
Formal Models in Software Development and

Deployment: A Case Study

Radek Kočı́∗ and Vladimı́r Janoušek†

Brno University of Technology, Faculty of Information Technology,

IT4Innovations Centre of Excellence

Bozetechova 2, 612 66 Brno, Czech Republic
∗koci@fit.vutbr.cz

†janousek@fit.vutbr.cz

Abstract—Modeling, implementation, and testing are integral
parts of system development process. Models usually serve
for description of system architecture and behavior and are
automatically or manually transformed into executable models
or code in a programming language. Tests can be performed
on implemented code or executable models; it depends on used
design methodology. Although models can be transformed, the
designer has to usually adapt resulted code manually. It can result
in an inconsistency among design models and their realization
and the further development, testing and debugging by means
of prime models is impossible. This work summarizes the design
methodology based on the formalism of Object Oriented Petri
Nets combined with Discrete Event System Specification and
demonstrates its usage in the system development and deployment
on the simple robotic system case study. The goal is to use
the same formalisms for system modeling as well as for system
implementation, so that to keep designed models in the deployed
system.

Keywords–Object Oriented Petri Nets, Discrete Event System
Specification, multi-paradigm modeling, model deployment.

I. INTRODUCTION

This work is based on the paper [1], which is extended of
detailed explanation of the design methodology and its usage
for system development and deployment. It is demonstrated on
simple, but fully described, case study.

Modeling, implementation, and testing are integral parts
of system development process. Various models are used in
analysis and design phases and usually serve as a system
documentation rather than real models of the system under de-
velopment. The system is then implemented according to these
models, whereas the code is either generated from models
or is implemented manually. Unfortunately, implementations
often differ from the models because of debugging or system
improvement. Consequently, models become out of date and
useless.

To solve a problem with manual implementation and im-
possibility to test designed system using models, the method-
ologies and approaches commonly known as Model-Driven
Software Development are investigated and developed for
many years [2], [3] These methods use executable models, e.g.,
Executable UML [4] in Model Driven Architecture methodol-
ogy [5], which allows to test systems using models. Models are
transformed into another models and, finally, to code. Never-
theless, the resulted code has to often be finalized manually and

the problem with semantic mistakes or imprecision between
models and transformed code remains unchanged.

The approach to system development, which is presented
in the paper, uses formal models as a means for system
description as well as system implementation. The basic idea
is to have a framework allowing to execute models in different
modes, whereas each mode is advisable for another kind
of usage—design, testing, and deployment. The system is
developed using different kinds of models (from formal models
to direct code in a programming language) in simulation, i.e., it
is possible to test systems in any state in any time. The design
method, which is taken into account in the papers [6], [7], does
not require model transformations and assumes that models
serve for system description as well as system implementation.
The formalism of Object-Oriented Petri Nets (OOPN) [8], [9]
and Discrete Event System Specification (DEVS) are basic
modeling means.

The paper is organized as follows. First, we will attend to
related work in Section II. The formalism of OOPN will be
briefly introduced in Section III. Basic principles of modeling
methodology will be described in Section IV, different mod-
eling means will be compared in Section V, the approach to
model system behavior will be presented in Section VI, and
Section VII pays an attention to the architecture modeling. Fi-
nally, possibilities to deploy models into product environment
will be discussed in Section VIII and Section IX concludes
the paper and describes a future work.

II. RELATED WORK

Combination of formal models, simulation, and model
deployment is applicable mainly in control software. The use
of high-level languages, especially Petri Nets, allows to build
and maintain control systems in a quite fast and intuitive
way. To control robot application, hierarchical binary Petri
nets are used for middleware implementation in a RoboGraph
framework [10]. To develop control software for embedded
systems, the work that uses Timed Petri Nets for the synthesis
of control software by generating C-code [11], the work based
on Sequential Function Charts [12], or the work based on the
formalism of nets-within-nets (NwN) [13], [14], [15] can be
mentioned.

These tools and works allow to model systems using a
combination of different formalisms, but do not allow to
use formal models in system implementation. The proposed

266

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

approach allows to use formal models as a basic design, anal-
ysis and programming means combining simulated and real
components. The main advantages; there is no need for code
generation, and for further investigation of deployed systems,
using the same formal models and methods is possible.

III. FORMALISM OF OBJECT ORIENTED PETRI NETS

We will briefly introduce the formalisms of Object-
Oriented Petri Nets. Object orientation of Object-Oriented
Petri nets (OOPN) [16] is based on the well-known class-
based approach. All objects are instances of classes, every
computation is realized by message sending, and variables
contain references to objects. This kind of object-orientation
is enriched by concurrency. OOPN objects offer reentrant ser-
vices to other objects and, at the same time, they can perform
their own independent activities. The services provided by the
objects as well as the autonomous activities of the objects
are described by means of high-level Petri nets—services by
method nets, object activities by object nets.

The formalism of OOPN contains important elements al-
lowing for testing object state (predicates) and manipulation
with object state with no need to instantiate nets (synchronous
ports). Object state testing can be negative (negative predi-
cates) or positive (synchronous ports).

An example illustrating the important elements of the
OOPN formalism is shown in Figure 1. There are depicted two
classes C0 and C1. The object net of the class C0 consists of
places p1 and p2 and one transition t1. The object net of
the class C1 is empty. The class C0 has a method init:, a
synchronous port get:, and a negative predicate empty. The
class C1 has a method doFor:.

o

o := Rand next

t1

p2

p1

#e

C0 is_a PN

init: x
x

x

t1

x

return

x‘#e

o

get: o

o

C1 is_a PN

doFor: x

return

x

c := C0 new.

c init: x.

x t1

t2

c

c get: n

s := s + n
c empty

t3

c

s

c

ss
s

p1

p20

empty

Figure 1. An OOPN example.

The OOPN dynamics is based on high-level Petri net
dynamics, but the semantics of a transition is little bit modified.
A transition is fireable for some binding of variables, which
are present in the arc expressions of its input arcs and in its
guard expression, if there are enough tokens in the input places
with respect to the values of input arc expressions and if the
guard expression for the given binding evaluates to true.

Synchronous ports are special (virtual) transitions, which
cannot fire alone but only dynamically fused to some other
transitions, which activate them from their guards via message
sending. Every synchronous port embodies a set of conditions,
preconditions, and postconditions over places of the appropri-
ate object net, and further a guard, and a set of parameters.

Parameters of an activated port sync can be bound to constants
or unified with variables defined on the level of the transition
or port that activated the port sync. An example is shown
in Figure 1—the port get: (class C0) having one formal
parameter o is called from the transition t2 (class C1) with
free variable n—it means that the variable n will be unified
with the content of the place p2 (class C0).

Negative predicates are special variants of synchronous
ports. Its semantics is inverted—the calling transition is fire-
able if the negative predicate is not fireable. The passed
variable cannot be unbound (the unification is impossible) and
the predicate cannot have a side effect. An example is shown
in Figure 1, the predicate empty (class C0). This predicate
is called from the transition t3 (class C1)—it means that the
transition t3 will be fireable if the place p2 (class C0) is be
empty.

Let us investigate what happens after calling the method
doFor: with a value 3 on an instance of the class C1 (the
instance will be denoted by objC1). First, the transition t1

is fired with following actions: the instance of the class C0
is created (the instance will be denoted by objC0 and the
reference to this object is assigned to the variable c) and
initialized by the method net init:. It puts the symbol #e to
the place p1 of the object net objC0 three times. The transition
t1 of the object net objC0 generates three random numbers
and puts them into the place p2. Second, the transition t2 of
the object net objC1 tests if there is any object (a value) in
the object net objC0 by testing the synchronous port get:.
If its evaluation is true, the transition t2 is firable. If the
transition t2 fires, the synchronous port get: fires too. Since
the variable n is free, the variable n is unified with a random
number from the place p2 of the object net objC0. The
transition t2 of the object net objC1 then adds this value to
the sum (the variable s). Otherwise, the the transition t3 of
the object net objC1 tests if there is no value in the object
net objC0—then the negative predicate empty is firable. If
the transition t3 fires, it places the sum (the variable s) to
the return place as a method result. So, an invocation of the
method doFor: leads to random generation of x numbers
and to return of their sum.

IV. MODELING METHODOLOGY PRINCIPLES

This section introduces modeling methodology, which has
been presented by Kočı́ and Janoušek [17], and simple case
study. Only basic principles of methodology will be shown
here; details and the complex model of proposed case study
will be being developed in Sections VI and VII.

A. Modeling Process

The modeling process is split up into three basic phases—
identification of model elements, modeling the system archi-
tecture, and modeling the system behavior. Different modeling
means are used in different steps, nevertheless, theses means
are linked together. Brief description of basic phases and used
modeling means follows:

• Basic model elements are users of the system, their
roles, and activities of the system. To identify them,
the use case diagram from UML can be used. Roles

267

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are modeled by means of actors and activities by
means of use cases.

• System architecture is modeled by means of class
diagrams from UML. Modeled classes are linked to
elements of use case diagrams as follows:

◦ roles are represented by a group of classes
modeling logic view at roles behavior,

◦ activities are represented by a group of classes
modeling functionality of the system,

◦ users are represented by a group of classes
modeling data of roles and accessing poten-
tially present communication channels.

• System behavior. Behavior of roles and activities
is modeled by means of Object oriented Petri nets
formalism. It can also be modeled by any other
formalism allowing to define workflow scenarios and
offering an interface for workflows synchronization,
e.g., statecharts, activity diagrams, or other kind of
Petri nets. The comparison of chosen formalisms is
done in Section V.

B. Layered Architecture of the Modeling Process

First, the relationship between user and role has to be
explained. The role defines a work context the user can act in.
For instance, the user working with a conference system can
act as an author, a reviewer, a chair, or a combination of these
roles. Thus, users act through their roles in the system and each
user can have more roles. Nevertheless, the system can have
other objects than users, that have the same or similar meaning,
that is to represent data base, either for some of present roles
or for data needed to be stored in the system. We denote such
objects by a notion subjects.

Figure 2. Design Method – Layers in the model.

Figure 2 shows model elements and their relationships in
the design process. The design method distiguishes following
model elements:

• Subjects represent a base for data storage or accessing
communication channels.

• Role nets are derived from actors modeled in use case
diagrams. Role nets model logic view at roles in the

system and offer the communication protocol to the
subject depending on the role intention.

• Activity nets are derived from use cases and model
system functionality. The model is based on workflow
definition and uses roles and subjects.

Model elements are organized in layers. Relationshisps are
depicted by arrows—the solid arrow from sender to receiver
represents a relationship a sender uses a receiver. For instance,
activity nets can use roles nets, subjects, but also other activity
nets. The dashed arrow from sender to receiver represents a
relationship a sender creates a receiver. For instance, activity
nets are created by role nets.

C. Simple Case Study

We will demonstrate basic principles of the design method
on the example (simple case study) of a robot control system.
We have a system with robots, where a motion of each robot
is controlled by the same scenario, which is described by the
following algoritm: (1) the robot is walking; (2) if the robot
comes upon to an obstacle, it stops, turns right and tries to
walk; (3) if the robot cannot walk, it turns round and tries to
walk; (4) if the robot cannot walk, it stops. User can start and
stop this scenario anytime.

V. UML AND OOPN IN THE DESIGN PROCESS

As it was mentioned, the different formalisms or means
can be used to describe system behavior. The comparison
of using chosed UML models and formalism of OOPN will
be presented in this section. It will be demonstrated on the
previously instroduced case study.

First of all, the designer would identify model elements
using use case diagrams. After analysing the case study spec-
ification, we can model use cases as shown in Figure 3. There
we can find an actor User and a use case Execute Scenario
representing the control algorithm.

Figure 3. First Use case diagram of designed system.

A. UML in the Design Method

In UML, the use case specification is usually described
informally by means of pure text or semi-structured text
displayed in a table. Figure 4 shows such a table, which
specify a behavior of the use case Execute Scenario. The table
describes an algorithm in an informal way using keywords for
text structuring, e.g., IF–ELSE branching, REPEAT a step, etc.

268

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Name Execute Scenario

Sequence of steps

1. The scenario starts by user’s stimulus
2. IF there is a clear road
2.1. the robot goes straight
2.1. repeat step 2

3. ELSE
3.1. the robot turns right
3.2. IF there is not clear road
3.2.1. the robot turns round
3.2.2. IF there is a clear road
3.2.2.1. REPEAT step 2

Alternative sequence of steps

1. User can stop this scenario anytime

Figure 4. Specification of the Use Case Execute Scenario.

Another way to describe use case specifications is to use
digrams from UML such as activity diagram or statecharts.
Their usage allows for more precise description of behavior,
which is based on predefined elements with clear semantics.

Figure 5. Statechart of the use case Execute Scenario.

The statechart modeling the use case Execute Scenario is
shown in Figure 5. Four different states of modeled activity
have been identified:

• walking means the robot walks

• turnRight means the robot turns right for the first time
it came at an obstacle

• turnRound means the robot turns round for the second
time it cannot go on

• stopped means the robot cannot go on

Each state containts commands that are executed in the
state—go instructs the robot to go straight, stop instructs the
robot to stop, and turnRight instructs the robot to turn right. If

the command turnRight is sent twice, it means that the robot
turns round.

Transitions between states are modeled by means of arcs
whereas each transition can be conditioned. In the example,
there are two conditions for transitions:

• isCloseToObstacle means the robot came at an obsta-
cle and cannot go on

• isClearRoad means the robot can go on

B. Object Oriented Petri Nets in the Design Method

Methods that have been presented in Section V-A allow for
use case description but their validation can be problematic
because of impossibility to check models either by formal
means or by simulation. Of course, there are tools and meth-
ods [4], [5] that allow to simulate modified UML diagrams.
Nevertheless, there is still a strict border between design and
implementation. On the other hand, if the formalisms allowing
to design as well as to implement the system is used, we
needn’t care about borders and problems that can arise during
a transition from design to implementation, and vice versa.
One of such formalisms, which can be used to model use case
(activity) behavior is the formalism of Object-Oriented Petri
Nets (OOPN).

Let us continue in the example of Execute Scenario. The
activity net ExecuteScenario of the use case Execute Scenario,
which is described using OOPN, is shown in Figure 6.

walking

r isCloseToObstacle.

t1

r stop.

r turnRight.

r

r

turnRight

r isCloseToObstacle.

t2

r turnRight.

r turnRight.

r

r isClearRoad.

t11

r

r isCloseToObstacle.

t3 stopped

r isClearRoad.

t12 r

r

r go.

r go.

r

turnRound

r

r

r

Figure 6. Activity Net ExecuteScenario.

The activity net contains elements similar to the statechart
model shown in Figure 5. States are modeled by places
walking, turnRight, turnRound, and stopped with
the same meaning. Nevertheless, states turnRight and
turnRound are only temporal and the activity goes through
these ones to the one of stable states walking or stopped.

The control algorithm is represented by a sequence of
transitions whereas each transition is conditioned by an event
representing a change on robot’s state. For instance, the
transition t1 has a condition isCloseToObstacle testing if

269

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the robot is close to obstacle. If this condition is evaluated
true, the transition t1 is fired and appropriate commands are
performed—stop and turnRight the robot. This, the transition
t1 models a behavior described in point 3.1 in Figure 4.

A short remark to OOPN notation. To record a sequence of
transitions (i.e., events that happened in one scenario), we will
type <tName1,tName2,...>. For instance, <t1,t2,t3>
means, that the robot came at an obstacle and there is no
possibility to go—the robot stops.

VI. SYSTEM BEHAVIOR MODELING

As it was mentioned in Section IV, the modeling process
is split up into three basic phases of identification of model
elements, modeling the system architecture, and modeling
the system behavior. The system behavior modeling will be
presented in this section. It will be demonstrated on the
previously instroduced case study.

A. Modeling phases cohesion

The important feature is the modeling phases cohesion.
Phases are not separated but should be being provided si-
multaneously. It means, that model elements are finding and
improving continuously.

If we analyze the activity net ExecuteScenario shown in
Figure 6, we can see, that isCloseToObstacle, isClearRoad,
stop, go, and turnRight are commands. Of course, these
commands have to have their receiver communicating with
a real (or simulated) robot—so, by specification of use case
behavior, we have identified a new role in the system—the
Robot. It also implies that the activity has to be linked to a
role in the system—this role is stored in places and serves
even as a state token. In our example, the role supplies an
information about the robot and allows to send commands to
it.

Figure 7. Use Cases of designed system.

So far, we did not take a care about two parts of the
scenario—start and stop the robot (see points 1 of basic
sequence and point 1 of alternative sequence in Figure 4).

Because the robot behavior is an autonomous activity, and use
cases we can make a decision to model start and stop as two
separated activities. The updated model of use cases are shown
in Figure 7. It introduces new role Robot and new use cases
Start Scenario and Stop Scenario.

B. Activity Nets

We have presented the activity net ExecuteScenario (see
Figure 6). The robot can be in two stable states—walking or
stopped (there is no possibility to walk). Each such a state
is represented by appropriate place, i.e., places walking

and stopped. We have to be able to test activity states,
therefore the predicates are generated for each such a place—
the synchronous port isStopped and the negative predicate
isNotStopped for the state stopped and similar pred-
icates for the state walking. Test predicates are shown in
Figure 8.

walking

stopped

isStopped isNotStoppedr r

isWalking r isNotWalkingr

Figure 8. Activity Net Scenario – predicates.

Uses cases Start Scenario and Stop Scenario have to be
modeled too. These use cases can be modeled in two ways—
in a special activity net or in a method of existing activity
net. Because these use cases work only with the activity
net ExecuteScenario, how deduced from use case diagram in
Figure 7, we can model them as methods. So, we have two
activities that are using onother activity what is consistent with
the layered architecture (Figure 2).

start

p1

return

self isWalking r go.

false true

stopped

walking

r

r

Figure 9. Activity Net ExecuteScenario – a method net start.

The use case Start Scenario is modeled by method net
start shown in Figure 9. A decision what has to be done
is based on the activity state—if the state is walking (tested
by synchronous port isWalking), the method does nothing;
if the state is stopped, it starts the robot’s walk, i.e., sends a
message go and moves the state token role from the place
stopped to the place walking. The state stopped is not
tested by a predicate, but the transition is directly conditioned
by the place stopped because it will process the state token
role in the case of success.

270

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

stop

p1

return

self isStopped r stop.

false true

stopped

walking

r

r

Figure 10. Activity Net ExecuteScenario – a method net stop.

The use case Stop Scenario is modeled by method net
stop shown in Figure 10. It is similar to the method start
having following differences. If the state is stopped, it does
nothing. If the state is walking, it sends a message go and
moves the state token role from the place walking to the
place stopped.

constructor forRole: r

r

r

self

return

r role

stoppedr

Figure 11. Activity Net Scenario – the constructor.

Each activity net is instantiated for just one role, so that the
role is initialized by means of constructor as shown in Figure
11. The constructor has one parameter—the role the activity
net is assigned to. So each activity has a place storing the
role object; the presented constructor has the same structure
for every activity nets. In addition, the constructor initializes
activity—in our example, it puts a state token role to the place
stopped. After initialization, the robot is in the state stopped
(the robot stops).

C. Role Nets

A possible model of the role Robot is shown in Figure
12. The role checks actual distance of robot to an obstacle
each 10 time units (the transition t1) and offers information
about robot’s position by means of predicates isClearRoad and
isCloseToObstacle. To get information about the distance, the
role asks its subject by sending a message getDistance (the
transition t2).

Much like for the activity nets, each role net is initialized
by means of the constructor having one parameter—the subject
the role net is assigned to. Each activity has a place subject
storing the subject. The constructor is shown in Figure 13
including the method turnRight—it only delegates the
message to the subject. Other methods (go and stop) are
modeled in similar way and are not shown.

Each role has its own set of activities it can participate
in. The activity nets should be created by asking roles, not

subject

self delay: 10

d := s getDistance.

100

isCloseToObstacle

distanceToObstacle

d <= 10.
d

d

isClearRoad

d > 10.

s

d

oldD

p1

p2

t1

t2

Figure 12. Object net of the role Robot.

constructor forSubject: s

s

s

self

return

s

subject

s turnRight.

turnRight

return

self

s

Figure 13. Methods of the role Robot.

directly. For instance, the role Robot has only one activity net
ExecuteScenario, so that there is the method createActivity,
which creates a new instance of activity net ExecuteScenario.
The method is shown in Figure 14.

a := ExecuteScenario forRole: self.

createActivity

return

a

Figure 14. Activity creation of the role Robot.

D. Subject Models

Each role needs to have its subject, i.e., the object defining
information about a subject, which can have different roles in
the system. The subject is usually modeled as an object con-
taining efficient data directly or as an interface to a database,
another system or remote object. The subject can access the
real system or can simulate the real system for the testing
reason. The subject can be described by the same formalism as
activity nets (i.e., by OOPN) or implemented in any language
present in the product environment.

It this section, we will demonstrate usign OOPN for
subject modeling. The subject for the role Robot is named
RobotDevice and is shown in Figure 15. It represents simulated
interface to the real robot in the system. The current distance to

271

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(1,100) (2,40)

 (3,0) (4,40)

 (5,200) (6,0)

d > 2

nd := d - 2.

(i,d)

(i,nd)

#g

self hold: 1.#s

(1,20)
i <= 6

ni := i + 1.

i > 6

(i, d)

(i,old)

(ni,d)

i

turnRight

d <= 2

d

p1

state

distance

return

t1

t2

t3 p2

listDistances

Figure 15. The subject RobotDevice – implementation with OOPN.

an obstacle is stored in the place distance. If the robot is
instructed to go (i.e., the symbol #g is stored in the place
state), the distance is decreased each one time clock (a
sequence <t1,t2>). If the distance is less than 2 (it simulates
the robot is by an obstacle), the distance does not change (a
sequence <t1,t3>).

20

100

200
40

Figure 16. Labyrinth simulated by the subject RobotDevice.

The simulated labyrinth the robot is moving in is shown in
Figure 16. Simulated robot device contains a list of distances
to obstacles (the place listDistances), which are subsequently
set if the method turnRight is performed. First distance is 20,
then it subsequently changes to following values:

• 100 – an item (1,100); the robot turns right, there
is a free road 100 units long

• 40 – an item (2,40); the robot turns right, there is
a free road 40 units long

• 0 – an item (3,0); the robot turns right, there is an
obstacle (a wall)

• 40 – an item (4,40); the robot turns right, there
is a road the robot went through (40 units long); in
fact, this particular information will not be taken into
account, because the previous distance was 0 and the
activity net ExecuteScenario performs an operation
turn round, which is implemented by calling turnRight
twice—the item (4,40) will be skipped (see the
activity net ExecuteScenario in Section V-B)

• 200 – an item (5,200); the robot turns right, there
is a free road 200 units long

• 0 – an item (6,0); the robot turns right, there is an
obstacle; any other actions invoke no changes

#s

(1,20)
(i,d)

getDistance

state

distance

return

go #g

old

#s

old

return

stop

d

return

Figure 17. The subject RobotDevice – implementation with OOPN.

Methods go, stop, and getDistance is shown in
Figure 17. The method go, respectively stop, puts a sym-
bol #g, respectively #s, to the place state. The method
getDistance gets a value from the place distance.

VII. ARCHITECTURE MODELING

The way how to model system elements influences the
system architecture. Basic architecture is based on pure ob-
ject oriented approach consisting of classes and relationships
between classes. DEVS architecture is based on components
that are connected using the formalism of DEVS.

A. Basic Architecture Modeling

Figure 18 shows the classes of basic architecture of our
example. Classes from different levels are identified with
appropriate stereotypes—Activity Net, Role, and Subject. Each
class can be modeled in different formalism, therefore the
stereotypes of model formalism are introduced too. In this
example, classes are modeled only using Petri nets, so that
the stereotype PN is used.

Figure 18. Basic architecture of the case study.

The example architecture consists of the subject Robot-
Device, its role Robot and its activity Scenario, that have

272

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

been modeled by OOPN (see the stereotype PN). RobotDevice
represents an interface to the simulated robot and Robot
represents a role, which the robot has in the system. Each
method is labeled with one of stereotypes C (constructor), Act
(activity), and T (testing) determining a realization of methods
(it was introduced in [18]).

B. Combination of Formalisms of DEVS and OOPN

Discrete Event System Specification (DEVS) [19] is a
formalism, which can represent any system whose input/output
behavior can be described as sequence of events. The atomic
DEVS model is specified as a structure M containing sets
of states S, input and output event values X and Y , internal
transition function δint, external transition function δext, output
function λ, and time advance function ta. These functions
describe behavior of the component.

This way we can describe atomic models. Atomic models
can be coupled together to form a coupled model CM . The
later model can itself be employed as a component of a larger
model. This way the DEVS formalism brings a hierarchical
component architecture. Sets S, X , Y are obviously specified
as structured sets. It allows to use multiple variables for
specification of a state; we can use a concept of input and
output ports for input and output events specification, as well
as for coupling specification. Let us have the structured set
X = (VX , X1 × · · · × Xn), where VX is an ordered set of
n variables and X1 × · · · × Xn denotes a value for each
member from the set VX . We can write the structured set
as X = {(vx

1
, . . . , vxn)|v

x
1
∈ X1, . . . , v

x
n ∈ Xn)}. Members

vx
1
, . . . , vxn are called input ports, resp. output ports for the

set of output events Y . VX(vx
1
), resp. VY (v

y
1
), then denotes

a value of the input port vx
1
, resp. output port v

y
1
. In another

words, components are connected by means of ports and event
values are carried via these ports.

Figure 19. DEVS architecture of the case study – the model DEVSRobot.

DEVS components can be described by any formalisms
with respecting DEVS functions. Thus, DEVS component can
wrap another kind of formalism, so that each such a formalism
is interpreted by its simulator and simulators communicate
each other by means of a compatible interface. Let MPN =
(M,Π,mapinp,mapout) be a DEVS component M , which
wraps an OOPN model Π. The model Π defines an initial class
c0, which is instantiated immediately the component MPN is
created. Functions mapinp and mapout map ports and places

of the object net of the initial class c0. The mapped places
then serve as input or output ports of the component.

C. DEVS Architecture Modeling

The model can be split up into components in accordance
to their responsibility. For instance, the system of our case
study has two basic parts (i.e., components)—the model of
behavior (activity nets and roles) and the model of real robot
(subjects; the subject can provide a communication channel
to a real robot or can simulate it). Components can be
modeled using means of UML, i.e., packages. In that case, the
component interface is provided by classes themselves, so that
the replacement of components is complicated. Formalisms
such as DEVS define a stable interface allowing to exchange
components in a very simple way, because components are
connected only by means of ports. It is one of reasons we
have made a decision to use DEVS formalism to describe the
system architecture.

answer

self delay: 10

100

isCloseToObstacle

distanceToObstacle

d <= 10.
d

d

isClearRoad

d > 10.

(#distance, d)

d

oldD

#getDistance

request

p1

t1

t2

Figure 20. The role Robot – implementation for DEVS architecture.

The DEVS architecture of presented case study contains
two components Behavior and RobotDevice as shown in Figure
19. The component Behavior describes the system behavior,
as presented in a case of basic architecture. The component
RobotDevice describes the robot subject and can be modeled
by OOPN, programming language, or any other supported
formalism. Components are connected via ports request and
answer. Both components are coupled the model called DE-
VSRobot.

answer

request

r := self go.

t2

r := self getDistance.

t1

#getDistance

(#distance,r)

#go

(#go,r)

...

Figure 21. Extension of the subject model RobotDevice for the DEVS
architecture reason.

273

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Because the architecture changes, we have to modify
classes describing system behavior in the component Behavior.
This component encapsulates OOPN model and the initial class
has to be defined. Because the interface between components
serves for communication to the subject of robot, and subjects
can communicate to roles, the Robot class will be the initial
one. It means, that ports request and answer are mapped
to places of the Robot object net. This modified object net
is shown in Figure 20. Place named request, resp. answer,
corresponds to output port request, resp. input port answer.

variables : r← nil

d← 20

dists[]← array of (100, 40, 0, 40, 200, 0)

i← 0

go← false

getDist() : return (#distance, d)

turnR() : i < 6 : i← i+ 1

d← dists[i]

go() : go← true

stop() : go← false

Figure 22. Internal data and functions of the component RobotDevice.

The component RobotDevice can be described by OOPN.
The posible model results from the class RobotDevice shown
in Figures 15 and 17. This class is an initial class of the
component and adds model elements to the object net as
shown in Figure 21. It gets a request string from its input
port request, asks itself for answer, and puts the answer to its
output port answer.

Another way is to describe the component RobotDevices
as an atomic DEVS. First, the internal data and functions
are defined as shown in Figure 22. They correspond to the
methods and data stored in places of basic model of the subject
RobotDevice shown in Figures 15 and 17.

DEVS functions are defined as shown in Figure 23. They
use internal data and functions. If an external event occurs,
the function δext is performed; it puts a value from input port
request to the variable r. Time advance function ta is defined
as follows: if there is a request (r 6= nil), then internal and
output functions will be called immediatelly (ta← 0); if there
is no request and the variable go is true, then internal and
output functions will be called in 1 time unit (ta ← 1); if
there is no request and the variable go is false, then nothing
happen (ta ← ∞). Output function λ calls internal functions
depending on the request r. If called functions return any value
a, this value a is put to the output port answer. If the internal
transition function δint is called and there is no request, it
decrease the distance to an obstacle (d← d− 2). In any case,
it destroys an information about processed request (r ← nil).

VIII. SOFTWARE DEPLOYMENT WITH MODELS

This section will demonstrate possibilities of keeping mod-
els in the deployed system. The goal is to use the same

δext : r ← VX(request)

λ : r = #getDistance : a← getDist()

r = #turnRight : a← turnR()

r = #go : a← go()

r = #stop : a← stop()

a 6= nil : VY (answer)← a

δint : r = nil & d > 2 : d← d− 2

r ← nil

ta :

0, r 6= nil

1, go & r = nil

∞, not go & r = nil

Figure 23. DEVS functions of the component RobotDevice.

formalism for system modeling as well as for system im-
plementation and deployment. It is based on the application
framework allowing to interoperability of models and product
environment.

A. Application Framework

The application framework has to fulfil two basic require-
ments. First, to link models and product environment. Second,
to work with models in simulations.

First, the models described by means of OOPN can co-
operate with objects of the product environment (product
objects). Since the developed framework [20] is implemented
in Smalltalk [21], OOPN objects can send messages to
Smalltalk objects, and OOPN objects can be directly available
in Smalltalk. There are different levels at which the prod-
uct objects can send messages to OOPN objects—domain,
predicate, and synchronous port levels. Domain level allows
Smalltalk objects to send messages OOPN objects as though
they were Smalltalk objects. Predicate level allows to test
predicates and port level allows to perform synchronous ports.
Each OOPN object offers special meta-protocol allowing to
work at presented levels (it will be shown in the text, later
on).

Second, the framework allows to execute models in differ-
ent simulation modes—simulation in model time, simulation in
real time, and simulation in combined time. Each simulation
mode is advisable for another kind of usage. Model time is
intended for basic design, testing, and analysis of system under
development and assumes all components are described by
formal models. Combined time assumes that the system is
descibed by formal models as well as implemented in product
environment, i.e., selected simulated components are replaced
by their real implementation, whereas simulated components
work in model time and real components work in real time.
This mode allows to experiment with simulation models in
real conditions. Real time assumes that all components (sim-
ulated as well as real) work in real time and is intended for
hardware/software-in-the-loop simulation and system deploy-
ment.

274

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Implementation with Basic Architecture

We can exchange the simulated subject by an interface to
the real robot. It is very simple—we only create instances
of appropriate classes and do not care about used formalism.
Figure 24 of Smalltalk code shows creating a subject as an
instance of a Smalltalk class. This subject cooperates with a
role and an activity modeled by OOPN. The object Repos
represents the storage of all classes and simulations using
OOPN or DEVS formalisms.

cAct := Repos componentNamed:

’ExecuteScenario’.

cRole := Repos componentNamed: ’Robot’.

subj := RobotDevice new.

role := cRole forSubject: subjR.

actS := role createActivity.

actS start.

Figure 24. Accessing OOPN objects from Smalltalk.

Now, we demonstrate an accessing OOPN objects from
product environment of Smalltalk. We send a command go

to start walking—the message passing is provided in the
standard form. To test an object state, the predicates should be
used. Since they are not ordinary methods, we have to access
them in a special way. We obtain a special meta-protocol by
sending a message asPredicate and then call synchronous
port or negative predicate in the standard form of message
passing. The result represents a state of a called port/predicate,
which has been tested. In our example, we test the predicate
isCloseToObstacle and if the result is true, then we stop
robot’s walking by sending a message stop. The example is
shown in Figure 25.

role go.

r := role asPredicate isCloseToObstacle.

r ifTrue: [role stop].

Figure 25. Message passing and predicate testing.

Of course, proposed solution is not sufficient for our case,
because we need to test this condition until it becomes true.
Therefore, we can use one of following ways—to use waiting
for specified condition or to define a listener. The first way
is shown in Figure 26. We simply use a message waitFor:
from the meta-protocol, which blocks until the specified con-
dition becomes true, i.e., the port isCloseToObstacle
becomes fireable.

role go.

role asPredicate waitFor: #isCloseToObstacle.

role stop.

Figure 26. Waiting for a condition.

Second way is shown in Figure 27. It uses a message
listener:for: from meta-protocol to define a listener,
which is activated if the condition becomes true, i.e., the port
becomes fireable.

role go.

role asPredicate

listener: self

for: #isCloseToObstacle.

Figure 27. Setting a listener.

The activation of listener means that the special message
conditionSatisfied: is sent to object, which is speci-
fied as a first argument. The example of its implementation is
shown in Figure 28.

method conditionSatisfied: aCond

(aCond == #isCloseToObstacle)

ifTrue: [role stop].

Figure 28. Listener implementation.

C. Implementation with DEVS Architecture

The example of accessing DEVS components and their
object interface is shown in Figure 29. First, we get the DEVS
model named DEVSRobot, which is based on architecture from
Figure 19. Second, we obtain DEVS component Behavior,
which is able to communicate through its ports. Since this
component is described by OOPN, it is possible to use object
interface of its initial object (an instance of the class Robot)
too. To get the object interface, we send a special message
objectInterface from the component meta-object proto-
col.

s1 := Repos componentNamed: ’DEVSRobot’.

cB := c1 componentNamed: ’Behavior’.

role := cB objectInterface.

Figure 29. Obtaining object interface to the inital object.

The variable role referees an instance of initial class
Robot of the component Behavior. The other manipulation is
the same as in the case of the basic architecture. For instance,
to wait for the condition isCloseToObstacle a sequence of
messages shown in Figure 26 can be used. It blocks until the
port isCloseToObstacle becomes fireable and then stops
the robot.

IX. CONCLUSION AND FUTURE WORK

The paper dealt with an approach to system development
and deployment using formal models as a basic design, anal-
ysis and programming means combining simulated and real
components. Combination of two formalisms has been taken
into account—Object Oriented Petri Nets (OOPN) for behavior
description and Discrete Event System Specification (DEVS),
which can be used for architecture description as well as
behavior description. The main advantage of that approach
is no need for code generation and further investigation of
deployed systems using the same formal models. The process
of such an development was demonstrated on the case study
of simple robotic system.

The proposed approach has one main disadvantage—usage
of application framework, which interprets formal models di-
rectly demands of increased requirements on memory size and
system performance. The future research will aim at efficient
representation of choosed formal models and interoperability
with another product environment. The application framework
will be adapted to new conditions having lesser requirement
for resources.

275

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

This work has been supported by the European Regional
Development Fund in the IT4Innovations Centre of Excellence
project (CZ.1.05/1.1.00/02.0070), by BUT FIT grant FIT-S-11-
1, and by the Ministry of Education, Youth and Sports under
the contract MSM 0021630528.

REFERENCES

[1] R. Kočı́ and V. Janoušek, “Object oriented Petri nets in software devel-
opment and deployment,” in ICSEA 2013, The Eighth International
Conference on Software Engineering Advances. Xpert Publishing
Services, 2013, pp. 485–490.

[2] S. Beydeda, M. Book, and V. Gruhn, Model-Driven Software Develop-
ment. Springer-Verlag, 2005.

[3] M. Broy, J. Gruenbauer, D. Harel, and T. Hoare, Eds., Engineering
Theories of Software Intensive Systems: Proceedings of the NATO
Advanced Study Institute. Kluwer Academic Publishers, 2005.

[4] C. Raistrick, P. Francis, J. Wright, C. Carter, and I. Wilkie, Model
Driven Architecture with Executable UML. Cambridge University
Press, 2004.

[5] D. S. Frankel, Model Driven Architecture: Applying MDA to Enterprise
Computing, ser. 17 (MS-17). John Wiley & Sons, 2003.

[6] R. Kočı́ and V. Janoušek, “System design with Object oriented Petri
nets formalism,” in The Third International Conference on Software
Engineering Advances Proceedings ICSEA 2008. IEEE Computer
Society, 2008, pp. 421–426.

[7] R. Kočı́ and V. Janoušek, “OOPN and DEVS formalisms for system
specification and analysis,” in The Fifth International Conference on
Software Engineering Advances. IEEE Computer Society, 2010, pp.
305–310.

[8] M. Češka, V. Janoušek, and T. Vojnar, PNtalk — a computerized tool
for Object oriented Petri nets modelling, ser. Lecture Notes in Computer
Science. Springer Verlag, 1997, vol. 1333, pp. 591–610.

[9] R. Kočı́ and V. Janoušek, Simulation Based Design of Control Systems
Using DEVS and Petri Nets, ser. Lecture Notes in Computer Science.
Springer Verlag, 2009, vol. 5717, pp. 849–856.

[10] J. L. Fernandez, R. Sanz, E. Paz, and C. Alonso, “Using hierarchical
binary Petri nets to build robust mobile robot applications: RoboGraph,”
in IEEE International Conference on Robotics and Automation, 2008,
pp. 1372–1377.

[11] C. Rust, F. Stappert, and R. Kunnemeyer, “From Timed Petri nets to
interrupt-driven embedded control software,” in International Confer-
ence on Computer, Communication and Control Technologies (CCCT
2003), 2003.

[12] O. Bayo-Puxan, J. Rafecas-Sabate, O. Gomis-Bellmunt, and J. Bergas-
Jane, “A GRAFCET-compiler methodology for C-programmed micro-
controllers, In Assembly Automation,” Assembly Automation, vol. 28,
no. 1, 2008, pp. 55–60.

[13] R. Valk, “Petri nets as token objects: an introduction to Elementary
object nets.” in Jorg Desel, Manuel Silva (eds.): Application and Theory
of Petri Nets; Lecture Notes in Computer Science, vol. 120. Springer-
Verlag, 1998.

[14] D. Moldt, “OOA and Petri nets for system specification,” in Object-
Oriented Programming and Models of Concurrency. Italy, 1995.

[15] L. Cabac, M. Duvigneau, D. Moldt, and H. Rölke, “Modeling dynamic
architectures using nets-within-nets,” in Applications and Theory of
Petri Nets 2005. 26th International Conference, ICATPN 2005, Miami,
USA, 2005, pp. 148–167.

[16] V. Janoušek and R. Kočı́, “PNtalk: concurrent language with MOP,”
in Proceedings of the CS&P’2003 Workshop. Warsaw University,
Warsawa, PL, 2003.

[17] R. Kočı́ and V. Janoušek, “Modeling and simulation-based design
using Object-oriented Petri nets: a case study,” in Proceeding of the
International Workshop on Petri Nets and Software Engineering 2012,
vol. 851. CEUR, 2012, pp. 253–266.

[18] R. Kočı́ and V. Janoušek, “Specification of UML classes by Object ori-
ented Petri nets,” in ICSEA 2012, The Seventh International Conference
on Software Engineering Advances. Xpert Publishing Services, 2012,
pp. 361–366.

[19] B. Zeigler, T. Kim, and H. Praehofer, Theory of Modeling and Simu-
lation. Academic Press, Inc., London, 2000.

[20] R. Kočı́, “PNtalk system,” http://perchta.fit.vutbr.cz/pntalk2k, 2004.
[Online]. Available: http://perchta.fit.vutbr.cz/pntalk2k

[21] A. GoldBerk and D. Robson, Smalltalk 80: The Language. Addison-
Wesley, 1989.

276

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

