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Abstract— Meta-model merging is the process of incorporating 
data models into an integrated, consistent model, against which 
accurate queries may be processed. The efficiency of such a 
process is very much reliant on effective semantic 
representation of chosen data models, as well as the mapping 
relationships between the schema and data instance elements 
of the data models. Within the data warehousing domain, the 
integration of data marts is often time-consuming. Intuitively 
forming an all-inclusive data warehouse presents tedious tasks 
of identifying related fact and dimension table attributes. 
Moreover, the ability to process queries across these disparate, 
but related, data marts poses an important challenge. In this 
paper, we introduce an approach for the integration of 
relational star schemas, which are instances of 
multidimensional data models. These instance schemas 
represented as data marts are integrated into a single 
consolidated data warehouse. Our methodology, which is based 
on model management operations, focuses on a formulated 
merge algorithm and adopts first-order Global-and-Local-As-
View (GLAV) mapping models, to deliver a polynomial time, 
near-optimal solution of a single integrated enterprise-wide 
data warehouse. 

Keywords- Schema Merging, Data Integration, Model 
Management, Mapping Modelling Constraints, 
Multidimensional Merge Algorithm, Data Warehousing. 

I. INTRODUCTION 

The concepts of schema merging and data integration 
present intricate fields in databases as both have academic 
and industrial implications in the area of data processing. 
Schema merging involves integrating disparate models of 
related data using methods of element matching, mapping 
discovery, and the consolidation of data sets [2]. Schema 
merging adopts a concept from model management that 
primarily involves the integration of models and their 
instance schemas, and together with associated constraints. 
Data integration entails the consolidation of the instance data 
sets within the framework of a merged schema to deliver 
efficient query solutions [3]. The end results of schema and 
data integration have seen important impacts in various 
scientific and industrial domains. A number of the 
application areas are federated database systems, Enterprise 
Information Integration, and bioinformatics data integration. 

These applications continue to impact and attract attention in 
the need for efficient data processing and analytics. 

Traditionally, most of the procedures that involve data 
integration have always been focused on identifying the 
integrating data sources, and the associated mapping 
correspondences of elements in the integrating data sources. 
Recent studies have focused instead on emphasizing the 
inference of semantic meaning of the elements of the data 
sources in integration. There usually arise various forms of 
problems associated with the procedural methodologies for 
these concepts. These challenges are the identification of 
prime meta-models, the expression of semantic 
representation of the meta-models, and the formulation of 
algorithms for specific meta-models and their instances. In 
general, these challenges make the overall procedures of data 
and schema integration very difficult. The conceptual 
processes of data integration and schema merging are 
derived from the fundamental operations of model 
management [4] [5]. Model Management operations of 
match, compose mappings, and merge offer the intuition to 
address the problems of data integration and schema merging 
within the context of multidimensional data models.  

In this paper, we introduce an integration procedure for 
both instance schema and instance data of multidimensional 
data models. Our motivation is to employ the concept of 
model management to address the shortcomings of merge 
algorithm, conflict management, and technical merge 
requirements for integration of data marts. Our key 
contribution in this paper is the formulation of a novel well-
defined algorithm, which is supposed to be the end-result of 
the overall integration process. This algorithm is capable of 
delivering an efficiently integrated data warehouse. Our 
presentation focuses on the proposition of star schema 
instances in our analyses. Our work, which subsumes prior 
work on generic models [2], draws on a number of their 
significant propositions made, and uses it as a background 
work in formalizing our intuition in a much more practical 
solution for merging schema and data instances of 
multidimensional data models. Additionally, this paper 
presents an extended and elaborate version to an earlier 
submission [1], as the assertions, methodology and evaluated 
results are described in further detail. 

The technical contributions are summarized as follows; 
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 We adopt the application of a hybrid form of schema 
matching, in which we use both schema and data 
instance algorithms to deliver correct attribute mapping 
correspondences. 

 We adopt first-order Global-and-Local-As-View 
mapping models in the mapping discovery procedure, 
which expresses the transformation of complex 
expressions between attributes of the instance schemas. 

 We address the handling of functional dependency 
integrity constraints in the mapping discovery and 
modelling procedure. 

 We identify and specify resolution measures for 
frequently observed conflicts that are exposed, as a 
result of integration of heterogeneous data marts. 

 We define technical qualitative merge correctness 
requirements, which serve to validate the formulation of 
the merge algorithm. 

 Most importantly, we formulate a merge algorithm that 
specifically deals with the integration of schema and 
instance data of the data marts. 

The rest of the paper is organized as follows. In Section 
II, we review the fundamental background studies regarding 
data integration and schema merging. In Section III, we 
discuss our integration methodology, where we address the 
overview of the integration approach. In Section IV, we 
describe the adopted hybrid schema matching; and further on 
in Section V, we describe the mapping models discovery and 
modelling. In Section VI, we present the formulated merge 
algorithm; and address the proposition of the technical merge 
correctness requirements, semantics of query processing, and 
conflicts resolution measures in Section VII. In Section VIII, 
we address the implementation and evaluation of the 
integration methodology. We discuss the related work and 
comparison of other approaches in Section IX; and in 
Section X, we conclude, discuss open issues and the areas of 
future work. 

II. BACKGROUND 

The need of business users to access, in a timely and 
precise fashion, information originating from varied and 
heterogeneous sources of data repositories has lead to the 
investigation of engineered methods of efficient data 
integration methods and retrieval. The processes that 
comprise the generation of the final output of data 
integration largely stem from the fundamental operations of 
model management [4]. Models serve as data representation 
and as a result, different models denote different applications 
or domains and are modelled for different purposes. 

Model management, in the field of databases, is a high-
level, abstract programming language designed to efficiently 
manipulate schemas and mappings. It serves as the generic 
approach to solving problems of heterogeneity and data 
programmability, where concise and clear-cut mappings are 
manipulated to deliver desired output that supports robust 
operations related to certain metadata-oriented problems [4] 
[6] [7]. A number of these operations are; match schemas, 
compose mappings, difference schemas, merge schemas, 
apply function, translate schemas into different data models, 

and generate data transformations from mappings. The main 
abstractions that are needed in expressing model 
management operations are instance schemas and mappings. 
Practically, the choice of a language to express these instance 
schemas and mappings is vital. A model is described as a 
formal description of a complex application artefact, such as; 
database relational model, Unified Modelling Language 
(UML) model, or an ontology [4] [6]. A schema is an 
expression of a model that defines a set of possible instances, 
whilst and a meta-model is the language needed to express 
the schemas. These schemas could be relational schema, 
Extensible Markup Language (XML), Web Ontology 
Language (OWL), or Multidimensional Schema, amongst 
others. 

Model management operations, in the form of schema 
matching, schema mappings, and schema merging have 
generally been attempted by Bernstein et al. [6], Melnik [7], 
and Gubanov et al. [8] to offer flexibility and efficiency in 
meta-data processing. To efficiently integrate different data 
sources, the model management operation of match, 
expressed as schema matching, serves as basis to other major 
operations [4]. It takes two schemas instances as input and 
produces a mapping between elements of the two schema 
instances that correspond semantically to each other [9]. 
Various surveys and studies have been conducted in the 
literature [9] [10] [11] in this direction of schema matching, 
of which incremental and new results have been shown to 
effectively deliver better solutions in arriving at precise 
mapping correspondences. Prior studies classify this 
procedure into 3 main categories. These are namely; schema-
level matching, instance-level matching, and hybrid and/or 
composite matching. Out of these studies and surveys 
conducted, several concrete results have been developed to 
produce very high precisions. Enumerations of algorithms 
are Similarity Flooding (SF) [12], COMA [13], Cupid [14], 
SEMINT [15], iMAP [16], and the Clio Project [17] [18]. It 
will be noted that schema matching operations are enhanced 
from fields, such as; Knowledge Representation [19], 
Machine Learning [15] [20], and Natural Language 
Processing [21], where techniques are used to deliver near-
automatic and semantically correct solutions. 

Other forms of model management operations are 
compose mappings and apply functions, expressed as schema 
mapping discovery. These operations are normally a follow-
up on the end results of a schema matching operation. 
Schema mapping is the fundamental operation that produces 
a semantic relationship between the associated elements 
from source and target schemas based on an earlier schema 
matching [17] [22] [23]. Recent studies conducted in 
generating schema mappings have shown that the strength of 
mapping relationship correspondences that exist between 
schema elements largely determines the degree of efficiency 
of the overall data integration procedure. Further works have 
shown that mapping correspondences modelled and 
expressed in terms of First-Order Logic (FOL) assertions 
exhibit unique characteristics, where various manipulations 
on mapping elements can be expressed distinctively. The 
authors in [24] define that an extensional mapping can be 
expressed as Local-As-View (LAV), Global-As-View 
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(GAV), Source-To-Target Tuple Generating Dependencies 
(s-t tgds), Second-Order Tuple Generating Dependencies 
(SO tgds), or other similar formalisms. More intuitively, a 
hybrid approach of the LAV and GAV mappings, termed as 
Global-and-Local-As-View (GLAV) mappings, which has 
been formalized to merit on the strengths of both mappings 
present a better mapping model for integration. 

The final form of model management operation in our 
line of study is the merge operation, expressed as schema 
merging. Schema merging operation takes 2 meta-models 
and a set of mapping models, as inputs, and produces a 
merged meta-model, as an output, capable of representing all 
the elements and semantics of the input meta-models. In the 
generic sense, studies have been conducted and various 
results are addressed in the literature [2] [5] [25]. In the area 
of data warehousing, work done in the literature are 
presented in [25] [26] [27]. Additionally, the authors in [28] 
attempted to derive results on schema merging in relation to 
relational data sources, whiles merging based on semantic 
mappings have also been studied by the authors in [29]. A 
typical architecture of a merge system, as denoted in [27], is 
described in terms of 2 types of modules: wrappers and 
mediators. In terms of algorithms for merging, a generic 
approach was attempted in [30], whilst a proposition of an 
algorithm for relational sources that succeeds on a Mediated 
Schema Normal Form (MSNF) and Conjunctive Queries and 
Mappings is investigated in [28]. As part of our study, we 
draw on the significant propositions of generic merge in [2] 
and use them as background work in formalizing our 
algorithm in a much more practical solution for 
multidimensional data models. 

The study of data integration and schema merging in 
relation to multidimensional data models has received 
minimal research in the literature. Cabibbo and Torlone [31] 
[32] [33] in their series of studies on dimension compatibility 
and data integration have attempted to deliver methodologies 
for fact and dimension tables and/or attributes integration. 
Riazati et al. [34] have also formalized a proposition for 
integration based on inferred aggregations in the hierarchies 
of the dimension tables, in each of the data marts. We 
expatiate on these approaches and perform a comparison of 
their work in line with our methodology in Section IX. 

III. INTEGRATION METHODOLOGY 

Our approach for generating a single integrated data 
warehouse from independent, but related, multidimensional 
star schemas extends from the above-mentioned concept of 
model management. The adopted star schema presents a 
modelling construct, where one large central (fact) table is 
referentially connected by a set of attendant (dimension) 
tables of varied attribute information. The fact table contains 
bulk data, without redundancy, whilst each dimension table 
contains multiple representations of attribute data instances. 

We present an overview of our integration methodology, 
as depicted in Figure 1. The figure shows the logical and 
conceptual merging of the fact and dimension tables from the 
Policy and Claims data marts, to form an enterprise data 

warehouse for an Insurance industry. We explain further our 
motivation using Example 1 and Figure 1. 

Example 1. Suppose we have 2 data marts from an 
Insurance industry – Policy Transactions and Claims 
Transactions – and we have to integrate these data marts 
into an enterprise-wide data warehouse, as illustrated in 
Figure 1. The existence of corresponding attributes will 
enable the possibility of integrating the attributes of the fact 
and dimension tables of these data marts. A merge algorithm 
can be applied to the corresponding mappings to generate 
the integrated data warehouse needed in answering queries, 
as it will be posed to the integrating data marts.                  ∎ 

A. Problem Definition 

In addressing our problem, we make reference to the 
scenario in Example 1, where we have 2 or more data marts, 
supposedly, in star schema models. It can be inferred that 
though the instance schema and data values representations 
in these separate data marts are different, the overlapping 
sets of real-world entity representations in the dimensions of 
the data marts seem to present a similarity. Hence, a 
proposition of integration for the real-world entities in each 
of the data marts into a single consolidated data warehouse is 
not improbable. 

In another instance, the need to contract a merger or 
acquisition of companies of related business processes 
results in the generation of a consolidated data warehouse. 
This challenge in the generation of a data warehouse also 
falls in the paradigm of this study where each of the 
companies with disparate data marts or data warehouses are 
integrated into a single enterprise repository. 

B. Overview of Integration Methodology 

We outline our methodology based on 3 main 
streamlined procedures, namely; hybrid schema matching, 
mapping models discovery, and the formulation of merge 
algorithm. Figure 2 illustrates a description of our 
methodology and framework architecture in a workflow 
order.  Here, we describe the step-wise procedures, algorithm 
executions, and the generated outputs. We describe in detail 
Hybrid Schema Matching (Procedure 1) in Section IV and 
Mapping Models Discovery (Procedure 2) in Section V. We 
also give a detailed description of the Formulated Merge 
Algorithm (Procedure 3) in Section VI. We address the 
methodology workflow in a manner where the results or 
output from a preceding step, e.g., Procedure 1, becomes the 
input for the succeeding procedure, e.g., Procedure 2. This 
approach ensures consistency in data processing and in the 
generation of the final integrated output of a data warehouse. 

IV. HYBRID SCHEMA MATCHING 

In our methodology, we adopt a hybrid form of schema 
matching, which aim to deliver efficient schema attribute 
correspondences. Our adoption of this hybrid approach uses 
the logical properties of the multidimensional schema 
structure in schema-based matching, and the instance data 
and extensions in instance-based matching, to find attribute 
correspondences.
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Figure 1.      Logical and Conceptual Multidimensional Schema Merge

 
Figure 2. Workflow Framework of Integration Methodology
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A. Schema-based Matching 

We adopted schema-based algorithmic techniques in the 
form of Lexical Similarity and Semantic Names. 

The Lexical Similarity is an algorithm technique based 
on the linguistic form of schema matching, in which string 
names and text are used to semantically find similar schema 
elements. This algorithmic technique defines a measure of 
the degree to which the word sets of 2 given strings are 
similar, and discovers maximum weight subsequence of the 
strings that are common to each other. The algorithm 
determines similarity based on schema string names and text, 
equality of names, equality of synonyms, homonyms, 
abbreviations, and similarity of common substrings, amongst 
others [35]. 

The Semantic Names, on the other hand, is an 
algorithmic technique based on the semantic deduction of the 
schemas and their characteristics. The algorithmic technique 
is reliant on the schema structure and the properties of the 
elements, and enforces on varied forms of constraints. It uses 
criteria such as, type similarity and metadata in relation to 
table name, attribute names, schema data types, value ranges, 
precision, uniqueness, optionality, relationship types, 
cardinalities, key properties, referential constraints, amongst 
others, to match attributes [35]. 

We use Example 2 to illustrate the schema-based form of 
finding mapping correspondences. 

Example 2. Following up on Example 1, suppose we 
want to merge the dimensions of DimPolicyHolder and 
DimInsuredParty from Policy and Claims data marts, 
respectively. The application of Lexical Similarity algorithm 
will produce mapping correspondences, such as: 

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.1 ݕ݁ܭݕݐݎܽܲ݀݁ݎݑݏ݊ܫ
ൎ .ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ  ݕ݁ܭݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.2 ݈݈݁݉ܽܰݑܨ ൎ
.ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ,݁݉ܽܰݕ݈݅݉ܽܨ
.ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ,݁݉ܽܰ݊݁ݒ݅ܩ .ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ,݁݉ܽܰݕݐ݅ܥ
.ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ   ݁݉ܽܰݐܿ݅ݎݐݏ݅ܦ

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.3 ,ݏݏ݁ݎ݀݀ܣݐ݁݁ݎݐܵ
.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ ݏݏ݁ݎ݀݀ܣ݈݅ܽ݉ܧ
ൎ .ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ  ݏݏ݁ݎ݀݀ܣ

Moreover, the application of the Semantic Names algorithm 
will offer an improved schema matching using the data 
types, relationships types and constraints, and value ranges. 
This algorithmic matching enforces on the already generated 
correspondence in the Matching (1), where Int data types 
and Primary Key constraints for both attributes of 
DimInsuredParty.InsuredPartyKey and 
DimPolicyHolder.PolicyHolderKey are used for element 
relationship mapping. For Matching (2), the 
DimPolicyHolder.CityName [varchar(18)] and 
DimPolicyHolder.DistrictName [varchar(15)] attributes 
were eliminated to deliver mapping correspondence, as in: 

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.2 ሺ60ሻሿݎ݄ܽܿݎܽݒሾ	݈݈݁݉ܽܰݑܨ ൎ 
.ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ,ሺ25ሻሿݎ݄ܽܿݎܽݒሾ	݁݉ܽܰݕ݈݅݉ܽܨ
.ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ  ሺ40ሻሿݎ݄ܽܿݎܽݒሾ	ݏ݁݉ܽܰ݊݁ݒ݅ܩ

The above mapping correspondence is generated as a result 
of the semantic representations of data type and precision, 
such as varchar(60) for DimInsuredParty.FullName to 
correspondingly infer on varchar(25), varchar(40) for both 
DimPolicyHolder.FamilyName and 
DimPolicyHolder.GivenName, respectively.                       ∎ 

B. Instance-based Matching 

The instance-based algorithms that were adopted are 
Signature, Distributions, and Regular Expressions. These 
algorithmic techniques are based on the instance data 
contained in the schemas and infer on the characteristics, 
meaning and similarity in the data values, as well as the 
relationship to other data set contained in the schema. The 
Signature algorithm uses the similarity in the actual data 
values contained in the schemas and their signature based on 
data sampling. The technique uses sampled data to find 
relationships where a weighting value is assigned to certain 
classes of words in the data [35]. This sampling of data is 
based on the valid values of sampling size and also the rate 
of the sampling. The determination of match signature is 
done by clustering according to their distance measure, either 
by Euclidean distance [36] or Manhattan distance [37]. 

The Distributions algorithm discovers mapping 
correspondences based on the common values in the instance 
data contained in the schemas. The algorithm also uses data 
sampling to aid the discovery function to find relationships 
between attribute data values, where the frequent occurrence 
of most data values for a particular attribute in relation to 
another attribute determines the candidacy of matching 
correspondence. Prior attempts of methodologies within the 
domain of machine learning that aid in the discovery of 
correspondences are A-priori and Laplacian [38]. 

The Regular Expressions algorithm uses textual or string 
searches based on regular string expressions or pattern 
matching. A simple regular expression will be an exact 
character match of attribute data values or of the common 
substrings contained in the instance data. This algorithm also 
uses data sampling to aid the discovery function of finding 
relationships between attribute data values [39]. 

We use Example 3 to illustrate a generalized form of 
instance-based algorithm. 

Example 3. Following up on Example 2, we complement 
the results of the initial schema-based mapping 
correspondences with a generalized instance-based mapping 
to produce a final semantically correct mapping 
correspondence for the Matching (3), as in: 

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ		.3 ݏݏ݁ݎ݀݀ܣݐ݁݁ݎݐܵ
ൎ .ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ  ݏݏ݁ݎ݀݀ܣ

This final matching was attained because of the data values 
and extensions from the dimension attributes. A 
representation of the  instance data values contained in 
DimPolicyHolder.Address are {39 Baywood Drive, 178 
Flora Ave., 79 Golden Rain St.}, where as data values 
contained in DimInsuredParty.StreetAddress and 
DimInsuredParty.EmailAddress are {40 Roslyn St., 68 
Hastings Drive, 48 Whitehall Avenue} and 
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{amartens@cybserv.com, drice@vipe2k.com, 
jtausig@fitexes.com}, respectively.                                       ∎ 

In general, the output generated from this step of 
Procedure 1, is a set of mapping correspondences between 
the elements of the instance schema structure and instance 
data values of the heterogeneous data sources. 

V. MAPPING MODELS DISCOVERY 

In the second procedure of our integration methodology, 
we discuss the adoption of first-order GLAV mapping 
models. We also discuss the merits of the mapping model, 
whilst highlighting the suitability for our integration 
approach. Moreover, we discuss the handling of possible 
functional dependency integrity constraints as they occur in 
the mapping models. This step utilizes the output of 
Procedure 1, as inputs, to aid in the discovery and 
establishment of mapping models. 

Definition 1. (First-Order Mapping): Let               
ࣧ ൌ ሺܵ, ܶ, ݂ሻ  represent a mapping model from Source, ܵ 
and Target, ܶ  schemas. Let ࣵ ∈ ሼܵ ∪ ܶሽ  represent disjoint 
variable element where ࣵ denotes ሼࣵଵ, ࣵଶ, … , ࣵ௡ሽ. The 
mapping assertion, ࣧ  is said to be in first-order if 
݂:	ሼ∀ࣵ	൫ܵሺࣵሻ → ܶሺࣵሻ൯ሽ, where ݂ represents the logical view 
from the Source to the Target.                                               ∎ 

We adopt a first-order GLAV mapping model formalism 
[40]. This mapping formalism is based on first-order logic 
assertions, where elements are finitely mapped using the 
functional relations existing between them. Our motivation is 
founded on the expressiveness of the correspondences that 
exist between the attributes of the schemas [3]. The GLAV 
mapping model combines mapping formalisms from both the 
Local-As-View (LAV) and Global-As-View (GAV) 
mappings [40]. This mapping model expresses mapping 
views where the extensions of the source schemas provide 
subsets of tuples satisfying the corresponding view over the 
global mediated schema. Moreover, an equivalent number of 
attribute view definitions are expressed in both the LAV and 
GAV queries [3]. One other unique feature of the GLAV 
mapping modelling is the expression of multi-cardinality 
mappings between mapping elements. This enables the 
expression of complex transformation formulas, which is 
much useful in our integration methodology [24]. 

Definition 2. (Equality Mapping): Let ࣧ ൌ ሺܵ, ܶ, ݂ሻ 
represent a mapping for Source, ܵ  and Target, ܶ  schemas. 
The assertion  ݂:	ሼ∀ݕ∀ݔ	ሺܵሺݔ, ሻݕ → ,ݔሺܶ	ݖ∃  ሻሻሽ for disjointݖ
variable elements  ݔ, ,ݕ  is an Equality mapping, such that  ݖ
ݕ ൌ z.                                                                                     ∎ 

Definition 3. (Similarity Mapping): Let ࣧ ൌ ሺܵ, ܶ, ݂ሻ 
represent a mapping for Source, ܵ  and Target, ܶ  schemas. 
For disjoint element variables ݔ, ,ݕ ݖ the assertion 
݂:	ሼ∀ݕ∀ݔ	ሺܵሺݔ, ሻݕ → ,ݔሺܶ	ݖ∃ ሻሻሽݖ  is a similarity mapping, 
such that  ݃ሺݕሻ ൌ  where ݃ denotes or encloses a complex  ݖ
transformation expression.                                                    	∎ 

In this procedural step, 2 forms of mapping relationships 
were adopted, namely; Equality and Similarity mapping 

relationships. An equality mapping represents a one-to-one 
mapping, whilst a similarity mapping also represents a one-
to-many or many-to-many mapping. The defined 
classifications were based on expressive characterization of 
relationship cardinality, and the attribute semantic 
representation, amongst others [39]. We used these forms of 
mapping relationships in a GLAV mapping model, as 
explained in Example 4. 

Example 4. Using the scenario described in Example 1, 
suppose we want to integrate the DimPolicyHolder and 
DimInsuredParty dimensions from Policy and Claims data 
marts, respectively, into DimInsuredPolicyHolder 
dimension. The Datalog queries for the GLAV mapping 
model will be expressed as: 

DimInsuredPolicyHolder (InsuredPolicyHolderKey, 
InsuredPolicyHolderID, InsuredPolicyHolderName, 
BirthDate, ProvinceState, Region, City, Status):- 

DimPolicyHolder (PolicyHolderKey, PolicyHolderID, 
PolicyHolderFamilyName, PolicyHolderGivenName, 
DateOfBirth, ProvinceState, CityName, Status), 

DimInsuredParty (InsuredPartyKey, InsuredPartyID, 
InsuredPartyFullName, BirthDate, Province, Region, City) 

In this Datalog query, the existence of corresponding 
attributes in both dimensions automatically expresses an 
equality representation in the merged dimension. 
Additionally, a similarity relationship is established where, 
for example, DimPolicyHolder.InsuredFamilyName and 
DimPolicyHolder.InsuredGivenName attributes are 
mapped onto the merge attribute of 
DimInsuredPolicyHolder.InsuredPolicyHolderName. 
Moreover, local attributes of DimPolicyHolder.Status and 
DimInsuredParty.Region from Policy and Claims data 
marts, respectively, are also included in the merged 
dimension schema instance.                                                  ∎ 

A. Propositions for GLAV Mapping Models 

We further summarize a number of the characteristic 
features that merit the choice of the GLAV mapping model. 
This mapping model represents a suitable form of 
manipulation of the mapping relationships that exists 
between the instance schema attributes, as well as the 
instance data values, contained in the star schema data marts. 
Moreover, the GLAV mapping features offer the relationship 
needed for the generic application of the merge algorithm for 
disparate and heterogeneous schema and data instances. 

Automatic Mapping Generation. It is a mapping formalism 
that facilitates the (semi-)automatic generation of schema 
mappings from heterogeneous instance schemas. This is 
evident in cases where mapping correspondences are 
incomplete or incorrect. This characteristic feature also 
offers the ability to incrementally modify mappings as 
correspondences change. 

Mapping Reusability. The mapping model facilitates the 
composition of sequential mappings that enables the re-use 
of mappings when the instance schemas are different or 
change. This functionality offers the capability to 
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reformulate queries against one schema into queries on 
another schema during data integration. 

Data Translation & Exchange. The semantics of such a 
mapping and its data exchange capabilities offers a data 
translation from one schema to another. Moreover, the 
mapping offers the transformation from one representation to 
the other during data exchange based on specifications. 

Runtime Functionality. The mapping formalism expresses 
the capabilities for runtime executables; for example, to 
generate view definitions, query answering, and generation 
of XSLT transformations, amongst others. 

Data Manipulation. The semantics of the GLAV mapping 
model makes it easily applicable and manipulated by 
mapping tools; for example, the IBM InfoSphere Data 
Architect [41], Microsoft BizTalk Mapper [42], amongst 
others. 

Query Code Generation. The mapping formalism offers a 
platform where query codes are generated based on the 
mapping relationships. This is evident where efficient 
queries or transformations in various languages (e.g., native 
SQL) can implement the formulated mappings. 

B. Functional Dependency Mapping Integrity Constraints 

In our methodology, the adopted first-order GLAV 
mapping modelling can be enhanced to deliver efficient 
relationships between the attributes of the schema instances, 
by the application of mapping integrity constraints. One form 
of mapping integrity constraint is Functional Dependencies 
of the dimension instance schema attributes. 

Definition 4. (Functional Dependency): Suppose 
ࣞ ൌ ሺࣛଵ,… ,ࣛࣿሻ, for ࣿ ൒ 2  attributes represent a 
dimension instance schema. The assertion of functional 
dependency, ࣠ࣞ constraint stipulates that a set of attributes 
ሼࣛଵ,… ,ࣛअሽ ∈ ࣞ  uniquely determines another set of 
attributes ሼࣛअାଵ, … ,ࣛࣿሽ ∈ ࣞ , based on a key constraint, 
say ࣛଵ, such that ࣠ࣞ:	ሼ∀ࣛଵ∀ࣛअ∀ࣛअାଵሺࣞሺࣛଵ,ࣛअሻ ∧
ࣞሺࣛଵ,ࣛअାଵሻ → ሺࣛअ ൌ ࣛअାଵሻሻሽ.                                      ∎ 

From the definition above, it can be inferred that the set 
of attributes ሼࣛଵ,… ,ࣛअሽ → ሼࣛअାଵ,… ,ࣛࣿሽ	 uniquely, 
where the data instance tuple values in attribute set, 
ሼࣛअାଵ,… ,ࣛࣿሽ are dependent on, or can be derived from the 
tuple values in attribute set, ሼࣛଵ,… ,ࣛअሽ.  

We use Example 5 below to illustrate the occurrence of 
functional dependency integrity constraint, as part of the 
mapping discovery and modelling. 

Example 5. Suppose an integrity constraint exists on the 
instance schema dimension DimPolicyCoveredItem in the 
Policy data mart where the attribute 
DimPolicyCoveredItem.PolicyCoveredItemID functionally 
determines the set of attributes 
DimPolicyCoveredItem.PolicyCoveredItemType and 
DimPolicyCoveredItem.CoveringPeriod. Suppose a 
principal mapping correspondence is established between 
the Natural Key attributes of 

DimPolicyCoveredItem.PolicyCoveredItemID and 
DimInsuredPolicyItem.InsuredPolicyItemID. Moreover, 
suppose mapping correspondences are established between 
attributes DimPolicyCoveredItem.PolicyCoveredItemType, 
DimPolicyCoveredItem.CoveringPeriod and 
DimInsuredPolicyItem.ItemForm, 
DimInsuredPolicyItem.PolicyPeriod, respectively. The 
modelling of first-order GLAV mappings between the 
dimensions DimPolicyCoveredItem and the 
DimInsuredPolicyItem will result in an automatic instance 
functional dependency constraint in DimInsuredPolicyItem 
dimension. This dependency is expressed in the set of 
attributes DimInsuredPolicyItem.ItemForm and 
DimInsuredPolicyItem.PolicyPeriod, to functionally depend 
on the DimInsuredPolicyItem.InsuredPolicyItemID 
attribute. This dependency association is modelled in the 
merged table and its attributes for each of the integrating 
table schema instances.                                                         ∎ 

It will be affirmed that the dependency association 
between attributes complements the derivation of the merge 
schema and data instances. Moreover, the dependency 
constraint enables the population of data instance tuple 
values, especially in the Steps (10) and (11) in the merge 
algorithm (Algorithm 1) in Section VI.A. This can be 
addressed in the scenario where, if the tuple values for the set 
of  ࣛअ attributes are known, say ࣵअ, then the tuple values 
for the set of ࣛअାଵ attributes, say ࣵअାଵ,corresponding to and 
depending on  ࣵअ can be determined by looking them up in 
tuple values of the ࣵअ. 

The output generated from Procedure 2 step, is a set of 
mapping models outlining the types of Equality and 
Similarity mapping relationships. The output expresses the 
merge schema definitions, schema constraints, and complex 
transformations for the one-to-many and/or many-to-many 
relationships of the heterogeneous data source elements. 

VI. FORMULATED MERGE ALGORITHM 

We present and describe an elaborate merge algorithm 
(Algorithm 1) for integrating the instance schema and data of 
data marts fact and dimension tables. We further provide a 
summary of the algorithm, and conclude the section by 
presenting a computational complexity analysis of the 
formulated algorithm. 

A. Merge Algorithm 

The merge algorithm (Algorithm 1) is formulated to generate 
the single consolidated data warehouse from different related 
data marts, modelled as star schemas instances. 

B. Merge Algorithm Summary 

The merge algorithm primarily performs 2 levels of 
integration. 

Firstly, the integration of the instance schema structure, 
which comprises the attribute relationships and properties for 
the fact and dimension tables. These procedures are 
described in Steps (1) to (9). Steps (1) to (4) initialize and 
generate the integrated schema tables. Steps (5) to (7) 
describe the generation of attributes for the integrated tables.
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Algorithm 1:        Multidimensional Instance Schema and Data Integration 
Input: 
(a) A set of star schema data marts, A and B 
(b) A set of first-order GLAV mapping model; ݃݊݅݌݌ܽܯ஺஻, consisting of ݂ܽܿ݃݊݅݌݌ܽܯݐ஺஻ and ݀݅݉݃݊݅݌݌ܽܯ஺஻ 
(c) An optional designation of a data mart, A or B, as the  ݐݎܽܯܽݐܽܦ݀݁ݎݎ݂݁݁ݎ݌; 
Output: 
(a) A single consolidated star schema instance data warehouse free of duplicate and redundant schema and instance data. 
(b) A metadata consisting of data definition of the integrating data marts and the single consolidated data warehouse. 
Procedure: 

Initialization 
(1) Let ݉݁ܮܮܷܰ ← ݁ݏݑ݋݄݁ݎܹܽܽݐܽܦ݁݃ݎ 

Generate Merged Table 
(2) For each ܿ݃݊݅݌݌ܽܯݐ݂ܿܽ ∋ ݁݌ݕܶ݃݊݅݌݌ܽܯ݃݊݅݀݊݋݌ݏ݁ݎݎ݋஺஻ do 

(a) If ܿܮܮܷܰ = ݁݌ݕܶ݃݊݅݌݌ܽܯ݃݊݅݀݊݋݌ݏ݁ݎݎݎ݋ then 
i. Return ݉݁ܮܮܷܰ ← ݁ݏݑ݋݄݁ݎܹܽܽݐܽܦ݁݃ݎ 

(b) Else 
i. Let ݉݁{ܤ݈ܾ݁ܽܶݐ݂ܿܽ ,ܣ݈ܾ݁ܽܶݐ݂ܿܽ} ∋ ݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ݁݉ ← ݁ݏݑ݋݄݁ݎܹܽܽݐܽܦ݁݃ݎ 

(3) Repeat Step (2) for each ݈ܾ݉݁݁ܽܶ݉݅ܦ݁݃ݎ using ݀݅݉݃݊݅݌݌ܽܯ஺஻, add {݈ܾ݊݁ܽܶ݉݅ܦ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋} 
(4) Return ݉݁{{݈ܾ݁ܽܶ݉݅ܦ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋݊ ,݈ܾ݁ܽܶ݉݅ܦ݁݃ݎ݁݉} ,݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ݁݉} ⊂ ݁ݏݑ݋݄݁ݎܹܽܽݐܽܦ݁݃ݎ 

Merged Table Attribute Relationships 
(5) For each ܿ݃݊݅݌݌ܽܯݐ݂ܿܽ ∋ ݁݌ݕܶ݃݊݅݌݌ܽܯ݃݊݅݀݊݋݌ݏ݁ݎݎ݋஺஻ do 

(a) Let ݉݁ܮܮܷܰ ← ݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ 
(b) If ܿ݁݌ݕܶ݃݊݅݌݌ܽܯ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ ൌ “Equality” then 

i. Let ݉݁݁ݐݑܾ݅ݎݐݐܣ݂݀݁݊݅݁݀ ← ݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݁݃ݎ 	∈ ሼ݂ܽܿ݃݊݅݌݌ܽܯݐ஺஻ ∈  ሽݐݎܽܯܽݐܽܦ݀݁ݎݎ݂݁݁ݎ݌
(c) Else If ܿ݁݌ݕܶ݃݊݅݌݌ܽܯ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ ൌ “Similarity” then 

i. Let ݉݁݃݊݅݌݌ܽܯݐ݂ܿܽ  ∋ ݁ݐݑܾ݅ݎݐݐܣ݂݀݁݊݅݁݀ ← ݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݁݃ݎ஺஻ 
(6) For each ݊{ܤ݈ܾ݁ܽܶݐ݂ܿܽ ,ܣ݈ܾ݁ܽܶݐ݂ܿܽ} ∋ ݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋ do 

(a) If ݊{݁ݐݑܾ݅ݎݐݐܣ݁݃ݎ݁݉} ∌ ݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋ then 
i. Let ݉݁݁ݐܾݑ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋݊ ← ݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݁݃ݎ 

(b) Return ݉݁{݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋݊ ,݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݁݃ݎ݁݉} ⊂ ݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ 
(7) For each ܿ݃݊݅݌݌ܽܯ݉݅݀ ∋ ݁݌ݕܶ݃݊݅݌݌ܽܯ݃݊݅݀݊݋݌ݏ݁ݎݎ݋஺஻ do 

(a) Repeat Step (3) for each ܿ{ܤ݈ܾ݁ܽܶ݉݅݀ ,ܣ݈ܾ݁ܽܶ݉݅݀} ∋ ݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ 
(b) Repeat Step (4) for each ݊{ܤ݈ܾ݁ܽܶ݉݅݀ ,ܣ݈ܾ݁ܽܶ݉݅݀} ∋ ݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋ 
(c) Return ݉݁{݁ݐݑܾ݅ݎݐݐܣ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋݊ ,݁ݐݑܾ݅ݎݐݐܣ݉݅ܦ݁݃ݎ݁݉} ⊂ ݈ܾ݁ܽܶ݉݅ܦ݁݃ݎ 

Merged Table Attribute Properties 
(8) For each ݈ܾ݉݁݁ܽܶݐܿܽܨ݁݃ݎ݁݉ ∋ ݁ݐݑܾ݅ݎݐݐܣݐܿܽܨ݀݁݃ݎ do 

(a) Let ݉݁݃݊݅݌݌ܽܯݐ݂ܿܽ ∋ ݁݌ݕܶ݁ݐݑܾ݅ݎݐݐܣ݂݀݁݊݅݁݀ ← ݁ݑ݈ܸܽ݁݌ݕܶ݁ݐݑܾ݅ݎݐݐܣ݁݃ݎ஺஻ 
(9) Repeat Step (6) for each ݈ܾ݉݁݁ܽܶ݉݅ܦ݁݃ݎ using ݀݅݉݃݊݅݌݌ܽܯ஺஻ 

Dimension Tables Data Population 
(10) For each ݈ܾ݉݁݁ܽܶ݉݅ܦ݁݃ݎ do 

(a) If (݇݁ݐ݈݂ܿ݅݊݋ܥݎ݂݁݅݅ݐ݊݁݀ܫݕ OR ݉݊݋݅ݐܽݐ݊݁ݏ݁ݎ݌ܴ݁ݕݐ݅ݐ݊ܧ݈݁݌݅ݐ݈ݑ) = ܴܷܶܧ then 
i. Let ݁݊ݐݎܽܯܽݐܽܦ݀݁ݎݎ݂݁݁ݎ݌ ∋ ݕ݁ܭ݁ݐܽ݃݋ݎݎݑݏ ← ݎ݂݁݅݅ݐ݊݁݀ܫݕ݁ܭݕݐ݅ݐ 

(b) Else 
i. Let ݁݊ݐݎܽܯܽݐܽܦ݀݁ݎݎ݂݁݁ݎܲ݊݋݊ ∋ (ݕ݁ܭݕݎܽ݉݅ݎ݌ ≡ ݕ݁ܭ݁ݐܽ݃݋ݎݎݑܵݓ݁݊) ← ݎ݂݁݅݅ݐ݊݁݀ܫݕ݁ܭݕݐ݅ݐ 

Fact Table Data Population 
(11) For each ݈ܾ݉݁݁ܽܶݐܿܽܨ݁݃ݎ do 

(a) Load fact records using ݁݊{ݕ݁ܭ݁ݐܽ݃݋ݎݎݑܵݓ݁݊ ,ݕ݁ܭ݁ݐܽ݃݋ݎݎݑݏ} ∋ ݎ݂݁݅݅ݐ݊݁݀ܫݕ݁ܭݕݐ݅ݐ 
(12) Let ݉݁{{݈ܾ݁ܽܶ݉݅ܦ݃݊݅݀݊݋݌ݏ݁ݎݎ݋ܥ݊݋݊ ,݈ܾ݁ܽܶ݉݅ܦ݁݃ݎ݁݉} ,݈ܾ݁ܽܶݐܿܽܨ݁݃ݎ݁݉} ⊂ ݁ݏݑ݋݄݁ݎܹܽܽݐܽܦ݁݃ݎ 
(13) Return ݉݁݁ݏݑ݋݄݁ݎܹܽܽݐܽܦ݁݃ݎ 

   

Finally, Steps (8) and (9) describe the derivation of attribute 
property values of the merged fact and dimension tables. 

Secondly, the algorithm performs integration of the 
instance data values contained in the star schema data marts. 
This involves the population of these instance data from the 
data marts fact and dimension tables into the merged tables 
in the data warehouse. Steps (10) to (13) describe these 
procedures of data population. 

C. Merge Algorithm Computational Complexity 

The merge algorithm presented in previous section, Sub-
section A, is projected to run with a low worst-case 
complexity of a polynomial time. 

The Initialization step in Step (1) requires a complexity 
of 	ߍሺ݊ሻ, whiles the Step (2) takes  ܱሺ݊ଶ log݉ሻ  to derive a 
merged fact table and dimension tables, for ݊  number of 
tables and  ݉  number of corresponding attributes. 

The iterative processes of Step (5) and Step (6) involves a 
computation running time of ܱሺ݇ ൅ ݊ଶ log݉ሻ  to generate 
the table attributes and their relationships, for  ݊  number of 
tables, ݉ number of corresponding attributes, and  ݇ number 
of non-corresponding attributes. 

Finally, the steps from Step (8) to Step (12) require 
running time of  ߍሺ݇ ൅݉ሻ  for the iterations performed. An 
overall worst-case complexity of ߍሺ݊ሻ ൅ ሺ݇ߍ ൅ ݉ሻ ൅
ܱሺ݇ ൅ ݊ଶ log݉ሻ  is attained in running the merge algorithm 
to generate the single consolidated data warehouse. 
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We also give a detailed Proof of Correctness of the 
merge algorithm in Appendix XI. 

VII. PROPOSITIONS OF MULTIDIMENSIONAL 

INSTANCE SCHEMA AND DATA INTEGRATION 

In this section, we propose technical qualitative 
requirements necessary for producing an efficient single 
consolidated data warehouse. We also describe the semantics 
of query processing on integrated instances of 
multidimensional data models. We finally propose and 
describe the resolution of identifiable conflicts associated 
with the integration of the data marts. 
A. Merge Correctness Requirements 

The single consolidated data warehouse that is generated 
as a result of the implementation of the merge algorithm 
needs to satisfy proposed requirements, to ensure the 
correctness of the data values from the queries that would be 
posed to it. 

Drawing on the propositions in the requirements defined 
by the authors in [1] for merging generic meta-models, we 
performed a gap analysis and extend on their propositions in 
relation to generating a data warehouse. Hence, we formulate 
and describe a set of correctness requirements in relation to 
merging of multidimensional star schemas. We outline the 
set of Merge Correctness Requirements (MCR) that validates 
the formulated merge algorithm needed for the generation of 
a single consolidated data warehouse. 

Dimensionality Preservation. For each kind of dimension 
table connected to any of the integrating fact tables, there is a 
representation of corresponding dimension also connected to 
the merged fact table. 

Measure and Attribute Entity Preservation. All fact or 
measure attribute values in either of the integrating fact 
tables are represented in the merged fact table. Additionally, 
attributes in each of the dimension tables are represented 
through an equality or similarity mapping. Finally, an 
automatic inclusion for non-corresponding attributes in the 
merged tables, based on the condition of non-attribute 
redundancy or duplication, is satisfied. 

Slowly Changing Dimension Preservation (SCD). SCD is 
the occurrence where an entity in a dimension exhibits 
multiple instance representations, based on the varied 
changes in instance data values for the key dimensional 
attributes, over a time period [43]. For such dimensional 
entity occurrences, the merged dimension should offer an 
inclusion of all the instance data representations from each 
integrating dimension. Hence, an automatic inclusion of 
attributes that contribute to the dimensional change in the 
merge dimension is satisfied. 

Attribute Property Value Preservation. The merged 
attribute should preserve the value properties of the 
integrating attributes, whether the mapping correspondence 
is an equality or similarity mapping. Equality mapping 
should be trivially satisfied by the UNION property for all 
attributes. For a similarity mapping, the transformation 

expression should have the properties to be able to satisfy the 
attribute property value of each integrating attribute. 

Definition 5. (Surrogate Key): Let ࣞ௜  represent a 
dimension table for a multidimensional model, ࣜ  such that 
ࣞ௜ ∈ ሼࣞଵ,ࣞଶ,… ,ࣞ௡ሽ for ݅ ൑ ݊.  Let ࣟ  represent each entity 
of a dimension, ࣞ௜  such that 	ࣟ ∈ ࣞ௜ . The identifier, ࣥ  is 
said to be a Surrogate Key for  ࣟ such that  ࣥ௠ ≡ ࣟ௠         ∎ 

Tuple Containment Preservation. A Surrogate Key is the 
dimensional attribute that uniquely identifies each instance 
data value tuple of an entity representation. The single 
consolidated data warehouse should offer the containment of 
all unique tuples from the data marts for correctness in query 
answering. This ensures the preservation of all Surrogate 
Keys needed in identifying each dimensional entity. 

B. Merge Algorithm Technical Requirements Summary 

The integration methodology adopted by the authors 
largely satisfies the technical requirements, as a proposition 
for merging disparate data marts. We summarize the merge 
algorithm (Algorithm 1) in fulfilment of the technical Merge 
Correctness Requirements (MCRs) outlined in Section VI.A. 

a) Step (2) satisfies Dimensionality Preservation: 
Each fact and dimension table is iterated to form the Merged 
Fact Table. 

b) Steps (3), (4), (5) satisfy Measure and Attribute 
Entity Preservation: All the attributes contained in the Fact 
or Dimension Tables are represented in the Merged Table 
(Fact or Dimension) through equality or similarity mapping.  

c) Steps (6) and (7) satisfy Attribute Property Value 
Preservation: Value properties of attributes are represented 
for each of the Fact or Dimension Tables. 

d) Step (8) satisfies Slowly Changing Dimension 
Preservation and Tuple Containment Preservation: Entity 
representations from the different data marts are included in 
the merged dimensions. 

e) Steps (9), (10) satisfy Tuple Containment 
Preservation: Tuple data values from each of the data marts 
are populated in the merged data warehouse. 

C. Semantics of Query Processing on Integrated Instances 
of Multidimensional Data Models 

The type of queries that are processed on 
multidimensional data models are based on Online-
Analytical Processing (OLAP). There are a few problems 
that are inherent with OLAP query processing, and these are 
addressed as follows. On one hand, is the problem of 
incomplete data that arise from missing data values, and 
imprecise data values of varying extent. In our approach, the 
possibility of having missing data values, in relation to non-
corresponding merge attribute, from the star schemas is 
highly probable. Moreover, the varying granularities caused 
by the different degrees of precision in the data values from 
the combined instance data of different star schemas, 
exposes a non-uniform representation of the data values 
needed for analytical reporting. 
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Definition 6. (Dimension Hierarchy): A hierarchy, ࣢ 
comprising a dimension, ࣞ, is a 2-tuple ሺࣦ௡, ↗ሻ where ࣦ௡ is 
a collection of levels and each	ࣦ௜ ∈ ሼࣦଵ, ࣦଶ, … , ࣦ௡ሽ, ݅ ൑ ݊, 
and  ↗  is a parent-child relation of two levels, say ࣦ௜ and 
௝ࣦ, such that a data instance element in ࣦ௜ rolls up to a data 

instance element in ௝ࣦ , denoted by ሺࣦ௜ ↗ ௝ࣦሻ. This roll-up 
relationship forms a partial order over the levels.                ∎ 

Definition 7. (Strict Hierarchy): For a dimension 
schema instance ࣞ, any hierarchy ࣢ ∈ ࣞ, is said to be strict 
if for every pair of levels ࣦ௜, ࣦ୨  with the partial ordering 

൫ࣦ௜ ↗∗ ௝ࣦ൯, which are through different paths, say  
ሼࣦ୧, ࣦଵ, ࣦଶ, … , ࣦ୳, ௝ࣦሽ  and ൛ࣦ୧, ࣦୟ, ࣦୠ, … , ࣦ୴, ௝ࣦൟ, and for 
every instance data element Ղ  in ࣦ௜,	 there exist a roll-up 
function composition that holds for the condition:                 

׬ ∘
ࣦభ
ࣦ೔

׬ ∘
ࣦమ
ࣦభ

… ∘ ׬ ሺՂሻ
ࣦೕ
ࣦೠ

ൌ ׬ ∘
ࣦೌ
ࣦ೔

׬ ∘
್ࣦ
ࣦೌ

… ∘ ׬ ሺՂሻ
ࣦೕ
ࣦೡ

                      ∎ 

On the other hand, the problem of imperfections inherent 
in the hierarchy levels of dimensional tables also places an 
overhead impact on query processing for multidimensional 
data models. Hierarchies enable drill-down and roll-up in 
the aggregate data, and as a result, multiple hierarchies in a 
particular dimensional entity support different aggregation 
paths within the dimension. Different forms of strict and 
non-strict hierarchies are exhibited in the dimensional 
entities of multidimensional data models. Strict hierarchies 
exhibit a phenomenon where a dimension data instance item 
or child level element has only one parent level element 
enforcing a constraint restriction on the data values that are 
rolled-up during aggregation. Hence, strictness in 
hierarchies ensures a consistency in the instance data values 
that are used in roll-up functions. Non-strict hierarchies 
exhibit a phenomenon where a dimension data instance item 
or child level element has several elements at the parent 
levels, thus allowing flexibility in the data aggregation. 

Pedersen et al. [44] proposed requirements that a 
multidimensional data model should satisfy in order to fully 
support OLAP queries. These are outlined as; explicit 
hierarchies in dimensions, multiple hierarchies, non-strict 
hierarchies, handling different levels of granularity, and 
handling imprecision amongst others. These requirements 
give insights into how OLAP tools manage the raw data 
values and how data values are expressed during analytics. 

As part of our study, query processing is handled in 
relation to the proposition in [44]. The adopted star schema 
model offers a platform for basic SQL star-join optimization 
during the processing of data values for analytical 
representation. The ability of structured cube modelling for 
each of the dimension elements by OLAP representations 
offers the medium for the individual hierarchies in the 
dimensional entities to be captured explicitly. The 
hierarchies and their data manipulations are captured using 
either, grouping relations and functions, dimension merging 
functions, roll-up functions, level lattices, hierarchy 
schemas and instances, or an explicit tree-structured 
hierarchy as part of the cube. 

Different forms of aggregations are computed in the 
approach of query processing on the generated data 
warehouses. These aggregations are made possible because 
of the defined hierarchies established in the dimensional 
entities. The aggregations are represented in functions such 
as addition computations, average calculations, and constant 
functions through an OLAP operation of summarizability.  

Definition 8. (Summarizability): A hierarchy ࣢  is 
summarizable if for all levels ࣦ௜ ∈ ሼࣦଵ, ࣦଶ, … , ࣦ௡ሽ , for 
1 ൑ ݅ ൑ ݊ , of this hierarchy, the single-level aggregated 
measure ݉  with ࣦ௜  granularity, can be computed by 
summing up data instance tuple values of a single-level 
specified for measure ݉  for any ࣦ௞ ∈ ሼࣦଵ, ࣦଶ, … , ࣦ௡ሽ, for 
1 ൑ ݇ ൑ ݊ , granularity appearing along a path from the 
bottom level to ࣦ௜.                                                                ∎ 

Summarizability is a conceptual property of 
multidimensional data models where individual aggregate 
results can be combined directly to produce new aggregate 
results. In a summarizable hierarchy, the aggregated values 
for a measure at a level granularity can be obtained by 
aggregating the elements of any level of hierarchy, which 
directly or indirectly rolls up to the desired level. This 
characteristic feature guarantees the correctness of 
aggregated values in the resultant data warehouse. 

D. Conflicts Identification and Resolution 

The integration of meta-data models is generally coupled 
with different forms of conflicts in either the instance 
schema or instance data. These conflicts are resolved through 
different propositions from the formulated algorithm, and 
based on the semantic representation of the meta-data 
models and their instance schemas. In our integration 
approach, we identify and propose resolution measures for 
likely to occur conflicts, which are frequently encountered 
during merging. 

Identifier Conflicts. These conflicts arise as a result of the 
same identifier for different real-world entities in the merged 
dimension. These categories of conflicts are practically 
exposed as a result of the possibility of different entities from 
the integrating data marts having the same surrogate key 
identifier in their individual dimensions. A resolution 
measure for these conflicts is explained in Example 5. 

Example 6. Suppose we aim to merge the employee 
dimensions into a single merged dimension, using 
DimPolicyEmployee and DimInsuredPolicyEmployee from 
Policy and Claims data marts, respectively. In such an 
integration procedure, it happens that an instance data 
value, Employee P from DimPolicyEmployee and an 
instance data value, Employee Q from 
DimInsuredPolicyEmployee have the same identifiers of a 
Surrogate Key. There is the need to resolve such a conflict, 
in the algorithm, by preserving the surrogate key identifier 
in the preferred data mart and re-assigning a new surrogate 
key identifier for the non-preferred data mart(s).                ∎ 
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Entity Representation Conflicts. These conflicts arise as a 
result of the multiple representations of the same real-world 
entity in the merged dimension by the different identifiers. 
This occurrence is traced to different representations of 
surrogate key identifiers from different dimensions for the 
same real-world entity in the merged dimension. A proposed 
resolution measure, outlined in the merged algorithm, will be 
to perform a de-duplication of the conflicting entities. This is 
achieved by preserving the entity from the preferred data 
mart as the sole representation of the real-world entity in the 
merged dimension. 

Attribute Property Type Conflicts. These forms of 
conflicts occur as a result of the existence of different 
attribute property values from the integrating attributes into 
a merged attribute. In reference to Example 6, in integrating 
dimensions DimPolicyEmployee and 
DimInsuredPolicyEmployee, a merged attribute for 
DimPolicyEmployee.HireStatus and 
DimInsuredPolicyEmployee.EmployeeStatus attributes will 
hold a data type value of, say varchar(1), being the UNION 
of integrating attribute data types for char(1) and bit data 
types from DimPolicyEmployee.HireStatus and 
DimInsuredPolicyEmployee.EmployeeStatus, respectively. 
We resolve these conflicts by using the attribute data types 
as defined in the mapping model. 

VIII. IMPLEMENTATION AND EVALUATION 

In this section, we discuss the implementation and 
evaluation work based on the integration methodology and 
formulated merge algorithm. We present our 
implementation framework and the procedures, and we 
discuss and analyze the evaluation results. 

A. Implementation 

We describe our implementation framework of various 
techniques and processes needed in producing the output of 
a single consolidated data warehouse. This sub-section 
focuses on the experimental setup, the datasets used in the 
experiments, as well as the practical procedures we 
performed based, on the proposed integration methodology 
addressed in Sections III, IV, V and VI. 

Experimental Setup and Data Sets. We implemented our 
methodology using 2 different data warehouses, from 
Insurance and Transportation data sets. The Insurance data 
consisted of 2 data marts. These were Policy and Claims 
data marts. Their schema structure and instance data are 
described. The Policy and the Claims data marts contained 7 
and 10 Dimension Table schemas, respectively. These 
dimensions were referentially connected to a single Fact 
Table schema. Each fact table schema had a Degenerate 
Dimension (DD) attribute of a Policy Number and a fact or 
measure attribute of Policy Transaction Amount. The Policy 
fact table schema contained instance data of 3,070 tuples of 
data, whilst the Claims fact contained 1,144 tuples of data. 
Both data sets had 6 corresponding entity representation in 

the dimension tables, whilst the Claims data mart had 3 
other non-corresponding dimensions. 

The Transport data set, on the other hand, contained 3 
data marts. These were Frequent Flyer, Hotel Stays, and Car 
Rental data marts. All the data marts had 3 conformed 
dimensions; namely, Customer, Date, and Sales Channel. 
These dimensions were complemented with a number of 
non-corresponding and unique dimensions in each of the 
data marts. Their Fact Tables contained 7257, 2449, 2449 
tuples of data for Frequent Flyer, Hotel Stays, and Car 
Rental, respectively. Each of the Fact Tables also contained 
7, 6, and 5 facts or measures for Frequent Flyer, Hotel 
Stays, and Car Rental, respectively. All the source data 
marts had their permanent repository stored in Microsoft 
SQL Server DBMS [45]. Each entity representation in the 
dimensions was identified by unique surrogate key and 
based on clustered indexing. 

Hybrid Schema Matching. The schema matching and 
mapping models discovery procedural steps were 
implemented using IBM Infosphere Data Architect [22] [23] 
[41]. This tool incorporated the schemas of the data mart 
source repositories, together with their contained instance 
data. The schema matching step was implemented using the 
set of algorithmic techniques incorporated in the application 
software. The schema-based algorithmic techniques that 
were adopted are Lexical Similarity and Semantic Names, 
where as the instance-based algorithmic techniques were 
Signature, Distributions and Regular Expressions. The 
algorithms were configured by sequentially manipulating 
the order of execution, configuration of rejection threshold, 
sampling size and sampling rate. The manipulations of these 
configurations for finding mapping correspondences were 
based on an iterative procedure of inspection. 

Figure 3 illustrates the derivation of semantically correct 
matching candidates to establish mapping correspondences 
between the attributes of 
DimPolicyTransactionType.PolicyTransactionTypeKey, 
DimPolicyTransactionType.PolicyTransactionId, and 
DimPolicyTransactionType.TransactionCodeName of 
DimPolicyTransactionType dimension schema to the 
DimClaimTransactionType.ClaimTransactionCode attribute 
of DimClaimTransactionType dimension schema. In Figure 
3, the blue-coloured mapping correspondences represent the 
chosen semantically correct matching candidate, where 
DimPolicyTransactionType.PolicyTransactionId attribute 
corresponds to the 
DimClainTransactionType.ClaimTransactionCode attribute. 
On the other hand, the red-coloured mappings represent the 
semantically incorrect matching candidates of 
DimPolicyTransactionType.PolicyTransactionTypeKey and 
DimPolicyTransactionType.TransactionCodeName, which 
are ignored as part of user validation by inspection. 
Moreover, the yellow-coloured mappings represent the 
correspondences that were generated for each of the 
dimensions, as a result of the application of the schema 
matching algorithms. 
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Figure 3.  Hybrid Schema Matching 

TABLE I.  SUMMARY OF PARAMETIZED CONFIGURATIONS FOR SCHEMA MATCHING ALGORITHMS 

Matching Algorithm/ 

Configuration Option 

Rejection 

Threshold  

Thesaurus Option Sampling Size (Rows) Sampling Rate (%) 

1. Lexical Similarity 0.6 Not Applicable Not Applicable Not Applicable 

2. Semantic Name 0.5 Is Applicable;  

But not configured 

Not Applicable Not Applicable 

3. Signature 0.8 Not Applicable 150 30 

4. Distributions 0.8 Not Applicable 100 20 

5. Regular Expressions 0.9 Not Applicable 100 30 

When generating mapping correspondences for the fact 
and dimension table attributes, various configuration 
manipulations of algorithms are performed on the discovery 
function. The parameters used in configuring the algorithms 
were Rejection Threshold, Thesaurus Option, Sampling 
Size, and Sample Rate. The Rejection Threshold parameter 
was configured with different adjustments for both the 
schema- and instance-based algorithms. The Thesaurus 
Option parameter was applicable to the Semantic Name 
algorithm. The Sampling Size and Sampling Rate 
parameters were applicable to the instance-based 
algorithms. We summarize the parameterized configuration 
of the algorithms adopted in TABLE I.  

Mapping Models Discovery. In the mapping models 
discovery step, the adoption of GLAV mappings enabled the 
inclusion of all attributes for each mapping formulation of 
fact and dimension table attributes. Moreover, complex 
transformation expressions were derived for multi-
cardinality mappings. 

An illustration of multi-cardinality mapping relationship 
is displayed in Figure 4. In Figure 4, there is a mapping 
discovery and modelling between the attributes of 
DimPolicyHolder and DimInsuredParty dimensions. These 
mappings are indicated by the grey lines connecting 
attributes from DimPolicyHolder to DimInsuredParty 
dimensions. More specifically, a selected mapping 
relationship of the DimInsuredParty.FullName attribute is 
modelled onto 2 other attributes; namely, 
DimInsuredParty.FamilyName and 
DimInsuredParty.GivenName.  

We therefore, defined a complex transformation 
expression, as in Equation (1), in the mapping relationship 
already established between these dimension attributes. 

.ݕݐݎܽܲ݀݁ݎݑݏ݊ܫ݉݅ܦ	 ݈݈݁݉ܽܰݑܨ
ൌ .ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ ݁݉ܽܰݕ݈݅݉ܽܨ
൅ .ݎ݈݁݀݋ܪݕ݈ܿ݅݋ܲ݉݅ܦ  ሺ1ሻ														݁݉ܽܰ݊݁ݒ݅ܩ

413

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 
Figure 4. Mapping Models Discovery

Other forms of mapping properties that were defined in 
the modelling are expressive characterization of relationship 
cardinality, attribute semantic representation, and attribute 
data type representation, amongst others. In terms of the 
relationship cardinality, an equality or similarity mapping 
cardinality type was defined. To express the attribute 
semantic representation, a definition of the supposed 
merged attribute name was specified, where possible. 
Regarding attribute data type representation, a supposed 
merge data type was defined and this served as a union data 
type for the merging attributes. A procedural output in a 
Comma Separated Values (CSV) file format was later 
generated, which contained the mapping definitions based 
on the tables, their attributes, and the attribute property 
values from each of the data marts 

Formulated Merge Algorithm. The formulated merge 
algorithm was implemented with the availability of the 
mapping models and the source data marts as inputs. The 
implementation was programmed using Microsoft Visual 
C# .Net Integrated Development Environment (IDE) with 
8029 lines of code from the Entity classes, Business Logic 
classes, Utility classes, and program control code. Stored 
procedures were implemented in the Microsoft SQL Server 
permanent repository, and these served as transaction 
processing medium between the data repository and the 
entity and business logic classes in the programming IDE. 

Query Processing and Analyses. The analyses of the 
repository data, of both the integrating source data marts 

and the generated single consolidated data warehouse, were 
performed using IBM Cognos Business Intelligence [46] 
application software. The software enabled the possibility of 
processing queries on the instance data, in the form of report 
generation. 

B. Evaluation 

Our evaluation analyses were primarily based query 
processing on the single consolidated data warehouse in 
relation to the integrating data marts. We compared the 
outputs of the query processing from both the data marts 
and the generated data warehouse. We first ran a formulated 
query the data marts, and afterwards ran the same query on 
the generated data warehouse. Based on these processes, we 
are able to effectively compare the results from the data 
marts and the single consolidated data warehouse. 

Evaluation Criteria and Analyses. We evaluate the 
outcome of the experiments performed based on a set of 
criteria from the guidelines proposed by Pedersen et al. [44]. 
We performed a gap analysis on their study and adapted 
correctness of data values, dimensionality hierarchy, and 
rate of query processing, as criteria. 

The metrics that we used in evaluating these criteria for 
query processing were recall, precision, and accuracy 0. 
Recall is computed by the number of tuples retrieved from a 
data mart divided by the number of tuples that should have 
been retrieved from the generated data warehouse from each 
original data mart. Precision is computed by the number of 
tuples retrieved from a data mart divided by the number of 
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tuples that were retrieved from the single consolidated data 
warehouse, per the data mart. Accuracy is determined by the 
degree of validity or exactness of the data values generated 
from a query posed to the data warehouse in comparison to 
the data values retrieved from a data mart. 

For recall, an evaluation of 100% was trivially attained 
and verified. The verification was based on the assertion 
that the formulated merge algorithm fulfilled the MCRs of 
Measure and Attribute Entity Preservation and Tuple 
Containment Preservation. 

Precision evaluation was very important, as it measured 
the proportion of relevant and non-relevant tuples that were 
retrieved based on a formulated query. This presents an 
insight into the composition of our merged data warehouse, 
in terms of the level of integration of related data from 
multiple sources. Deducing from the precision values, a 
higher rate was attained for all formulated queries that were 
posed against the data warehouse. For cases of dimensions 
that were only related to some specific data marts, a 
formulated query yielded a very high precision rate. This 
was as a result of the retrieval of few non-relevant tuples. 
An example query was, “What insurance claimant 
employment type receives the most claims processed for the 
current Calendar Season”? Conversely, for queries on 
dimensions that related or corresponded to all data marts, an 
average precision rate was observed where a considerable 
number of non-relevant tuples were retrieved in reference to 
a particular data mart. An example query was, “What type of 
Policy Coverage is most popular? What are the trends since 
the 2nd Calendar Quarter.” 

Figures 5 and 6 show the precision evaluation for 
Insurance and Transportation data warehouses, respectively. 
In Figure 5, an average rate of 86% was achieved for the 
queries posed to dimensions related to the Claims data mart. 
The precision rate increases significantly with an increase in 
the tuples in these dimensions, as more relevant tuples are 
generated. This is evident in queries 1 to 7. In terms of 
corresponding dimensions for all data marts, processed 
queries generated an average rate of 51% and 49% for 
Claims and Policy data marts, respectively, as highlighted in 
queries 8 to 12. 

 
Figure 5. Precision for Insurance Data Set 

Figure 6.  Precision for Transportation Data Set 

In Figure 6, an average precision rate of 72%, 74%, and 
83% were attained for Hotel Stays, Car Rental, and Frequent 
Flyer data marts, respectively, for the set of formulated 
queries posed. Queries 1 and 3 for Hotel Stays, 6 for Car 
Rental, and 10, 12, 13 for Frequent Flyer data marts 
performed creditably well as a result of the higher 
containment of tuples to the attributes being retrieved for the 
formulated queries posed. Moreover, in terms of queries 
posed to corresponding dimensions, an average precision 
rate of 38%, 40%, and 23% was attained for Hotel Stays, 
Car Rental, and Frequent Flyer data marts, respectively. 
This is depicted in queries 14 to 18. It would be realized that 
this average rate for the Transportation data set is quite 
lower than that attained in respect to the Insurance data set. 
This is based on the claim that an increase in the number of 
data marts for integration is inversely proportional to the 
precision rate of queries for the respective data marts. This 
assertion is due to the distributive proportionality of tuples 
per each dimension of the corresponding data marts. 
Additionally, the attributes involved in the formulated query 
for these dimensions also enforces on this assertion. 

In summary, the average precision rates analyzed are 
able to provide the user with details regarding the proportion 
of the data in the merged data warehouse that originate from 
a specific data source. This holds important practical value, 
for data warehouse practitioners, who want to be able to 
have statistics regarding the composition of the merged data. 

In terms of accuracy, we achieved a 100% return rate of 
valid and exact data values from the data warehouse, in 
comparison to each individual data mart. This was affirmed 
based on the merge algorithm fulfilling MCRs of Tuple 
Containment Preservation and Measure and Attribute Entity 
Preservation. Additionally, the adoption of GLAV mapping 
model enabled the processing of exact and sound queries on 
the data warehouse. 

Query Processing Rate. We also analyzed the rate of 
query processing to ensure that queries posed to the data 
warehouse are of optimal rate. With an integration of 
instance data from the data marts, a considerable volume of 
expected data cannot be overemphasized in the data 
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warehouse. We recorded the query response time for an 
average of 20 query executions for each of the data sets. 
These queries were processed on a single 3.20 GHz 
processor with a 4 GB of RAM. 

Our evaluation of the processed queries showed that the 
queries generally ran at almost the same rate or slightly 
higher than when posed against the data mart sources. The 
query execution durations for the data marts and data 
warehouses for the Insurance and Transportation data sets 
are shown in Figure 7 and 8, respectively.  

In Figures 7 and 8, it can be generally deduced from 
display that the data values that the query rate for the data 
warehouses were appreciable taking note of the compared 
values generated from the data marts. In certain cases, such 
as queries 7 and 8, in Figure 7, the rates were a bit higher 
due to higher level of aggregation and increased number 
dimension attributes involved in data values retrieved. 
Queries 6 and 11 recorded lower query rates because of the 
low quantity of attributes, as well as tuple data values, in the 
formulation of the answer to the query. Additionally, in 
Figure 8, similar observation was realized on queries 6, 14, 
and 16 where the query processing rate is a bit higher in 
comparison to the others. We also observed a lower rate of 
query rates for queries 4, 10, 13, and 19, which inferred a 
very good composition of merged tables and attributes and 
their contained data instance tuple values. 

We further computed the variance of the average query 
rate per data mart as it differs quantitatively from the 
consolidated data warehouse. A deduction observation was 
ascertained, where a lower quantity of tuples of instance 
data values to be retrieved during query processing lead to 
an increase in the variance, and vice versa. This is due to the 
fact that an increase in the number of data marts, and 
resultant increase in data instance tuples, increases the rate 
of data retrieval, per data mart analysis in relation to the 
single consolidated data warehouse. 

 
Figure 7.  Query Processing Rate for Insurance Data Set 

 
Figure 8.  Query Processing Rate for Transportation Data Set 

TABLE II.  SUMMARY OF AVERAGE QUERY RESPONSE TIME 
AND VARIANCES 

Data Set 

Average Query Response Time and Variances 

Data Mart / 
Data Warehouse 

Avg. Query 
Response 
(ms) 

Variance From 
Integrated Data 
Warehouse (ms) 

Transportation Car Rental 26.70 63.95 

Transportation Hotel Stays 27.10 63.55 

Transportation Frequent Flyer 70.95 19.70 

Transportation DataWarehouse 90.65 0.00 

Insurance Policy 29.65 19.60 

Insurance Claim 13.75 35.50 

Insurance DataWarehouse 49.25 0.00 

An observation of the Claims data mart, in Figure 7 and 
TABLE II. reveals that the variance of 35.50 was higher 
because of the lower query rate of the integrating data mart. 
Moreover, in Figure 8 and TABLE II. the Hotel Stays and 
Car Rental data marts rather had a higher variance of 63.55 
and 63.95, respectively, as their query rates were lower 
because of the lower quantity of data instance tuples. 

We present a summary of the variances in the average 
query response time (in milliseconds) for the data marts in 
comparison to their respective data warehouses in TABLE II.  

IX. COMPARISON TO OTHER APPROACHES 

There have been minimal studies in this area of 
multidimensional data integration, in particular to the 
generation of a single consolidated data warehouse. These 
approaches present significant contributions with regards to 
element mappings and algorithms. In comparison, our 
approach addresses the integration problem from an 
important concept of model management. We discuss a 
number of these approaches and comparatively explain how 
our methodology performs better. 
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A. Dimension Compatibility and Heterogeneous 
Multidimensional Integration 

Cabibbo and Torlone in their series of studies [31] [32] 
[33], address the problem of data integration in relation to 
multidimensional databases (data marts). In their work [31] 
[33], they introduce fundamental assertions of dimension 
algebra and dimension compatibility. Their work highlights 
different forms of heterogeneities that are existent in 
dimension tables. Their attempt to address these 
heterogeneities lead them to introduce a novel theoretical 
concept of dimension algebra. This concept enables the 
selection of relevant portions of a dimension for integration. 
The dimension algebra is basically based on 3 main 
operators; namely, selection, projection, aggregation. 

The authors in [31] [33] also introduce the concept of 
dimension compatibility. Dimension compatibility outlines 
the retrieval of common dimension information based on the 
characterization of general properties. These general 
properties were outlined as; level equivalence, dimension 
equivalence, dimension comparability, and dimension 
intersection. The compatibility property of dimensions was 
then used as a platform to perform drill-across queries over 
the autonomous data marts, and aid in hierarchical 
aggregation of instance data. As part of their study, the 
authors [31] [32] [33] use the fundamental intuitions to 
propose 2 different approaches to the problem of integration 
of multidimensional databases; namely, loosely coupled 
integration and tightly coupled integration. They introduced 
concepts and algorithms, and stipulated a number of 
desirable properties for dimension matching; namely, 
coherence, soundness, and consistency. 

B. Inferred Aggregation in Hierarchies 

Riazati et al. [34] propose a solution for integration of 
data marts where they infer aggregations in the hierarchies 
of the dimension tables existent in the multidimensional 
databases. In their work, they attempted formulating a 
computation on minimal directed graph from the instance 
data. These inferred hierarchies are then used to perform 
roll-up relationships between levels and to ensure the 
summarizability of data. They further use the assertion of 
dimension compatibility introduced in [31] [32] [33] to 
develop algorithms, which in turn are used for the 
integration of data marts. 

C. Methodology Comparisons & Evaluation 

The existing approaches to multidimensional instance 
schema data integration addressed in [31] [32] [33] [34] 
explain important concepts that need to be discussed when 
incorporating several data marts into a single consolidated 
data warehouse. On the contrary, these techniques and 
methodologies are inadequately enough in the handling of 
more complex characteristics of the fact or dimension tables 
and their attributes. We address the shortcomings of these 
approaches, and highlight the enhanced ways of handling 
such issues through our methodology approach using the 
concept of model management.  

Firstly, the approaches by the authors in [31] [32] [33] 
fail to address the issue of mapping models, although 
propositions of the general properties regarding the 
characterization of dimension compatibility seems to handle 
this concept. Our approach, however, adopts a first-order 
mapping modelling formalism, which better expresses the 
attribute correspondences. As a result, issues of data 
exchange and transformation for dissimilar and 
multicardinality attributes are expressed efficiently. 

Secondly, the previous approaches do not lay out a 
precise schema merge algorithm. Descriptions of algorithms 
for deriving the common information between dimensions 
and for merging were put forward in [32] and other 
literatures so far. But these algorithms are inconclusive 
enough to solve the complex representations of schema and 
data instances. Our approach offers a complete formulated 
algorithm for integrating multidimensional data models 
based on star schema models. 

Thirdly, conflict management relating to identification 
and resolution are not completely addressed by the authors 
in their approach. In the literature [33], the properties that 
underlie and establish the dimension compatibility criteria 
seem to partially solve the likely to occur conflicts that 
could be encountered in the dimensions. But these 
properties in their entirety fail to totally resolve such 
prominent conflicts during integration. Our methodology 
outlines a definite set of likely to occur conflicts and their 
resolution measures in relation to the instance schema and 
instance data values. 

Fourthly, technical qualitative requirements, which serve 
to highlight the properties that a generic integrated schema 
should possess were addressed by the authors in [2][28]. A 
careful study of the specific approaches for 
multidimensional data integration attempted by the authors 
in [31] [32] [33] [34] seem not to have specified 
requirements for integration. A number of requirements 
were generally attempted by the authors in [32]. They 
proposed of coherence, soundness and consistency as 
measures for compatible dimension matching; but these are 
inconclusive in the larger scale of integrating schema and 
data instances. Our methodology approach proposes a 
complete set of requirements for multidimensional 
integration to handle the varied properties and constraints of 
multidimensional data models. 

We present a comparative analysis and evaluation of the 
proposed methodology in line with other approaches in 
TABLE III. This tabular analysis summarizes the 
discussions regarding methodology approaches presented in 
the literature, and outlines the merits of our proposed 
methodology over the other approaches. 

X. CONCLUSION 

This paper presents a methodology for the merging of 
multidimensional data models using star schemas instances.  
We addressed extensively the methodologies and algorithms 
adopted in finding mapping correspondences between the 
elements attributes of the fact and dimension tables for the 
data marts. 
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TABLE III.  QUALITATIVE ANALYSIS OF PROPOSED METHODOLOGY AND OTHER APPROACHES

Methodology 

Approach / 

Analysis Criteria 

(1) Proposed Integration 

Methodology 

(2) Cabibbo and Torlone [31] [32] [33] 

- Dimension Compatibility and 

Heterogeneous Multidimensional 

Integration 

(3) Riazati et al. [34]  –

Inferred Aggregation in 

Dimension Hierarchies 

Mapping Models 

Discovery and 

Modelling 

Adopts a first-order GLAV 

mapping model, which offers 

effective data translation and 

data exchange functions 

Introduces dimension compatibility for 

attribute mappings, but does not present 

complete mapping modelling and the 

handling of attribute relationships types 

Methodology extends on the 

previous notions of dimension 

compatibility in (2); does not lay 

out precise mapping modelling 

Formulated Merge 

Algorithm 

Presents a complete merge 

algorithm that handles varied 

characteristics of both schema 

and data instances from 

heterogeneous data sources 

Presents sets of algorithms that involves 

drill-across queries between dimensions 

instance schema attributes; but methods 

are inconclusive for varied properties of 

instances of schema attributes and data 

Proposes algorithms for inferring 

partial order of attributes, and for 

identifying hierarchy levels and 

roll-ups. These algorithms are 

based on only schema instances 

Conflict 

Identification and 

Resolution 

Identifies likely to occur 

conflicts and proposes complete 

resolution measures in the 

element attributes and their 

properties 

Conflict management is not clearly 

addressed by the authors. Attempts of 

using dimension algebra and dimension 

compatibility is not sufficient to handle 

frequently observed conflicts 

Methodology does not precisely 

outline conflict identification and 

resolution measures for the 

schema instances of tables and 

their attributes 

Technical 

Qualitative 

Requirements 

Proposition of requirements to 

handle the integration of varied 

characteristics of schema and 

data instances; to generate an 

merged data warehouse, and for 

effective query processing 

Proposition of Coherence, Soundness, 

and Consistency; as measures for 

compatible dimension matching, but the 

requirements are inconclusive to handle 

varied properties of schema and data 

instances 

Methodology does not propose 

qualitative requirements; but 

adopts and extends the properties 

outlined in methodology (2) to 

infer attribute matchings and 

aggregations in the hierarchies 

Here, we adopted a hybrid schema matching 
methodology for finding mapping correspondences. We also 
outlined the adoption of first-order GLAV mapping models 
and their attribute relationship characterization of equality 
and similarity mappings. Moreover, we addressed the 
handling of mapping modelling constraints in the form of 
functional dependencies in the dimensions. We formulated a 
merge algorithm for integrating disparate data marts into a 
single consolidated star schema data warehouse. 

Furthermore, we addressed the semantics of query 
processing on the single consolidated data warehouse taking 
cognizance of the aggregations in hierarchy and 
summarizability of data instance values for the hierarchies. 
We identified and outlined the resolution of frequently 
observed conflicts that are encountered when merging data 
marts. To this end, we outlined the satisfaction of technical 
merge correctness requirements for integrating data marts 
into a data warehouse. 

Finally, we compared our methodology of integrating 
schema and data instances as against other approaches. We 
outlined the merits and suitability of our approach for 

delivering an enterprise-wide single consolidated data 
warehouse from a number of disparate data marts. 

The analyses of our evaluation showed that the rates of 
recall, precision and accuracy of the data values retrieved 
from the generated data warehouse are high and noticeable. 
We specifically analyzed the precision of queries in different 
situations of query processing for corresponding or non-
corresponding dimensions from the integrating data marts. 
We also analyzed the rate of query processing on the single 
consolidated data warehouse as compared to the individual 
data marts. We observed that with an increase in the number 
of data marts, and more specifically, an increase in the data 
instance tuples the variance of query processing for the 
concerned data marts decreases considerably. Our approach, 
thus, provides data warehouse researchers and practitioners 
with procedures, criteria, and exact measures as to how 
successful an integration process is achieved. 

A number of future research directions remain. The 
incorporation of data mart level integrity constraints into the 
data warehouse needs to be investigated further. We also 
envisage the extension of the methodology to handle 
snowflake and fact-constellation multidimensional data 
models. 
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XI. APPENDIX 

MERGE ALGORITHM PROOF OF CORRECTNESS 

A. Preliminaries 

In this section, we provide an outlined proof of correctness of 
the formulated merge algorithm, which establishes query 
processing on the single consolidated data warehouse.  

Definition 9. (Certain Query): A Query, ࣫  is said to be 
Certain for all Instances, ࣣ  and Properties, ࣪  of a 
Multidimensional Database, ࣧࣞ  iff  ࣫ ⊨ ࣣ, such that  ࣣ ⊆ ࣧࣞ 
and 	࣫ satisfies ࣪ ∈ ࣧࣞ                                                               	∎ 

Definition 10. (Certain Answer): A Tuple, ࣮  forming an 
Answer to a certain query, ࣫ is said to be Certain  iff  ࣮ ⊨ ࣫ for all 
Instances, ࣣ  of Multidimensional Database, ࣧࣞ  and ࣮  fulfils 
ࣣ ∈ ࣧࣞ                                                                                          ∎ 

Let ࣰ ൌ ൛ ଵࣰ, ଶࣰ, … , ࣰऀ ൟ  represent an expected set of ऀ  tuple 
variables of certain answers ranging over a set of queries, ࣫. Let 
࣫ ൌ ሼ࣫ଵ, … , ࣫ऊሽ represent a set of ऊ possible and certain queries 
likely to be posed to the single consolidated data warehouse. For 
the tuple ࣰ  proving a query ࣫  will mean the tuple ࣰ  computes 
certain answers to the query ࣫ posed on the single consolidated 
data warehouse. 

Theorem 1. (Merge Algorithm): Let ࣭  and ࣣ,  respectively, 
represent the schema and data instances of a Multidimensional Star 
Schema Model, ࣧࣞ. Suppose  ࣧࣞ is instantiated in a Fact,	࣠ and 
ࣾ  number of Dimensions 	ࣞࣻ, ሼ1 ൑ ࣻ ൑ ࣾሽ such that                
࣠ ൌ ሼ࣭࣠, ࣣ࣠ሽ, ࣞࣻ ൌ ሼ࣭ࣞࣻ , ࣣࣞࣻሽ . Then, a merge algorithm which 
accepts ࣿ  Star Schema Instances, ࣧࣞ୨, for	ሼ2	 ൑ j ൑ ࣿሽ,  and 
Mapping Correspondences,	ࣧࣛ ࣠࣪ࣞࣻ  as inputs, generates a Single 
Consolidated Data Warehouse, ࣱࣞ  in a worst-case polynomial 
time complexity, such that ሼ࣭, ࣣሽ ∈ ࣱࣞ ⊨ ሼ࣫, ࣮ሽ ∈ ࣧࣞ୨            ∎ 

B. Proof of Soundness 

PROOF. (SKETCH) Soundness. We want to show that, if a tuple 
ࣰ  can be proven or computed as a certain answer to a posed 
certain query ࣫ on the single consolidated data warehouse, ࣱࣞ 
then tuple ࣰ will answer the certain query ࣫. 

ሺ⇒ሻ 
By use of inductive definition, we assume for an arbitrary tuple ࣰ 
and certain query ࣫ , such that the tuple ࣰ  is computed in ࣿ 
number of steps for query ࣫. Consequent to this assumption, the 
tuple ࣰ will represent certain answers to the query ࣫. This will 
hold for all data instances of the single consolidated data 
warehouse generated from this algorithm. 

For Steps (2) to (7), it can be inferred that the mapping 
correspondences between the integrating instance schema table 
attributes are iterated in finite steps. The single consolidated data 
warehouse will then be a representation of all instance schema 
table attributes. 

Since instance data values are associated to each attribute of 
the schema instances. Hence, certain answers for tuple, say ࣰ, is 
generated for any query, say ࣫, posed to it. 

For Step (5), the intuition that only 2 forms of mapping is 
adopted implies all forms of mapping ambiguities for possible 
intractability or a worst-case of an undecidability are not expected. 
In that regard, exact certain answers are expected from a posed 
query for equality mapping types. For similarity mapping, similar 
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certain answers for tuples are generated. Non-corresponding 
attributes also help in generating tuples for local instance schema 
attributes per data mart. As a result, by inductive proposition the 
correctness in tuple data values is trivially preserved. 

For Step (8), the tuples that are generated from schema 
attributes will have properties of being the UNION of all 
integrating attributes. The unified property thus asserts on all the 
semantics from each of the integrating attributes. Hence, if a tuple, 
say ࣰ , is generated for a query, say ࣫ , a truth validity can be 
ascertained such that the tuple will represent a certain answer. This 
makes the inference and inductive claims from the earlier premise 
satisfy and preserve the soundness criteria for correctness.           ∎ 

C. Proof of Completeness 
The proof of completeness is trivially the converse to the proof of 
soundness and affirms the validation of the intuition proposed for 
soundness. 

PROOF. (SKETCH) Completeness. We want to show that, if a 
tuple ࣰ  is a certain answer to a certain query ࣫  posed on the 
single consolidated data warehouse, ࣱࣞ then the tuple ࣰ can be 
proven to exist. In other words, for any query ࣫ posed we are sure 
not to miss any certain answer from the tuples that can be 
generated. 

ሺ	⇐	ሻ  
We begin the proof by the use of contraposition hypothesis to 
show that: If a tuple, say ࣰ, cannot be computed or does not exist 
for a query, say ࣫ , then the tuple ࣰ  cannot represent a certain 
answer to the query ࣫. 

Let us assume the tuple ࣰ cannot be computed or generated for 
the query ࣫ in the strong sense. 
If the tuple ࣰ  cannot be computed, then we can construct an 
infinite general set, ࣰ∗	of aggregated tuples, which will still not 
form computed tuples to answer the query ࣫. 

Based on this construction, we can inductively generate a 
categorization of all forms aggregation of tuples. We enumerate 

them as ࣟ ൌ ሼࣟଵ, ࣟଶ, …ࣟँሽ . We then will inductively define a 
series of different sets of tuples ௡ࣰ ൌ ሼ ଴ࣰ, 	 ଵࣰ, … , ௡ࣰሽ. 

We then let the first of the series of tuple sets, ଴ࣰ  represent the 
arbitrary tuple ࣰ. As part of the inductive construction, if the union 
of one series set of a tuple, say ௞ࣰ, and a subsequent aggregation 
categorization, say ࣟ௞ାଵ is a computed tuple to answer query ࣫, 
then ௞ࣰାଵ ൌ ௞ࣰ, meaning we have both tuple sets having the same 
answering semantics. 

On the contrary, if the union of a tuple set, say ௞ࣰ  and a 
subsequent aggregation categorization, say ࣟ௞ାଵ does not form a 
computed tuple needed to answer query ࣫ , then ௞ࣰାଵ ൌ ௞ࣰ ∪
ሼࣟ௞ାଵሽ,  where the new tuple, ௞ࣰାଵ	  is definitely giving us a 
different answer from the initial one, ௞ࣰ	. 

We then have the general set ࣰ∗ representing a union of all the 
aggregated tuples, ௡ࣰ likely to give an answer to the query. It can 
be deduced that the general set ࣰ∗	holds our supposed tuple ࣰ. 

The general set ࣰ∗	does not provide enough computed tuples 
to form a certain answer to the posed certain query ࣫. Because if it 
does answers the query then additional attribute tuples, as well as 
other complex formula to the aggregations should make it a valid 
certain answer the query. 

The general set ࣰ∗  is a closure set with attribute tuples and 
hierarchy aggregations in relation to our supposed tuple ࣰ  to 
forming certain answers to the query ࣫. Hence this closure set ࣰ∗ 
exhibits a satisfiability property for a canonical evaluation of being 
always true, and never false. 

With such a satisfiability property, we can say that there is 
always a truth-like claim on ࣰ∗, where all its generated tuples are 
true and anything outside it false. This will make our computed 
tuple ࣰ, always true and make the posted query ࣫, false. 

This assertion of the tuple ࣰ being true and the posed query ࣫ 
being false does not offer a claim for the computed tuple ࣰ 
validating as a certain answer to the posted query ࣫.  
Hence, our preceding proposition of contraposition is satisfied and 
valid. 	∎
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