
Instance-Based Integration of Multidimensional Data Models

Michael Mireku Kwakye1, 2, Iluju Kiringa1, and Herna L. Viktor1

1 School of Electrical Engineering and Computer Science
University of Ottawa

Ottawa, Ontario, Canada

mmire083@uottawa.ca, {kiringa, hlviktor}@eecs.uottawa.ca

2 Faculty of Informatics
Ghana Technology University College

Accra, Greater Accra, Ghana

mmireku@gtuc.edu.gh

Abstract— Meta-model merging is the process of incorporating
data models into an integrated, consistent model, against which
accurate queries may be processed. The efficiency of such a
process is very much reliant on effective semantic
representation of chosen data models, as well as the mapping
relationships between the schema and data instance elements
of the data models. Within the data warehousing domain, the
integration of data marts is often time-consuming. Intuitively
forming an all-inclusive data warehouse presents tedious tasks
of identifying related fact and dimension table attributes.
Moreover, the ability to process queries across these disparate,
but related, data marts poses an important challenge. In this
paper, we introduce an approach for the integration of
relational star schemas, which are instances of
multidimensional data models. These instance schemas
represented as data marts are integrated into a single
consolidated data warehouse. Our methodology, which is based
on model management operations, focuses on a formulated
merge algorithm and adopts first-order Global-and-Local-As-
View (GLAV) mapping models, to deliver a polynomial time,
near-optimal solution of a single integrated enterprise-wide
data warehouse.

Keywords- Schema Merging, Data Integration, Model
Management, Mapping Modelling Constraints,
Multidimensional Merge Algorithm, Data Warehousing.

I. INTRODUCTION

The concepts of schema merging and data integration
present intricate fields in databases as both have academic
and industrial implications in the area of data processing.
Schema merging involves integrating disparate models of
related data using methods of element matching, mapping
discovery, and the consolidation of data sets [2]. Schema
merging adopts a concept from model management that
primarily involves the integration of models and their
instance schemas, and together with associated constraints.
Data integration entails the consolidation of the instance data
sets within the framework of a merged schema to deliver
efficient query solutions [3]. The end results of schema and
data integration have seen important impacts in various
scientific and industrial domains. A number of the
application areas are federated database systems, Enterprise
Information Integration, and bioinformatics data integration.

These applications continue to impact and attract attention in
the need for efficient data processing and analytics.

Traditionally, most of the procedures that involve data
integration have always been focused on identifying the
integrating data sources, and the associated mapping
correspondences of elements in the integrating data sources.
Recent studies have focused instead on emphasizing the
inference of semantic meaning of the elements of the data
sources in integration. There usually arise various forms of
problems associated with the procedural methodologies for
these concepts. These challenges are the identification of
prime meta-models, the expression of semantic
representation of the meta-models, and the formulation of
algorithms for specific meta-models and their instances. In
general, these challenges make the overall procedures of data
and schema integration very difficult. The conceptual
processes of data integration and schema merging are
derived from the fundamental operations of model
management [4] [5]. Model Management operations of
match, compose mappings, and merge offer the intuition to
address the problems of data integration and schema merging
within the context of multidimensional data models.

In this paper, we introduce an integration procedure for
both instance schema and instance data of multidimensional
data models. Our motivation is to employ the concept of
model management to address the shortcomings of merge
algorithm, conflict management, and technical merge
requirements for integration of data marts. Our key
contribution in this paper is the formulation of a novel well-
defined algorithm, which is supposed to be the end-result of
the overall integration process. This algorithm is capable of
delivering an efficiently integrated data warehouse. Our
presentation focuses on the proposition of star schema
instances in our analyses. Our work, which subsumes prior
work on generic models [2], draws on a number of their
significant propositions made, and uses it as a background
work in formalizing our intuition in a much more practical
solution for merging schema and data instances of
multidimensional data models. Additionally, this paper
presents an extended and elaborate version to an earlier
submission [1], as the assertions, methodology and evaluated
results are described in further detail.

The technical contributions are summarized as follows;

402

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 We adopt the application of a hybrid form of schema
matching, in which we use both schema and data
instance algorithms to deliver correct attribute mapping
correspondences.

 We adopt first-order Global-and-Local-As-View
mapping models in the mapping discovery procedure,
which expresses the transformation of complex
expressions between attributes of the instance schemas.

 We address the handling of functional dependency
integrity constraints in the mapping discovery and
modelling procedure.

 We identify and specify resolution measures for
frequently observed conflicts that are exposed, as a
result of integration of heterogeneous data marts.

 We define technical qualitative merge correctness
requirements, which serve to validate the formulation of
the merge algorithm.

 Most importantly, we formulate a merge algorithm that
specifically deals with the integration of schema and
instance data of the data marts.

The rest of the paper is organized as follows. In Section
II, we review the fundamental background studies regarding
data integration and schema merging. In Section III, we
discuss our integration methodology, where we address the
overview of the integration approach. In Section IV, we
describe the adopted hybrid schema matching; and further on
in Section V, we describe the mapping models discovery and
modelling. In Section VI, we present the formulated merge
algorithm; and address the proposition of the technical merge
correctness requirements, semantics of query processing, and
conflicts resolution measures in Section VII. In Section VIII,
we address the implementation and evaluation of the
integration methodology. We discuss the related work and
comparison of other approaches in Section IX; and in
Section X, we conclude, discuss open issues and the areas of
future work.

II. BACKGROUND

The need of business users to access, in a timely and
precise fashion, information originating from varied and
heterogeneous sources of data repositories has lead to the
investigation of engineered methods of efficient data
integration methods and retrieval. The processes that
comprise the generation of the final output of data
integration largely stem from the fundamental operations of
model management [4]. Models serve as data representation
and as a result, different models denote different applications
or domains and are modelled for different purposes.

Model management, in the field of databases, is a high-
level, abstract programming language designed to efficiently
manipulate schemas and mappings. It serves as the generic
approach to solving problems of heterogeneity and data
programmability, where concise and clear-cut mappings are
manipulated to deliver desired output that supports robust
operations related to certain metadata-oriented problems [4]
[6] [7]. A number of these operations are; match schemas,
compose mappings, difference schemas, merge schemas,
apply function, translate schemas into different data models,

and generate data transformations from mappings. The main
abstractions that are needed in expressing model
management operations are instance schemas and mappings.
Practically, the choice of a language to express these instance
schemas and mappings is vital. A model is described as a
formal description of a complex application artefact, such as;
database relational model, Unified Modelling Language
(UML) model, or an ontology [4] [6]. A schema is an
expression of a model that defines a set of possible instances,
whilst and a meta-model is the language needed to express
the schemas. These schemas could be relational schema,
Extensible Markup Language (XML), Web Ontology
Language (OWL), or Multidimensional Schema, amongst
others.

Model management operations, in the form of schema
matching, schema mappings, and schema merging have
generally been attempted by Bernstein et al. [6], Melnik [7],
and Gubanov et al. [8] to offer flexibility and efficiency in
meta-data processing. To efficiently integrate different data
sources, the model management operation of match,
expressed as schema matching, serves as basis to other major
operations [4]. It takes two schemas instances as input and
produces a mapping between elements of the two schema
instances that correspond semantically to each other [9].
Various surveys and studies have been conducted in the
literature [9] [10] [11] in this direction of schema matching,
of which incremental and new results have been shown to
effectively deliver better solutions in arriving at precise
mapping correspondences. Prior studies classify this
procedure into 3 main categories. These are namely; schema-
level matching, instance-level matching, and hybrid and/or
composite matching. Out of these studies and surveys
conducted, several concrete results have been developed to
produce very high precisions. Enumerations of algorithms
are Similarity Flooding (SF) [12], COMA [13], Cupid [14],
SEMINT [15], iMAP [16], and the Clio Project [17] [18]. It
will be noted that schema matching operations are enhanced
from fields, such as; Knowledge Representation [19],
Machine Learning [15] [20], and Natural Language
Processing [21], where techniques are used to deliver near-
automatic and semantically correct solutions.

Other forms of model management operations are
compose mappings and apply functions, expressed as schema
mapping discovery. These operations are normally a follow-
up on the end results of a schema matching operation.
Schema mapping is the fundamental operation that produces
a semantic relationship between the associated elements
from source and target schemas based on an earlier schema
matching [17] [22] [23]. Recent studies conducted in
generating schema mappings have shown that the strength of
mapping relationship correspondences that exist between
schema elements largely determines the degree of efficiency
of the overall data integration procedure. Further works have
shown that mapping correspondences modelled and
expressed in terms of First-Order Logic (FOL) assertions
exhibit unique characteristics, where various manipulations
on mapping elements can be expressed distinctively. The
authors in [24] define that an extensional mapping can be
expressed as Local-As-View (LAV), Global-As-View

403

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(GAV), Source-To-Target Tuple Generating Dependencies
(s-t tgds), Second-Order Tuple Generating Dependencies
(SO tgds), or other similar formalisms. More intuitively, a
hybrid approach of the LAV and GAV mappings, termed as
Global-and-Local-As-View (GLAV) mappings, which has
been formalized to merit on the strengths of both mappings
present a better mapping model for integration.

The final form of model management operation in our
line of study is the merge operation, expressed as schema
merging. Schema merging operation takes 2 meta-models
and a set of mapping models, as inputs, and produces a
merged meta-model, as an output, capable of representing all
the elements and semantics of the input meta-models. In the
generic sense, studies have been conducted and various
results are addressed in the literature [2] [5] [25]. In the area
of data warehousing, work done in the literature are
presented in [25] [26] [27]. Additionally, the authors in [28]
attempted to derive results on schema merging in relation to
relational data sources, whiles merging based on semantic
mappings have also been studied by the authors in [29]. A
typical architecture of a merge system, as denoted in [27], is
described in terms of 2 types of modules: wrappers and
mediators. In terms of algorithms for merging, a generic
approach was attempted in [30], whilst a proposition of an
algorithm for relational sources that succeeds on a Mediated
Schema Normal Form (MSNF) and Conjunctive Queries and
Mappings is investigated in [28]. As part of our study, we
draw on the significant propositions of generic merge in [2]
and use them as background work in formalizing our
algorithm in a much more practical solution for
multidimensional data models.

The study of data integration and schema merging in
relation to multidimensional data models has received
minimal research in the literature. Cabibbo and Torlone [31]
[32] [33] in their series of studies on dimension compatibility
and data integration have attempted to deliver methodologies
for fact and dimension tables and/or attributes integration.
Riazati et al. [34] have also formalized a proposition for
integration based on inferred aggregations in the hierarchies
of the dimension tables, in each of the data marts. We
expatiate on these approaches and perform a comparison of
their work in line with our methodology in Section IX.

III. INTEGRATION METHODOLOGY

Our approach for generating a single integrated data
warehouse from independent, but related, multidimensional
star schemas extends from the above-mentioned concept of
model management. The adopted star schema presents a
modelling construct, where one large central (fact) table is
referentially connected by a set of attendant (dimension)
tables of varied attribute information. The fact table contains
bulk data, without redundancy, whilst each dimension table
contains multiple representations of attribute data instances.

We present an overview of our integration methodology,
as depicted in Figure 1. The figure shows the logical and
conceptual merging of the fact and dimension tables from the
Policy and Claims data marts, to form an enterprise data

warehouse for an Insurance industry. We explain further our
motivation using Example 1 and Figure 1.

Example 1. Suppose we have 2 data marts from an
Insurance industry – Policy Transactions and Claims
Transactions – and we have to integrate these data marts
into an enterprise-wide data warehouse, as illustrated in
Figure 1. The existence of corresponding attributes will
enable the possibility of integrating the attributes of the fact
and dimension tables of these data marts. A merge algorithm
can be applied to the corresponding mappings to generate
the integrated data warehouse needed in answering queries,
as it will be posed to the integrating data marts. ∎

A. Problem Definition

In addressing our problem, we make reference to the
scenario in Example 1, where we have 2 or more data marts,
supposedly, in star schema models. It can be inferred that
though the instance schema and data values representations
in these separate data marts are different, the overlapping
sets of real-world entity representations in the dimensions of
the data marts seem to present a similarity. Hence, a
proposition of integration for the real-world entities in each
of the data marts into a single consolidated data warehouse is
not improbable.

In another instance, the need to contract a merger or
acquisition of companies of related business processes
results in the generation of a consolidated data warehouse.
This challenge in the generation of a data warehouse also
falls in the paradigm of this study where each of the
companies with disparate data marts or data warehouses are
integrated into a single enterprise repository.

B. Overview of Integration Methodology

We outline our methodology based on 3 main
streamlined procedures, namely; hybrid schema matching,
mapping models discovery, and the formulation of merge
algorithm. Figure 2 illustrates a description of our
methodology and framework architecture in a workflow
order. Here, we describe the step-wise procedures, algorithm
executions, and the generated outputs. We describe in detail
Hybrid Schema Matching (Procedure 1) in Section IV and
Mapping Models Discovery (Procedure 2) in Section V. We
also give a detailed description of the Formulated Merge
Algorithm (Procedure 3) in Section VI. We address the
methodology workflow in a manner where the results or
output from a preceding step, e.g., Procedure 1, becomes the
input for the succeeding procedure, e.g., Procedure 2. This
approach ensures consistency in data processing and in the
generation of the final integrated output of a data warehouse.

IV. HYBRID SCHEMA MATCHING

In our methodology, we adopt a hybrid form of schema
matching, which aim to deliver efficient schema attribute
correspondences. Our adoption of this hybrid approach uses
the logical properties of the multidimensional schema
structure in schema-based matching, and the instance data
and extensions in instance-based matching, to find attribute
correspondences.

404

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Logical and Conceptual Multidimensional Schema Merge

Figure 2. Workflow Framework of Integration Methodology

405

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Schema-based Matching

We adopted schema-based algorithmic techniques in the
form of Lexical Similarity and Semantic Names.

The Lexical Similarity is an algorithm technique based
on the linguistic form of schema matching, in which string
names and text are used to semantically find similar schema
elements. This algorithmic technique defines a measure of
the degree to which the word sets of 2 given strings are
similar, and discovers maximum weight subsequence of the
strings that are common to each other. The algorithm
determines similarity based on schema string names and text,
equality of names, equality of synonyms, homonyms,
abbreviations, and similarity of common substrings, amongst
others [35].

The Semantic Names, on the other hand, is an
algorithmic technique based on the semantic deduction of the
schemas and their characteristics. The algorithmic technique
is reliant on the schema structure and the properties of the
elements, and enforces on varied forms of constraints. It uses
criteria such as, type similarity and metadata in relation to
table name, attribute names, schema data types, value ranges,
precision, uniqueness, optionality, relationship types,
cardinalities, key properties, referential constraints, amongst
others, to match attributes [35].

We use Example 2 to illustrate the schema-based form of
finding mapping correspondences.

Example 2. Following up on Example 1, suppose we
want to merge the dimensions of DimPolicyHolder and
DimInsuredParty from Policy and Claims data marts,
respectively. The application of Lexical Similarity algorithm
will produce mapping correspondences, such as:

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.1 ݕ݁ܭݕݐݎܽܲ݀݁ݎݑݏ݊ܫ
ൎ .ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ݕ݁ܭݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.2 ݈݈݁݉ܽܰݑܨ ൎ
.ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ,݁݉ܽܰݕ݈݅݉ܽܨ
.ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ,݁݉ܽܰ݊݁ݒ݅ܩ .ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ,݁݉ܽܰݕݐ݅ܥ
.ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ݁݉ܽܰݐܿ݅ݎݐݏ݅ܦ

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.3 ,ݏݏ݁ݎ݀݀ܣݐ݁݁ݎݐܵ
.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ ݏݏ݁ݎ݀݀ܣ݈݅ܽ݉ܧ
ൎ .ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ݏݏ݁ݎ݀݀ܣ

Moreover, the application of the Semantic Names algorithm
will offer an improved schema matching using the data
types, relationships types and constraints, and value ranges.
This algorithmic matching enforces on the already generated
correspondence in the Matching (1), where Int data types
and Primary Key constraints for both attributes of
DimInsuredParty.InsuredPartyKey and
DimPolicyHolder.PolicyHolderKey are used for element
relationship mapping. For Matching (2), the
DimPolicyHolder.CityName [varchar(18)] and
DimPolicyHolder.DistrictName [varchar(15)] attributes
were eliminated to deliver mapping correspondence, as in:

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.2 ሺ60ሻሿݎ݄ܽܿݎܽݒሾ	݈݈݁݉ܽܰݑܨ ൎ
.ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ,ሺ25ሻሿݎ݄ܽܿݎܽݒሾ	݁݉ܽܰݕ݈݅݉ܽܨ
.ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ሺ40ሻሿݎ݄ܽܿݎܽݒሾ	ݏ݁݉ܽܰ݊݁ݒ݅ܩ

The above mapping correspondence is generated as a result
of the semantic representations of data type and precision,
such as varchar(60) for DimInsuredParty.FullName to
correspondingly infer on varchar(25), varchar(40) for both
DimPolicyHolder.FamilyName and
DimPolicyHolder.GivenName, respectively. ∎

B. Instance-based Matching

The instance-based algorithms that were adopted are
Signature, Distributions, and Regular Expressions. These
algorithmic techniques are based on the instance data
contained in the schemas and infer on the characteristics,
meaning and similarity in the data values, as well as the
relationship to other data set contained in the schema. The
Signature algorithm uses the similarity in the actual data
values contained in the schemas and their signature based on
data sampling. The technique uses sampled data to find
relationships where a weighting value is assigned to certain
classes of words in the data [35]. This sampling of data is
based on the valid values of sampling size and also the rate
of the sampling. The determination of match signature is
done by clustering according to their distance measure, either
by Euclidean distance [36] or Manhattan distance [37].

The Distributions algorithm discovers mapping
correspondences based on the common values in the instance
data contained in the schemas. The algorithm also uses data
sampling to aid the discovery function to find relationships
between attribute data values, where the frequent occurrence
of most data values for a particular attribute in relation to
another attribute determines the candidacy of matching
correspondence. Prior attempts of methodologies within the
domain of machine learning that aid in the discovery of
correspondences are A-priori and Laplacian [38].

The Regular Expressions algorithm uses textual or string
searches based on regular string expressions or pattern
matching. A simple regular expression will be an exact
character match of attribute data values or of the common
substrings contained in the instance data. This algorithm also
uses data sampling to aid the discovery function of finding
relationships between attribute data values [39].

We use Example 3 to illustrate a generalized form of
instance-based algorithm.

Example 3. Following up on Example 2, we complement
the results of the initial schema-based mapping
correspondences with a generalized instance-based mapping
to produce a final semantically correct mapping
correspondence for the Matching (3), as in:

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.3 ݏݏ݁ݎ݀݀ܣݐ݁݁ݎݐܵ
ൎ .ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ݏݏ݁ݎ݀݀ܣ

This final matching was attained because of the data values
and extensions from the dimension attributes. A
representation of the instance data values contained in
DimPolicyHolder.Address are {39 Baywood Drive, 178
Flora Ave., 79 Golden Rain St.}, where as data values
contained in DimInsuredParty.StreetAddress and
DimInsuredParty.EmailAddress are {40 Roslyn St., 68
Hastings Drive, 48 Whitehall Avenue} and

406

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

{amartens@cybserv.com, drice@vipe2k.com,
jtausig@fitexes.com}, respectively. ∎

In general, the output generated from this step of
Procedure 1, is a set of mapping correspondences between
the elements of the instance schema structure and instance
data values of the heterogeneous data sources.

V. MAPPING MODELS DISCOVERY

In the second procedure of our integration methodology,
we discuss the adoption of first-order GLAV mapping
models. We also discuss the merits of the mapping model,
whilst highlighting the suitability for our integration
approach. Moreover, we discuss the handling of possible
functional dependency integrity constraints as they occur in
the mapping models. This step utilizes the output of
Procedure 1, as inputs, to aid in the discovery and
establishment of mapping models.

Definition 1. (First-Order Mapping): Let
ࣧ ൌ ሺܵ, ܶ, ݂ሻ represent a mapping model from Source, ܵ
and Target, ܶ schemas. Let ࣵ ∈ ሼܵ ∪ ܶሽ represent disjoint
variable element where ࣵ denotes ሼࣵଵ, ࣵଶ, … , ࣵ௡ሽ. The
mapping assertion, ࣧ is said to be in first-order if
݂:	ሼ∀ࣵ	൫ܵሺࣵሻ → ܶሺࣵሻ൯ሽ, where ݂ represents the logical view
from the Source to the Target. ∎

We adopt a first-order GLAV mapping model formalism
[40]. This mapping formalism is based on first-order logic
assertions, where elements are finitely mapped using the
functional relations existing between them. Our motivation is
founded on the expressiveness of the correspondences that
exist between the attributes of the schemas [3]. The GLAV
mapping model combines mapping formalisms from both the
Local-As-View (LAV) and Global-As-View (GAV)
mappings [40]. This mapping model expresses mapping
views where the extensions of the source schemas provide
subsets of tuples satisfying the corresponding view over the
global mediated schema. Moreover, an equivalent number of
attribute view definitions are expressed in both the LAV and
GAV queries [3]. One other unique feature of the GLAV
mapping modelling is the expression of multi-cardinality
mappings between mapping elements. This enables the
expression of complex transformation formulas, which is
much useful in our integration methodology [24].

Definition 2. (Equality Mapping): Let ࣧ ൌ ሺܵ, ܶ, ݂ሻ
represent a mapping for Source, ܵ and Target, ܶ schemas.
The assertion ݂:	ሼ∀ݕ∀ݔ	ሺܵሺݔ, ሻݕ → ,ݔሺܶ	ݖ∃ ሻሻሽ for disjointݖ
variable elements ݔ, ,ݕ is an Equality mapping, such that ݖ
ݕ ൌ z. ∎

Definition 3. (Similarity Mapping): Let ࣧ ൌ ሺܵ, ܶ, ݂ሻ
represent a mapping for Source, ܵ and Target, ܶ schemas.
For disjoint element variables ݔ, ,ݕ ݖ the assertion
݂:	ሼ∀ݕ∀ݔ	ሺܵሺݔ, ሻݕ → ,ݔሺܶ	ݖ∃ ሻሻሽݖ is a similarity mapping,
such that ݃ሺݕሻ ൌ where ݃ denotes or encloses a complex ݖ
transformation expression. 	∎

In this procedural step, 2 forms of mapping relationships
were adopted, namely; Equality and Similarity mapping

relationships. An equality mapping represents a one-to-one
mapping, whilst a similarity mapping also represents a one-
to-many or many-to-many mapping. The defined
classifications were based on expressive characterization of
relationship cardinality, and the attribute semantic
representation, amongst others [39]. We used these forms of
mapping relationships in a GLAV mapping model, as
explained in Example 4.

Example 4. Using the scenario described in Example 1,
suppose we want to integrate the DimPolicyHolder and
DimInsuredParty dimensions from Policy and Claims data
marts, respectively, into DimInsuredPolicyHolder
dimension. The Datalog queries for the GLAV mapping
model will be expressed as:

DimInsuredPolicyHolder (InsuredPolicyHolderKey,
InsuredPolicyHolderID, InsuredPolicyHolderName,
BirthDate, ProvinceState, Region, City, Status):-

DimPolicyHolder (PolicyHolderKey, PolicyHolderID,
PolicyHolderFamilyName, PolicyHolderGivenName,
DateOfBirth, ProvinceState, CityName, Status),

DimInsuredParty (InsuredPartyKey, InsuredPartyID,
InsuredPartyFullName, BirthDate, Province, Region, City)

In this Datalog query, the existence of corresponding
attributes in both dimensions automatically expresses an
equality representation in the merged dimension.
Additionally, a similarity relationship is established where,
for example, DimPolicyHolder.InsuredFamilyName and
DimPolicyHolder.InsuredGivenName attributes are
mapped onto the merge attribute of
DimInsuredPolicyHolder.InsuredPolicyHolderName.
Moreover, local attributes of DimPolicyHolder.Status and
DimInsuredParty.Region from Policy and Claims data
marts, respectively, are also included in the merged
dimension schema instance. ∎

A. Propositions for GLAV Mapping Models

We further summarize a number of the characteristic
features that merit the choice of the GLAV mapping model.
This mapping model represents a suitable form of
manipulation of the mapping relationships that exists
between the instance schema attributes, as well as the
instance data values, contained in the star schema data marts.
Moreover, the GLAV mapping features offer the relationship
needed for the generic application of the merge algorithm for
disparate and heterogeneous schema and data instances.

Automatic Mapping Generation. It is a mapping formalism
that facilitates the (semi-)automatic generation of schema
mappings from heterogeneous instance schemas. This is
evident in cases where mapping correspondences are
incomplete or incorrect. This characteristic feature also
offers the ability to incrementally modify mappings as
correspondences change.

Mapping Reusability. The mapping model facilitates the
composition of sequential mappings that enables the re-use
of mappings when the instance schemas are different or
change. This functionality offers the capability to

407

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reformulate queries against one schema into queries on
another schema during data integration.

Data Translation & Exchange. The semantics of such a
mapping and its data exchange capabilities offers a data
translation from one schema to another. Moreover, the
mapping offers the transformation from one representation to
the other during data exchange based on specifications.

Runtime Functionality. The mapping formalism expresses
the capabilities for runtime executables; for example, to
generate view definitions, query answering, and generation
of XSLT transformations, amongst others.

Data Manipulation. The semantics of the GLAV mapping
model makes it easily applicable and manipulated by
mapping tools; for example, the IBM InfoSphere Data
Architect [41], Microsoft BizTalk Mapper [42], amongst
others.

Query Code Generation. The mapping formalism offers a
platform where query codes are generated based on the
mapping relationships. This is evident where efficient
queries or transformations in various languages (e.g., native
SQL) can implement the formulated mappings.

B. Functional Dependency Mapping Integrity Constraints

In our methodology, the adopted first-order GLAV
mapping modelling can be enhanced to deliver efficient
relationships between the attributes of the schema instances,
by the application of mapping integrity constraints. One form
of mapping integrity constraint is Functional Dependencies
of the dimension instance schema attributes.

Definition 4. (Functional Dependency): Suppose
ࣞ ൌ ሺࣛଵ,… ,ࣛࣿሻ, for ࣿ ൒ 2 attributes represent a
dimension instance schema. The assertion of functional
dependency, ࣠ࣞ constraint stipulates that a set of attributes
ሼࣛଵ,… ,ࣛअሽ ∈ ࣞ uniquely determines another set of
attributes ሼࣛअାଵ, … ,ࣛࣿሽ ∈ ࣞ , based on a key constraint,
say ࣛଵ, such that ࣠ࣞ:	ሼ∀ࣛଵ∀ࣛअ∀ࣛअାଵሺࣞሺࣛଵ,ࣛअሻ ∧
ࣞሺࣛଵ,ࣛअାଵሻ → ሺࣛअ ൌ ࣛअାଵሻሻሽ. ∎

From the definition above, it can be inferred that the set
of attributes ሼࣛଵ,… ,ࣛअሽ → ሼࣛअାଵ,… ,ࣛࣿሽ	 uniquely,
where the data instance tuple values in attribute set,
ሼࣛअାଵ,… ,ࣛࣿሽ are dependent on, or can be derived from the
tuple values in attribute set, ሼࣛଵ,… ,ࣛअሽ.

We use Example 5 below to illustrate the occurrence of
functional dependency integrity constraint, as part of the
mapping discovery and modelling.

Example 5. Suppose an integrity constraint exists on the
instance schema dimension DimPolicyCoveredItem in the
Policy data mart where the attribute
DimPolicyCoveredItem.PolicyCoveredItemID functionally
determines the set of attributes
DimPolicyCoveredItem.PolicyCoveredItemType and
DimPolicyCoveredItem.CoveringPeriod. Suppose a
principal mapping correspondence is established between
the Natural Key attributes of

DimPolicyCoveredItem.PolicyCoveredItemID and
DimInsuredPolicyItem.InsuredPolicyItemID. Moreover,
suppose mapping correspondences are established between
attributes DimPolicyCoveredItem.PolicyCoveredItemType,
DimPolicyCoveredItem.CoveringPeriod and
DimInsuredPolicyItem.ItemForm,
DimInsuredPolicyItem.PolicyPeriod, respectively. The
modelling of first-order GLAV mappings between the
dimensions DimPolicyCoveredItem and the
DimInsuredPolicyItem will result in an automatic instance
functional dependency constraint in DimInsuredPolicyItem
dimension. This dependency is expressed in the set of
attributes DimInsuredPolicyItem.ItemForm and
DimInsuredPolicyItem.PolicyPeriod, to functionally depend
on the DimInsuredPolicyItem.InsuredPolicyItemID
attribute. This dependency association is modelled in the
merged table and its attributes for each of the integrating
table schema instances. ∎

It will be affirmed that the dependency association
between attributes complements the derivation of the merge
schema and data instances. Moreover, the dependency
constraint enables the population of data instance tuple
values, especially in the Steps (10) and (11) in the merge
algorithm (Algorithm 1) in Section VI.A. This can be
addressed in the scenario where, if the tuple values for the set
of ࣛअ attributes are known, say ࣵअ, then the tuple values
for the set of ࣛअାଵ attributes, say ࣵअାଵ,corresponding to and
depending on ࣵअ can be determined by looking them up in
tuple values of the ࣵअ.

The output generated from Procedure 2 step, is a set of
mapping models outlining the types of Equality and
Similarity mapping relationships. The output expresses the
merge schema definitions, schema constraints, and complex
transformations for the one-to-many and/or many-to-many
relationships of the heterogeneous data source elements.

VI. FORMULATED MERGE ALGORITHM

We present and describe an elaborate merge algorithm
(Algorithm 1) for integrating the instance schema and data of
data marts fact and dimension tables. We further provide a
summary of the algorithm, and conclude the section by
presenting a computational complexity analysis of the
formulated algorithm.

A. Merge Algorithm

The merge algorithm (Algorithm 1) is formulated to generate
the single consolidated data warehouse from different related
data marts, modelled as star schemas instances.

B. Merge Algorithm Summary

The merge algorithm primarily performs 2 levels of
integration.

Firstly, the integration of the instance schema structure,
which comprises the attribute relationships and properties for
the fact and dimension tables. These procedures are
described in Steps (1) to (9). Steps (1) to (4) initialize and
generate the integrated schema tables. Steps (5) to (7)
describe the generation of attributes for the integrated tables.

408

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 1: Multidimensional Instance Schema and Data Integration
Input:
(a) A set of star schema data marts, A and B
(b) A set of first-order GLAV mapping model; ݃݊݅݌݌ܽܯ஺஻, consisting of ݂ܽܿ݃݊݅݌݌ܽܯݐ஺஻ and ݀݅݉݃݊݅݌݌ܽܯ஺஻
(c) An optional designation of a data mart, A or B, as the ݐݎܽܯܽݐܽܦ݀݁ݎݎ݂݁݁ݎ݌;
Output:
(a) A single consolidated star schema instance data warehouse free of duplicate and redundant schema and instance data.
(b) A metadata consisting of data definition of the integrating data marts and the single consolidated data warehouse.
Procedure:

Initialization
(1) Let ݉݁ܮܮܷܰ ← ݁ݏݑ݋݄݁ݎܹܽܽݐܽܦ݁݃ݎ

Generate Merged Table
(2) For each ܿ݃݊݅݌݌ܽܯݐ݂ܿܽ ∋ ݁݌ݕܶ݃݊݅݌݌ܽܯ݃݊݅݀݊݋݌ݏ݁ݎݎ݋஺஻ do

(a) If ܿܮܮܷܰ = ݁݌ݕܶ݃݊݅݌݌ܽܯ݃݊݅݀݊݋݌ݏ݁ݎݎݎ݋ then
i. Return ݉݁ܮܮܷܰ ← ݁ݏݑ݋݄݁ݎܹܽܽݐܽܦ݁݃ݎ

(b) Else
i. Let ݉݁{ܤ݈ܾ݁ܽܶݐ݂ܿܽ ,ܣ݈ܾ݁ܽܶݐ݂ܿܽ} ∋ ݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ݁݉ ← ݁ݏݑ݋݄݁ݎܹܽܽݐܽܦ݁݃ݎ

(3) Repeat Step (2) for each ݈ܾ݉݁݁ܽܶ݉݅ܦ݁݃ݎ using ݀݅݉݃݊݅݌݌ܽܯ஺஻, add {݈ܾ݊݁ܽܶ݉݅ܦ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋}
(4) Return ݉݁{{݈ܾ݁ܽܶ݉݅ܦ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋݊ ,݈ܾ݁ܽܶ݉݅ܦ݁݃ݎ݁݉} ,݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ݁݉} ⊂ ݁ݏݑ݋݄݁ݎܹܽܽݐܽܦ݁݃ݎ

Merged Table Attribute Relationships
(5) For each ܿ݃݊݅݌݌ܽܯݐ݂ܿܽ ∋ ݁݌ݕܶ݃݊݅݌݌ܽܯ݃݊݅݀݊݋݌ݏ݁ݎݎ݋஺஻ do

(a) Let ݉݁ܮܮܷܰ ← ݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ
(b) If ܿ݁݌ݕܶ݃݊݅݌݌ܽܯ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ ൌ “Equality” then

i. Let ݉݁݁ݐݑܾ݅ݎݐݐܣ݂݀݁݊݅݁݀ ← ݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݁݃ݎ 	∈ ሼ݂ܽܿ݃݊݅݌݌ܽܯݐ஺஻ ∈ ሽݐݎܽܯܽݐܽܦ݀݁ݎݎ݂݁݁ݎ݌
(c) Else If ܿ݁݌ݕܶ݃݊݅݌݌ܽܯ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ ൌ “Similarity” then

i. Let ݉݁݃݊݅݌݌ܽܯݐ݂ܿܽ ∋ ݁ݐݑܾ݅ݎݐݐܣ݂݀݁݊݅݁݀ ← ݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݁݃ݎ஺஻
(6) For each ݊{ܤ݈ܾ݁ܽܶݐ݂ܿܽ ,ܣ݈ܾ݁ܽܶݐ݂ܿܽ} ∋ ݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋ do

(a) If ݊{݁ݐݑܾ݅ݎݐݐܣ݁݃ݎ݁݉} ∌ ݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋ then
i. Let ݉݁݁ݐܾݑ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋݊ ← ݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݁݃ݎ

(b) Return ݉݁{݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋݊ ,݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݁݃ݎ݁݉} ⊂ ݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ
(7) For each ܿ݃݊݅݌݌ܽܯ݉݅݀ ∋ ݁݌ݕܶ݃݊݅݌݌ܽܯ݃݊݅݀݊݋݌ݏ݁ݎݎ݋஺஻ do

(a) Repeat Step (3) for each ܿ{ܤ݈ܾ݁ܽܶ݉݅݀ ,ܣ݈ܾ݁ܽܶ݉݅݀} ∋ ݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋
(b) Repeat Step (4) for each ݊{ܤ݈ܾ݁ܽܶ݉݅݀ ,ܣ݈ܾ݁ܽܶ݉݅݀} ∋ ݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋
(c) Return ݉݁{݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋݊ ,݁ݐݑܾ݅ݎݐݐܣ݉݅ܦ݁݃ݎ݁݉} ⊂ ݈ܾ݁ܽܶ݉݅ܦ݁݃ݎ

Merged Table Attribute Properties
(8) For each ݈ܾ݉݁݁ܽܶݐܿܽܨ݁݃ݎ݁݉ ∋ ݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݀݁݃ݎ do

(a) Let ݉݁݃݊݅݌݌ܽܯݐ݂ܿܽ ∋ ݁݌ݕܶ݁ݐݑܾ݅ݎݐݐܣ݂݀݁݊݅݁݀ ← ݁ݑ݈ܸܽ݁݌ݕܶ݁ݐݑܾ݅ݎݐݐܣ݁݃ݎ஺஻
(9) Repeat Step (6) for each ݈ܾ݉݁݁ܽܶ݉݅ܦ݁݃ݎ using ݀݅݉݃݊݅݌݌ܽܯ஺஻

Dimension Tables Data Population
(10) For each ݈ܾ݉݁݁ܽܶ݉݅ܦ݁݃ݎ do

(a) If (݇݁ݐ݈݂ܿ݅݊݋ܥݎ݂݁݅݅ݐ݊݁݀ܫݕ OR ݉݊݋݅ݐܽݐ݊݁ݏ݁ݎ݌ܴ݁ݕݐ݅ݐ݊ܧ݈݁݌݅ݐ݈ݑ) = ܴܷܶܧ then
i. Let ݁݊ݐݎܽܯܽݐܽܦ݀݁ݎݎ݂݁݁ݎ݌ ∋ ݕ݁ܭ݁ݐܽ݃݋ݎݎݑݏ ← ݎ݂݁݅݅ݐ݊݁݀ܫݕ݁ܭݕݐ݅ݐ

(b) Else
i. Let ݁݊ݐݎܽܯܽݐܽܦ݀݁ݎݎ݂݁݁ݎܲ݊݋݊ ∋ (ݕ݁ܭݕݎܽ݉݅ݎ݌ ≡ ݕ݁ܭ݁ݐܽ݃݋ݎݎݑܵݓ݁݊) ← ݎ݂݁݅݅ݐ݊݁݀ܫݕ݁ܭݕݐ݅ݐ

Fact Table Data Population
(11) For each ݈ܾ݉݁݁ܽܶݐܿܽܨ݁݃ݎ do

(a) Load fact records using ݁݊{ݕ݁ܭ݁ݐܽ݃݋ݎݎݑܵݓ݁݊ ,ݕ݁ܭ݁ݐܽ݃݋ݎݎݑݏ} ∋ ݎ݂݁݅݅ݐ݊݁݀ܫݕ݁ܭݕݐ݅ݐ
(12) Let ݉݁{{݈ܾ݁ܽܶ݉݅ܦ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋݊ ,݈ܾ݁ܽܶ݉݅ܦ݁݃ݎ݁݉} ,݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ݁݉} ⊂ ݁ݏݑ݋݄݁ݎܹܽܽݐܽܦ݁݃ݎ
(13) Return ݉݁݁ݏݑ݋݄݁ݎܹܽܽݐܽܦ݁݃ݎ

Finally, Steps (8) and (9) describe the derivation of attribute
property values of the merged fact and dimension tables.

Secondly, the algorithm performs integration of the
instance data values contained in the star schema data marts.
This involves the population of these instance data from the
data marts fact and dimension tables into the merged tables
in the data warehouse. Steps (10) to (13) describe these
procedures of data population.

C. Merge Algorithm Computational Complexity

The merge algorithm presented in previous section, Sub-
section A, is projected to run with a low worst-case
complexity of a polynomial time.

The Initialization step in Step (1) requires a complexity
of 	ߍሺ݊ሻ, whiles the Step (2) takes ܱሺ݊ଶ log݉ሻ to derive a
merged fact table and dimension tables, for ݊ number of
tables and ݉ number of corresponding attributes.

The iterative processes of Step (5) and Step (6) involves a
computation running time of ܱሺ݇ ൅ ݊ଶ log݉ሻ to generate
the table attributes and their relationships, for ݊ number of
tables, ݉ number of corresponding attributes, and ݇ number
of non-corresponding attributes.

Finally, the steps from Step (8) to Step (12) require
running time of ߍሺ݇ ൅݉ሻ for the iterations performed. An
overall worst-case complexity of ߍሺ݊ሻ ൅ ሺ݇ߍ ൅ ݉ሻ ൅
ܱሺ݇ ൅ ݊ଶ log݉ሻ is attained in running the merge algorithm
to generate the single consolidated data warehouse.

409

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We also give a detailed Proof of Correctness of the
merge algorithm in Appendix XI.

VII. PROPOSITIONS OF MULTIDIMENSIONAL

INSTANCE SCHEMA AND DATA INTEGRATION

In this section, we propose technical qualitative
requirements necessary for producing an efficient single
consolidated data warehouse. We also describe the semantics
of query processing on integrated instances of
multidimensional data models. We finally propose and
describe the resolution of identifiable conflicts associated
with the integration of the data marts.
A. Merge Correctness Requirements

The single consolidated data warehouse that is generated
as a result of the implementation of the merge algorithm
needs to satisfy proposed requirements, to ensure the
correctness of the data values from the queries that would be
posed to it.

Drawing on the propositions in the requirements defined
by the authors in [1] for merging generic meta-models, we
performed a gap analysis and extend on their propositions in
relation to generating a data warehouse. Hence, we formulate
and describe a set of correctness requirements in relation to
merging of multidimensional star schemas. We outline the
set of Merge Correctness Requirements (MCR) that validates
the formulated merge algorithm needed for the generation of
a single consolidated data warehouse.

Dimensionality Preservation. For each kind of dimension
table connected to any of the integrating fact tables, there is a
representation of corresponding dimension also connected to
the merged fact table.

Measure and Attribute Entity Preservation. All fact or
measure attribute values in either of the integrating fact
tables are represented in the merged fact table. Additionally,
attributes in each of the dimension tables are represented
through an equality or similarity mapping. Finally, an
automatic inclusion for non-corresponding attributes in the
merged tables, based on the condition of non-attribute
redundancy or duplication, is satisfied.

Slowly Changing Dimension Preservation (SCD). SCD is
the occurrence where an entity in a dimension exhibits
multiple instance representations, based on the varied
changes in instance data values for the key dimensional
attributes, over a time period [43]. For such dimensional
entity occurrences, the merged dimension should offer an
inclusion of all the instance data representations from each
integrating dimension. Hence, an automatic inclusion of
attributes that contribute to the dimensional change in the
merge dimension is satisfied.

Attribute Property Value Preservation. The merged
attribute should preserve the value properties of the
integrating attributes, whether the mapping correspondence
is an equality or similarity mapping. Equality mapping
should be trivially satisfied by the UNION property for all
attributes. For a similarity mapping, the transformation

expression should have the properties to be able to satisfy the
attribute property value of each integrating attribute.

Definition 5. (Surrogate Key): Let ࣞ௜ represent a
dimension table for a multidimensional model, ࣜ such that
ࣞ௜ ∈ ሼࣞଵ,ࣞଶ,… ,ࣞ௡ሽ for ݅ ൑ ݊. Let ࣟ represent each entity
of a dimension, ࣞ௜ such that 	ࣟ ∈ ࣞ௜ . The identifier, ࣥ is
said to be a Surrogate Key for ࣟ such that ࣥ௠ ≡ ࣟ௠ ∎

Tuple Containment Preservation. A Surrogate Key is the
dimensional attribute that uniquely identifies each instance
data value tuple of an entity representation. The single
consolidated data warehouse should offer the containment of
all unique tuples from the data marts for correctness in query
answering. This ensures the preservation of all Surrogate
Keys needed in identifying each dimensional entity.

B. Merge Algorithm Technical Requirements Summary

The integration methodology adopted by the authors
largely satisfies the technical requirements, as a proposition
for merging disparate data marts. We summarize the merge
algorithm (Algorithm 1) in fulfilment of the technical Merge
Correctness Requirements (MCRs) outlined in Section VI.A.

a) Step (2) satisfies Dimensionality Preservation:
Each fact and dimension table is iterated to form the Merged
Fact Table.

b) Steps (3), (4), (5) satisfy Measure and Attribute
Entity Preservation: All the attributes contained in the Fact
or Dimension Tables are represented in the Merged Table
(Fact or Dimension) through equality or similarity mapping.

c) Steps (6) and (7) satisfy Attribute Property Value
Preservation: Value properties of attributes are represented
for each of the Fact or Dimension Tables.

d) Step (8) satisfies Slowly Changing Dimension
Preservation and Tuple Containment Preservation: Entity
representations from the different data marts are included in
the merged dimensions.

e) Steps (9), (10) satisfy Tuple Containment
Preservation: Tuple data values from each of the data marts
are populated in the merged data warehouse.

C. Semantics of Query Processing on Integrated Instances
of Multidimensional Data Models

The type of queries that are processed on
multidimensional data models are based on Online-
Analytical Processing (OLAP). There are a few problems
that are inherent with OLAP query processing, and these are
addressed as follows. On one hand, is the problem of
incomplete data that arise from missing data values, and
imprecise data values of varying extent. In our approach, the
possibility of having missing data values, in relation to non-
corresponding merge attribute, from the star schemas is
highly probable. Moreover, the varying granularities caused
by the different degrees of precision in the data values from
the combined instance data of different star schemas,
exposes a non-uniform representation of the data values
needed for analytical reporting.

410

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 6. (Dimension Hierarchy): A hierarchy, ࣢
comprising a dimension, ࣞ, is a 2-tuple ሺࣦ௡, ↗ሻ where ࣦ௡ is
a collection of levels and each	ࣦ௜ ∈ ሼࣦଵ, ࣦଶ, … , ࣦ௡ሽ, ݅ ൑ ݊,
and ↗ is a parent-child relation of two levels, say ࣦ௜ and
௝ࣦ, such that a data instance element in ࣦ௜ rolls up to a data

instance element in ௝ࣦ , denoted by ሺࣦ௜ ↗ ௝ࣦሻ. This roll-up
relationship forms a partial order over the levels. ∎

Definition 7. (Strict Hierarchy): For a dimension
schema instance ࣞ, any hierarchy ࣢ ∈ ࣞ, is said to be strict
if for every pair of levels ࣦ௜, ࣦ୨ with the partial ordering

൫ࣦ௜ ↗∗ ௝ࣦ൯, which are through different paths, say
ሼࣦ୧, ࣦଵ, ࣦଶ, … , ࣦ୳, ௝ࣦሽ and ൛ࣦ୧, ࣦୟ, ࣦୠ, … , ࣦ୴, ௝ࣦൟ, and for
every instance data element Ղ in ࣦ௜,	 there exist a roll-up
function composition that holds for the condition:

׬ ∘
ࣦభ
ࣦ೔

׬ ∘
ࣦమ
ࣦభ

… ∘ ׬ ሺՂሻ
ࣦೕ
ࣦೠ

ൌ ׬ ∘
ࣦೌ
ࣦ೔

׬ ∘
್ࣦ
ࣦೌ

… ∘ ׬ ሺՂሻ
ࣦೕ
ࣦೡ

 ∎

On the other hand, the problem of imperfections inherent
in the hierarchy levels of dimensional tables also places an
overhead impact on query processing for multidimensional
data models. Hierarchies enable drill-down and roll-up in
the aggregate data, and as a result, multiple hierarchies in a
particular dimensional entity support different aggregation
paths within the dimension. Different forms of strict and
non-strict hierarchies are exhibited in the dimensional
entities of multidimensional data models. Strict hierarchies
exhibit a phenomenon where a dimension data instance item
or child level element has only one parent level element
enforcing a constraint restriction on the data values that are
rolled-up during aggregation. Hence, strictness in
hierarchies ensures a consistency in the instance data values
that are used in roll-up functions. Non-strict hierarchies
exhibit a phenomenon where a dimension data instance item
or child level element has several elements at the parent
levels, thus allowing flexibility in the data aggregation.

Pedersen et al. [44] proposed requirements that a
multidimensional data model should satisfy in order to fully
support OLAP queries. These are outlined as; explicit
hierarchies in dimensions, multiple hierarchies, non-strict
hierarchies, handling different levels of granularity, and
handling imprecision amongst others. These requirements
give insights into how OLAP tools manage the raw data
values and how data values are expressed during analytics.

As part of our study, query processing is handled in
relation to the proposition in [44]. The adopted star schema
model offers a platform for basic SQL star-join optimization
during the processing of data values for analytical
representation. The ability of structured cube modelling for
each of the dimension elements by OLAP representations
offers the medium for the individual hierarchies in the
dimensional entities to be captured explicitly. The
hierarchies and their data manipulations are captured using
either, grouping relations and functions, dimension merging
functions, roll-up functions, level lattices, hierarchy
schemas and instances, or an explicit tree-structured
hierarchy as part of the cube.

Different forms of aggregations are computed in the
approach of query processing on the generated data
warehouses. These aggregations are made possible because
of the defined hierarchies established in the dimensional
entities. The aggregations are represented in functions such
as addition computations, average calculations, and constant
functions through an OLAP operation of summarizability.

Definition 8. (Summarizability): A hierarchy ࣢ is
summarizable if for all levels ࣦ௜ ∈ ሼࣦଵ, ࣦଶ, … , ࣦ௡ሽ , for
1 ൑ ݅ ൑ ݊ , of this hierarchy, the single-level aggregated
measure ݉ with ࣦ௜ granularity, can be computed by
summing up data instance tuple values of a single-level
specified for measure ݉ for any ࣦ௞ ∈ ሼࣦଵ, ࣦଶ, … , ࣦ௡ሽ, for
1 ൑ ݇ ൑ ݊ , granularity appearing along a path from the
bottom level to ࣦ௜. ∎

Summarizability is a conceptual property of
multidimensional data models where individual aggregate
results can be combined directly to produce new aggregate
results. In a summarizable hierarchy, the aggregated values
for a measure at a level granularity can be obtained by
aggregating the elements of any level of hierarchy, which
directly or indirectly rolls up to the desired level. This
characteristic feature guarantees the correctness of
aggregated values in the resultant data warehouse.

D. Conflicts Identification and Resolution

The integration of meta-data models is generally coupled
with different forms of conflicts in either the instance
schema or instance data. These conflicts are resolved through
different propositions from the formulated algorithm, and
based on the semantic representation of the meta-data
models and their instance schemas. In our integration
approach, we identify and propose resolution measures for
likely to occur conflicts, which are frequently encountered
during merging.

Identifier Conflicts. These conflicts arise as a result of the
same identifier for different real-world entities in the merged
dimension. These categories of conflicts are practically
exposed as a result of the possibility of different entities from
the integrating data marts having the same surrogate key
identifier in their individual dimensions. A resolution
measure for these conflicts is explained in Example 5.

Example 6. Suppose we aim to merge the employee
dimensions into a single merged dimension, using
DimPolicyEmployee and DimInsuredPolicyEmployee from
Policy and Claims data marts, respectively. In such an
integration procedure, it happens that an instance data
value, Employee P from DimPolicyEmployee and an
instance data value, Employee Q from
DimInsuredPolicyEmployee have the same identifiers of a
Surrogate Key. There is the need to resolve such a conflict,
in the algorithm, by preserving the surrogate key identifier
in the preferred data mart and re-assigning a new surrogate
key identifier for the non-preferred data mart(s). ∎

411

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Entity Representation Conflicts. These conflicts arise as a
result of the multiple representations of the same real-world
entity in the merged dimension by the different identifiers.
This occurrence is traced to different representations of
surrogate key identifiers from different dimensions for the
same real-world entity in the merged dimension. A proposed
resolution measure, outlined in the merged algorithm, will be
to perform a de-duplication of the conflicting entities. This is
achieved by preserving the entity from the preferred data
mart as the sole representation of the real-world entity in the
merged dimension.

Attribute Property Type Conflicts. These forms of
conflicts occur as a result of the existence of different
attribute property values from the integrating attributes into
a merged attribute. In reference to Example 6, in integrating
dimensions DimPolicyEmployee and
DimInsuredPolicyEmployee, a merged attribute for
DimPolicyEmployee.HireStatus and
DimInsuredPolicyEmployee.EmployeeStatus attributes will
hold a data type value of, say varchar(1), being the UNION
of integrating attribute data types for char(1) and bit data
types from DimPolicyEmployee.HireStatus and
DimInsuredPolicyEmployee.EmployeeStatus, respectively.
We resolve these conflicts by using the attribute data types
as defined in the mapping model.

VIII. IMPLEMENTATION AND EVALUATION

In this section, we discuss the implementation and
evaluation work based on the integration methodology and
formulated merge algorithm. We present our
implementation framework and the procedures, and we
discuss and analyze the evaluation results.

A. Implementation

We describe our implementation framework of various
techniques and processes needed in producing the output of
a single consolidated data warehouse. This sub-section
focuses on the experimental setup, the datasets used in the
experiments, as well as the practical procedures we
performed based, on the proposed integration methodology
addressed in Sections III, IV, V and VI.

Experimental Setup and Data Sets. We implemented our
methodology using 2 different data warehouses, from
Insurance and Transportation data sets. The Insurance data
consisted of 2 data marts. These were Policy and Claims
data marts. Their schema structure and instance data are
described. The Policy and the Claims data marts contained 7
and 10 Dimension Table schemas, respectively. These
dimensions were referentially connected to a single Fact
Table schema. Each fact table schema had a Degenerate
Dimension (DD) attribute of a Policy Number and a fact or
measure attribute of Policy Transaction Amount. The Policy
fact table schema contained instance data of 3,070 tuples of
data, whilst the Claims fact contained 1,144 tuples of data.
Both data sets had 6 corresponding entity representation in

the dimension tables, whilst the Claims data mart had 3
other non-corresponding dimensions.

The Transport data set, on the other hand, contained 3
data marts. These were Frequent Flyer, Hotel Stays, and Car
Rental data marts. All the data marts had 3 conformed
dimensions; namely, Customer, Date, and Sales Channel.
These dimensions were complemented with a number of
non-corresponding and unique dimensions in each of the
data marts. Their Fact Tables contained 7257, 2449, 2449
tuples of data for Frequent Flyer, Hotel Stays, and Car
Rental, respectively. Each of the Fact Tables also contained
7, 6, and 5 facts or measures for Frequent Flyer, Hotel
Stays, and Car Rental, respectively. All the source data
marts had their permanent repository stored in Microsoft
SQL Server DBMS [45]. Each entity representation in the
dimensions was identified by unique surrogate key and
based on clustered indexing.

Hybrid Schema Matching. The schema matching and
mapping models discovery procedural steps were
implemented using IBM Infosphere Data Architect [22] [23]
[41]. This tool incorporated the schemas of the data mart
source repositories, together with their contained instance
data. The schema matching step was implemented using the
set of algorithmic techniques incorporated in the application
software. The schema-based algorithmic techniques that
were adopted are Lexical Similarity and Semantic Names,
where as the instance-based algorithmic techniques were
Signature, Distributions and Regular Expressions. The
algorithms were configured by sequentially manipulating
the order of execution, configuration of rejection threshold,
sampling size and sampling rate. The manipulations of these
configurations for finding mapping correspondences were
based on an iterative procedure of inspection.

Figure 3 illustrates the derivation of semantically correct
matching candidates to establish mapping correspondences
between the attributes of
DimPolicyTransactionType.PolicyTransactionTypeKey,
DimPolicyTransactionType.PolicyTransactionId, and
DimPolicyTransactionType.TransactionCodeName of
DimPolicyTransactionType dimension schema to the
DimClaimTransactionType.ClaimTransactionCode attribute
of DimClaimTransactionType dimension schema. In Figure
3, the blue-coloured mapping correspondences represent the
chosen semantically correct matching candidate, where
DimPolicyTransactionType.PolicyTransactionId attribute
corresponds to the
DimClainTransactionType.ClaimTransactionCode attribute.
On the other hand, the red-coloured mappings represent the
semantically incorrect matching candidates of
DimPolicyTransactionType.PolicyTransactionTypeKey and
DimPolicyTransactionType.TransactionCodeName, which
are ignored as part of user validation by inspection.
Moreover, the yellow-coloured mappings represent the
correspondences that were generated for each of the
dimensions, as a result of the application of the schema
matching algorithms.

412

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Hybrid Schema Matching

TABLE I. SUMMARY OF PARAMETIZED CONFIGURATIONS FOR SCHEMA MATCHING ALGORITHMS

Matching Algorithm/

Configuration Option

Rejection

Threshold

Thesaurus Option Sampling Size (Rows) Sampling Rate (%)

1. Lexical Similarity 0.6 Not Applicable Not Applicable Not Applicable

2. Semantic Name 0.5 Is Applicable;

But not configured

Not Applicable Not Applicable

3. Signature 0.8 Not Applicable 150 30

4. Distributions 0.8 Not Applicable 100 20

5. Regular Expressions 0.9 Not Applicable 100 30

When generating mapping correspondences for the fact
and dimension table attributes, various configuration
manipulations of algorithms are performed on the discovery
function. The parameters used in configuring the algorithms
were Rejection Threshold, Thesaurus Option, Sampling
Size, and Sample Rate. The Rejection Threshold parameter
was configured with different adjustments for both the
schema- and instance-based algorithms. The Thesaurus
Option parameter was applicable to the Semantic Name
algorithm. The Sampling Size and Sampling Rate
parameters were applicable to the instance-based
algorithms. We summarize the parameterized configuration
of the algorithms adopted in TABLE I.

Mapping Models Discovery. In the mapping models
discovery step, the adoption of GLAV mappings enabled the
inclusion of all attributes for each mapping formulation of
fact and dimension table attributes. Moreover, complex
transformation expressions were derived for multi-
cardinality mappings.

An illustration of multi-cardinality mapping relationship
is displayed in Figure 4. In Figure 4, there is a mapping
discovery and modelling between the attributes of
DimPolicyHolder and DimInsuredParty dimensions. These
mappings are indicated by the grey lines connecting
attributes from DimPolicyHolder to DimInsuredParty
dimensions. More specifically, a selected mapping
relationship of the DimInsuredParty.FullName attribute is
modelled onto 2 other attributes; namely,
DimInsuredParty.FamilyName and
DimInsuredParty.GivenName.

We therefore, defined a complex transformation
expression, as in Equation (1), in the mapping relationship
already established between these dimension attributes.

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ	 ݈݈݁݉ܽܰݑܨ
ൌ .ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ݁݉ܽܰݕ݈݅݉ܽܨ
൅ .ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ሺ1ሻ														݁݉ܽܰ݊݁ݒ݅ܩ

413

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Mapping Models Discovery

Other forms of mapping properties that were defined in
the modelling are expressive characterization of relationship
cardinality, attribute semantic representation, and attribute
data type representation, amongst others. In terms of the
relationship cardinality, an equality or similarity mapping
cardinality type was defined. To express the attribute
semantic representation, a definition of the supposed
merged attribute name was specified, where possible.
Regarding attribute data type representation, a supposed
merge data type was defined and this served as a union data
type for the merging attributes. A procedural output in a
Comma Separated Values (CSV) file format was later
generated, which contained the mapping definitions based
on the tables, their attributes, and the attribute property
values from each of the data marts

Formulated Merge Algorithm. The formulated merge
algorithm was implemented with the availability of the
mapping models and the source data marts as inputs. The
implementation was programmed using Microsoft Visual
C# .Net Integrated Development Environment (IDE) with
8029 lines of code from the Entity classes, Business Logic
classes, Utility classes, and program control code. Stored
procedures were implemented in the Microsoft SQL Server
permanent repository, and these served as transaction
processing medium between the data repository and the
entity and business logic classes in the programming IDE.

Query Processing and Analyses. The analyses of the
repository data, of both the integrating source data marts

and the generated single consolidated data warehouse, were
performed using IBM Cognos Business Intelligence [46]
application software. The software enabled the possibility of
processing queries on the instance data, in the form of report
generation.

B. Evaluation

Our evaluation analyses were primarily based query
processing on the single consolidated data warehouse in
relation to the integrating data marts. We compared the
outputs of the query processing from both the data marts
and the generated data warehouse. We first ran a formulated
query the data marts, and afterwards ran the same query on
the generated data warehouse. Based on these processes, we
are able to effectively compare the results from the data
marts and the single consolidated data warehouse.

Evaluation Criteria and Analyses. We evaluate the
outcome of the experiments performed based on a set of
criteria from the guidelines proposed by Pedersen et al. [44].
We performed a gap analysis on their study and adapted
correctness of data values, dimensionality hierarchy, and
rate of query processing, as criteria.

The metrics that we used in evaluating these criteria for
query processing were recall, precision, and accuracy 0.
Recall is computed by the number of tuples retrieved from a
data mart divided by the number of tuples that should have
been retrieved from the generated data warehouse from each
original data mart. Precision is computed by the number of
tuples retrieved from a data mart divided by the number of

414

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tuples that were retrieved from the single consolidated data
warehouse, per the data mart. Accuracy is determined by the
degree of validity or exactness of the data values generated
from a query posed to the data warehouse in comparison to
the data values retrieved from a data mart.

For recall, an evaluation of 100% was trivially attained
and verified. The verification was based on the assertion
that the formulated merge algorithm fulfilled the MCRs of
Measure and Attribute Entity Preservation and Tuple
Containment Preservation.

Precision evaluation was very important, as it measured
the proportion of relevant and non-relevant tuples that were
retrieved based on a formulated query. This presents an
insight into the composition of our merged data warehouse,
in terms of the level of integration of related data from
multiple sources. Deducing from the precision values, a
higher rate was attained for all formulated queries that were
posed against the data warehouse. For cases of dimensions
that were only related to some specific data marts, a
formulated query yielded a very high precision rate. This
was as a result of the retrieval of few non-relevant tuples.
An example query was, “What insurance claimant
employment type receives the most claims processed for the
current Calendar Season”? Conversely, for queries on
dimensions that related or corresponded to all data marts, an
average precision rate was observed where a considerable
number of non-relevant tuples were retrieved in reference to
a particular data mart. An example query was, “What type of
Policy Coverage is most popular? What are the trends since
the 2nd Calendar Quarter.”

Figures 5 and 6 show the precision evaluation for
Insurance and Transportation data warehouses, respectively.
In Figure 5, an average rate of 86% was achieved for the
queries posed to dimensions related to the Claims data mart.
The precision rate increases significantly with an increase in
the tuples in these dimensions, as more relevant tuples are
generated. This is evident in queries 1 to 7. In terms of
corresponding dimensions for all data marts, processed
queries generated an average rate of 51% and 49% for
Claims and Policy data marts, respectively, as highlighted in
queries 8 to 12.

Figure 5. Precision for Insurance Data Set

Figure 6. Precision for Transportation Data Set

In Figure 6, an average precision rate of 72%, 74%, and
83% were attained for Hotel Stays, Car Rental, and Frequent
Flyer data marts, respectively, for the set of formulated
queries posed. Queries 1 and 3 for Hotel Stays, 6 for Car
Rental, and 10, 12, 13 for Frequent Flyer data marts
performed creditably well as a result of the higher
containment of tuples to the attributes being retrieved for the
formulated queries posed. Moreover, in terms of queries
posed to corresponding dimensions, an average precision
rate of 38%, 40%, and 23% was attained for Hotel Stays,
Car Rental, and Frequent Flyer data marts, respectively.
This is depicted in queries 14 to 18. It would be realized that
this average rate for the Transportation data set is quite
lower than that attained in respect to the Insurance data set.
This is based on the claim that an increase in the number of
data marts for integration is inversely proportional to the
precision rate of queries for the respective data marts. This
assertion is due to the distributive proportionality of tuples
per each dimension of the corresponding data marts.
Additionally, the attributes involved in the formulated query
for these dimensions also enforces on this assertion.

In summary, the average precision rates analyzed are
able to provide the user with details regarding the proportion
of the data in the merged data warehouse that originate from
a specific data source. This holds important practical value,
for data warehouse practitioners, who want to be able to
have statistics regarding the composition of the merged data.

In terms of accuracy, we achieved a 100% return rate of
valid and exact data values from the data warehouse, in
comparison to each individual data mart. This was affirmed
based on the merge algorithm fulfilling MCRs of Tuple
Containment Preservation and Measure and Attribute Entity
Preservation. Additionally, the adoption of GLAV mapping
model enabled the processing of exact and sound queries on
the data warehouse.

Query Processing Rate. We also analyzed the rate of
query processing to ensure that queries posed to the data
warehouse are of optimal rate. With an integration of
instance data from the data marts, a considerable volume of
expected data cannot be overemphasized in the data

415

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

warehouse. We recorded the query response time for an
average of 20 query executions for each of the data sets.
These queries were processed on a single 3.20 GHz
processor with a 4 GB of RAM.

Our evaluation of the processed queries showed that the
queries generally ran at almost the same rate or slightly
higher than when posed against the data mart sources. The
query execution durations for the data marts and data
warehouses for the Insurance and Transportation data sets
are shown in Figure 7 and 8, respectively.

In Figures 7 and 8, it can be generally deduced from
display that the data values that the query rate for the data
warehouses were appreciable taking note of the compared
values generated from the data marts. In certain cases, such
as queries 7 and 8, in Figure 7, the rates were a bit higher
due to higher level of aggregation and increased number
dimension attributes involved in data values retrieved.
Queries 6 and 11 recorded lower query rates because of the
low quantity of attributes, as well as tuple data values, in the
formulation of the answer to the query. Additionally, in
Figure 8, similar observation was realized on queries 6, 14,
and 16 where the query processing rate is a bit higher in
comparison to the others. We also observed a lower rate of
query rates for queries 4, 10, 13, and 19, which inferred a
very good composition of merged tables and attributes and
their contained data instance tuple values.

We further computed the variance of the average query
rate per data mart as it differs quantitatively from the
consolidated data warehouse. A deduction observation was
ascertained, where a lower quantity of tuples of instance
data values to be retrieved during query processing lead to
an increase in the variance, and vice versa. This is due to the
fact that an increase in the number of data marts, and
resultant increase in data instance tuples, increases the rate
of data retrieval, per data mart analysis in relation to the
single consolidated data warehouse.

Figure 7. Query Processing Rate for Insurance Data Set

Figure 8. Query Processing Rate for Transportation Data Set

TABLE II. SUMMARY OF AVERAGE QUERY RESPONSE TIME
AND VARIANCES

Data Set

Average Query Response Time and Variances

Data Mart /
Data Warehouse

Avg. Query
Response
(ms)

Variance From
Integrated Data
Warehouse (ms)

Transportation Car Rental 26.70 63.95

Transportation Hotel Stays 27.10 63.55

Transportation Frequent Flyer 70.95 19.70

Transportation DataWarehouse 90.65 0.00

Insurance Policy 29.65 19.60

Insurance Claim 13.75 35.50

Insurance DataWarehouse 49.25 0.00

An observation of the Claims data mart, in Figure 7 and
TABLE II. reveals that the variance of 35.50 was higher
because of the lower query rate of the integrating data mart.
Moreover, in Figure 8 and TABLE II. the Hotel Stays and
Car Rental data marts rather had a higher variance of 63.55
and 63.95, respectively, as their query rates were lower
because of the lower quantity of data instance tuples.

We present a summary of the variances in the average
query response time (in milliseconds) for the data marts in
comparison to their respective data warehouses in TABLE II.

IX. COMPARISON TO OTHER APPROACHES

There have been minimal studies in this area of
multidimensional data integration, in particular to the
generation of a single consolidated data warehouse. These
approaches present significant contributions with regards to
element mappings and algorithms. In comparison, our
approach addresses the integration problem from an
important concept of model management. We discuss a
number of these approaches and comparatively explain how
our methodology performs better.

416

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Dimension Compatibility and Heterogeneous
Multidimensional Integration

Cabibbo and Torlone in their series of studies [31] [32]
[33], address the problem of data integration in relation to
multidimensional databases (data marts). In their work [31]
[33], they introduce fundamental assertions of dimension
algebra and dimension compatibility. Their work highlights
different forms of heterogeneities that are existent in
dimension tables. Their attempt to address these
heterogeneities lead them to introduce a novel theoretical
concept of dimension algebra. This concept enables the
selection of relevant portions of a dimension for integration.
The dimension algebra is basically based on 3 main
operators; namely, selection, projection, aggregation.

The authors in [31] [33] also introduce the concept of
dimension compatibility. Dimension compatibility outlines
the retrieval of common dimension information based on the
characterization of general properties. These general
properties were outlined as; level equivalence, dimension
equivalence, dimension comparability, and dimension
intersection. The compatibility property of dimensions was
then used as a platform to perform drill-across queries over
the autonomous data marts, and aid in hierarchical
aggregation of instance data. As part of their study, the
authors [31] [32] [33] use the fundamental intuitions to
propose 2 different approaches to the problem of integration
of multidimensional databases; namely, loosely coupled
integration and tightly coupled integration. They introduced
concepts and algorithms, and stipulated a number of
desirable properties for dimension matching; namely,
coherence, soundness, and consistency.

B. Inferred Aggregation in Hierarchies

Riazati et al. [34] propose a solution for integration of
data marts where they infer aggregations in the hierarchies
of the dimension tables existent in the multidimensional
databases. In their work, they attempted formulating a
computation on minimal directed graph from the instance
data. These inferred hierarchies are then used to perform
roll-up relationships between levels and to ensure the
summarizability of data. They further use the assertion of
dimension compatibility introduced in [31] [32] [33] to
develop algorithms, which in turn are used for the
integration of data marts.

C. Methodology Comparisons & Evaluation

The existing approaches to multidimensional instance
schema data integration addressed in [31] [32] [33] [34]
explain important concepts that need to be discussed when
incorporating several data marts into a single consolidated
data warehouse. On the contrary, these techniques and
methodologies are inadequately enough in the handling of
more complex characteristics of the fact or dimension tables
and their attributes. We address the shortcomings of these
approaches, and highlight the enhanced ways of handling
such issues through our methodology approach using the
concept of model management.

Firstly, the approaches by the authors in [31] [32] [33]
fail to address the issue of mapping models, although
propositions of the general properties regarding the
characterization of dimension compatibility seems to handle
this concept. Our approach, however, adopts a first-order
mapping modelling formalism, which better expresses the
attribute correspondences. As a result, issues of data
exchange and transformation for dissimilar and
multicardinality attributes are expressed efficiently.

Secondly, the previous approaches do not lay out a
precise schema merge algorithm. Descriptions of algorithms
for deriving the common information between dimensions
and for merging were put forward in [32] and other
literatures so far. But these algorithms are inconclusive
enough to solve the complex representations of schema and
data instances. Our approach offers a complete formulated
algorithm for integrating multidimensional data models
based on star schema models.

Thirdly, conflict management relating to identification
and resolution are not completely addressed by the authors
in their approach. In the literature [33], the properties that
underlie and establish the dimension compatibility criteria
seem to partially solve the likely to occur conflicts that
could be encountered in the dimensions. But these
properties in their entirety fail to totally resolve such
prominent conflicts during integration. Our methodology
outlines a definite set of likely to occur conflicts and their
resolution measures in relation to the instance schema and
instance data values.

Fourthly, technical qualitative requirements, which serve
to highlight the properties that a generic integrated schema
should possess were addressed by the authors in [2][28]. A
careful study of the specific approaches for
multidimensional data integration attempted by the authors
in [31] [32] [33] [34] seem not to have specified
requirements for integration. A number of requirements
were generally attempted by the authors in [32]. They
proposed of coherence, soundness and consistency as
measures for compatible dimension matching; but these are
inconclusive in the larger scale of integrating schema and
data instances. Our methodology approach proposes a
complete set of requirements for multidimensional
integration to handle the varied properties and constraints of
multidimensional data models.

We present a comparative analysis and evaluation of the
proposed methodology in line with other approaches in
TABLE III. This tabular analysis summarizes the
discussions regarding methodology approaches presented in
the literature, and outlines the merits of our proposed
methodology over the other approaches.

X. CONCLUSION

This paper presents a methodology for the merging of
multidimensional data models using star schemas instances.
We addressed extensively the methodologies and algorithms
adopted in finding mapping correspondences between the
elements attributes of the fact and dimension tables for the
data marts.

417

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. QUALITATIVE ANALYSIS OF PROPOSED METHODOLOGY AND OTHER APPROACHES

Methodology

Approach /

Analysis Criteria

(1) Proposed Integration

Methodology

(2) Cabibbo and Torlone [31] [32] [33]

- Dimension Compatibility and

Heterogeneous Multidimensional

Integration

(3) Riazati et al. [34] –

Inferred Aggregation in

Dimension Hierarchies

Mapping Models

Discovery and

Modelling

Adopts a first-order GLAV

mapping model, which offers

effective data translation and

data exchange functions

Introduces dimension compatibility for

attribute mappings, but does not present

complete mapping modelling and the

handling of attribute relationships types

Methodology extends on the

previous notions of dimension

compatibility in (2); does not lay

out precise mapping modelling

Formulated Merge

Algorithm

Presents a complete merge

algorithm that handles varied

characteristics of both schema

and data instances from

heterogeneous data sources

Presents sets of algorithms that involves

drill-across queries between dimensions

instance schema attributes; but methods

are inconclusive for varied properties of

instances of schema attributes and data

Proposes algorithms for inferring

partial order of attributes, and for

identifying hierarchy levels and

roll-ups. These algorithms are

based on only schema instances

Conflict

Identification and

Resolution

Identifies likely to occur

conflicts and proposes complete

resolution measures in the

element attributes and their

properties

Conflict management is not clearly

addressed by the authors. Attempts of

using dimension algebra and dimension

compatibility is not sufficient to handle

frequently observed conflicts

Methodology does not precisely

outline conflict identification and

resolution measures for the

schema instances of tables and

their attributes

Technical

Qualitative

Requirements

Proposition of requirements to

handle the integration of varied

characteristics of schema and

data instances; to generate an

merged data warehouse, and for

effective query processing

Proposition of Coherence, Soundness,

and Consistency; as measures for

compatible dimension matching, but the

requirements are inconclusive to handle

varied properties of schema and data

instances

Methodology does not propose

qualitative requirements; but

adopts and extends the properties

outlined in methodology (2) to

infer attribute matchings and

aggregations in the hierarchies

Here, we adopted a hybrid schema matching
methodology for finding mapping correspondences. We also
outlined the adoption of first-order GLAV mapping models
and their attribute relationship characterization of equality
and similarity mappings. Moreover, we addressed the
handling of mapping modelling constraints in the form of
functional dependencies in the dimensions. We formulated a
merge algorithm for integrating disparate data marts into a
single consolidated star schema data warehouse.

Furthermore, we addressed the semantics of query
processing on the single consolidated data warehouse taking
cognizance of the aggregations in hierarchy and
summarizability of data instance values for the hierarchies.
We identified and outlined the resolution of frequently
observed conflicts that are encountered when merging data
marts. To this end, we outlined the satisfaction of technical
merge correctness requirements for integrating data marts
into a data warehouse.

Finally, we compared our methodology of integrating
schema and data instances as against other approaches. We
outlined the merits and suitability of our approach for

delivering an enterprise-wide single consolidated data
warehouse from a number of disparate data marts.

The analyses of our evaluation showed that the rates of
recall, precision and accuracy of the data values retrieved
from the generated data warehouse are high and noticeable.
We specifically analyzed the precision of queries in different
situations of query processing for corresponding or non-
corresponding dimensions from the integrating data marts.
We also analyzed the rate of query processing on the single
consolidated data warehouse as compared to the individual
data marts. We observed that with an increase in the number
of data marts, and more specifically, an increase in the data
instance tuples the variance of query processing for the
concerned data marts decreases considerably. Our approach,
thus, provides data warehouse researchers and practitioners
with procedures, criteria, and exact measures as to how
successful an integration process is achieved.

A number of future research directions remain. The
incorporation of data mart level integrity constraints into the
data warehouse needs to be investigated further. We also
envisage the extension of the methodology to handle
snowflake and fact-constellation multidimensional data
models.

418

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] M. Mireku Kwakye, I. Kiringa, and H. L. Viktor, “Merging
Multidimensional Data Models: A Practical Approach for
Schema and Data Instances,” In Proceedings of the 5th
International Conference on Advances in Databases,
Knowledge, and Data Applications (DBKDA), 2013, pp. 100-
107.

[2] R. A. Pottinger and P. A. Bernstein, “Merging Models Based
on Given Correspondences,” In Proceedings of the 29th
International Conference on Very Large Data Bases (VLDB),
2003, pp. 826-873.

[3] M. Lenzerini, “Data Integration: A Theoretical Perspective,”
In Proceedings of the 21st ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems
(PODS), 2002, pp. 233-246.

[4] P. A. Bernstein and S. Melnik., “Model Management 2.0:
Manipulating Richer Mappings,” In Proceedings of the ACM
SIGMOD International Conference on Management of Data
(SIGMOD), 2007, pp. 1-12.

[5] S. Melnik, “Generic Model Management: Concepts and
Algorithms,” Springer Lecture Notes in Computer Science
(LNCS), 2004, pp. 2967.

[6] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger, “A Vision
of Management of Complex Models,” In Proceedings
Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2000, vol. 29, no. 4, pp.
55-63.

[7] S. Melnik, “Model Management: First Steps and Beyond,” In
Proceedings of the 11th Symposium of the GI Department,
Database Systems in Business, Technology and Web, (BTW),
2005, pp. 455-464.

[8] M. N. Gubanov, P. A. Bernstein, and A. Moshchuk, “Model
Management Engine for Data Integration with Reverse-
Engineering Support,” In Proceedings of the 24th
International Conference on Data Engineering (ICDE), 2008,
pp. 1319-1321.

[9] E. Rahm and P. A. Bernstein, “A Survey of Approaches to
Automatic Schema Matching,” Very Large Data Bases
(VLDB) Journal, 2001, vol. 10, no. 4, pp. 334-350.

[10] P. Shvaiko and J. Euzenat, “A Survey of Schema-based
Matching Approaches,” Journal of Data Semantics IV, vol.
3730, pp. 146-171, 2005, doi:10.1007/11603412_5.

[11] P. Shvaiko, “A Classification of Schema-based Matching
Approaches,” In Proceedings of the Meaning Coordination
and Negotiation Workshop at the 3rd International Semantic
Web Conference (ISWC), 2004.

[12] S. Melnik, H. Garcia-Molina, and E. Rahm, “Similarity
Flooding: A Versatile Graph Matching Algorithm and Its
Application to Schema Matching,” In Proceedings of the 18th
International Conference on Data Engineering (ICDE), 2002,
pp. 117-128.

[13] H. H. Do and E. Rahm, “COMA: A System for Flexible
Combination of Schema Matching Approaches,” In
Proceedings of 28th International Conference on Very Large
Data Bases (VLDB), 2002, pp. 610-621.

[14] J. Madhavan, P. A. Bernstein, and E. Rahm, “Generic Schema
Matching with Cupid,” In Proceedings of 27th International
Conference on Very Large Data Bases (VLDB), 2001, pp. 49-
58.

[15] W-S. Li and C. Clifton, “SEMINT: A Tool For Identifying
Attribute Correspondences In Heterogeneous Databases
Using Neural Networks,” Elsevier Science. Data and

Knowledge Engineering (DKE), 2000, vol. 33, no. 1, pp. 49-
84.

[16] R. Dhamankar, Y. Lee, A. Doan, A. Y. Halevy, and P.
Domingos, “iMAP: Discovering Complex Mappings between
Database Schemas,” In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2004, pp.
383-394.

[17] M. A. Hernandez, R. J. Miller, and L. M. Haas, “Clio: A
Semi-Automatic Tool For Schema Mapping,” In Proceedings
of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), 2001, pp. 607.

[18] R. J. Miller, M. A. Hernandez, L. M. Haas, L-L. Yan, C. T. H.
Ho, R. Fagin, and L. Popa, “The Clio Project: Managing
Heterogeneity,” ACM SIGMOD Record, 2001, vol. 30, no. 1,
pp. 78-83.

[19] A. Y. Halevy and J. Madhavan, “Corpus-Based Knowledge
Representation,” In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI), 2003, pp.
1567-1572.

[20] J. Berlin and A. Motro, “Database Schema Matching Using
Machine Learning with Feature Selection,” In Proceedings of
the 14th International Conference on Advanced Information
Systems Engineering (CAiSE), 2002, pp. 452-466.

[21] A. Islam, D. Z. Inkpen, and I. Kiringa, “Applications of
Corpus-based Semantic Similarity and Word Segmentation to
Database Schema Matching,” Very Large Data Bases
(VLDB) Journal, 2008, vol. 17, no. 5, pp. 1293-1320.

[22] M. A. Hernandez, L. Popa, C. T. H. Ho, and F. Naumann,
“Clio: A Schema Mapping Tool for Information Integration,”
In Proceedings of the 8th International Symposium on Parallel
Architectures, Algorithms, and Networks (ISPAN), 2005, pp.
11.

[23] R. Fagin, L. M. Haas, M. A. Hernandez, R. J. Miller, L. Popa,
and Y. Velegrakis, “Clio: Schema Mapping Creation and Data
Exchange,” Conceptual Modelling: Foundations and
Applications, 2009, pp. 198-236.

[24] D. Kensche, C. Quix, X. Li, Y. Li, and M. Jarke, “Generic
Schema Mappings for Composition and Query Answering,”
Elsevier Science. Data and Knowledge Engineering (DKE),
2009, vol. 68, no. 7, pp. 599-621.

[25] R. A. Pottinger, “Database Schema Integration,”
Encyclopedia of GIS, 2008, pp. 226-231.

[26] P. A. Bernstein and E. Rahm, “Data Warehouse Scenarios for
Model Management,” In Proceedings of the 19th International
Conference on Conceptual Modeling (ER), 2000, pp. 1-15.

[27] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R.
Rosati, “Data Integration in Data Warehousing,” International
Journal of Cooperative Information Systems (IJCIS), 2001,
vol. 10, no. 3, pp. 237-271.

[28] R. A. Pottinger and P. A. Bernstein, “Schema Merging and
Mapping Creation for Relational Sources,” In Proceedings of
the 11th International Conference on Extending Database
Technology (EDBT), 2008, pp. 73-84.

[29] N. Rizopoulos and P. McBrien, “Schema Merging Based on
Semantic Mappings,” In Proceedings of the 26th British
National Conference on Databases (BNCOD), 2009, pp. 193-
198.

[30] C. Quix, D. Kensche, and X. Li, “Generic Schema Merging,”
In Proceedings of the 19th International Conference on
Advanced Information Systems Engineering (CAiSE), 2007,
pp. 127-141.

419

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[31] L. Cabibbo and R. Torlone, “On the Integration of
Autonomous Data Marts,” In Proceedings of the 16th
International Conference on Scientific and Statistical
Database Management (SSDBM), 2004, pp. 223-231.

[32] L. Cabibbo and R. Torlone, “Integrating Heterogeneous
Multidimensional Databases,” In Proceedings of the 17th
International Conference on Scientific and Statistical
Database Management (SSDBM), 2005, pp. 205-214.

[33] L. Cabibbo and R. Torlone, “Dimension Compatibility for
Data Mart Integration,” In Proceedings of the 12th Italian
Symposium on Advanced Database Systems (SEBD), 2004,
pp. 6-17.

[34] D. Riazati, J. A. Thom, and X. Zhang, “Inferring Aggregation
Hierarchies for Integration of Data Marts,” In Proceedings of
the 21st International Conference on Database and Expert
Systems Applications (DEXA), 2010, pp. 96-110.

[35] IBM, IBM Infosphere Data Architect 7.5.3.0: Finding
Relationships. [Online]. Available:
http://publib.boulder.ibm.com/infocenter/idm/v2r1/index.jsp?t
opic=/com.ibm.datatools.metadata.mapping.ui.doc/topics/iiy
mdadconfiguring.html. Retrieved: 2014.05.31.

[36] E. Deza and M. M. Deza, "Euclidean Distance,” Encyclopedia
of Distances, Springer, 2009, pp. 94.

[37] S. Craw, “Manhattan Distance,” Encyclopedia of Machine
Learning, Springer, 2010, pp. 639.

[38] M. Dash and H. Liu, “Feature Selection for Classification,”
Intelligent Data Analysis, 1997, vol. 1, no. 3, pp. 131–156.

[39] B. Ten Cate and P. G. Kolaitis, “Structural Characterizations
of Schema-Mapping Languages,” In Proceedings of the 12th
International Conference on Extending Database Technology
(ICDT), 2009, pp. 63-72.

[40] M. Friedman, A. Levy, and T. Millstein, “Navigational Plans
for Data Integration”, In Proceedings of the 16th National
Conference on Artificial Intelligence and 11th Conference on
Innovative Applications of Artificial Intelligence (16. AAAI/
11. IAAI), 1999, pp. 67-73.

[41] IBM, IBM Infosphere Data Architect 7.5.3.0. [Online].
Available: http://www-01.ibm.com/software/data/optim/data-
architect. Retrieved: 2014.05.31.

[42] Microsoft, Microsoft BizTalk Mapper. [Online]. Available:
http://msdn.microsoft.com/en-
us/library/ee253382(v=bts.10).aspx. Retrieved: 2014.05.31.

[43] R. Kimball, M. Ross, W. Thornthwaite, J. Mundy, and B.
Becker, “The Data Warehouse Lifecycle Toolkit,” John Wiley
and Sons, 2nd Edition, 2008, ISBN-10: 0470149779.

[44] T. B. Pedersen, C. S. Jensen, and C. E. Dyreson, “A
Foundation for Capturing and Querying Complex
Multidimensional Data,” Elsevier Science. Information
Systems (IS), 2001, vol. 26, no. 5, pp. 383-423.

[45] Microsoft, Microsoft SQL Server Database Management
System. [Online]. Available:
http://www.microsoft.com/en-us/sqlserver/default.aspx.
Retrieved: 2014.05.31.

[46] IBM, IBM Cognos Business Intelligence 10.2.0. [Online].
Available: http://www-
03.ibm.com/software/products/en/business-intelligence.
Retrieved: 2014.05.31.
M. Junker, A. Dengel, and R. Hoch, “On the Evaluation of
Document Analysis Components by Recall, Precision, and
Accuracy,” In Proceedings of the 5th International
Conference on Document Analysis and Recognition
(ICDAR), 1999, pp. 713-716.

XI. APPENDIX

MERGE ALGORITHM PROOF OF CORRECTNESS

A. Preliminaries

In this section, we provide an outlined proof of correctness of
the formulated merge algorithm, which establishes query
processing on the single consolidated data warehouse.

Definition 9. (Certain Query): A Query, ࣫ is said to be
Certain for all Instances, ࣣ and Properties, ࣪ of a
Multidimensional Database, ࣧࣞ iff ࣫ ⊨ ࣣ, such that ࣣ ⊆ ࣧࣞ
and 	࣫ satisfies ࣪ ∈ ࣧࣞ 	∎

Definition 10. (Certain Answer): A Tuple, ࣮ forming an
Answer to a certain query, ࣫ is said to be Certain iff ࣮ ⊨ ࣫ for all
Instances, ࣣ of Multidimensional Database, ࣧࣞ and ࣮ fulfils
ࣣ ∈ ࣧࣞ ∎

Let ࣰ ൌ ൛ ଵࣰ, ଶࣰ, … , ࣰऀ ൟ represent an expected set of ऀ tuple
variables of certain answers ranging over a set of queries, ࣫. Let
࣫ ൌ ሼ࣫ଵ, … , ࣫ऊሽ represent a set of ऊ possible and certain queries
likely to be posed to the single consolidated data warehouse. For
the tuple ࣰ proving a query ࣫ will mean the tuple ࣰ computes
certain answers to the query ࣫ posed on the single consolidated
data warehouse.

Theorem 1. (Merge Algorithm): Let ࣭ and ࣣ, respectively,
represent the schema and data instances of a Multidimensional Star
Schema Model, ࣧࣞ. Suppose ࣧࣞ is instantiated in a Fact,	࣠ and
ࣾ number of Dimensions 	ࣞࣻ, ሼ1 ൑ ࣻ ൑ ࣾሽ such that
࣠ ൌ ሼ࣭࣠, ࣣ࣠ሽ, ࣞࣻ ൌ ሼ࣭ࣞࣻ , ࣣࣞࣻሽ . Then, a merge algorithm which
accepts ࣿ Star Schema Instances, ࣧࣞ୨, for	ሼ2	 ൑ j ൑ ࣿሽ, and
Mapping Correspondences,	ࣧࣛ ࣠࣪ࣞࣻ as inputs, generates a Single
Consolidated Data Warehouse, ࣱࣞ in a worst-case polynomial
time complexity, such that ሼ࣭, ࣣሽ ∈ ࣱࣞ ⊨ ሼ࣫, ࣮ሽ ∈ ࣧࣞ୨ ∎

B. Proof of Soundness

PROOF. (SKETCH) Soundness. We want to show that, if a tuple
ࣰ can be proven or computed as a certain answer to a posed
certain query ࣫ on the single consolidated data warehouse, ࣱࣞ
then tuple ࣰ will answer the certain query ࣫.

ሺ⇒ሻ
By use of inductive definition, we assume for an arbitrary tuple ࣰ
and certain query ࣫ , such that the tuple ࣰ is computed in ࣿ
number of steps for query ࣫. Consequent to this assumption, the
tuple ࣰ will represent certain answers to the query ࣫. This will
hold for all data instances of the single consolidated data
warehouse generated from this algorithm.

For Steps (2) to (7), it can be inferred that the mapping
correspondences between the integrating instance schema table
attributes are iterated in finite steps. The single consolidated data
warehouse will then be a representation of all instance schema
table attributes.

Since instance data values are associated to each attribute of
the schema instances. Hence, certain answers for tuple, say ࣰ, is
generated for any query, say ࣫, posed to it.

For Step (5), the intuition that only 2 forms of mapping is
adopted implies all forms of mapping ambiguities for possible
intractability or a worst-case of an undecidability are not expected.
In that regard, exact certain answers are expected from a posed
query for equality mapping types. For similarity mapping, similar

420

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

certain answers for tuples are generated. Non-corresponding
attributes also help in generating tuples for local instance schema
attributes per data mart. As a result, by inductive proposition the
correctness in tuple data values is trivially preserved.

For Step (8), the tuples that are generated from schema
attributes will have properties of being the UNION of all
integrating attributes. The unified property thus asserts on all the
semantics from each of the integrating attributes. Hence, if a tuple,
say ࣰ , is generated for a query, say ࣫ , a truth validity can be
ascertained such that the tuple will represent a certain answer. This
makes the inference and inductive claims from the earlier premise
satisfy and preserve the soundness criteria for correctness. ∎

C. Proof of Completeness
The proof of completeness is trivially the converse to the proof of
soundness and affirms the validation of the intuition proposed for
soundness.

PROOF. (SKETCH) Completeness. We want to show that, if a
tuple ࣰ is a certain answer to a certain query ࣫ posed on the
single consolidated data warehouse, ࣱࣞ then the tuple ࣰ can be
proven to exist. In other words, for any query ࣫ posed we are sure
not to miss any certain answer from the tuples that can be
generated.

ሺ	⇐	ሻ
We begin the proof by the use of contraposition hypothesis to
show that: If a tuple, say ࣰ, cannot be computed or does not exist
for a query, say ࣫ , then the tuple ࣰ cannot represent a certain
answer to the query ࣫.

Let us assume the tuple ࣰ cannot be computed or generated for
the query ࣫ in the strong sense.
If the tuple ࣰ cannot be computed, then we can construct an
infinite general set, ࣰ∗	of aggregated tuples, which will still not
form computed tuples to answer the query ࣫.

Based on this construction, we can inductively generate a
categorization of all forms aggregation of tuples. We enumerate

them as ࣟ ൌ ሼࣟଵ, ࣟଶ, …ࣟँሽ . We then will inductively define a
series of different sets of tuples ௡ࣰ ൌ ሼ ଴ࣰ, 	 ଵࣰ, … , ௡ࣰሽ.

We then let the first of the series of tuple sets, ଴ࣰ represent the
arbitrary tuple ࣰ. As part of the inductive construction, if the union
of one series set of a tuple, say ௞ࣰ, and a subsequent aggregation
categorization, say ࣟ௞ାଵ is a computed tuple to answer query ࣫,
then ௞ࣰାଵ ൌ ௞ࣰ, meaning we have both tuple sets having the same
answering semantics.

On the contrary, if the union of a tuple set, say ௞ࣰ and a
subsequent aggregation categorization, say ࣟ௞ାଵ does not form a
computed tuple needed to answer query ࣫ , then ௞ࣰାଵ ൌ ௞ࣰ ∪
ሼࣟ௞ାଵሽ, where the new tuple, ௞ࣰାଵ	 is definitely giving us a
different answer from the initial one, ௞ࣰ	.

We then have the general set ࣰ∗ representing a union of all the
aggregated tuples, ௡ࣰ likely to give an answer to the query. It can
be deduced that the general set ࣰ∗	holds our supposed tuple ࣰ.

The general set ࣰ∗	does not provide enough computed tuples
to form a certain answer to the posed certain query ࣫. Because if it
does answers the query then additional attribute tuples, as well as
other complex formula to the aggregations should make it a valid
certain answer the query.

The general set ࣰ∗ is a closure set with attribute tuples and
hierarchy aggregations in relation to our supposed tuple ࣰ to
forming certain answers to the query ࣫. Hence this closure set ࣰ∗
exhibits a satisfiability property for a canonical evaluation of being
always true, and never false.

With such a satisfiability property, we can say that there is
always a truth-like claim on ࣰ∗, where all its generated tuples are
true and anything outside it false. This will make our computed
tuple ࣰ, always true and make the posted query ࣫, false.

This assertion of the tuple ࣰ being true and the posed query ࣫
being false does not offer a claim for the computed tuple ࣰ
validating as a certain answer to the posted query ࣫.
Hence, our preceding proposition of contraposition is satisfied and
valid. 	∎

421

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

