changes. Thus, it is able
to effectively and efficiently fulfill its specified goals under
changing conditions. For instance, a beneficial application
area of SAS are Cyber-physical Systems (CPS, [3]). CPS
reflect physical objects, software, and their interplay in order
to reason about them. Due to the SAS’s ability to automatically
adapt to changes in such a context, a CPS may operate
autonomously without the requirement of a strictly controlled
factory environment. Thus, the development of sophisticated
methods and technologies for developing SAS may help to
make systems like autonomous cars and home robotic systems
become reality.

The user of an SAS can delegate tasks to the system at
run-time. Such tasks do not have to be known to the system
in advance. Several systems support descriptive formats like
goal models or rules for this purpose. Furthermore, there may
be unanticipated events in the environment that have to be
considered in the SAS’s decision process as well as external
adaptation mechanisms that change the system structure in an
unforeseen manner. In consequence, an SAS engineer has to
be aware of several unpredictable behaviors that may impact
design decisions.

However, the manufacturer of a system has to give promises
to customers about its correctness (e.g., in form of a certificate).

Therefore, at least a subset of the SAS capabilities have to
be verified or validated before delivery. As each step of the
development life cycle is equipped with a limited budget, it is
difficult or even impossible to examine the system’s correctness
completely. Thus, a more scenario-based examination of the
SAS is preferable. Additionally, self-testing [4] or even self-
verification [5] mechanisms can be built in the system and
triggered at the point in time when the system is adapted.

Another problem is that SAS engineers face additional
complexity. During each test scenarios’ workflow, the test steps
can be adapted to changing context situations. In consequence,
in the worst case, the state space of the system is combina-
torial between adaptation state and workflow state [6, p. 17].
Furthermore, it has to be considered that a context change, that
causes an adaptation, has to be taken into account in order to
reproduce specific adaptation states. Due to all these complexity
factors, the difficulty of applying verification methods like
model checking increases enormously. Hence, in our work, we
instead focus on determining validation techniques that provide
appropriate abstraction means for SAS’ state spaces.

The most abstract view on a system can be taken, if it
is considered a black box. That is the system’s internals are
invisible to the tester, except for service interfaces which allow
to interact with the black box. These interfaces provide a set of
methods that may accept or produce messages and can be used
according to a protocol. Instead of examining the internal state
of the system, only the observable external state, which is given
by the service protocol, is examined [7]. To validate the system,
it has to be checked whether the expectations on the interface
interaction hold. This can be achieved, e.g., by running test
cases. In order to face the SAS’s behavioral complexity, these
test cases do not have to be designed manually. The state space
can automatically be searched for appropriate test cases, if the
protocol is represented as a formal model. Test case generation
from models is typically called Model-based Testing (MBT, [8])
and has been subject to recent research.

In general, a test case is a sequence of actions of two
different types. Firstly, there are actions that produce certain
messages to the system under test (SUT) in order to enforce (i.e.,
reproduce) a certain state of the protocol. Secondly, assertions
retrieve messages from the system in order to verify their data
against the expected values. Hence, this data has to be computed
by a so-called test oracle, which is a mapping function from
input to output data. Both, the values to be enforced and
assertions to be validated, are central entities of a test model.

Before the test run, the environment of the SUT has to be
properly set up. In order to validate SAS, changes have to be
applied to this test environment such that self-adaptation is
triggered. However, some of the environment’s properties are
not always controllable with acceptable effort. For instance,
changing the weather in outdoor scenarios may only be feasible

88

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



by mocking sensor data. A related problem constitutes when
the test model is not precise enough to predict exact reactions
of the SUT. For instance, a robot that is controlled by an SAS
does not drive very precisely to a predicted place. The decision
logic of the SAS under test may recognize the drift and react
properly, but the test oracle does not take the drift into account
as it is based on the incomplete formal model. In summary,
some validation steps may depend on information that is only
available at test run-time and has to be gathered using sensors.
For such situations, the validation mechanism has to keep a
decision model in memory in order to adjust the validation
process accordingly. In consequence, the test model is executed
and adjusted at run-time, which is identical to simulation-based
validation. The model is taken as a simulation input and its
state is validated against the real system during execution.

Both methods, MBT and simulation, are based on a model
that has to reflect the black box’s external behavior. Like in SAS
design, the test metamodel should be expressive enough for
defining concise test models with a minimal effort. In [1], we
have already investigated which properties of SAS are relevant
for SAS testing. In order to provide model properties that hold
for arbitrary SAS, we derived a general notion of such systems
based on the concept of feedback loops that are commonly
accepted in research as the central concept of all SAS [2]. In
our original work, we extracted three different types of artifacts
from this concept:

1) Failure scenarios, that can be employed for estimating
the effort and progress of system validation.

2) Properties of failures for identifying meaningful ver-
dicts (i.e, semantics of test results).

3) Potential error propagations and their causal chains.

The investigation process was based on Failure Mode and
Effects Analysis (FMEA, [9]), a safety engineering method. By
applying this sophisticated tool set, the analysis was founded on
a solid methodology. In this paper, we extend the contributions
of our original work as follows:

1) Example: In order to improve the understanding of
the analysis process, we provide a domestic home
robot application and illustrate the single analysis
steps based on this example.

2) Non-functional properties: In our original work, pri-
marily functional criteria were considered. In this pa-
per, we additionally discuss the challenges originating
non-functional criteria.

3) Abstract reference solution scheme: Based on the
identified requirements, we propose methods and a
reference solution scheme of interconnected artifacts
that separate the minimal requirements of imaginable
solution metamodels.

Besides these new contributions, we enrich our explanations
with additional details.

The remainder of this paper is structured as follows: We
start with related work in Section II. In Section III, we present
the example SAS. In Section IV, we recite and extend our
FMEA-based investigation for SAS by non-functional criteria
and in Section V, we state the resulting modeling requirements.
In Section VI, we propose the solution scheme. Finally, in
Section VII, we outline future work.

II. RELATED WORK

In literature, related approaches concerning testing adaptive
systems have been discussed in two different research directions.
Firstly, in context-aware and context-adaptive system research,
model-driven test approaches were found that derive test
data from context models. Secondly, several research groups
developed methods around SAS engineering.

The most advanced approach concerning context adaptivity
is, w.r.t. our knowledge, the work of Wang et al. [10]. The au-
thors propose to construct an abstract control flow graph (CFG)
directly from code artifacts by searching for access instructions
on data that was delivered from a context middleware. Thus,
a grey box perspective is taken, where at least the points of
interest that rely on context data are identified throughout the
source code. The CFG is an operational test model consisting
of transitions and nodes (so-called context-aware program
points, capps) that point to program locations. From the CFG,
sequences of capps are generated. A context manipulator
component generates sequences of context manipulations that
are applied to the real system. In advance, the system code has
been instrumented with feedback instructions that let the context
manipulator monitor whether it triggers a certain capp. The
sequences of context manipulations are optimized in order to
trigger new states in the generated capp sequences. If they do so,
a new test case can be assembled from the context manipulating
actions. Using Wang et al.’s methodology, relevant operational
orders of context manipulations can be automatically derived.
Furthermore, their impact on the system can be identified such
that a causal link between environment data and adaptation
can be defined. However, the rest of the adaptation remains
unconsidered. There are no means to validate whether any
adaptation outcome is correct.

In SAS research, the earliest statements on the necessity
of testing were published by Cheng et al. in [6]. The authors
proposed to focus on adaptive requirements engineering and
run-time validation to assure SAS’s quality. However, they also
constructed an abstract model of adaptive software’s states
consisting of an inner system state plus an adaptation mode
or phase. The latter one describes in which variant a system
works. Each transition, concerning either mode or state, changes
the overall configuration of the system and has to maintain
certain local or global properties. It is also discussed that a
steady model as behavioral specification is insufficient for a
behavior specification of SAS. While the authors’ proposals are
general enough to abstract from specific self-adaptive systems,
several problems remain. Due to the enormous complexity in
the behavioral space of adaptive software, an exact limitation
of possible transitions to those which are correct and relevant
for testing is a very hard task. In consequence, a much more
expressive and usable model should be applied in test modeling.

A concrete research project on self-adaptivity is DiVA
(Dynamic Variability in complex Adaptive systems). Despite
comprehensive findings on engineering SAS, it includes a
methodology for testing [11][12]. DiVA’s validation process
is split into two phases: (1) The early validation is based on
design time models (adaptation logic and context model) and
executed as a simulation. A main focus in DiVA’s test method is
to generate reasonable context instances and associate ”partial”
solutions, which can be used to find a set of valid configurations.
(2) Additionally, an operational validation method is proposed
that also deals with context changes/transitions. Therefore,

89

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



DiVA uses Multi-dimensional Covering Arrays (MDCA) in-
cluding a temporal dimension. These arrays describe multiple
context instances that are scheduled as test sequences and
provide means for defining coverage criteria on sequences
of adaptations. There are also fitness functions that help to
minimize the test cases while preserving a good coverage. A
drawback of this approach is that the test oracle is manual and
does not depend on the previous configuration of the tested
SAS. The latter point makes it impossible to examine stateful
adaptations where not every system variant can be reached in
arbitrary situations.

In context of DiVA, Munoz and Baudry presented in [13]
an extended approach that bases on the same workflow. The
authors formalize context and variant models and generate
sequences of context instances by using Artificial Shaking Table
Testing (ASTT). In order to measure the similarity between
two context instances, a difference function is defined. Using
the means of statistical distribution, context sequences are then
generated, which are optimized towards a specific distribution
of differences throughout the sequences. The theory behind this
work states that sequences with at least one violent peek of
difference between three following context instances would be
best for testing the SAS. The theory was examined by showing
an improved number of found failures in comparison to “non-
violent” sequences. The ASTT approach is more powerful than
the original DiVA test method as the oracle is defined formally
and its predicted system variants also depend on the previous
system configuration. However, the drawback of both DiVA
test concepts is the lack of a method to validate behavioral
adaptation.

Remedy to this lack give Abeywickrama et al. with
their State Of The Affairs (SOTA) modeling and simulation
platform [14]. They propose to model the complete behavior of
SAS by specifying feedback loops as first class entities in form
of activity diagrams. The feedback loops may communicate by
hierarchy, shared components, or events such that different
aspects of the system can be separated properly. Despite
its modeling capabilities, a simulator, called SimSOTA, was
developed that allows the live execution of SOTA models and
their inspection during this execution. While the approach
allows the definition of parametrical adaptation (using variable
assignments) and behavioral adaptation, there are no means
to predefine environment change. Thus, no system state can
be automatically reproduced and the tester relies on external
mechanisms for this purpose. In consequence, SimSOTA is
more appropriate to be used in debugging a system in order to
observe inconsistent states.

Another promising early-state work has been proposed by
Nehring and Liggesmeyer in [15]. The approach enables an
SAS engineer to inspect the system’s state space exploratory.
The authors assume that the system is component-based and
the adaptation is a reconfiguration of this component structure.
Along six examination iterations, transactional reconfigurations
are investigated with a grey-box knowledge on the components
and their interconnections. During the first iteration, a system
model is constructed and workloads are defined to stress the
system to examine its reaction to different situations. In the
second iteration, the structural changes are checked. A third
iteration is run in order to analyze whether data integrity is
violated when different workloads are applied. During the fourth
iteration, correctness of state transfers between exchanged
components is examined. In order to evaluate the correctness

Stereo 
Camera

Drive

Basket
CabinetInhabitant

!
Emergency

Illumination System

Home Station

Fig. 1: The HomeTurtle application.

of transactions that are caused by adaptations, a fifth iteration
is run. The sixth and last iteration has the purpose of checking
identity relations of components before and after adaptation. As
SOTA, this approach can be seen as a special form of debugging
without means for environment situation enforcement.

In summary, existing approaches either lack the consid-
eration of behavioral adaptation or they are not capable of
enforcing a certain environment or adaptation state, which
would be necessary for a systematic validation. Furthermore,
non of the proposals has explicit means for tackling non-
functional properties. However, any potentially complete test
approach for SAS should be able to deal with non-functional
requirements as well.

III. EXAMPLE APPLICATION

In order to illustrate the analysis and solution scheme
in the remainder of this paper, we sketch an example SAS
in the following. We built the domestic home robot system
HomeTurtle, which supports a disabled person at home. An
example scenario is depicted in Figure 1. The service aims
to deliver requested items to the inhabitant from a software-
controlled storage cabinet. The scenario involves three active
elements:

• Transport Robot: An extension of the TurtleBot plat-
form (http://www.turtlebot.com) operates as
transportation system. On top of the mobile robot, a
basket is mounted where items can be put in. The
system includes an autonomic computing unit and a
stereo camera such that it is able to locate itself.

• Storage Cabinet: The cabinet is controlled by a WiFI-
connected embedded device. This device is capable of
triggering magnetically hold flaps, which lock boxes
each containing an item. After opening a flap, the item
drops out and falls through the cabinet’s base into the
robot’s basket. The robot’s battery is charged when it
parks on the its home station.

• Illumination System: If the natural illumination is
insufficient for the robot to locate itself, a lamp can
be switched on automatically. For this purpose, the
Philips Hue is used (http://www.meethue.com).
The bulb contains a WiFi-connected embedded control
device as well.

90

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



In order to start the interaction, the inhabitant requests a
specific desired item (by speech input) and the robot starts
driving automatically. It plans its way through the room and
avoids obstacles that are recognized by using its stereo camera.
After finding the cabinet, the robot parks thereunder. By WiFi
connection the cabinet’s embedded device is signaled to drop
the requested item. Then, the robot drives back to the inhabitant
for delivery. In a final step, the robot drives on its home station
where its battery is charged as long as no request is being
operated.

All decisions are made autonomously by an SAS. The
computations take place on the computation unit hosted on the
robot. By adding several self-adaptive capabilities, this software
allows the robot to work in different situations effectively.
Firstly, the correct recognition of walls and obstacles relies
on appropriate room illumination. When the natural brightness
(through the windows) is insufficient, the system automatically
switches on the illumination system to improve the quality
of obstacle detection. Secondly, the inhabitant can use an
emergency switch. If this switch is triggered, the robot is
expected to immediately cancel its current action and navigate
to an emergency location as labeled in the figure. The purpose
of this operation is to avoid the robot being an obstacle while
human emergency responders are in the room. Thereby, the
moving robot would be a danger itself.

We implemented the HomeTurtle system to experiment
with our adaptive software framework Smart Application
Grids (SMAGs) [16]. Applications that are built using SMAGs
are able to adapt their component-based architecture. For exam-
ple, component implementations are exchanged or components
are automatically connected by generated adapters at run-time.
Based on these features, we have built the above described
home robot system. As the decision logic of the HomeTurtle
bases on the reflection of physical objects and actuators, the
system can be categorized as CPS. In the remainder of this
paper, the capabilities of the HomeTurtle are used to illustrate
our analysis process as well as the solution scheme proposal.

IV. FAILURE ANALYSIS

In this section, we analyze relevant failure characteristics
and scenarios of SAS. For this purpose, we apply FMEA [9][17].
FMEA is used in engineering of safety-critical systems to
find relevant failure sources. The method was first applied for
electrical and mechanical systems and later extended for the
usage in software engineering [18][19].

According to [7], a failure is an event of service deviation
from an expectation. The expectation is defined in a specifica-
tion document, e.g., in form of requirements. An error is the
inconsistent part of the total system state (internal state plus
perceivable external state) which may propagate the failure.
The cause that activates an error is a fault that is active. There
may also be dormant faults, which do not cause errors. A
failure may trigger a new fault in another component as well.
This interaction is called causation.

Based on the FMEA process, our analysis is separated into
three steps:

1) Identification of SAS-specific failure dimensions and
properties (presented as Failure Domain Model).

2) Investigation of SAS-specific failure scenarios.
3) Visualization of error propagation among the found

scenarios as Fault Dependency Graph.

Monitor Execute
Knowledge

Analyze Plan

Change 
Request

Change PlanSymptom

Fig. 2: The MAPE-K feedback loop (cf. [2]).

Step (3) is not an actual part of FMEA. Usually, a Fault Tree
Analysis (FTA) [20] is performed to visualize the scenarios’
dependencies and to enable engineers to trace which faults may
have caused a certain failure. The result of FTA is a Fault Tree
Set (FTS) comprising multiple trees that represent how a fault
may be propagated through the system. Because SAS run a
feedback loop, error propagation in SAS cannot be described
in the form of a tree in general. Hence, we customize the
analysis process in this step by constructing a directed graph
with logical gates instead.

A. A Common Process of Self-Adaptation: MAPE-K

Before starting the analysis, the level of detail has to be
specified in order to set up a fixed abstraction perspective
on SAS including a well-defined system boundary. FMEA is
designed to be ran against an existing technical architecture,
which we cannot generally assume to be widely similar in all
existing or future developed SAS. Hence, we discard the strict
understanding of FMEA by analyzing a general conceptional
architecture that comprises minimal necessary components
and data flows in between. As seen in the previous section,
there are several intersecting research directions coping with
self-adaptivity. They have in common, that the process of
information gathering and utilization relies on the feedback loop
principle of autonomous systems. The steps that are performed
during the execution of this loop are (1) Monitoring of sensor
values, (2) Analyzing whether adaptation is required, (3)
Planning the adaptation and (4) Executing the plan. During these
phases, internal or external Knowledge sources can be used to
retrieve or store information relevant to the decision mechanism.
This process concept is called the MAPE-K feedback loop [2].

As illustrated in Figure 2, the phases of MAPE-K exchange
multiple information entities. The system monitors a set of data
sources such as sensors for external entities or system interfaces
for internal properties. In our HomeTurtle SAS, the monitored
data encompasses a brightness value (detected by the stereo
camera) as well as a WiFi-retrieved temperature signal. The set
of environment and system states is the relevant computation
base for all later decisions–it assembles the context of the
SAS. The captured information is then inferred to symbolic
situation specifications, called symptoms. The HomeTurtle
software maps the concrete brightness values to symbolic values
like Illuminated/Too_Dark and produces a symptom
Emergency, if the temperature exceeds a certain level. The
symptoms are forwarded to the analysis phase where the
system reasons about the necessity of adaptation. Therefore,
the conditions of adaptation policies are compared with the
symptoms of the current situation. The HomeTurtle’s policies
are based on Event-Condition-Action (ECA) rules. For instance,

91

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Component
Mgmt

Context
Mgr

Adap-
tation
Mgr

Configu-
rator

Core

PlannerContext
Sensor

Context Listener

Context
Access Iteration

Configuration

Instance
Mgmt

Resource
Mgmt

<<Monitor>>

<<Plan>>

<<Execute>><<Analyze>>

Fig. 3: Example SAS architecture according to [21].

there is a rule that is triggered by the emergency signal and
commands the robot to perform an emergency adaptation.

Up to this point, the system has determined if an adaption
should be performed, which is signaled by a change request.
During the subsequent plan phase, a change plan is generated.
This plan comprises an operational definition of adaptation
actions. An action defines how components of the SAS are
changed in detail (e.g., by setting new parameter values or
by re-composing the system from modules). In case of the
HomeTurtle, the action is to cancel the current process and to
redirect the robot to the emergency position using the navigation
components. Subsequently, during the execute phase, the plan is
applied. This may also involve effectors manipulating external
entities of the environment. The whole feedback loop is re-ran
from this point periodically such that a self-adaptive system
always has the intended state (e.g., according to the supposed
utility function or goal, and available knowledge) to fulfill its
task.

Any SAS architecture adheres to variants of this feedback
loop. For instance, Hallsteinsen et al. proposed in [21] a
platform based on dynamic product line techniques as depicted
in Figure 3. The Context Manager component can directly
be associated with the monitor phase as it collects and reasons
about information that were gathered from resources, the
environment (by sensors), or humans. The Adaptation
Manager then decides whether an adaptation is required based
on the context changes and, thus, implements the analyze
phase. The Planner is responsible of generating a plan for
reconfiguring several variation points. Based on this plan, the
Configurator applies the reconfigurations with the help of
the core’s instance management interface.

Another example is the DiVA [22] project, whose architec-
ture is depicted in Figure 4. On the lowest Business Layer
the architectural model of the managed applications is hosted. It
contains probes that generate run-time events. These events are
consumed by a Complex Event Processing component
on the Proxy Layer. The events are monitored, interpreted,
formatted and a context model is updated monitor phase. This
context model is input to the Goal-based Reasoning

Buisness Application Components Business Layer

Proxy LayerComplex Event 
Processing Configuration Manager

Goal-based
Reasoning

Invariant Checker

Aspect Model Weaver
Reasoning/
Validation/
Derivation Layer

<<Monitor>>

<<Plan>>

<<Execute>>

<<Analyze>>

Fig. 4: Example SAS architecture of DiVA according to [22].

component on the upper level which decides whether adaptation
is required (analyze phase). As the adaptive capability of the
DiVA approach is based on Aspect Weaving, the respective
component plans the adaptation. During the plan phase, an
Invariant Checker determines if the result of weaving
fulfills a set of given constraints. Finally, the weaving plan is
directed to the Configuration Manager that applies the
changes to the business application (execute phase).

As the approaches of Hallsteinsen et al. and DiVA, com-
ponents of arbitrary SAS can be mapped to the feedback loop
principle. MAPE-K encompasses the adaptation according to
environment changes such as context, user input and system
utilization. The sources of processed information can be
abstracted by leaving out the concrete objects, which are
observed or controlled by sensors and effectors respectively. In
the following analysis, we use MAPE-K as common viewpoint
on SAS architectures. We assume engineers, who are in charge
of validating the adaptation capabilities of the system, are
equipped with the required tooling to observe the data exchange
between the loop’s phases.

B. Step 1) Failure Domain Model (FDM)

In the following, we provide a set of generic failure
properties for SAS. As there are several classes of SAS [23],
we cannot assume that each property is reasonable in every
concrete system. Instead, the proposed properties are a superset
of properties that can occur in MAPE-K-based systems on the
discussed abstraction level. Furthermore, we exclude failures
that originate in sensors and effectors to create a fixed boundary
around the software’s scope.

As briefly discussed, each component of an SAS provides
services through its interface. In the system’s requirement
specification the expected behavior of these services is de-
fined. Notably, the specification comprises functional and non-
functional requirements. Thus, besides concrete features, which
have to be supported by the SAS, the quality of how the features
work is constrained. In the HomeTurtle example, a functional
requirement is the ability of the robot to navigate through the
room without colliding with any obstacles. Associated non-
functional requirements are, for example, a lower bound for the
precision of the obstacle detection (i.e., percentage of correctly
detected obstacles) and upper bounds for the total time required
by the robot to navigate from the inhabitant to the cabinet and
back.

Basically, the definition of faults, errors and failures [7]

92

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



holds for arbitrary systems. However, in self-adaptive appli-
cations, the boundary between faults and errors can become
blurry. Consider, for example, a system that uses models at run-
time [24], where the current system state is kept and abstracted
in a model to specify the adaptation logic as decision rules
against this model. This system is, in principle, able to adapt
these rules such that the adaptation logic of the system changes.
If this adaptation has not been performed correctly, a new fault
is introduced that was not created at design time but at run-
time. In other words, due to the ability to dynamically change
the system specification, failures can create new faults at run-
time. Thus, for adaptive systems which are able to manipulate
their own decision logic, faults and errors may not always be
distinguishable.

In [7], for each fault, error, and failure a comprehensive
list of property dimensions is given. However, as we already
defined the level of abstraction and only consider elements that
are generic to arbitrary implementations of the feedback loop,
this list can be filtered. For instance, it includes properties that
specify severity, the cause why, or the life cycle phase when
a fault was created. In black box testing against requirements,
these information cannot be evaluated as they can neither
be observed nor deduced. Concerning failures, for instance,
detectability is not relevant in black box testing as non-
detectable failures can never be found due to the lacking
knowledge on dormant faults. Furthermore, when comparing
different notions of FMEA (e.g., [7] and [18]) the FDMs (that
are assumed to be generic) differ. In consequence to these issues,
we designed our own FDM that only proposes properties that
are relevant to SAS in particular.

The resulting FDM for SAS is depicted in Figure 5.
Concerning faults, the only property that can be deduced from
observed behavior is their persistence which may either be
permanent or transient. Detecting permanent faults is usually
less challenging than detecting transient faults. For instance,
the HomeTurtle aggregates the last hundred temperature values
in order to compute their average and to decide whether a fire
alert has to be signaled. If the collected values are not deleted
after an appropriate time period, the system may run into a
memory overflow and stops working permanently. In contrast,
when only an outlier value distorts the current value queue,
this fault vanishes after a certain time period and is transient
to an observer.

Regarding errors, we propose the dimensions type and
localization. In our black box abstraction, the engineer is able to
observe whether a false state establishes in the inner knowledge
model of the system or in the computational process. For the
first type, two deviations are possible: either the model does
not correctly reflect its subject (e.g., the stored location of
the transport robot is not correct) or its inner constraints are
incorrect (e.g., more brightness values are stored than expected).
The HomeTurtle may also have process-related errors, for
instance, when the emergency symptom is erroneously produced
and the system runs an unnecessary adaptation. Furthermore,
errors can localize either locally or globally in the potentially
distributed SAS. In our example, the set-up of items in the
cabinet could not reflect its real contents. This error would be
shared between all technical elements over the WiFI network.

Concerning failures, the authors of [7] distinguish between
content and timing (early/late) correctness. In contrast, an SAS’s
goal definition may aim on other non-functional properties like
energy-usage. Thus, we alter the original distinction to non-

Fault

Error

Failure

ca
us

at
io

n

ac
tiv

at
io

n
pr

op
ag

at
io

n

Persistence

Type

Location

Type

Manifestation

Appearance

transient

permanent

inner model

process-related

local

global

non-functional

functional

internal

external

false-positive

false-negative

semantical

property dimensions property values

Fig. 5: The SAS Failure Domain Model.

functional (i.e., the service performs not with the expected
quality) or functional (i.e., incorrect service behavior). In
our example, we can distinguish between failures where the
robot does not deliver an item within a required time or
completely fails in delivering it. Furthermore, failures in SAS
can either manifest internally (e.g., in an inconsistent model)
or externally (e.g., when the robot heavily collides with an
obstacle). Concerning, the Appearance dimension, sensed and
analyzed information may lead to un-intentional (false-positive),
missed (false-negative), or semantically wrong sensor events,
change request, or adaptation actions. The HomeTurtle, for
instance, may start driving to the emergency position without
cause, it may miss the emergency signal or mis-interpret it.

This FDM is a valuable source for classifying faults,
errors, and failures in concrete SAS. It describes their abstract
properties that can be instantiated for real world systems.
Verdicts (i.e., the classification of test results, for instance
Pass, Fail or Inconclusive), can be parametrized by
these information.

C. Step 2) Failure Scenarios

In this section, we identify scenarios of failure occurrence
in SAS. In contrast to other FMEA applications, we cannot give
a general method of prioritizing these scenarios as this strongly
depends on domain-specific conditions. The only applicable,
general evaluation standard is criticality. In this case, according
to [23], each adaptation operation can be either harmless,
mission-critical, or safety-critical. When the HomeTurtle robot
drives along an non-optimal path, this failure is harmless. In
contrast, not delivering an item would be mission-critical. If the
robot collides heavily with a human being, the failure can even
be safety-critical. However, other SAS may have completely
different requirements such that statements about the severity
of failure scenarios cannot be generalized.

93

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



<<Monitor Phase>> <<Plan Phase>>

Scheduler

Configuration
Planner

(Planner)

Adaptation
Logic Execution

(Analyzer)

Event Monitoring
& Processing

(Monitor)

<<Analyse Phase>>

Action Queue

Change Request

Actions

PRE

PLAN

SCHED

Sensors Effectors

SENS

EFFECT

ADAPT

<<Execute Phase>>

TRIG

EVENT

Models
(Knowledge, Adaptation Policies, System Structures)

POST

System Control
RECONF

Executor

Fig. 6: Conceptional architecture of SAS.

TABLE I: SAS failure scenarios.

FID CID Fault in... Error in... Failure in... Propagation

SENS Monitor sensor interpretation environment reflection produced symptoms TRIG
� transient or permanent � process-related � functional or non-functional

� local or global � internal
� false-positive, false-negative or semantical

TRIG Analyzer symptom interpretation adaptation decision change request PRE/ADAPT
� transient or permanent � process-related � functional or non-functional

� local or global � internal
� false-positive, false-negative or semantical

PRE Analyzer model interpretation adaptation decision change request TRIG/ADAPT
� transient or permanent � process-related � functional or non-functional

� local or global � internal
� false-positive, false-negative or semantical

ADAPT Analyzer reasoning algorithm adaptation decision change request PLAN
� transient or permanent � process-related � functional or non-functional

� local or global � internal
� false-positive, false-negative or semantical

PLAN Planer planning algorithm planning decisions change plan SCHED
� transient or permanent � process-related � functional or non-functional

� local or global � internal
� semantical

SCHED Scheduler scheduling algorithm scheduling decisions wrong order of actions POST/EVENT/
� transient or permanent � process-related � functional or non-functional EFFECT/RECONF

� local or global � internal
� semantical

POST Executor model manipulation model model inconsistent PRE/PLAN
� transient or permanent � inner model � functional or non-functional

� local or global � internal
� semantical

RECONF Executor reconfiguration system configuration system reflection –
� transient or permanent � inner model � functional or non-functional

� local or global � internal
� semantical

EVENT Monitor system event monitoring system reflection system events TRIG
� transient or permanent � process-related � functional or non-functional

� local or global � internal
� false-positive, false-negative or semantical

EFFECT Executor actual control erroneous actuator commands environment state (SENS)
� transient or permanent � process-related � functional or non-functional

� global � external
� false-positive, false-negative or semantical

94

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The scenario identification relies on the feedback loop’s
conceptional structure, which is depicted in Figure 6. Hence, we
decompose the MAPE-K loop in five components: Monitor,
Analyzer, Planner, Scheduler, and Executor. The
latter two are separated, to enable the consideration of in-
teraction between adaptation and running processes. After
the Analyzer detected that the system has to be adapted,
the Planner decides how the adaptation is processed. The
Scheduler has the task to fill an Action Queue (however,
it may be implemented in concrete systems) by arranging
system process actions with adaptation actions. An adap-
tive system designer has to be aware of how he maintains
consistency either through an actual implemented scheduler
component or a transaction-like behavior. This issue also breaks
the straight MAPE-K data flow because a scheduler requires
information about the current system actions (retrieved from
the Executor) and composes them with adaptation intents.
In the HomeTurtle system, this feature plays an important role
as well. For instance, when an emergency is signaled, the
delivery process is expected to cancel immediately. In contrast,
an adaptation concerning illumination conditions would make
no sense while the robot is parked under the cabinet. In this case,
the scheduling implementation is expected to first atomically
execute the waiting operation and run the adaptation afterwards.

All components are considered as black boxes and are con-
nected by data flow edges (blue arrows). Additionally, the pro-
cess contains Sensors, Effectors, System Control,
and the central knowledge Models. The latter one contain
information about the system structure, adaptation logic, and
further knowledge relevant to adaptation decisions. Sensors
and Effectors communicate with the external world (e.g.,
other systems or the physical reality). System Control
provides an interface for system reconfiguration actions that
are controlled by the Executor.

Based on this structure, we derive failure scenarios by
investigating potential wrong processing of input data by a
certain component. As there may be multiple outputs of a
component, each component can produce multiple failures. We
list our found failure scenarios in a worksheet as presented in
Table I. A scenario represents the possible occurrence of a fault
and its related causality chain. The description of each scenario
comprises Failure Identifier (FID), Component Identifier (CID),
Fault, Error, Failure, and a Propagation column. All FIDs
can be found in the architecture visualization in Figure 6.
In the following, each scenario is described in detail. As an
extension to our original work, we add examples and discuss
non-functional aspects as well.

SENS: The first scenario comprises test input received from
the Sensors and misinterpreted by the Monitor component.
During the interpretation, values are mapped, aggregated and
inferred. It might also be the case, that a history of values
is maintained in order to infer over them. Such a fault can
activate an error that comprises an incorrect reflection of the
environment such that the produced symptoms are incorrect.

Example: The HomeTurtle’s monitoring component collects
brightness values over the last ten minutes but fails to discretize
them correctly. The symptom that indicates a low illumination
is not being produced as expected.

Non-functional aspects: This scenario comprises test input
received too late from the Sensors. Faults of this kind activate
errors comprised of the reflection about outdated observations of
the environment such that the produced symptoms are incorrect.

Example: The HomeTurtle’s monitoring component collects
brightness values only every minute. Thus, in the worst case,
the HomeTurtle will not adjust itself to a changed illumination
for almost a minute, which is not the expected behavior. A
higher sampling rate has to be used.

TRIG: A symptom produced by the Monitor does not
or unintentionally trigger a corresponding change request or a
wrong one.

Example: The HomeTurtle’s analysis components fails
matching the symptom description with an adaptation policy’s
condition. Thus, the expected adaptation is not being performed
as expected.

Non-functional aspects: A symptom produced by
Monitor triggers a corresponding adaptation too late.

Example: The HomeTurtle observes its own remaining
battery capacity. If a user requests the HomeTurtle to deliver
an item from the cabinet, the HomeTurtle checks whether
its remaining energy suffices to fulfill the request and will
incorporate a stop at the charging station if the remaining
capacity is too low. If the analysis’ result reflecting whether
the capacity suffices or not is send too late to the Planner,
an erroneous plan is generated, which does not include the
stop at the charging station.

PRE: The SAS knowledge resources contain information
that may constitute pre-conditions to an adaptation decision. If
these information are misinterpreted, the adaptation decision
can differ from the designer’s expectation.

Example: According to the HomeTurtle adaptation policies,
the illumination system has to be switched on as soon as the
obstacle recognition precision deceeds a certain level. Thus,
the current precision is inferred using the empirical metrics
on the stereo camera’s precision that is parameterized with
the currently detected brightness value. If the empirical model
is corrupt, the adaptation of the illumination system is not
performed in the relevant situations.

Both TRIG and PRE scenarios may interact, because we
did not decompose the analyzer in more detailed components.
Hence, these scenarios have to be tested together as both data
sources are required for each test case and just a probabilistic
estimation can be stated which one is actually defective.

ADAPT: Depending on the deduced adaptation decision, the
system is in charge to produce and correctly interpret the change
request. In cases where this output is corrupt, adaptations are
not performed as expected.

Example: After the brightness value was found too low, the
respective change request was derived but is not forwarded to
the planner due to an exception. Thus, the adaptation initiation
is lost.

PLAN: The Analyzer determines if an adaptation is
required but not how to perform it. This task is operated in
the planning phase. A Planner reasons over the variability
and the current system state. Its output has to be a correct
adaptation plan that can be applied in the system and leads to
a consistent state. The PLAN scenario encompasses that the
compiled plan is incorrect.

Example: In the emergency case, in the constructed adap-
tation plan the canceling of the current delivery task and is
queued after the actions necessary for driving to the emergency
position. Thus, the robot first delivers the item and approaches
the emergency position subsequently, which was not intended.

Non-functional aspects: Often, the Planner reasons over
non-functional properties like response time or energy con-

95

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



sumption. But, the planning task itself effects these properties
by utilizing the same resources. In consequence, the resulting
decision of the Planner is infringed, because the assumptions
taken by the Planner are violated.

Example: The HomeTurtle shall drive to its charging station
if the battery capacity falls below 10%. To reach the charging
station, the HomeTurtle consumes energy. But, executing the
planner, to decide whether to drive to the charging station or
not, consumes energy, too. Thus, by executing the planner, the
maximum distance of the HomeTurtle to its charging station
is decreased. If the planner does not consider this decreased
distance, the decision to go for charging, will be made too late.

SCHED: Reconfiguration actions potentially interact with
the system’s control flow. Such problems arise because
variability cannot be completely orthogonal to the system’s
task execution. The expectations of the designer may even
encompass that certain actions may be transactional. Differing
from these expectations activate errors in the scheduling process
and are observable as wrongly ordered actions.

Example: Due to a wrongly designed scheduling component,
new adaptations actions are enqueued behind all previously
initiated system actions. Thus, for instance, the illumination
adaptation is being deduced while driving to a certain position
but performed after the driving process. Then it may be too
late to avoid a collision.

The Executor is a complex interpretation engine that
produces multiple outputs and thus, has multiple potential
failure scenarios. All Executor-related scenarios may also
be the outcome of a propagated SCHED failure.

RECONF: The reconfiguration may run into a failure
itself. If any reconfiguration mechanism fails without being
recognized, the actual system structure is out of synchronization
with its model representation.

Example: The driver for the control of the robot’s wheels
is implemented as a blocking service such that the emergency
adaptation cannot be performed immediately. Instead, the
designer expects the system to cancel the operation.

POST: The Model’s part that represents the reconfigured
systems may be inconsistent after the execution because a model
manipulation was performed erroneously by the Executor.
Thus, the reflected system state may differ from its real
configuration. This deviation may harm future adaptation
decisions in form of wrong preconditions (PRE). The failure
can be observed in the model’s state.

Example: The illumination adaptation is correctly per-
formed but due to an exception this change is not reflected in
the model. During the next adaptation loop, the decisions that
depend on this information will be erroneous.

EFFECT: Another output of the Executor can be
actions that have to be performed by external systems using
the Effectors. If actions are not generated correctly and
forwarded to the effectors (e.g., due to corrupt drivers), the
representation of these externals loose synchronization with
potential internal model representations. As the Sensors may
perceive data from the manipulated system, a SENS scenario
may be caused indirectly.

Example: The signal to the illumination system may be
misinterpreted and the Hue bulb is not switched. While the
physical condition remains unchanged, the SAS now assumes
the environment to be altered as it reflects its own actions in
the knowledge model.

EVENT: The last failure scenario is related to events that

are produced in the software system and are propagated to the
Monitor component which makes them part of the context
representation. In the related failure scenario, the generated
events are erroneous.

Example: In order to avoid concurrent adaptations, the
HomeTurtle is expected only to obtain new sensor data when
all adaptation actions are finished. Afterwards, a respective
event is produced by software that causes a re-start of the
feedback loop. Loosing this trigger event constitutes a failure.

Properties of faults, errors, and failures as proposed in our
FDM can depend on the concrete architecture of the system.
Based on the assumption that the system was built as our
abstract feedback loop suggests, some property values can be
neglected. In our scenarios worksheet, the remaining ranges
are denoted. Regarding faults such a restriction cannot be
deduced from the general feedback loop. Thus, arbitrary SAS
can include transient or permanent faults in each of the proposed
components.

Concerning errors, only the Executor is expected to
directly manipulate the model. Thus, the inner-model error
type only occurs in this component when reality is no longer
correctly reflected in the system’s knowledge base. All other
faults impact to process-related state of the system. Depending
on whether the SAS is distributed or not, each component
may propagate its potentially erroneous outputs through the
complete infrastructure. However, effects that propagate out
of the system always have to be considered global, as all
monitoring components may detect external changes.

The appearance of a failure depends on the content of a
component’s output. In cases of decisions (symptoms, change
requests, system events, effector actions), they may be missed
(false-negative), unintentionally performed (false-positive) or
semantical wrong. In cases of adaptation plans and model
manipulations, which are always expected to be produced, the
potential errors impact their contents only. All components may
produce such functional failures. Despite the non-functional
aspects which were discussed in context of the SENS, TRIG,
and PLAN scenario, each computation can be limited in its
budget usage in general. Thus, we propose to consider non-
functional failures in all scenarios.

D. Step 3) Fault Dependency Graph

As final artifact, we construct a faullt dependency graph as
depicted in Figure 7. The nodes of the graph identify each a
certain failure scenario or a logical or gate. Connections reflect
the causations as listed in respective column of Table I. The
visualization illustrates the potential cyclic failure propagation
through inner system events, model manipulation, or physical
sensors or effectors correlations (the latter one is visualized by
the dashed edge). Furthermore the PRE and TRIG scenarios
may influence each other in both directions, which makes them
hard to test in isolation.

The graph can be used by engineers to identify potential
sources of observed failures. Furthermore, quality assurance
can be steered using the graph by measuring or estimating
each scenario’s probability of occurrence. Thus, it can even be
deduced how probable a certain causal chain or how severe its
a fault’s impact is.

V. REQUIREMENTS TO MODELS FOR SAS TESTING

All following requirements for self-adaptation test methods
are based on a selection of the presented failure scenarios. In the

96

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



ADAPT

TRIG

PRE

SENS EVENT

PLAN

SCHED

POSTEFFECT RECONF

OR

OR

OR

OR

Fig. 7: Fault Dependency Graph.

following, we list these mapped requirements and name each
of them for later reference. The requirements are formulated as
assurance tasks that have to be fulfilled by employing validation
methods.

A. Functional Requirements in SAS Testing

F1) Correct sensor interpretation: Assure that the sen-
sor data is correctly interpreted and transformed into
system events. Potential sensor data has to be specified
together with context identifications. (7→SENS)

F2) Correct adaptation initiation: Assure that events
initiate the correct adaptation if all preconditions
in the model hold. Events, conditions, and adapta-
tion decisions have to be associated in the models.
(7→TRIG/PRE/ADAPT)

F3) Correct adaptation planning: Assure that the genera-
ted adaptation plan is consistent w.r.t. target configura-
tion and action order. Build a model to map adaptation
goals to possible plans.(7→PLAN)

F4) Consistent interaction between adaptation and sys-
tem behavior: Assure that the generated adaptation
plan is correctly scheduled with the system’s control
flow. A model is required to define which adaptation
is allowed in which state of application control.

(7→SCHED)
F5) Consistent adaptation execution: Assure that (1) the

generated adaptation schedule is applied to system
structure and (2) the synchronization between the
running system and the models is consistent after
adaptation. (7→POST/RECONF)

F6) Correct system behavior: Assure that the system
correctly commits events or actions to the effectors. As
in the previous requirement, here we need to specify
events to be observed in the system when running any
operation. (7→EVENT/EFFECT)

B. Non-functional Requirements in SAS Testing

Whereas the requirements to SAS testing in the last
subsection focused on assurance of the SAS’s functionality,
a second type of requirements to SAS testing exists: non-
functional requirements. The central concept for non-functional
testing of SAS is the budget, which covers a boundary for
a selected non-functional property. For example, the limited
capacity of a battery sets a hard budget in terms of energy,
which must not be exceeded. The following aspects of SAS
require the consideration of non-functional requirements:

NF1) In-budget sensor interpretation: A failure due to
incorrect sensor interpretation has a non-functional
dimension in that, e.g., the timing behavior of the
sensor interpretation is faulty. In other words, sensor
interpretation has non-functional requirements, which
must not be violated. These requirements include the
ability to handle imprecise sensor data (precision),
timing constraints on when and how long sensor data
is valid and resource budget constraints, if the sensors
are power by a battery, which is characterized by a
limited energy capacity. (7→SENS)

NF2) In-budget adaptation initiation: In addition to the
assurance of the correct adaptation to be initiated,
it is important to ensure that this adaptation is
initiated in time. If an adaptation is initiated too late,
multiple qualities are potentially infringed. Imagine,
for example, a self-adaptive system optimizing for
energy efficiency. The later an adaptation to save
energy is initiated, the more energy is consumed in
the meantime, which infringes the goal of the self-
adaptive system. (7→TRIG)

NF3) In-budget adaptation planning and execution: Also
for planning, non-functional requirements have to
be fulfilled besides correctness. Again, budgets of
non-functional properties must not be exceeded. A
particular problem in this regard is the assessment
of the planning step itself in terms of various non-
functional properties. For example, the runtime of an
optimizer using integer linear programming is double
exponential in the worst case, but almost linear in
the average case [25]. In addition, the determination
of the size of the respective budgets is a highly
complex task. This is because often the goal of the
self-adaptive systems is to optimize for selected non-
functional properties, but performing optimization
(and adaptation) effects these non-functional prop-
erties. (7→PLAN)

97

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



C. Required Test Adequacy Criteria and Coverage Metrics

Additionally, in testing, adequacy criteria are required to
restrict the tested behavioral space and, nevertheless, have a
reasonable and meaningful test result. Furthermore, coverage
metrics are used to compute in which degree the state space
is covered by the generated or performed test cases. For less
complex systems, many criteria for test adequacy and coverage
metrics were found. Mostly, they refer to a graph representation
like a state machine. Known criteria are statement, branch or
path coverage. However, as we have seen, there is a complex
set of requirements and aspects to be tested in the context of
SAS. In consequence, we have to use multiple models which
are more expressive then state machines (as assumed in the
mentioned coverage criteria) to represent all testable aspects.
In consequence, the known criteria cannot be applied directly.
Hence, the last requirement is to find a set of proper adequacy
criteria and coverage metrics for SAS which can be composed:

C) Adequacy criteria and coverage metrics for
SAS: Find constructive adequacy criteria metamod-
els/languages to describe which, when (in relation
to system behavior), and in which order adaptation
scenarios have to be tested and analytic coverage
metrics for measuring a test suite or its execution.

VI. REFERENCE SOLUTION SCHEME

In order to help testers facing the challenges stated above,
we propose a scheme consisting of methods of fault detection
and representation artifacts.

A. Considerable Methods

In black box testing, the SUT is represented by well-defined
interfaces without defining its internal behavior. In our analysis,
we based on the most abstract definition of an SAS, namely
the MAPE-K feedback loop. We have derived five crucial
components that are black boxes and provide interfaces where
data can be sent to or received from. Despite the assumed
informational entities defined by the knowledge element of the
feedback loop, the components’ internal state may effect the
outcome of their computations. Thus, the black box interface
can have a stateful protocol as well.

In order to validate the correct outputs of each component,
several input data scenarios have to be specified and the output
has to be predicted. Such test cases enforce a certain state of
the interface protocol that is relevant during the prediction. In
testing, the prediction task is solved by oracles. An oracle has
to be specified according to the requirements of the SUT. In
order to automate the validation process as far as possible, a
specification is most useful in a formal representation such
as a model. Models can be employed either for generating
test cases or by executing them directly. The latter method is
identical to simulation-based validation. Hence, the simulation
model is executed in parallel to the SUT and the simulation’s
propositions are frequently validated against the SUT.

Both generation and simulation have several pros and
cons. In Figure 8, the relation between the two methods is
depicted. The first artifact, which is assembled during the
system’s development process, is the requirement specification.
Based on this specification, the design is derived during the
system’s development process. The design models are refined
in incremental steps until the code level is reached, which is the
final representation. The refinement process may be be manual

Design 
Model

Require-
ments

Validation 
Model

Test Cases Reports

Generation

Execution

Simulation

or

Environ‐
mentSUT

against

against
/in-the-loop

Test Interface

Fig. 8: Validation Methods.

or partially model-driven (i.e., Model-Driven Architecture).
When the design model is specified, misinterpretations and
mistakes in the design itself will create faults that later have to
be uncovered by validation. Despite these fault sources, during
the refinement the loss of information between two levels
of abstraction may have effect on the system’s correctness.
Furthermore, due to the change of requirements during the
whole process, inconsistencies of already implemented artifacts
may arise. In the end, validation is responsible to examine how
far the implementation still matches the requirements. Therefore,
an engineer has to define a validation model according the
initial requirements. The model should be independent of
the system’s design in order to avoid the re-implementation
of erroneous interpretations. The validation model specifies
inputs and assertion actions against the interface of the SUT.
Additionally, it has to specify environment changes in order
to trigger and validate the self-adaptation. Therefore, the
environment’s properties and the change of their values over
time has to included by appropriate model representations.

The automatic generation of test cases from this model is
called Model-based Testing (MBT) [8]. The generation process
is controlled by an adequacy criterion, that specifies which
entities of the model (i.e., states, transitions, data elements)
have to be covered before the production of test cases terminates.
A generated test case specifies a strict sequence of test actions
that are applied against the SUT. All test cases are generated
only a single time, as long the requirements stay fix as well.
They are saved in a test suite and can be replayed over multiple
regressions when the implementation has changed. During
the test case execution, inputs are sent to a test interface
and the resulting outputs are checked against the predicted
data using assertions. The test interface provides appropriate
access to system functions and environment control as well
monitoring capabilities. For each run, it can be reported whether
it completely succeeded or in which execution step a failure
occurred. The MBT approach has two advantages. Firstly, all
test cases are assumed to be strictly reproducible as their
execution solely depends on the action that are sent to the
SUT. Secondly, a coverage can be measured, e.g., by counting

98

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the number of executed test cases in the relation to the complete
test suite.

In contrast, simulation directly executes the model. Decision
points during the model interpretation have to be made randomly
or they have to be controlled by a user or a heuristic (similar to
an adequacy criterion). During the simulation, failures can be
observed in form of deviations from the real system’s behavior.
Each derivation can be stored in a report. During the simulation,
data from SUT and environment can be queried and used to
determine decisions. This principle is called “in-the-loop” and
states the main advantage of simulation in comparison to MBT.

The decision between MBT and simulation depends on the
existence of uncertainty-establishing artifacts that have to be
involved in the loop. Both methods rely on a validation model,
which has to implement the requirements stated in our previous
analysis. Each of the defined requirements is a concern to this
model. In the following section, we propose a conceptional
concern-separated structure for such a validation model.

B. Counter Feedback Loop

The SAS deduce adaptations from monitored context
changes. In contrast, a validation mechanism has to work exactly
vice versa. In our work, we call this principle Counter Feedback
Loop as depicted in Figure 9. The context has to be actively
changed in order to trigger the SAS to adapt and enforce
a certain adaptation state, whose effects can be examined.
Hence, the test model has to include a Change specification
containing a set of scenarios. Executing such scenarios allows
to check whether sensor data is correctly obtained and inferred.
(requirement (F1)). In case the monitoring or processing of this
data involves performance requirements (requirement (NF1)),
budgets have to be defined in this artifact.

Afterwards, the reaction of the system has to be ob-
served. Hence, a Causal Connection between sequences
of change and adaptation initiation have to be specified
(requirement (F2)). Sensor data on objects that are observed
using an in-the-loop mechanisms cannot be predicted but
queried whether a certain value is matched. From this, an
adaptation decision can be predicted and examined as well.
The specification of causal connections can be obtained by
defining which symptoms and in which change requests are
expected to be produced in a certain context state. To support
this inference it can be beneficial to capture the Environment
Structure. Thus, the effects of past changes can be stored
as configuration states during the simulation or generation state
an can be taken into account when symptoms are derived. If
their are time restrictions on adaptation initiation, budgets have
to be specified again (requirement (NF2)).

In the next step, it has to be specified which symptoms end
up in which Adaptation Plans (requirement (F3)). The
respective model maps symptoms to a certain operational set
of changes, that are going to be applied against the SAS. In an
additional artifact, the system’s externally observable behavior
has to be modeled in form of a Service Specification.
This informational artifact captures how the observable interface
protocol of the SAS changes in a certain adaptation mode
(requirement (F5)). Thus, it involves also propositions on the
interaction between the produced adaptation plans and the run-
ning processes (requirement (F4)). Finally, the system action’s
impact on the environment can be examined by predicting these
actions in the behavioral system model (cf. requirement (F6)).
All qualitative expectations concerning the specified service

Adequacy Criterion / Scenarios

Change Adaptation
Plans

Environment
Structure

Causal
Connection

Service 
Specification

In-the-Loop
Entity

Fig. 9: The Counter Feedback Loop principle.

and its behavior after the adaptation’s execution can be taken
into account by budget values (requirement (NF3)). As the
selection of test sequences through the modeled scenarios is
indeterminstic, an adequacy criterion or simulation heuristic
has to be specified (requirement (C)).

In summary, the validation model consists of relevant
scenarios that stress the system, and oracles that map the
scenarios’ inputs to the intermediate or final outcomes of each
feedback loop component. The different requirements establish
a set of concerns that have to be contained in a model and
specifiable by its metamodel. By separating these concerns, as
proposed by our Counter Feedback Loop principle, different
aspects of validation can be decoupled.

VII. CONCLUSION AND FUTURE WORK

In this paper, we extended our original work [1] where
we applied a customized Failure Mode and Effects Analy-
sis (FMEA) to a conceptional SAS based on the minimal
structural assumptions of MAPE-K. We derived a Failure
Domain Model in order to provide a system in which faults,
errors and failures can be classified. Subsequently, we derived
ten distinct failure scenarios that may occur in the process of
adaptation. By building a fault dependency graph, we visualized
potential cyclic propagation of failures in such systems. In
consequence, a set of founded modeling requirements were
stated that all can be mapped to one or more of the described
failure scenarios. Based on these foundations a systematic
analysis of SAS is possible comprising failure properties,
occurrence, and propagation. A well-designed MBT framework
is comprehensive if all presented requirements are fulfilled and
the respective assurances are considered.

The extensions of this paper are threefold. Firstly, we
exemplified the analysis with our HomeTurtle system in order
to clarify the complete process. Secondly, we improved the
consideration of non-functional properties that have to be
dealt with in validation. Thirdly, we propose to use either
Model-based Testing or Simulation for examining SAS against
their requirements. Both methods are based on models, whose
necessary information have proposed in this paper as well.
Based on this premises, test engineers are equipped with
indicators when building appropriate generation or simulation
frameworks.

For further investigation, it is necessary to instantiate the
identified requirements for real-world SAS systems. If imple-
mentations can be mapped to several adaptivity frameworks
and express the majority of necessary test cases, our approach
can be attested substantial and generic.

99

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



ACKNOWLEDGMENTS

This research has received funding within the
project #100084131 by the European Social Fund (ESF)
and the German Federal State of Saxony, by Deutsche
Forschungsgemeinschaft (DFG) within Collaborative Research
Center 912 (HAEC) and the ”Center for Advancing Electronics
Dresden” (cfaed) as well as T-Systems Multimedia Solutions.

REFERENCES

[1] G. Püschel, S. Götz, C. Wilke, and U. Aßmann, “Towards
systematic model-based testing of self-adaptive software,” in
ADAPTIVE 2013, The Fifth International Conference on
Adaptive and Self-Adaptive Systems and Applications, 2013,
pp. 65–70.

[2] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, vol. 36, no. 1, Jan. 2003, pp. 41–50.

[3] M. Broy, M. V. Cengarle, and E. Geisberger, “Cyber-physical
systems: Immanent challenges,” in Large-Scale Complex IT
Systems. Development, Operation and Management. Springer,
2012, pp. 1–28.

[4] T. M. King, D. Babich, J. Alava, P. J. Clarke, and R. Stevens,
“Towards self-testing in autonomic computing systems,” in Pro-
ceedings of the Eighth International Symposium on Autonomous
Decentralized Systems, ser. ISADS ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 51–58.

[5] S. S. Kulkarni and K. N. Biyani, “Component-based software
engineering.” Springer, 2004, ch. Correctness of Component-
based Adaptation, pp. 48–58.

[6] B. H. C. Cheng, D. Lemos, H. Giese, P. Inverardi, and J. M.
et al., “Software engineering for self-adaptive systems: A
research roadmap,” in Dagstuhl Seminar 08031 on Software
Engineering for Self-Adaptive Systems, 2008.

[7] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”
IEEE Transactions on Dependable and Secure Computing, vol. 1,
no. 1, 2004, pp. 11–33.

[8] M. Utting, Practical Model-based Testing: A Tools Approach.
Morgan Kaufmann, 2007.

[9] H. E. Roland and B. Moriarty, System safety engineering and
management 2nd edn. John Wiley & Sons, Chichester, 1990,
ch. Failure mode and effect analysis.

[10] Z. Wang, S. Elbaum, and D. S. Rosenblum, “Automated gener-
ation of context-aware tests,” 29th International Conference on
Software Engineering (ICSE), 2007, pp. 406–415.

[11] V. Dehlen and A. Solberg, “DiVA Methodology (DiVA Deliv-
erable D2.3),” https://sites.google.com/site/divawebsite, visited
02/01/2014, 2010.

[12] A. Maaß, D. Beucho, and A. Solberg, “Adaptation Model and
Validation Framework – Final Version (DiVA Deliverable D4.3),”
https://sites.google.com/site/divawebsite, visited 02/01/2014,
2010.

[13] F. Munoz and B. Baudry, “Artificial table testing dynamically
adaptive systems,” arXiv preprint arXiv:0903.0914, 2009.

[14] D. B. Abeywickrama, N. Hoch, and F. Zambonelli, “Simsota:
Engineering and simulating feedback loops for self-adaptive
systems,” in Proceedings of the International C* Conference
on Computer Science and Software Engineering, ser. C3S2E
’13. ACM, 2013, pp. 67–76.

[15] K. Nehring and P. Niggesmeyer, “Testing the rconfiguration
of adaptive systems,” in ADAPTIVE 2013, The Fifth Interna-
tional Conference on Adaptive and Self-Adaptive Systems and
Applications, 2013, pp. 14–19.

[16] C. Piechnick, S. Richly, S. Götz, C. Wilke, and U. Aßmann,
“Using role-based composition to support unanticipated, dy-
namic adaptation – smart application grids,” in Proceedings
of ADAPTIVE 2012, The Fourth International Conference on
Adaptive and Self-adaptive Systems and Applications, 2012,
pp. 93–102.

[17] “MIL-STD-1629A (1980),” Procedures for performing a failure
mode, effect and criticality analysis. Department of Defense,
USA.

[18] H. Sozer, B. Tekinerdogan, and M. Aksit, Archtitecting De-
pendable Systems IV. Springer, 2007, ch. Extending Failure
Model and Effects Analysis Approach for Reliability Analysis
at the Software Architecture Design Devel.

[19] B. Tekinerdogan, H. Sozer, and M. Aksit, “Software architecture
reliability analysis using failure scenarios,” Journal of Systems
and Software, vol. 81 (4), 2008, pp. 558–575.

[20] J. Dugan, Handbook on Software Reliability Engineering.
McGraw-Hill, New York, 1996, ch. 15. Software System
Analysis Using Fault Trees, pp. 615–659.

[21] S. Hallsteinsen, E. Stav, A. Solberg, and F. J., “Using product
line techniques to build adaptive systems,” in 10th International
Software Product Line Conference, 2006.

[22] B. Morin and A. Solberg, “Reference architecture (DiVA
– deliverable D3.3),” https://sites.google.com/site/divawebsite,
visited 02/01/2014, 2010.

[23] J. Anderson, R. Lemos, S. Malek, and D. Weyns, “Software
engineering for self-adaptive systems,” B. H. Cheng, R. Lemos,
H. Giese, P. Inverardi, and J. Magee, Eds. Berlin, Heidelberg:
Springer-Verlag, 2009, ch. Modeling Dimensions of Self-
Adaptive Software Systems, pp. 27–47.

[24] G. Blair, N. Bencomo, and R. B. France, “Models@run.time,”
Computer, vol. 42, no. 10, 2009, pp. 22–27.

[25] G. L. Nemhauser and L. A. Wolsey, Integer and combinatorial
optimization. Wiley Interscience, 1999.

100

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


