
Detecting Software Usability Deficiencies Through Pinpoint Analysis

Dan E. Tamir, Divya K. V. Dasari
Oleg V. Komogortsev, Gregory R. LaKomski

Department of Computer Science
Texas State University

San Marcos, Texas USA
{dt19, dd1290, ok11, gl1082}@txstate.edu

Carl J. Mueller
Department of Computer Information Systems

Texas A&M University Central Texas
Killeen, Texas, USA

muellercj@ct.tamus.edu

Abstract— The effort-based model of usability is used for

evaluating user interface (UI), de velopment of usable software,

and pinpointing software usability defects. In this context, the

term pinpoint analysis refers to identifying and locating
software usability deficiencies and correlating these

deficiencies with the UI software code. For example, often,

when users are in a state of confusion and not sure how to

proceed using the software, they tend to gaze around the

screen trying to find the best way to complete a task. This
behavior is referred to as excessive effort. In this paper, the

underlying theory of effort-based usability evaluation along

with pattern recognition techniques are used to produce an

innovative framework for the objective of identifying usability

deficiencies in software. Pattern recognition techniques and
methods are applied to data gathered throughout user

interaction with software in an attempt to identify excessive

effort segments via automatic classification of segments of

video files containing eye-tracking results. The video files are

automatically divided into segments using event-based
segmentation, where a segment is the time between two

consecutive keyboard/mouse clicks. Subsequently, data

reduction programs are run on the segments for generating

feature vectors. Several different classification procedures are

applied to the features in order to automatically classify each
segment into excessive and non-excessive effort segments. This

allows developers to focus on the excessive effort segments and

further analyze usability deficiencies in these segments. To

verify the results of the pattern recognition procedures, the

video is manually classified into excessive and non-excessive
segments and the results of automatic and manual

classification are compared. The paper details the theory of

effort-based pinpoint analysis and reports on experiments

performed to evaluate the utility of this theory. Experiment

results show more than 40% reduction in time for usability

testing.

Keywords- Software Development; Software Usability;

Human Computer Interaction; Pinpoint Analysis; Pattern

Recognition; Clustering

I. INTRODUCTION

One of the primary goals of software is to simplify

various tasks and enable users to accomplish tasks with ease

and efficiency. Numerous fields have recently witnessed an

increase in software development and deployment.

Nevertheless, feedback from software applications end-

users consistently shows that software is at times non-

productive, confusing, counter-intuitive, and unsatisfactory

[1]-[5]. Clearly, if the users experience problems or

difficulty, it is highly unlikely that they will use that

software again. Hence, it is very important for software

engineers to place significant emphasis on usability

evaluation and testing in order to eliminate user complaints

and provide the user with a good experience [1]-[5].

Software engineers use a wide variety of tools , such as

prototyping, inspection, usability testing, and iterat ive

processes to ensure that the software they produce is usable

[1]-[5]. St ill, these tools may not address the usability

problem efficiently, resulting in a low ranking on usability

for several systems [1][5]. The classical methods used in

identifying usability techniques have not proven to be very

proficient in accurately locating the specific segment of

code that could be leading to the usability problems.

Without proper data to understand which part of code is

faulty, developers would have a hard time identifying and

fixing code that leads to usability issues.

The usability testing process involves observing users

engaged with a software application and obtain ing a set of

characteristics of the user experience. This methodology

requires an expert to construct, conduct, and assess the tests; as

well as devoted laboratory facilities and several users that

participate in the tests. Despite all of these efforts, generally

usability testing indicates that a problem exists but does not

identify the root cause for the problem [1][5]. This makes

usability-testing time consuming, expensive, and frustrating

for both developers and managers. Hence, it is often

ignored.

Most of the tools used to evaluate the usability of a

software application use ‘time to complete a task’, referred

to as (), as a measure for evaluating

usability [1]-[12]. This approach of giv ing high weight to

 may not produce accurate results when factors like

system performance, network delays, and interface design,

which are d ifficu lt to avoid, play a role. An alternate

approach is to measure usability in terms of user-effort,

which eliminates some of the system issues mentioned

earlier, allowing software engineers to focus on the interface

design [1][5].

The Effort-Based Usability Model of [1][5][6][9]-[12]

can be used for setting usability requirements, evaluating

44

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

user interface (UI), development of usable software, and

pinpointing software usability defects . It is developed using

the principle that usability is an inverse function of effort.

The model is used for comparison of d ifferent

implementations of the same application. The results of

several experiments conducted on the effort-based model

show a strong relationship between effort and usability

[1][5][6][9]-[12].

The underlying theory of the Effort-based Model is

used to produce a framework for identifying usability

deficiencies in the software. Accurately locating software

usability issues and correlating these issues with UI

software code is referred to as Pinpoint Analysis [1][9]-[12].

For example, users who are in a state of confusion, and

users that are not sure how to use the software, tend to look

around the screen to determine the best way to accomplish a

task. This behavior, which can be observed by eye tracking

[13][14], is referred to as an excessive search or as

excessive effort [1][5][9]-[12]. Identifying and pinpointing

excessive effort behavior helps UI designers to rectify

numerous usability related issues.

The hypothesis of this research is that it is feasible to

devise a framework that can automatically identify excessive

effort segments by apply ing pattern recognition techniques ,

such as K-means clustering algorithm, thresholding,

principal component analysis (PCA), and feature selection

[15]-[17]. Usability experts can fu rther inspect the excessive

effort segments. Hence, the automatic part can save experts’

time and increase experts’ accuracy.

To validate the hypothesis, this research, attempts to

evaluate the utility of pinpointing UI deficiencies using

pattern recognition techniques for identifying excessive

effort in temporal segments of user software interaction. The

process of segmentation of user’s software interaction

session and linking segments is done automatically using

the time slice between two consecutive mouse/keyboard

clicks. Automat ic identification of segments with excessive

effort behavior reduces the time required for UI designers to

analyze and rearrange the interface at the pinpointed time

snapshot. The last phase of the pinpoint process involves an

expert evaluating excessive effort segments. Nevertheless,

the process of identifying these segments is automatic and

non-supervised.

The main contribution of this work is the development

of a new methodology for assessing the usability of

software. Th is methodology helps optimizing the t ime spent

on usability testing while also more accurately identify ing

specific segments of code that could be leading to the

usability issues.

Several experiments were conducted to validate the

hypothesis and evaluate the new framework for pinpointing

software usability issues. Experiment results show more

than 40% reduction in time for usability testing.

The rest of this paper, which is an expanded version of

[1], is organized as follows. Section II contains background

informat ion. Sect ion III summarizes related work. Section

IV presents the experimental setup. Section V details the

experiments performed. Sect ion VI presents experiment

results and Section VII contains results evaluation. Section

VIII concludes the paper with a summary of findings and

proposals for further research.

II. BACKGROUND

A. Software Usability

According to the International Organization for

Standardization/International Electro -technical Commission

(ISO/IEC) 9126 standard, software usability is: “The

capability of a software product to be understood, learned,

used, and be attractive to the user when used under specified

conditions” [8][9]. The standard lists several characteristics

that play an important role in defin ing software usability:

understandability, learnability, operability, and

attractiveness [8][9]. The effort-based theory focuses on the

first three characteristics.

Understandability helps determine how easy it is to

comprehend and use the software. It is the ability of a user

to understand the capabilities of the software and its

suitability to accomplish specific goals. Learnability

indicates the ease with which a user learns to use specific

software. Operability is the capability of a user to use the

software to accomplish a specific goal. Generally, the end-

goal of a software application is to enable performing a task

efficiently. As such, operability plays an important role in

usability. Attractiveness relates to the requirement that the

end-user’s experience is pleasant and rewarding. The next

section discusses several classical usability evaluation

methodologies.

B. Classical Methods for Measuring Usability

The classical usability measurements methods are

broadly classified into methods that make use of data

gathered from users and methods that rely on usability

experts. There are usability evaluation methods that apply to

all stages of design and development, fro m product

definit ion to final design modificat ions. Usability methods

are further classified into cognitive modeling methods,

inspection methods, inquiry methods, prototyping methods,

and testing methods.

Cognitive models are based on psychological principles

and experimental studies to determine times for cognitive

processing and motor movements. They are used to improve

user interfaces or predict problem areas during the design

process. In general, cognitive modeling involves creating a

computational model to estimate how long it takes for users

to perform a g iven task [1]-[5]. It involves one or more

evaluators inspecting a user interface by going through a set

of tasks by which understandability and ease of learn ing are

evaluated. The user interface is often presented in the form

of a paper mock-up or a working prototype; but it might be

a fully developed interface.

The inspection method involves cognition with

emphasis on a hands-on approach. Under the inspection

45

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

method, experimenters observe users while they are using

the software. The testing and evaluation of programs is done

by an expert reviewer. Th is provides quantitative data, as

tasks can be timed and recorded. In addition to quantitative

data, qualitative user experience data are collected.

Although some of the data collected is qualitative and

potentially subjective, it provides valuable information [2]-

[4].

Experts obtain information about users' likes, dislikes,

needs, and understanding of the system by talking to them,

observing them using the system, and through verbal or

written questionnaires. Since this information is collected by

inquiring and getting direct feedback from users, this model

is called the inquiry method [1]-[5].

While the above methods focus on usability testing at

an advanced stage in the development, the prototyping

method tries to improve usability by refining and providing

feedback as the software is being developed. Rapid

prototyping is a method used in early stages of development

to validate and refine the usability of a system. It is used to

quickly and efficiently evaluate user-interface designs

without the need for an expensive working model. This

helps to remove the developer’s resistance to design

changes since it is conducted before any actual

programming begins. Testing methods provide usability

evaluation through testing of users for the most quantitative

data. User interaction sessions are observed via two way

mirrors or recorded on video that provides task complet ion

time and allows for evaluation of user attitudes [1]-[5].

C. The Effort-based Usability Model

Several studies indicate that many system users

associate the physical and mental effort required for

accomplishing tasks with the usability of the software

[1][5][6][9]-[12]. The effort-based usability model for

software usability stems from the notion that the usability is

an inverse function of effo rt. For example, an eye t racking

device can be used to measure the effort expanded by the

user in navigating through the user interface of software.

According to the effort-based usability theory, the eye effort

is inversely proportional to the operability of the software.

Physical and mental effort are obtained and inferred

from logging user activity such as manual activities in the

form of mouse movements and eye activities. For this

model, E denotes the total effort required to complete a task

with computer software and is defined as:

 (

)

 (

)

 (

)

 denotes the amount of mental effort to

complete the task measured by eye related metrics.

 denotes the amount of mental effort

measured by other metrics.

 denotes the amount of physical effort needed to

complete the task.

 denotes the amount of manual effort

required to complete the task. Manual effort includes, but is

not limited to, the movement of fingers, hands, arms, etc.

 denotes the amount of physical

effort invested in the process of interaction,

measured by eye movement related metrics [13].

 denotes the amount of physical effort

measured by other metrics.

Consequently, the effort required to complete tasks is

associated with software usability [1][5][9]-[12]. Physical

effort includes manual effort and physical eye effort. In the

case of interactive computer tasks, it is possible to calculate

effort as a linear combination or a weighted sum of metrics

such as the number of mouse clicks, number of keyboard

clicks, average eye path traversed as well as other eye

activity measures, and mouse path traversed [1][9]-[12].

Mental effort is essentially the amount of brain activity

required to complete a task. To some extent, brain activity,

related to a task, can be approximated by processing eye

movement data recorded by an eye tracker [1][5][9]-[14].

Eye trackers acquire eye position data and enable

classifying the data into several eye movement types useful

for eye related effort assessment. The main types of eye

movements are [13][14]:

1) Fixation – eye movement that keeps an eye gaze

stable with regard to a stationary target providing visual

pictures with high acuity. Fixat ions might be a result of

“interest” or a result of confusion. In the context of task

completion, fixations are generally correlated to confusion.

2) Saccade – rapid eye movement from one fixat ion

point to another.

3) Pursuit – stabilizing the retina with regard to a

moving object of interest. Usually, however, the Human

Visual System (HVS) does not exhib it pursuits when

dynamically moving targets are not a part of the interface

[13][14].

In addition, some eye trackers supply informat ion about

 as well as user manual activity including mouse and

keyboard clicks.

In this research, we concentrate on the correlation

between physical effort and usability. The following

metrics, which have been identified as the most important

effort-based metrics, are used as a measure of the physical

effort [1][5][6][9]-[14]:

1) Average fixation duration,

2) Average saccade amplitude,

3) Number of fixations,

4) Number of saccades, and

5) Average eye path traversed.

46

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

T
im

e
 o

r
E

ff
o

rt

Tasks

Eavg

Eexp

Lp

LT

Figure 1. Learnability-based usability model

Additional commonly used metrics such as the number

of keyboard clicks and the number of mouse clicks are used

for identify ing segments of interaction rather than

classifying segments.

The effort -based software usability evaluation is

divided into three phases: Measurement, Analysis, and

Assessment [1]. In the Measurement phase, a group of users

executes a set of tasks referred to as identical independent

tasks, due to the fact that they share characteristics with an

identical independent distribution (iid) used in probability

theory. The tasks emerge from a single scenario; however,

several parameters change from task to task in a pseudo

random fashion. Hence, these tasks differ in key parameters ,

which prevent the users from memorizing a sequence of

interaction activities. Throughout the interaction process,

certain user actions such as eye movement, , keyboard

activities, and mouse activities are logged.

The Analysis phase involves accumulating data for

several physical effort-based metrics such as the number of

saccades, average saccade amplitude, number of fixations,

average fixation duration, and average eye path traversed.

Another metric is the . The average task completion

time and/or an effo rt-based metric are compared to a

learning curve, which reflects users’ mastery of software.

The final step is the Assessment. Using the above steps,

the learnability of software systems is assessed and the point

of users’ mastery of the software is identified. In addition,

as detailed in section D, the learnability curve is used to

obtain operability and understandability of various software

systems or different groups of users using the same system.

Effort-based metrics provide interface designers with means

to evaluate their designs [1][5].

D. The Learnability based Usability Model

Typically, as users become familiar with an application,

the effort and/or the t ime to complete tasks, which emerge

from the same scenario, become smaller or shorter [18].

Often, a graph of the averages of Effort-On-Task () or

Time-On-Task (), also known as effort average (Eavg),

for the users fits well into an exponential decay curve that

represents the average effort on task expended by the group

of users. Figure 1 depicts a typical graph. The Eexp line is the

effort that the interface designer expects an expert to expend

in order to complete a specific task. The point where the

user’s effort reaches the acceptable level is the learning

point Lp. The learn ing time (LT) is calculated by adding the

average task duration to the left of the learn ing point. Data

to the right of the learning point relates to the amount of

effort required by a trained user to complete tasks.

Understandability can be inferred from the graph by

investigating the difference between the expert curve and

the average user curve; while operability can be inferred

from the distance between the expert curve (Eexp) and the

47

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

axis. Thus, the effort-based usability model enables the

evaluation of the understandability learnability, and

operability of a specific system. In addition, comparing the

plots representing the results of tests with different systems

or different user populations (e.g., students vs. novice

employees) can be used to evaluate the relative usability of

these systems [1]. Th is is referred to as “system A vs.

system B” or “population A vs. population B” experiments

[1]. Moreover, this model is further used to identify outlier

tasks, which are studied to find usability shortfalls [1].

Outlier tasks are good candidates for a specific type of

pinpoint analysis referred to as inter-pinpoint analysis.

E. Pinpoint Analysis
Software usability testing is one of the most expensive,

tedious, and least rewarding tests to implement [1]-[5]. This

perception is likely to change if the usability testing is made

less expensive and more rewarding. This requires accurate

means through which an engineer can identify and pinpoint

issues in the software or the interface. Th is process is called

pinpoint analysis. Pinpoint analysis is one of two types;

inter-pinpoint analysis deals with identifying issues with

tasks performed by the users in a specific system, whereas

intra-pinpoint analysis refers to identifying issues within

tasks in a specific system. For example, outlier tasks might

be identified through inter-pinpoint analysis and used for

intra-pinpoint analysis. This analysis can help graphical user

interface (GUI) designers to make decisions about element

placement on displays and determine the level of effort that

is related to different widgets [1][5].

1) Inter-pinpoint Analysis

Inter-pinpoint analysis involves detecting tasks that

present anomalies and identifying the reasons for these

anomalies at a high level. The mouse is used as an example

to illustrate inter-p inpoint analysis. In a part icular task, the

right mouse button helps users complete a task effectively;

however, some of the users are unaware of it. It is possible

that anomalies like this can be identified in inter-pinpoint

analysis [1][5].

Inter-pinpoint analysis helps in identifying alternative

methods to perform a task effectively with less effort;

however, it does not provide users with a hint of the

alternative method. Other issues like the necessity of help

facilit ies in software are identified by the high level analysis

of tasks that present anomalies.

Figure 2 is a plot of the average of five subjects for

seven identical but independent tasks. The axis shows a

data point for each of the seven tasks, while the axis

shows information related to the The curve fitted to the

individual bars representing the average is an

exponential curve that actually corresponds to the

learnability model. The high correlation value ()

shows that the exponential curve well fits the data. Again,

placing the plot of more than one systems’ test in the same

graph can be used for a “system/population A vs.

system/population B” comparison. In this case, task-3 that

does not fit well in the curve shows an anomalistic behavior

and calls for further analysis and study [1][5].

2) Intra-pinpoint Analysis

Intra-pinpoint analysis is a detailed method for

analyzing tasks and identifying specific is sues with the

software. The analysis can be done manually by watching

video recordings of users’ interactions with software and/or

watching videos obtained from an eye-tracking device. The

review helps in identify ing interaction issues and areas

where the user has difficulty while performing tasks . For

example, the analysis might reveal that most of the users go

into a state of confusion in a specific part of a task, and are

searching the screen to identify the best way to proceed with

Figure 2. – Time-on-Task (TOT) for the use case of interest.

y = 7.4958x-0.321

R² = 0.962

3.00

3.50

4.00

4.50

5.00

5.50

1 2 3 4 5 6 7

M
in

u
te

s

Task

Average Power (Average)

48

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the task. This might prompt the designers to rearrange the

interface where a snapshot identifies excessive effort.

Clearly, the manual record ing inspection is tedious and

potentially expensive. An alternative is to use automatic

methods utilizing pattern recognition techniques. This

method eliminates the need for a person to watch the entire

video in order to identify interaction issues , thereby cutting

down the cost and time. It enables automatic identification

of areas where the user has difficulty and marking these

areas for further evaluation.

F. Pattern Recognition

One of the applications of pattern recognition is the

assignment of labels to a given input value, or instance,

according to a specific algorithm. An example of pattern

recognition procedure is classificat ion, which attempts to

assign each input value to one of a given set of classes.

Pattern recognition is generally categorized according

to the type of learn ing procedure used to generate the output

value. Supervised learning assumes that training data (the

training set), consisting of a set of instances that have been

properly manually labeled by an expert with the correct

output, has been provided. Next, a learn ing procedure

generates a model that attempts to meet two, somet imes

conflicting, ob jectives: Perform as well as possible on the

training data, and generalize as well as possible to new data.

On the other hand, unsupervised learning assumes the

availability of training data that has not been hand-labeled

and attempts to find inherent patterns that are used to

determine the correct classificat ion value for new data

instances [15]-[17].

Algorithms for pattern recognition depend on several

parameters, such as the type of output labels, and on the

training/learn ing methods that are supervised or

unsupervised. Additionally, the algorithms differ in the way

that inference is performed. For example, inference might

be based on probability, non-parametric clustering, fuzzy

logic, etc. [15]-[17]. The following are various relevant

pattern recognition techniques.

1) Segmentation

Pattern recognition procedures require the definition of

patterns (i.e ., segmentation). In this research, segments of

user activities records serve as the basic patterns. A segment

is defined as the time between two consecutive

keyboard/mouse clicks.

2) Feature Extraction and Feature Selection

Generally, the objects that are subject to classification,

i.e., the patterns (segments in the case of this research), are

represented through a set of measurements (say

measurements) or characteristics referred to as features.

Hence, the objects are considered as vectors in an -

dimensional space referred to as the feature space. Feature

selection is a technique for selecting a subset of relevant

features for build ing robust learning and inference models

[15][16]. Feature selection algorithms attempt to reduce the

dimensionality of the feature space and reduce the

complexity of the recognition process by pruning out

redundant, correlated, and irrelevant features. There are

several feature selection algorithms, some of which are

discussed below [16].

Exhaustive search is a brute-force feature selection

method where all possible subsets of the features are

exhaustively evaluated and the best subset is selected. The

number of combinations of r objects from a set of n features

is

)
). Th is might result in a very large set of

combinations of features to examine. Hence, generally the

exhaustive search’s computational cost is prohibitively high.

Thus, this method is impractical if the number of features in

the subset is large or the processing and evaluation time for

each subset is long [11][16]. Because of the problems

associated with exhaustive search, researchers resort to

adopting heuristic feature selection algorithms. In this paper,

there are five features of interest. This is a relat ively s mall

number of features. Nevertheless, each evaluation session

requires significant computation time. Hence, due to the

complexity o f the evaluation process, exhaustive search is

not a viable option. For these reasons, a heuristic approach

is adapted.

Heuristic search refers to selecting a feature subset by

making an educated guess and finding out if the selection

yields good results. Otherwise, the heuristic procedure

examines other subsets [16].

3) Principal Component Analysis

PCA is an unsupervised regression procedure that

analyzes data samples, such as the set of training patterns, in

order to identify a coordinate transformat ion that de-

correlates the data and “orders” the informat ion (or

variance) associated with the data in the axes of the new

space in a monotonically non-increasing fashion. In general,

as a result of the transformation, most of the informat ion

associated with the data is concentrated in the first few

components of the new space. This enables ignoring

components (axes) that do not carry significant information,

thereby reducing the dimensionality of the space used for

pattern representation and recognition. Each principal

component is a linear combination of the original variab les.

The principal components as a whole form an orthogonal

basis for the data space [16].

The distinction between PCA and feature selection is

that following the PCA the resulting features are different

from the original features; they do not correspond directly to

the set of measurements, and are not easily interpretable,

while the features left after feature selection are simply a

subset of the original features.

Following the feature selection and/or PCA,

classification is applied via different methods including

thresholding, discriminant analysis, decision functions, and

clustering [15]-[17].

49

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In this research, heuristic based greedy feature selection

techniques as well as PCA are used to reduce the

dimensionality of the data set consisting of a number of

interrelated variables, such as the number of saccades and

the average saccade amplitude, number of fixations and

average fixation duration while retain ing as much as

possible of the variat ion present in the data set. In the case

of PCA, this is achieved by transforming the data set into

principal components, The principal components are then

subjected to thresholding and/or clustering algorithms to

find segments of excessive effort.

4) The Threshold Method

The threshold method can be used to classify input data

based on a threshold value. In this research, the threshold

value for each feature is the average of the values of the

feature over the entire set of segments. All values greater

than the threshold are p laced into the “excessive effo rt”

group while input values below the threshold are placed into

the “non-excessive effort” group. One problem with the

threshold method is that it is limited to one dimensional

data. Hence, it is only applied to individual features, or a

combination of features, such as linear combination or a

specific component of the principle components . Clustering

techniques, however, are used to efficiently classify

multidimensional data.

5) Clustering

Clustering is a multi-disciplinary, widely-used,

unsupervised method for classifying data. It involves the

assignment of a set of patterns into subsets (called clusters)

so that patterns in the same cluster are similar in some

sense. To define a cluster, it is necessary to first define a

measure of similarity or distance, which establishes a rule

for assigning patterns to the domain of a particular cluster

center. Generally, and in this paper, Euclidian distance is

used as the distance measure. In Cartesian coordinates, if

 and are two points in an

 dimensional space, the Euclidean distance between and

 is:

n

i

ii pqqpD

1

2)(),(

The Euclidean distance is used as the measure of

similarity; the smaller the distance, the greater the

similarity. There are several clustering algorithms , such as

the hierarchical, part itional, density based, and subspace

clustering algorithms [15]-[17]. In this research, however,

partitional algorithms are of interest. Partit ional clustering

involves partitioning of observations (patterns) into

clusters where each observation belongs to the nearest

cluster. The K-means algorithm, used in this research, is a

partitional algorithm that attempts to min imize the mean

square distance between patterns and cluster centers, where

the cluster center is the centroid of the cluster patterns. The

algorithm consists of the following steps [15]:

Step 1 (seeding): Choose initial cluster centers

))) . The seeds can be chosen in many

different ways[13][15]. In this research, random centers

serve as seeds. The set of cluster centers at the iterat ion

is denoted by), where, .

Step 2: At the iterative step, distribute the patterns
{ } among the cluster domains, using the following

decision rule) if ‖)‖ ‖)‖ for

all , , where) denotes the set of

patterns whose cluster center is).

Step 3: Using the results of step 2, compute the new

cluster centers, such that the sum of the squared distances

from all points in) to the new cluster center is

minimized. The new cluster centers are given by

)

 ∑
)

For , where is the number of samples in

).

Step 4: Repeat step 2 and step 3 until there is no change

in the cluster centers, i.e., if)) for

 , then the algorithm has converged and the

procedure is terminated.

The advantage of the clustering technique is its ability

to classify excessive effort segments by considering a

number of features such as saccade count, average saccade

amplitude, fixation duration, and average eye path

traversed. In addition, the K-means clustering can be used

to identify thresholds. MATLAB, a high-level programming

language and interactive environment for numerical

computation, visualizat ion, and programming [19], has a

built in function for K-means that operates exactly as

described in this section. This function has been used in our

project.

III. LITERATURE REVIEW

Usability is a highly researched topic with much

literature available [1-6][21]-[23]. Nevertheless, extensive

review did not reveal any research papers related to

pinpointing usability issues (except for our p rior work

described in [1][9]-[12]. There are some papers on effort-

based usability evaluation that are discussed below.

Tamir et al. concluded that effort and usability are

related but they did not address pinpointing issues [5].

Mueller et al. use effort metrics to evaluate software

usability [6]. Their method allows comparison of two or

more implementations of the same application, but does not

identify where exact ly the problem lies. Hvannberg et al.

described the design and test of a defect classification

scheme that extracts informat ion from usability problem

[20], but is limited since it does not define the causes

underlying usability problems. Nakamich i et al. investigate

the relations between quantitative data, viewing behavior of

50

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

users, and web usability evaluation by subjects [21]. They

conclude that the moving speed of the gazing points is

effective in detecting low usability. Makoto et al. use a

Web-Tracer to evaluate web usability [22]. Web-Tracer is

an integrated environment for web usability testing that

collects the operation log of users on the Web pages .

However, the reasons for low usability are not identified

using this approach. Our paper thoroughly addresses and

resolves all of the issues listed above.

IV. EXPERIMENTAL SETUP

A. Manual Input Devices

The subject performs the tasks on a computer using a

standard keyboard and a mouse as input devices. An event
driven logging program is used to obtain details of mouse

and keystroke activities from the operating system event

queue. The program saves each event along with a time
stamp into a file. The logged events are: mickeys (mouse

pixels), keystrokes, mouse button clicks, mouse wheel
rolling, and mouse wheel clicks.

The eye tracker used for the experiments is Tobii X120

Eye Tracker with Tobii Studio version 2.2.5 [23] as well as

“in-house” developed software fo r estimat ing user’s gaze.

The Tobii device is a standalone eye tracking unit designed

for eye tracking studies. It provides raw eye gaze positional

data and is able to log mouse and keyboard events. The data

collected by the eye tracker is logged into a file, which is

referred to as a log file. The eye tracker also records a video

version of the user interaction session and is referred to as a

video file, which is very helpful in verifying experiment

results. In addition, the Tobii X120 eye tracker can log

mouse/keyboard clicks. The combination of the log file and

video file are referred to in this paper as the data file.

B. Software Environment for Analysis

A software program developed in MATLAB is used to

perform data analysis of the experiments reported in this

paper [19]. In addition, the program is responsible for

features collection and extraction.

C. Test Procedure

Experiments conducted to evaluate the capability of

pattern recognition techniques to identify software usability

issues are done using the steps depicted in Figure 3. As the

figure shows, the main steps are: data gathering,

segmentation, data reduction, feature extract ion and

selection. These actions are followed by several different

classification techniques. The sequence of actions depicted

in the figure is further described in the next three

subsections: data gathering, data reduction, and

identification of excessive effort segments.

1) Data Gathering

A group of five users executes a set of seven identical

independent tasks, which emerge from a single scenario.

Throughout the interaction process, certain user activities

such as eye movement, , keyboard, and mouse activities

are logged using the eye-tracking device. According to the

learnability-based usability model, the point at which the

user’s effort reaches the acceptable level is called the

learning point. Based on this model, and inspection of the

learning curve of the subjects, it is assumed that the users’

effort reaches the acceptable level by the time they perform

task-5. Hence, in this paper, task-5 of each subject is used

for conducting the pinpoint analysis experiments.

2) Data Reduction

Phase-2 includes activities such as segmentation, data

reduction, and feature extraction. The data logged

throughout the user interaction session is used for automatic

event based segmentation where the events are consecutive

keyboard/mouse clicks. Metrics such as:

(a) segment duration (for event based

 segmentation),

(b) the average fixation duration,

(c) the average saccade amplitude,

(d) the number of fixations,

(e) the number of saccades, and

(h) the average eye path traversed

are inferred for each segment. These metrics are used to

generate a feature set, which is obtained by applying data

reduction programs to the data file . The features data is

calculated for all features within each segment and this data

is used to identify excessive effort segments.

2) Identification of Excessive Effort Segments

Pattern recognition techniques are applied to the feature

set obtained from the data reduction process to identify

segments that exh ibit excessive effort. The techniques used

and applied on the feature set are thresholding, K-means

clustering, and PCA.
Thresholding - a threshold value is calculated for each

feature in the feature set. For a given feature, all the

segments that have a feature value that is less than the

threshold value are classified as non-excessive effort

segments and segments with a feature values above the

threshold are considered as excessive effort segments. In the

current research, the threshold is the average value of the

feature in the segment.
K-means clustering - the segments are grouped into

clusters. Based on the value of cluster centers, the cluster is

classified as excessive effort cluster or non-excessive effort

cluster.
PCA - the first, the second, and the third principal

components of the feature data are obtained. The threshold

classification, where the threshold is the average value of

the first princip le component computed over the set of

features extracted for the current segment, is applied on the

first principal component and K-means clustering is applied

on the first, second, and third components to classify the

segments into excessive effort or non-excessive effort

segments.

 By the end of phase-3, the software program identifies

the excessive effort segments. To verify the results, the video

51

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Experiment procedure

file is carefully watched segment by segment and classified

into excessive or non-excessive effort segments manually.

The manual analysis results are used as ground truth and

serve as the input for error analysis that further supports the

reliability of our results. The manual classification process

of the video file is described in the following section.

D. Manual Classification

The manual classification process involves automatic

event based segmentation on the entire video file. Each

segment is carefully watched and classified into the

following categories:
Idle behavior segments: Idle behavior is due to system

response. Waiting for a progress bar to complete or wait ing

for a page to load are examples of idle behavior. Segments

with such behaviors are classified as idle behavior segments.
Excessive effort segments: Segments without any

useful user actions are classified as excessive effort

segments. A subject looking at different components on an

interface instead of the actual target component, which help

in accomplishing the task, is an example of excessive effort

behavior. Such behavior can be eliminated without

sacrificing task completion quality.

Non-Excessive effort segments: Segments with useful

action that result in task completion are classified as non-

excessive segments.
Off screen behavior segments: Intervals of t ime where

the subject’s view is not within the screen for more than one

second, with no meaningful user action, are classified as off

screen behavior segments.

Attention segments: Segments with frequent on screen

behavior, e.g., segments with very frequent mouse/keyboard

clicks are classified as attention segments.

Once the video file is classified into one of the above

five segment categories, the manual classificat ion results are

compared with the automatic classificat ion results.

Nevertheless, idle behavior, off screen behavior, and

attention segments can be accurately identified by the

software tool and are discarded from further analysis in this

work. In this sense, our results are conservative as we so

not measure the additional time saving obtained via the

identification these types of segments.

E. Result Verification

The number of Excessive (E) vs. Excessive, Excessive

vs. Non-Excessive (NE), NE vs. E and NE vs. NE segments,

Clustering

Data Gathering

Segmentation

Data Reduction

Feature Extraction &
Selection

PCA
Clustering / Threshold

Method

Threshold
Method

52

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as well as related error rates , are calculated for each result

file and graphs are plotted to visualize the results and enable

comparing the performance of d ifferent methods and

features. Classifying NE segments as E segments is regarded

as false positive or type-I error.

It is assumed that all the segments classified as

Excessive Effort Segments are due for an additional process

of manual evaluation. Hence, in the case of type-I error, the

software program is highlighting ext ra segments for further

review but is not missing segments that need attention.

On a similar note, segments that show excessive effort

per manual classification but are identified as non-excessive

effort segments by the software program are regarded as

false negative or type-II error segments. These segments

require extra attention as the software program has

misidentified segments that require the stage of manual

inspection. The total time of segments classified as

excessive by the software program is referred as the

inspection time. It is the sum of the time interval o f each of

the excessive effort segments automatically identified by the

program. In this research, type-II errors and inspection time

are considered as the most important factors for analyzing

experiment results.

V. EXPERIMENTS

The automatic part o f the p rocess is used to analyze the

five data files by apply ing the different pattern recognition

techniques discussed. Each of the data files is a log file (log

of effort metrics expanded) and an eye tracking video file

that contains the entire data collected by the eye tracker

throughout each experiment. The fo llowing is a list of the

classification experiments performed: 1) Applying the

threshold method, 2) Applying heuristic feature selection

and K-means clustering, 3) Using PCA, and 4) Applying K-

means clustering on principal components.

Each experiment procedure is discussed in detail in the

following sections.

A. Experiment 1: Applying the threshold method

In this experiment, automatic event based segmentation

is applied to the eye tracking video and data file generated

by the eye tracker. Next, a feature set is generated for the

data file . All the segments are classified into excessive or

non-excessive effort segments by the software program,

which applies the threshold method on the following

features: 1) number of fixations, 2) average fixation

duration, 3) number of saccades, 4) average saccade

amplitude, and 5) average eye path traversed.

Figure 4 presents the sequence of steps for identify ing

excessive effort segments using the threshold method.

The steps described in Figure 4 are used for identifying

the excessive and non-excessive effort segments. Next, the

video file segments are manually classified into excessive or

non-excessive effort segments based on the specifications

described above. The excessive effort segments identified

through the software program and manual process are

verified using the five data files and their corresponding

video files. Th is step of manual classificat ion and result

verification is done in each of the experiments described in

this section.

B. Experiment-2: Applying heuristic feature selection and

K-means clustering

The evaluation process of a subset requires a long

execution time . Hence, evaluating all the possible subsets of

the feature set is prohibitively t ime consuming, we have

adopted a heuristic greedy-based feature selection method.

The following subsets have been selected: 1) Number of

fixations, 2) Number of saccades, 3) Average eye path

traversed, 4) Number o f fixations, number of saccades, and

eye path traversed, and 5) Number of fixations, number of

saccades, eye path traversed, average fixation duration and

average saccade amplitude.
Figure 5 illustrates the sequence of steps followed in

identifying excessive effort segments using exhaustive

feature selection and K-means clustering.

C. Experiment-3: Using PCA.

In this experiment, the feature set is transformed

into principal components by a MATLAB function. Only

the first principal component is considered, as it carries the

most significant information related to the feature set. The

first principal component is subjected to the threshold

method for identifying segments exhib iting excessive effort

and non-excessive effort. Figure 6 depicts the sequence of

steps applied for identifying excessive effort, the method

Figure 4. Sequence of steps for identifying excessive effort segments using the threshold method

53

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for identifying segments exh ibiting excessive effort, and

non-excessive effort.

D. Experiment-4: Applying K-means clustering on

principal components

In this experiment, K-means clustering is applied to

different combinations of principal components for

identifying segments exhib iting excessive effort and non-

excessive effort. The following constitute the feature set for

this experiment: 1) 1
st

 principal component, 2) 1
st

 and 2
nd

principal components, and 3) 1
st

, 2
nd

, and 3
rd

 principal

components.

Figure 7 includes a diagram of the sequence of steps

followed for identifying excessive effort segments using the

K-means clustering on principal components.

VI. RESULTS.

In this section, the results obtained from the

experiments are discussed. The results of each data file in

the experiments are given in [11]. A sample of these results

is presented here. For clarity, the notation used for the

feature values in the graphs is presented below:

1) # Fix – denotes the number of fixations,

2) Avg. Fix Dur. – denotes the average

 fixation duration,

3) # Sacc – denotes the number of saccades,

4) Sacc Amp. – denotes the average saccade

 amplitude,

5) Eye Path - denotes the average eye path traversed,
6) FPC - denotes the first principal component:

A. Identifying excessive effort segments using the

threshold method

In this section, we show the results obtained with data

file-1. Results with other files are availab le in [11]. Section

VII shows and analyzes the average results for all the files.

The video file corresponding to data file-1 is 6.09 minutes in

length. Figure 8 shows the results of an experiment using

the threshold method on data file-1.

When the graph in Figure 8 is ext rapolated and as seen

from the E vs. NE bars, the feature value, number of

Figure 7. Sequence of steps for identifying excessive effort through K-means clustering on the 1st principal component.

Event based
Segmentation

Heuristic
Feature

Selection

Clustering on
Selected Features

Excessive
Effort

Segments

Figure 6. Sequence of steps for identifying excessive effort segments using the threshold method on the first principal component.

Figure 5. Sequence of steps for identifying excessive effort segments using the K-means clustering.

54

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

fixations, demonstrates a small percentage of E vs. NE

segments. This shows that the number of fixations has the

least number of type-II errors. Number of saccades and

average eye path traversed follows the number of fixations

in terms of type-II errors.

Figure 9 shows the total time of segments classified as

excessive by the software program and the manual process

after the threshold method is applied on each of the

following features: 1) number o f fixations, 2) average

fixation duration, 3) number of saccades, 4) average

saccade amplitude, and 5) average eye path traversed.

The light black bars in Figure 9 represent the total video

time recorded by the eye tracker. Manual classification of

the video file , depicted by the dark black bars, shows 1.71

minutes of excessive effort. The average fixation duration

and average saccade amplitude show a relatively low value

for time of segments classified as excessive by the software

program when compared with the total video time. This is

depicted by the bright bars present in the figure. From

Figure 9, it is observed that the percentage of type-II errors

is 15.05% for average fixation duration and 12.9% for

average saccade amplitude. However, the feature value with

a reasonable type-II errors and lower percentage of time of

segments classified as excessive is average saccade

amplitude.

It should be noted that we are considering a 15% e rror

of type-II as acceptable. This is explained in section VII.

B. Identifying excessive effort segments using heuristic

feature selection and K-means clustering

In this section, we show the results obtained with data

file-2. Results with other files are available in [11]. The

Figure 8. Percent of segments of each type (file-1, experiment-1).

0

10

20

30

40

50

60

Fix Avg Fix Dur #Sacc Sacc Amp Eye Path FPC

%
 o

f S
eg

m
en

ts

Features

E Vs NE

NE Vs E

E Vs E

NE Vs NE

Figure 9. Total time of excessive effort segments (file-1, experiment-1).

55

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

video file corresponding to data file-2 is 3.27 minutes in

length. Figure 10 shows the results of an experiment using

the K-means clustering on data file-2.

When the graph in Figure 10 is ext rapolated and as seen

from the E vs. NE bars, feature subset-1 (defined above)

demonstrates a small percentage of E vs. NE segments. This

shows that the subset-1 has the least number of type-II

errors. Subset-2 follows subset-1 in terms of type-II errors.

Figure 11 shows the total time of segments classified as

excessive by the software program and the manual process

for the above defined five feature subsets.

The light dark bars in Figure 11 represent the total time

of video recorded by the eye t racker. Manual classification

of the video file, depicted by the brightest bars, shows 0.36

minutes of excessive effort. Subset-3 shows a relatively low

value for time of segments classified as excessive by the

software program when compared with the total video time.

This is depicted by the dark bars in the graph. From Figure

11 it is observed that the percentage of type-II erro rs is 8.5%

for subset-3. Therefore, the feature value with an acceptable

error of type-II and lower percentage of time of segments

classified as excessive is subset-3.

C. Identifying excessive effort segments using PCA

The results of all the data files are consolidated into a

single graph. Figure 12 shows the percentage of segments of

each type when applying the threshold method on the first

principal component for all five data files.

From the graph in Figure 12, it is clear that using the

threshold method on the first principal components

produces a small percentage of E vs. NE segments. This

means a lower type-II of errors as seen from the respective

bars in the graph.

Figure 11. Total time of excessive effort segments (file 2, experiment-2).

Figure 10. Percent of segments of each type (file 2, experiment-2).

0

10

20

30

40

50

60

70

80

#fix #sacc eye path #fix,#sacc,eye path #fix,#sacc,eye
path,avg fix dur,avg

sacc amp

%
 o

f S
eg

m
en

ts

Combination of Features

E vs E

NE vs NE

E vs NE

NE v E

56

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Figure 13 shows the total time of segments classified

as excessive by the software program and the manual

process for the first principal component. The results of all

five data files are plotted in a single graph.

The “light dark” bars in Figure 13 represent the total

video time recorded by the eye tracker for each of the five

data files. Manual classification of the video files is depicted

by the dark bars. The bright bars represent the total time of

video classified as excessive by the software program. The

percentage of time of segments classified as excessive is

relatively high when applying thresholding on the first

principal component.

D. Identifying excessive effort segments using K-means

clustering on principal components

In this section, we show the results obtained with data

file 3. Results with other files are available in [11]. The

video file corresponding to data file 3 is 3.8 minutes in

length. Figure 14 shows the percentage of E vs. E, E vs. NE,

NE vs. NE, and NE vs. E segments for the features

mentioned in the experiment description.

From the graph in Figure 14, it is clear that all three

features have same percentage of E vs. E, E vs. NE, NE vs.

NE and NE vs. E segments. This signifies that most of the

informat ion is concentrated in the first principal component

Figure 12. Percent of segments of each type (experiment-3).

Figure 13. Total time of segments classified as excessive (Experiment-3).

57

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and all the feature values have the same percentage of type-I

and type-II errors.

 Figure 15 shows the total time of segments classified

as excessive by the software program and the manual

process for the three features.

The “light dark” bars in Figure 15 represent the total

video time recorded by the eye tracker. Manual

classification of the video file, depicted by the dark bars,

shows 0.92 minutes of excessive effort. The automatic

classification of the video file for all three features shows

1.95 minutes of excessive effort time, which is depicted by

the light bars in Figure 15. A ll the features have an

acceptable value of type-II errors at 8.57%.

The entire set of experiments including all the data files

is detailed in [11].

VII. RESULT EVALUATION

In this section, we evaluate and discuss the results of

the experiments conducted in this work. Our criteria for

success are based on 1) the number of type-II errors and 2)

the minimal time to investigate the usability issues with an

acceptable level of type-II errors. Based on discussions with

several engineers in the company sponsoring this work and

other companies, we are assuming that 15% of error of type-

II is the upper bound for being considered as acceptable.

This is also consistent with a two-step approach where after

a first pinpoint analysis stage, which allows for h igh rate of

errors but provides significant reduction in evaluation t ime,

the errors identified are fixed, leading to a more rigorous

pinpoint analysis with lower erro r bound. The results are

evaluated based on the performance of each pattern

recognition method on individual features. In addition, the

Figure 15. Total time of excessive effort segments (file 3, experiment-4).

0

0.5

1

1.5

2

2.5

3

3.5

4

1st Principal Component 1,2 Principal Components 1,2,3 Principal Components

Ti
m

e
in

 M
in

ut
es

Features

Manual

Automatic

Total Time

Figure 14. Graph of percentage of segments of each type (file 3, experiment-4).

0

10

20

30

40

50

60

70

1st Principal Component 1,2 Principal Components 1,2,3 Principal Components

%
 o

f S
eg

m
en

ts

Features

E Vs NE

NE Vs E

E Vs E

NE Vs NE

58

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

overall performance of each pattern recognition method is

evaluated.

Tables I to IV summarize the results of the experiments.

An additional set of tables, which contains the entire results ,

can be found in [11].

A. Applying the threshold method

The following observations are derived from Table I:

1. The results of Table I show that the threshold

method on the feature value, number of fixations,

gives good results in terms of type-II errors but, the

average inspection time is relat ively h igh when

compared to other feature values. The average

value of type-II erro rs for the number of fixations is

3.3%. The average saccade amplitude and the

average eye path traversed follow the number of

fixations in terms of type-II errors.

2. A threshold on the average fixation duration

performs well in terms of min imal inspection time

with an acceptable value of 9.8% for type-II errors.

3. A feature value with minimum number of total

errors is average eye path traversed. This feature

value is a good choice when inspection time is not

a crucial factor.

4. The inspection time is not completely correlated to

type-I errors. In the case of average fixation

duration, the inspection time is 1.67 minutes with

29.4% of type-I errors. On the other hand, the

average saccade amplitude with almost the same

percentage of type-I errors has higher inspection

time than average fixation duration.

5. The values of the average number of excessive

effort segments for all features are in close

proximity to each other. However, the percentage

of type-I and type-II errors differs invariably.

Indicating that the segments classified as excessive

are different for each feature value.

6. Despite the fact that the percentages of total errors

for each feature value are in close proximity to

each other, the inspection time varies. This

delineates that the segments classified as excessive

are different for each feature value.

B. Applying heuristic feature selection and K-means

clustering.

The following observations are derived from Table II:

1. The results of Table II show that the K-means

clustering on the feature subset - number of

fixations, number of saccades, average eye path

traversed, average fixation duration, and average

saccade amplitude, gives good results in terms of

type-II errors with an average value of 5.4%.

TABLE I. AVERAGE VALUES OF EXPERIMENT -1 RESULTS.

Feature value

avg. # of
excessive effort

segments

avg. total no.

of segments

avg. % type- I

errors

avg. %
type-

II

errors

avg. % of

total errors

avg.
Inspection

time

(minutes)

avg. Inspection
time as a % of total

time

Fix 17.2 95 28.4 3.3 31.7 2.7 62.1

Avg. Fix Dur. 18.2 95 29.5 9.9 39.4 1.6 37.4

#Sacc 32 95 21.8 10.5 32.2 2.9 64.1

Sacc Amp. 17.6 95 29.1 4.6 33.7 2.5 56.4

Eye Path 17.8 95 25.7 5.1 30.8 2.6 57.7

TABLE II . AVERAGE VALUES OF EXPERIMENT -2 RESULTS

Feature value

avg. # of
excessive

effort
segments

avg. total
no. of

segments

avg. %
type -I
errors

avg. %
type -II
errors

avg. % of total
errors

avg.
Inspection

time (minutes)
avg. Inspection time
as a % of total time

#fix 29.1 95 27.2 6.6 33.9 2.4 56.2

#sacc 23.5 95 17.8 8.9 26.7 2.0 45.1

eye path 19.7 95 18.0 10.1 28.1 1.6 37.5

#fix, #sacc, eye

path
23.2 95 18.3 8.6 26.9 1.9 44.5

#fix, #sacc, eye

path, avg. fix dur.,
avg. sacc amp.

29.2 95 32.6 5.4 38.0 2.5 56.3

59

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

However, the average inspection time is relatively

high when compared to other feature values. The

number of fixations follows the above identified

feature value in terms of type-II errors.

2. Clustering using the average eye path traversed

performs well in terms of min imal inspection time

with an acceptable value of 10.1% for type-II

errors.

3. A feature value with minimum number of total

errors is the number of fixations. This feature value

is a good choice when the inspection time is not a

crucial factor.

4. The average number of excessive effort segments

for the number of fixations and the feature subset

with the following features: number of saccades,

average eye path traversed, average fixation

duration, average saccade amplitude are the same.

However, the inspection times vary. Indicating that

the segments classified as excessive are different

for each feature value.

5. Unlike the results of the threshold method, the

percentages of total errors for each feature value

vary by a wide marg in when applying the K-means

clustering on different feature subsets.

C. Using PCA

The results summarized in Table III are compared with

the results obtained from Experiment-1 to compare the

performance of the threshold method on the first principal

component with the performance of thresholding on all the

other features including the number of fixations, the average

fixation duration, etc. Experiment-1 result evaluation shows

that the feature value, number of fixations, gives good

results in terms of type-II errors. The average percentage of

type-II errors for the number o f fixations is 3.3%, whereas it

is 4.1% for the first principal component. Initially, the

average saccade amplitude and the average eye path

traversed succeeded the number of fixations in terms of

performance. However, the new results place the threshold

on the first principal component right after the number of

fixations with respect to type-II errors.

The inspection times for the first principal component

and for the average fixation duration are 2.7 and 1.6

minutes, respectively. A threshold on the average fixation

duration performs better than the first principal component

in terms of lower inspection time and an acceptable 9.8%

for type-II errors.

D. Applying K-means clustering on principal components.

Table IV shows the average values of all the features

used in Experiment-4 over the five data files. The average

type-II erro r is very high when using the K-means on the

principal components. The average inspection time is only

1.96%. When taking type-II errors also into consideration,

this method is not suitable to identify excessive effort

segments.

Of all the pattern recognition methods used, a threshold

on number of fixations yields the best results in terms of

type-II errors with a reduction of more than 40% in manual

inspection time and is followed by a threshold on the first

principal component. The K-means clustering on the feature

subset with the features: 1) number of fixations, 2) number

of saccades, 3) average saccade amplitude, 4) average

fixation duration, and 5) average eye path traversed ranks

third.

The K-means clustering on the number of saccades

yields the best results and precedes the threshold method on

average fixation duration in performance.

.

TABLE III. AVERAGE VALUES OF EXPERIMENT -3 RESULTS

Feature value
avg. # of excessive effort

segments

avg. total

no. of
segments

avg. %

type -I
errors

avg. %

type- II
errors

avg. % of

total
errors

avg.
Inspection

time
(minutes)

avg. Inspection

time as a % of
total time

1st principal
components

16.6 95 27.5 4.1 31.6 2.7 61.2

TABLE IV. AVERAGE VALUES OF EXPERIMENT -4 RESULTS

Feature value
avg. # of excessive
effort segments

avg. total no.
of segments

avg. %
type- I
errors

avg. %
type- II
errors

avg. % of
total errors

avg.

Inspection
time

(minutes)
avg. Inspection time
as a % of total time

1st, 2nd & 3rd
principal

components

28.6 95 24.4 12.6 37.0 2.0 43.6

.

60

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. CONCLUSIONS AND FUTURE RESEARCH

The framework presented in this research enables

software developers to efficiently identify usability issues

and deficiencies in numerous types of applications thereby

optimizing the time spent on software-usability testing and

validation.

Excessive effort segments, which typically relate to

usability issues, are identified by applying pattern

recognition techniques, such as K-means clustering

algorithm, thresholding, PCA, and feature selection. The

analysis of the experiments conducted in this paper shows

that the time taken for software usability testing can be

reduced by 40% or more.

In this research, the time between two consecutive

keyboard/mouse clicks by a user is considered as a segment

and serves as the basic pattern for the pattern recognition

techniques. Equal time slicing of user’s software interaction

session can be used instead and the performance results can

be analyzed and compared with the results from this

research.

Further refinement of pattern recognition techniques can

be pursued to min imize errors and inspection time. Also,

more focus can be placed on the criteria for manual

classification of v ideo segments thus allowing excessive

effort segments to be identified more accurately in the first

place.

Another direction for future research is to automate

some of the manual steps in this process. This can include

software that automatically logs the data from users'

interaction session, manipulates the data, and without

human intervention, identifies the excessive effort segments.

This can significantly reduce time taken fo r the usability

testing.

In this work, we have concentrated on pattern

recognition techniques that do not rely on human

intelligence. Hence, the results are generated using non-

supervised learning procedures. A surrogate approach can

use supervised learning procedures. This involves

conducting experiments using training data sets to manually

arrive at an archetype that can be applied on any data set to

generate the output.

Finally, we plan to investigate the utility of dynamic

UI, which adapts to the user experience. For example,

widget placement might change based on usage patterns.

Pinpoint analysis is expected to be a crucial tool for

evaluating the effectiveness of the dynamic interface

approach for identifying related deficiencies.

ACKNOWLEDGMENT

 Th is research was funded in part by Emerson Process

Management [24], an Emerson business .

REFERENCES

[1] D. K. V. Dasari, D. E. Tamir, O. V. Komogortsev, G. R.
LaKomski, and Carl J. Mueller, “Pinpoint analysis of

software usability ,” ICCGI 2013, The Eighth International

Multi-Conference on Computing in the Global Information

Technology, Nice, France - July, 2013, pp. 66-71.

[2] J. S. Dumas and J. C. Redish, "A Practical Guide to

Usability Testing," OR, USA, Intellect Books., 1999.

[3] J. Nielsen, Usability Engineering, San Francisco, Boston,

Academic Press, 1993.

[4] J. Rubin and D. Chisnell, Handbook of Usability Testing:

How to Plan, Design, and Conduct Effective Tests,

Indianapolis, Wiley Publishing, Inc., 2008.

[5] D. E. Tamir, C. J. Mueller, O. V. Komogortsev, “A learning-
based framework for evaluating software usability ,” the

ARPN Journal of Systems and Software, June 2013, pp. 65-

77.

[6] C. J. Mueller, D. E. Tamir, O. C. Komogortsev, and L.

Feldman, "Using designer’s effort for user interface

evaluation," IEEE International Conference on Systems,

Man, and Cybernetics, Texas, USA, October 11, 2009, pp.

480-485.

[7] ISO/IEC 9126-1: 2001, Software Engineering-Product

Quality, Part-1, Quality Model, Geneva, Switzerland:

International Standards Organization, 2001.

[8] ISO/IEC 9126-1: 2001, Software Engineering-Product

Quality, Part-2, External Metrics, Geneva, Switzerland:

International Standards Organization, 2001.

[9] D. E. Tamir, O. V. Komogortsev, and C. J. Mueller. "An

effort and time based measure of usability ," 6th Workshop
on Software Quality, 30th International Conference on

Software Engineering, Leipzig, Germany, 2008, pp. 35-41

[10] D. E. Tamir, et al. "Detection of software usability

deficiencies," International Conference on Human Computer

Interaction, FL, 2011, pp. 528-536.

[11] D. K. V. Dasari, Pinpoint analysis of software usability,

Thesis Report, Texas State University, Computer Science,

December 2012.

[12] C. Holland, O. V. Komogortsev, D. Tamir. “Identifying

usability issues via algorithmic detection of excessive visual
search,” Proceedings of the ACM Conference on Human

Factors in Computing Systems (CHI), Austin, TX, 2012, pp.

1-10.

[13] A. Poole and L. J. Ball, Eye Tracking in Human-Computer

Interaction and Usability Research: Current Status and

Future Prospects, Encyclopedia of Human Computer

Interaction: Idea Group, 2004.

[14] M. A. Just and P. A. Carpenter, "Eye fixation and cognitive

processes," Cognitive Psychology, vol. 8, 1976, pp. 441-480.

[15] J. T. Tou and R. C. Gonzalez, Pattern Recognition

Principles, Reading, MA: Addison-Wesley Publishing, Inc.,

1974.

[16] R. O. Duda, P. E. Hart, and D. G. Stock, Pattern
Classification, 2nd Ed., Indianapolis, Willey International,

2001.

[17] D. E. Tamir and A. Kandel, "The pyramid fuzzy c-means

algorithm," International Journal of Computational

Intelligence in Control, 2 (2), 2012 pp. 65-77.

[18] H. Ebbinghaus, Memory: A Contribution to Experimental

61

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Psychology, 1885,

http://psychclassics.yorku.ca/Ebbinghaus/memory3.htm,

retrieved June 2014.

[19] Anonymous, “MATLAB Product Help,” MATLAB, 2013,

http://www.mathworks.com/help/, retrieved June 2014.

[20] E. T. Hvannberg and C. L. Lai, "Classification of usability

problems (CUP) scheme," Nordic conference on Human-

computer Interaction, Oslo, Norway, 2006, pp. 655-662.

[21] N. Nakamichi, S. Makoto, and S. Kazuyuki, "detecting low

usability web pages using quantitative data of users’
behavior," Proceedings of the 28th international conference

on Software engineering, New York, NY, 2006, pp. 569-

576.

[22] S. Makoto, N. Noboru, H. Jian, S. Kazuyuki, and N.

Nakamichi. "Webtracer: A new integrated environment for

web usability testing," 10th Int'l Conference on Human -
Computer Interaction. Crete, Greece, June 2003, pp. 289-

290.

[23] Anonymous, “Tobii X60 & X120 Eye Trackers: User

Manual,” Tobii, 2013,

http://www.tobii.com/Global/Analysis/Downloads/User_Ma

nuals_and_Guides/Tobii_X60_X120_UserManual.pdf,

retrieved June 2014.

[24] Anonymous, “Emerson Process Management,” Emerson,

2014, http://www.emersonprocess.com, retrieved June 2014.

62

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

