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Abstract—The development of concepts derived from the
generic approach to solving the problem of the shortest path
resulted in numerous and various algorithms that appeared
over the past decades. The studies on the most basic operation
aimed at the determination of the shortest path between two
given points in a graph (in other words, often a network)
have resulted in sophisticated solutions designed for more and
more demanding applications. Those include finding the sets
of paths with the shortest distance between all pairs of nodes
or searching for a shortest path tree. The aim of the present
article is to give the reader an introduction to the problem of
the shortest path and a detailed review of two groups of selected
algorithms designed to solve particular problems. In the study
described herein, different algorithms have been examined for
their efficacy in their operation in directed graphs of different
type represented in a well-defined data structure. The empirical
simulation-based analysis proves that the performance varies
among algorithms under investigation and allows to suggest,
which methods ought to be used to solve specific variants of the
shortest path problem and which algorithms should be avoided
or used with caution.

Keywords-shortest path; algorithms; review; performance;
analysis

I. INTRODUCTION

This article is an extended version of a conference paper
presented at AICT 2013, The Ninth Advanced International
Conference on Telecommunications [1]. It introduces numer-
ous additions, such as, more information on the problem
of the shortest path, a detailed description of approaches
and algorithms being tested, and a discussion of new sim-
ulation results. The foundations for the present review and
performance analysis of selected algorithms are given by the
research studies on shortest path problem solving using Ant
Colony Optimization (ACO) metaheuristic approach [2]. It
is just in the initial stage in the assessment of the potential
in the applications of the ACO algorithms that the authors
decided to start an in-depth analysis of those algorithms that
represented a more traditional approach to the problem. As
a result of the following investigations, relevant tests have
been carried out. They are presented and compared in this
article. It should be stressed that both well-known [3] and
less commonly used algorithms are presented as long as they
provide a possibility of finding the optimal solution having

first satisfied some pre-defined initial requirements. Heuristic
ACO algorithms have not been included in the presented
evaluation for the simple reason that their operation does
not, in fact, guarantee finding a solution that would always
be optimal [4]. Moreover, the results obtained on the basis
of ACO can be strongly dependent on the structure of the
graph and there is no guarantee that any solution of any kind
would be found at all [5].

The contents of the subsequent sections are arranged as
follows. Section III shows two distinct approaches to the
definition of the problem of the shortest path, lists some of
its applications, and introduces the key assumptions, which
shall be applied. Section IV is aimed at presenting the
general types of shortest path problem solving algorithms.
A detailed description and discussion of the two groups of
algorithms that have been put to the analysis are presented
in Section V. In addition, the relevance to and relationship
with the shortest path tree is discussed. The data structure
that represents the graphs under consideration is discussed
in Section VI. Then, in Section VII, the graphs in which the
simulations were carried out are described. The description
is followed by Section VIII that will focus on the presen-
tation and discussion of the results of the study. Finally, in
Section IX, the article is summed up with conclusions.

II. RELATED WORK

In the process of careful investigation of publications
related to the shortest path problem, numerous books and
papers have been studied. The bulk of comparison papers are
either directed at specific aspects and applications of the al-
gorithms [6]–[9] or are focused on comparing new concepts
with more classical methods [10], [11]. Some papers are
concerned with asymptotic computational complexity [12]–
[15], while other works are aimed at empirical computational
complexity analysis of a number of algorithms based on
implementation and simulation [7], [16]–[19]. In this paper,
we decided to follow the latter approach to build this article
upon experimental findings with respect to practical perfor-
mance of a range of 12 closed-form complexity algorithms
for solving shortest path problems that have not been com-
pared before. The introduced homogeneous data structure
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representing graphs under scrutiny is carefully discussed.
Owing to the well-defined data structure, the results can be
directly compared, which is critical in conclusive evaluation
of the efficiency.

III. PROBLEM OF THE SHORTEST PATH

For the directed graph G = (N ,A), where N is the set of
nodes (vertices) and A is the set of arcs (edges), we assign
the cost aij to each of its edges (i, j) ∈ A (alternatively,
this cost can be also called the length). We denote the
biggest absolute value of an edge cost by C [see (1)]. For
the resulting path (n1, n2, . . . , nk), its length aP can be
expressed by (2).

C = max
(i,j)∈A

aij (1)

aP =

k−1∑
i=1

anini+1 (2)

A path is called the shortest path if it has the shortest length
from among all paths that begin and terminate in given
vertices. The shortest path problem involves finding paths
with shortest lengths between selected pairs of vertices. The
initial (start) vertex will be designated as s, while the end
(goal) vertex as t.

The problem of the shortest path can be also expressed
differently [20]. If we go back to the original definition
and define aij as the cost (and not the length), the problem
can be reduced in its essence to a transmission of one flow
unit between a pair of vertices as cheaply as it is possible.
The problem is defined as follows: minimize (3a) limited
by (3b) and (3c). ∑

(i,j)∈A

aijxij (3a)

0 ≤ xij , ∀ (i, j) ∈ A (3b)

∑
{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji =


1, for i = s

−1, for i = t

0, otherwise
(3c)

This makes it possible to formulate the shortest path
problem by defining a linear function that is analogous to
the function that defines the minimum cost flow problem. To
illustrate the comparison drawn above, let us assign a flow
vector x that is described by

xij =

{
1, for (i, j) ∈ P

0, otherwise
(4)

to a randomly selected path P from s to t.
Then x can be a solution to the problem (3), while the

cost x is equal to the path length P . Hence, if vector x in
the representation of formula (4) is the optimum solution to
the problem (3), then the relevant corresponding path P is
the shortest path.

A number of basic variants of the shortest path problem
can be distinguished [21]:
• finding the shortest path between a pair of vertices

For a given pair of vertices s and t the shortest path
between them should be found. It should be mentioned
here that so far no algorithm is known that solves this
problem asymptotically in its worst case better than the
best algorithm for the problem with one initial vertex.

• finding the shortest paths with single initial vertex
For a given vertex s the shortest path between the vertex
and each of the vertices i ∈ N is to be found.

• finding the shortest paths with single end vertex
This is a reverse of the previous variant — the shortest
path from each of the vertices i ∈ N to a given vertex
t is to be found. By reversing each of the edges of the
graph, the previous problem is obtained.

• finding the shortest paths between all pairs of vertices
The shortest path between each pair of the vertices i
and j that belong to N is to be found. A solution to this
problem can be obtained by a solution of the shortest
path problem with one initial vertex for each of the
vertices in the graph.

In solving the problem of the shortest path we shall
apply the following assumptions (which, in the case of some
specific algorithms, may not be required).
• The graph is a directed graph. In the case of the

undirected graph with non-negative weights, it is easy
to transform it into a directed graph.

• The graph does not include negative cycles. The prob-
lem of the shortest path with negative cycles is
NP-hard (impossible to be presented using a polyno-
mial algorithm).

• There is a directed path between the pairs of vertices
under consideration.

• Costs of the edge aij are integers (this requirement
applies to only some of the algorithms). In the case of
the real costs of the edge, we can convert summations
to integers multiplying them by an appropriately high
number. Imaginary values would introduce unnecessary
complications with their representations in computer-
mediated activities.

The solution to the problem of the shortest path finds
its application in a number of areas such as transportation
or routing in communication networks [3], [22], [23] and
is often related to searching for the shortest path tree in a
graph.

It can be proved that the shortest paths from one node of
a graph to all of the remaining nodes create a shortest paths
tree [21], [25]. A characteristic feature of this tree is the fact
that its root is formed from the initial (source) vertex, all of
its edges are directed in the direction opposite to the vertex,
and each path that can be created from the initial vertex to
any other vertex is the shortest path to this vertex.
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IV. TYPES OF SHORTEST PATH PROBLEM SOLVING
ALGORITHMS

The shortest path algorithms are characterized by certain
common features — they are iterative, while their operation
is based on assigning to particular vertices distance labels
that are currently the best distances from the beginning of
the path that is to be found. During the performance of
these algorithms a set of valid vertices that can be taken into
consideration is maintained. The method for a representation
of this set may vary depending on a particular algorithm
and can be representative for it. The difference in these
algorithms is based on the method of updating the distance
labels and a selection of a vertex expected to leave the
mentioned set. Therefore, we can divide the shortest path
algorithms into two groups [24]:
• label-setting algorithms

This type of algorithms is characterized by a permanent
setting of the distance label of one of the vertices in
each iteration. This is equivalent to a single removal of
a given vertex from the set of vertices under scrutiny.
The most computationally complex part in these algo-
rithms is mainly a selection, in each of the iterations, of
a vertex with the lowest distance label from among the
vertices that belong to the set of vertices under scrutiny.
Algorithms from this group can be additionally applied
only to acyclic graphs with defined (e.g., integer) edge
lengths, or in the case when edges have non-negative
lengths.

• label-correcting algorithms
Unlike the algorithms of the previous group, algorithms
of the type label-correcting treat all distance labels of
vertices as temporary until the last iteration, whereupon
all labels are set to the optimum value. This is translated
then into a multiple addition of a vertex to the set of
vertices under consideration and its multiple removal
from the set. Due to the above, a choice of a vertex in
each of the iterations is less computationally complex.
Algorithms of this type can be used to solve all classes
of the shortest path problem, including those with
negative lengths of edges.

Label-setting algorithms can be viewed as a particular
case of label-correcting algorithms. This means that Label-
correcting algorithms can be used for solving more general
cases of the problem. Label-setting algorithms for the case of
non-negative lengths (costs) of edges have lower pessimistic
complexity, which does not necessarily have to translate into
better expected (average) complexity. All discussed label-
correcting algorithms achieve identical pessimistic com-
putational complexity. Differences in effectiveness of the
algorithms can be seen in their practical applications or with
particular graphs.

By taking into consideration practical applications of the
algorithms under study, a numbers of factors are in favour

of label-correcting algorithms. These algorithms are more
elastic and, in consequence, can be better adjusted to making
use of additional initial data for a given graph. They can be
also better adjusted to a problem in providing a solution to
which they have been used — it is even possible in some
cases to make distance labels set only once (for one vertex to
be added and removed from the set of considered vertices).
This equalizes the most important advantage of label-setting
algorithms.

In practice, graphs that have edges with negative costs are
rare, while for these cases good label-correcting algorithms
have better expected complexity than label-setting algo-
rithms. It is so because, beside the required O(A) number
of operations for the algorithms of both types that is needed
to check each of the edges at least once, the label-setting
algorithms require approximately additional operations with
their number proportional to N , while the number of op-
erations of additional label-correcting algorithms approxi-
mately increases linearly with A. For rare graphs the ratio
of additional operations of both groups of algorithms is
much favourable for label-correcting algorithms, whereas
for dense graphs, for label-setting algorithms.

V. ALGORITHMS FOR SOLVING SHORTEST PATH
PROBLEMS

The following subsections of this section focus on the
algorithms for a determination of the shortest paths between
a given single initial vertex and all the remaining vertices
of the graph.

The algorithms solving shortest path problems that are
briefly discussed in the following subsections have been
evaluated through efficiency analysis. Each of the algorithms
has particular features that eventually lead to their differ-
ences in their properties and performance. On account of
their possible applications, the algorithms have been, in turn,
divided into two categories.

A. Single-Source Shortest Paths problem

The following subsections of this section focus on algo-
rithms for a determination of the shortest paths between a
given single initial vertex and all the remaining vertices of
the graph.

1) Generic algorithm: The operation of the generic algo-
rithm [20] is based on iterative checking of edges from the
vertex under consideration i and on label setting for vertex
j, in which a given edge terminates, to dj = di + aij , in
the case when dj > di + aij . To store the vertices that are
to be checked, the list V is used, called candidates list. The
way vertices are stored in this list, as well as the method
determining the addition and the retrieval of vertices to and
from it, is frequently the major factor that distinguishes
individual algorithms under consideration. In the case of the
generic algorithm, the candidates list is a FIFO queue in
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which operations of additions and retrieval of a vertex to
the end of it or from its head, respectively, are performed.

The algorithm starts to check from the initial vertex s,
with initial conditions defined by (5).

V = {s}, ds = 0

di =∞, ∀ i 6= s
(5)

The algorithm checks individual edges of the initial vertex
and, if an appropriate condition is satisfied, sets the labels
of the vertex in which a given edge terminates, adding it to
the candidates list if it is not already there. The procedure
is then repeated until the list of candidates is empty.

During the performance of the algorithm labels are mono-
tonically non-increasing and if di < ∞, then vertex i has
appeared on the candidates list V at least once.

2) Dijkstra’s algorithm: Dijkstra’s algorithm is presum-
ably the best known algorithm for finding the shortest path
in the directed graph [26]. The method is an algorithm of
the type label-setting, which means that once considered
vertex does not appear again on the list of candidates, while
its label, once it is set, is ultimate and denotes the shortest
distance from the initial vertex to this vertex.

The initial conditions are illustrated in (5), while an
additional constraint is non-negativity of the length of the
edge (6).

aij ≥ 0 (6)

The basic difference between this algorithm and the
generic algorithm is the way in which vertices are drawn
from the candidates list — the selected vertex is the vertex
that has the smallest label from all available vertices in the
list:

di = min
j∈V

dj (7)

This causes the vertex with its label set, as well as all
vertices that are in the path from the initial vertex to this
particular vertex, to have the minimum value of the label and
to not be added again to the candidates list. The number of
iterations of the algorithm is equal to the number of vertices
N . During each iteration, two operations are performed —
the choice of a vertex from among all vertices on the list of
candidates, and scanning and, should the need arises, setting
of distance labels. The choice of a vertex in its worst case
requires O(N) operations, which in conjunction with the
number of iterations gives O(N2) operations. Checking of
the labels is performed A times, since in each iteration the
algorithms checks all edges that start in the vertex under
scrutiny, whereas each vertex is considered only once. O(A)
is not taken into account because it is far smaller than
O(N2). Therefore, the total number of operations that the
Dijkstra’s algorithm needs to perform to solve the shortest
path problem is O(N2).

3) Dijkstra’s algorithm using a heap: It is not possible
to decrease the number of operations that are performed
in order to check labels, because this would not make
it possible to guarantee the optimum solution finding —
each edge has to be checked at least once. A selection of
an optimum data structure that represents the candidates
list makes it possible, in turn, to reduce significantly the
computational complexity of the operation of the selection
of a vertex from the candidates list [27]. Here, heaps (also
known as priority queues) can serve ideally the purpose.
Using Fibonacci heap we can solve the shortest path problem
using Dijkstra’s algorithm and performing O(A+N logN)
operations.

4) Dial’s algorithm: Another way to reduce the number
of operations accompanying the selection of a vertex from
the candidates list is a division of the list into buckets [28].
Each bucket Bk stores only vertices with a given label k.
This causes lengths of edges to have to be integers and non-
negative. When this is the case, labels can take on values
from 0 to (N − 1)C. This gives (N − 1)C + 1 of different
values of the labels and, at the same time, buckets that
have to be scanned in increasing order until the first non-
empty bucket is found. After a given vertex is checked, it is
removed from the bucket and scanning in the next iteration
starts with this particular bucket. As a result, once emptied
bucket is not checked again any more. It happens so because
the currently checked vertex always has the lowest (smallest)
label from among any other vertices in the buckets and, since
lengths of edges are non-negative, while setting labels in a
given iteration none of the label will be set to a value that is
lower than the value of the label of the vertex that is being
checked.

A good structure for the implementation of buckets is
the two-way list. The list allows all operations (checking
whether a bucket is empty, addition of a vertex and its
removal from the bucket) to be performed in time O(1).
Taking it all into consideration, the choice of a vertex
requires O(NC) operations, which, after taking into account
O(A) operations for checking and setting labels, results
in the computational complexity of Dial’s algorithm being
O(A + NC). What is crucial to understand, is that the
bucket deletion and insertion operations require linear time
and not more than NC buckets need to be examined by
the procedure [17]. The higher the absolute value of an
arc cost C, the more operations need to be performed by
the algorithm, and thus, the performance gain related to
the usage of buckets dramatically diminishes. Therefore, for
small values C � N , Dial’s algorithm performs very well
in practice.

5) Bellman-Ford algorithm: The Bellman-Ford algorithm
belongs to algorithms of the label-correcting type, i.e., the
ones treating all labels for vertex distances as temporary
until the last iteration, after which all labels are set to
optimum values [29]. This algorithm provides a possibility
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to solve the shortest path problem in graphs with negative
lengths of edges. In the case when a negative cycle is
found, the algorithm yields false return as the result of its
operation. Because of this particular method of operation
of the algorithm, the candidates list is not required. The
initial conditions are in accordance with (5), though with
the omission of the list V . The algorithms checks all edges
of the graph N − 1 times, which allows the minimum
labels in the graph to be propagated. In its final stage,
the algorithm checks whether any of the labels is non-
optimum — this situation happens only in the case of the
occurrence of a negative cycle in the graph, which is reported
by the algorithm by yielding false returns. This algorithm
makes N − 1 iterations in which it checks A edges. Its
computational complexity is then equal to O(NA).

6) D’Esopo-Pape algorithm: The D’Esopo-Pape algo-
rithm uses the candidates list in the form of a queue [30].
Vertices that are to be checked are always retrieved from
the head of the list. However, the place a given vertex is
added to in the candidate list depends on whether the vertex
has already been placed in this list. If this is the case, it is
added to its head, otherwise — to the end of the list. This is
caused by the fact that a modification of the label of vertex
i can be followed by a modification of vertices j such that
(i, j) ∈ A. A quicker updating of the vertices in which the
edge that starts in the considered vertex terminates effects
in the optimum of the solution to be quicker achieved. Such
an operation of the algorithm results in its good results in
practice. There are instances, however, when the algorithm
completely cannot cope with, and the number of additions
of some vertices to the candidates list is non-polynomial.

7) SLF algorithm: The Small Label First algorithm (SLF)
seeks to manage the candidates list in such a way as to make
vertices with small labels located as close to the head of the
list as possible [31]. The reason for this operation is the fact
that the smaller the label of a vertex that is retrieved from
the candidates list, the lower the probability that this vertex
will be forwarded to the list once again. This algorithm,
just as the two following algorithms, attempts to reach
the characteristic operation of Dijkstra’s algorithm with a
lower computational outlay. The algorithms are designed for
graphs with non-negative edges, though they also operate
otherwise (there is no guarantee then that they will perform
better).

In each of its iteration the algorithm SLF checks the vertex
that is placed at the head of the candidates list. The place
of the addition of a vertex after its label has been changed
depends on the value that is taken on by the label. If the
vertex label of the vertex that is to be added to the candidates
list is lower or equal to the label of the vertex that is currently
at the head of the list, this vertex is added as the first in the
list. Otherwise, the vertex is added at the very end of the
candidates list.

8) LLL algorithm: The Large Label Last algorithm (LLL)
attempts to achieve the operation that is similar to that of the
previous algorithm using a specific method for the retrieval
of vertices from the candidates list [32]. The addition of
vertices to the candidates list is not defined in any way.
However, the method for their retrieval from the list is
defined. Each time when a vertex is to be taken from the
list, the average value of the labels of the vertices in the list
is calculated. Then, the label of the vertex that is at the head
of the list is compared with this average. If the label of the
vertex is higher than the average, the vertex is moved to the
end of the list. Otherwise, the vertex is returned as the one
that has to be considered in this iteration.

9) SLF/LLL algorithm: The SLF/LLL combines the SLF
algorithm method for the addition of vertices to the candi-
dates list and the LLL algorithm method for their retrieval
from the list [20]. The SLF/LLL algorithm requires a lower
number of iterations to solve the shortest path problem than
the algorithms it combines. This is done, however, at the
cost of the increased number of necessary calculations. To
speed up the process, parallel computing methods can be
applied.

B. All-Pairs Shortest Path problem

The following subsections present algorithms that are
dedicated to finding the shortest paths between all pairs of
vertices.

1) The doubling algorithm: The algorithm’s operation is
based on iterative calculation of the shortest paths for all
vertices composed of an increasing number of edges [33].
It starts with paths that are composed of just one edge,
and then checks whether paths that are composed of two
edges would not be shorter. This operation is then repeated
until all paths that are composed of N − 1 edges are
checked. This procedure has some similarity with matrix
multiplication [25].

Matrices that are used in the algorithms Dm = {dmij} and
Predm = {predmij} have the initial values (8a) and (8b),
respectively.

d1ij =


0, for i = j

aij , for (i, j) ∈ A
+∞, otherwise

(8a)

pred1ij =


0, for i = j

i, for (i, j) ∈ A
0, otherwise

(8b)

In its simplest case, the matrix D1 would be multiplied
by itself N − 2 times to take into account paths that have
1, 2, . . . , N − 1 edges. The matrices that correspond to
particular iterations would be as in (9), though such a case
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would effect in the complexity at the level Θ(N4).

D1

D2 = D1 ·D1

D3 = D2 ·D1

...
D(N−1) = D(N−2) ·D1

(9)

The knowledge of the values of all matrices D is not,
however, necessary — it is the matrix D(N−1) that needs
special attention. Hence, the doubling algorithm, instead
calculating successive matrices D, calculates only its powers
of 2 [see (10)].

d2
m

ij = mink{d2
(m−1)

ik + d2
(m−1)

kj },
i, j, k ∈ N , m = 1, 2, . . . , dlog2(N − 1)e

(10)

Bearing in mind the fact that a path that is composed of
more than N − 1 edges cannot be shorter than the shortest
path, we know that Dn = D(N−1) for all n ≥ N − 1. In
such a case we have a sequence of matrices [see (11)].

D1

D2 = D1 ·D1

D4 = D2 ·D2

...
D2dlog2(N−1)e

= D2dlog2(N−1)e−1 ·D2dlog2(N−1)e−1

(11)

This gives the ultimate computational complexity of the
algorithm equal to Θ(n3 log2 N).

2) Floyd-Warshall algorithm: The Floyd-Warshall algo-
rithm obtains what the previous algorithm was capable of,
using a different approach and achieving at the same time
lower computational complexity equal to Θ(N3) [34], [35].
The algorithm analyses the internal vertices of the path
P = (i, n1, n2, . . . , nk, j), i.e., those that are neither the
initial (original) vertex nor the goal vertex. For the given
path P , these are the vertices from the set {n1, n2, . . . , nk}.

Assuming that N = {1, 2, . . . , N}, for a certain k, let
us consider the sub-set {1, 2, . . . , k} and all paths from i
to j whose internal vertices belong to this sub-set, for each
pair of the vertices i, j ∈ A. From among all the paths we
denote the shortest path as P . The assumption is that the
graph does not include non-negative cycles and, thus, this
path is a simple path (does not have repeated vertices or
edges). We analyse this path against the shortest paths from
i to j that have the set of internal vertices limited to the
sub-set {1, 2, . . . , k − 1}.

Depending on whether k is an internal vertex of path P ,
we can draw the following conclusions. If k is not an internal
vertex of the path P , then it means that its internal vertices
are limited to the sub-set {1, 2, . . . , k − 1}. Then, P is the
shortest path also when the set of its internal vertices is equal
to {1, 2, . . . , k}. Intuitively, this means that an expansion of
the set of internal vertices does not change the shortest path.
If, however, k is the internal vertex of the path P , we divide

it into two paths P1 from i to k and P2 from k to j. Both
paths are the shortest paths, while the set of their vertices is
limited to the sub-set {1, 2, . . . , k−1}, since vertex k is the
goal vertex of path P1 and the initial vertex of path P2. This
means, in turn, that by dividing the path into two shortest
paths we can limit the set of their internal vertices. In both
cases we obtain the shortest path for a given k using the
shortest path for k − 1.

The matrices used in this algorithm are exactly the same
as the matrices used in the doubling algorithm. The initial
values for these matrices are identical with equation (5) with
the only difference that, instead d1ij and pred1ij , we define
respectively d0ij and pred0ij .

On the basis of the earlier considerations and initial
conditions we obtain the recurrent formula (12).

dkij = min{d(k−1)ij , d
(k−1)
ik + d

(k−1)
kj }, i, j, k ∈ N (12)

The formula illustrates precisely in how the length of the
shortest path is dependent on whether k is its internal vertex
and whether uses the values obtained for k − 1.

3) Johnson’s algorithm: For sparse graphs (i.e., those in
which the number of edges is far lower than N2) it is possi-
ble to improve the process of calculation of the shortest paths
between all pairs of vertices using Johnson’s algorithm [36].
For this purpose, the two algorithms discussed earlier, i.e.,
the Bellman-Ford algorithm and Dijkstra’s algorithm (most
favourably in its form with a heap), are used. Therefore, the
Johnson’s algorithm has a number of particular properties
and limitations of both algorithms. It can determine whether
a graph includes a negative cycle (just like the Bellman-Ford
algorithm) and requires non-negative lengths of the edge
(like Dijkstra’s algorithm). Getting round this limitation is
possible thanks to an appropriate transformation of the graph
presented in (13).

In the initial stage of the Johnson’s algorithm, the graph
is being modified in order to get rid of edges with negative
lengths. Such a transformation has to guarantee additionally
that the shortest paths in the graph do not change. To achieve
that, the graph is being added the additional vertex s that is
to be the initial vertex for the Bellman-Ford algorithm. To
each of the earlier vertices the edge that starts in s with the
length equal to 0 is also added.

G′ = (N ′,A′)
N ′ = N ∪ {s}, s /∈ N
A′ = A ∪ {(s, j) : j ∈ N}

a′ = a, a′sj = 0, ∀ j ∈ N

(13)

Thus created graph G′ has no paths that would include the
vertex s except those that start in it, and includes negative
cycles only when the graph G has included such cycles. If
the graph G does not include negative cycles, then, after the
execution the Bellman-Ford algorithm on the graph G′ with
the vertex s as the initial vertex, we obtain the vector h that
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defines the lengths of the shortest paths in this graph. The
vector is then used to modify the lengths of edges in such
a way as not to make them non-negative, in line with (14).

a′ij = a′ij + hi − hj , i, j ∈ A′ (14)

Then, for each vertex i that belongs toA Dijkstra’s algorithm
is applied to calculate all the shortest paths that start in it.
After the calculation of the lengths of the paths that start
in a given vertex, they are modified in such a way as to
reflect and correspond to the lengths of paths in the original
graph [see (15)].

dij = d′j + hj − hi, i, j ∈ A (15)

In this way, the matrix D = {dij} is obtained. The matrix
includes the lengths of the paths between all pairs of the
vertices.

In the Johnson’s algorithm, Dijkstra’s algorithm is per-
formed N times and it is the latter algorithm that signifi-
cantly influences the computational complexity of the whole
algorithm. If we choose to apply the implementation of Di-
jkstra’s algorithm with Fibonacci heap, then we are obliged
to perform O(NA + N2 logN) operations to calculate the
shortest paths between all the pairs of vertices in a sparse
graph. Using a binary heap would result in an increase in
the number of necessary operations to O(NA logN).

VI. DATA STRUCTURE REPRESENTING GRAPHS

To represent graphs during the simulation, a double asso-
ciative adjacency array was used. This structure is composed
of two associative arrays — one (external), representing
vertices from which edges originate, and the other (internal)
representing all vertices, which edges for a given row of the
first matrix (table) join. Such a representation provides an
opportunity to minimize shortcomings of typical structures,
such as the list of edges or the adjacency matrix, providing at
the same time appropriately low computational complexity
for individual operations. The applied structure makes it
possible to store additional information about edges, e.g.,
weights or costs. A homogeneous method for the projection
(mapping) of graphs for all simulated algorithms ensures
further comparability of the results of simulations.

The operation of the structure may differ depending on the
implementation of the associative array and is dependable on
the programming language used if embedded structures are

Figure 1. Exemplary directed graph

used. The most crucial operation is the operation of checking
whether a given key is in the array, hence structures that
handle this best, e.g., hash tables or self-balancing binary
search trees, are applied. Additionally, we can adjust the
operation of the double associative adjacency array for our
particular needs and thus make it possible, for example, to
sort vertices in the internal array, which a given edge joins
using a heap.

For a graph with edge weights, the double, associative
adjacency array T2asoc can be written as follows:
T2asoc = Text external array

T2asoc[i] = Text[i] = Tinti
internal array for edge coming out
from vertex i

T2asoc[i][j] = Tinti [j] = ai,j edge weight (i, j)

Therefore, the graph in Fig. 1 will be mapped in the
following way:

T2asoc[1] = Tint1
T2asoc[1][3] = Tint1 [3] = a1,3
T2asoc[1][5] = Tint1 [5] = a1,5
T2asoc[2] = Tint2
T2asoc[2][1] = Tint2 [1] = a2,1
T2asoc[2][2] = Tint2 [2] = a2,2
T2asoc[3] = Tint3
T2asoc[3][2] = Tint3 [2] = a3,2
T2asoc[3][5] = Tint3 [5] = a3,5
T2asoc[4] = Tint4
T2asoc[4][1] = Tint4 [1] = a4,1
T2asoc[4][3] = Tint4 [3] = a4,3
T2asoc[5] = Tint5
T2asoc[5][4] = Tint5 [4] = a5,4

Characteristic features of the structure:
• required memory: O(N + A)
• effective memory complexity for directed sparse graphs
• effective execution of graph algorithms that require to

reach all vertices adjacent to a given vertex (logarithmic
complexity)

• capacity of remembering parallel edges (all edges be-
tween the same pair of verices)

• effective execution of checking whether the graph in-
cludes a given edge (logarithmic complexity)

• effective execution of addition and removal of edges of
a graph (logarithmic complexity)

• possibility of a substitution of the internal associative
table with some other structure, e.g., in order to sort

Figure 2. Manually created custom 1 graph in which the edges
marked with the solid line create a shortest paths tree with the root
in node 1
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TABLE I. STRUCTURE OF THE GRAPHS USED IN THE
SIMULATION

graph vertices edges

number lengths

custom 1 (c1) 10 19 〈1, 7〉
custom 2 (c2) 20 43 〈0, 9〉

multistage 1 (ms1) 52 420 〈1, 9〉
multistage 2 (ms2) 86 249 〈1, 10〉

random 1 (r1) 25 125 〈1, 9〉
random 2 (r2) 100 628 〈1, 20〉

vertices in which a given edge terminates by the weight
of the edge (e.g., using binary, Fibonnaci, binomial or
Relaxed heap)

• fairly complicated in its execution

VII. GRAPHS USED IN THE SIMULATION

To examine the efficiency and performance of the algo-
rithms during their operation in different graphs, directed
graphs constructed manually and those that were generated
pseudo-randomly were used. To discuss the results, the 6
representative graphs described in Table I were selected.
Graph custom 1 shown in Fig. 2 was created manually
from 10 vertices that were joined together by 19 edges. The
custom 2 graph was created manually as well and consists
of 20 vertices and 43 edges. Another two graphs that were
used in the tests are the graphs that are characteristic for
a multi-stage shortest path problem. An exemplary graph is
presented in Fig. 3. The first multi-stage graph used in the
tests, multistage 1, has 5 stages, each having 10 vertices.
The lengths of edges were generated randomly from within
the interval 〈1, 9〉. The second multi-stege graph, multistage
2, has 30 stages, each having 3 vertices, and therefore, the
structure comprises 249 edges. The random 1 graph was
generated randomly, without loops, and with 5 edges coming
out of each of the vertices. The last graph under scrutiny,
random 2, was also generated randomly, without loops, but
with 3 to 10 edges coming out of each of the vertices.

Figure 3. A general structure of a multi-stage graph

VIII. RESULTS OF THE SIMULATIONS OF THE
ALGORITHMS

All the tests were carried out in a simulation environment
prepared in C# programming language. In order to achieve
reliable results, each algorithm was performed 100 times
for each of the graphs. To eliminate the influence of the
simulation environment, extreme results were rejected and
then the average of the remaining results was calculated.

Table II shows the running (execution) times of the algo-
rithms tested for the graphs discussed in Section VII. The
results are divided into two groups — algorithms solving
Single-Source Shortest Paths problem (SSSP) and algorithms
solving All-Pairs Shortest Path problem (APSP). The best
results for each graph are highlighted in bold text, and the
worst are in italics.

The graph custom 1 was solved by all SSSP algorithms
in almost identical times. Of all the algorithms only two
deserve a mention here — Dijkstra’s algorithm with a heap
(that operated within the longest time), and SLF (that solved
the problem slightly quicker than the rest). The results that
were very similar to that of the SLF algorithm were also
shared by Dijkstra’s algorithm, Dial’s algorithm and the LLL
algorithm. From the group of the APSP algorithms, it was
the Floyd-Warshall algorithm that fared the best, being less
than twice as long as the SSSP algorithms. The remaining
algorithms needed about twice as much time to find all paths.

The next graph the simulations were performed on, cus-
tom 2, was salved in the group of SSSP algorithms in the
shortest time by the SLF algorithm. Bellman-Ford algorithm
and Dijkstra’s algorithm with a heap were the slowest ones.
The remaining algorithms finished in quite similar times.
In the case of APSP algorithms Johnson’s was the fastest,
being slightly better than Floyd-Warshall algorithm and over
3 times faster than the doubling algorithm.

The first graph characteristic for the multi-stage shortest
path problem multistage 1 brought a significant increase in

TABLE II. COMPARISON OF RUNNING TIMES FOR THE
ALGORITHMS SOLVING THE SHORTEST PATH PROBLEM
IN MICROSECONDS

algorithm graph

c1 c2 ms1 ms2 r1 r2

generic 112 127 312 247 163 603
Dijkstra 100 122 324 258 148 405

DijkstraHeap 146 176 466 323 200 518
Dial 104 128 322 282 172 395

Bellman-Ford 119 217 3252 3097 511 8526
D’Esopo-Pape 113 147 1260 4171 239 1222

SLF 96 111 262 236 143 376
LLL 102 121 336 274 155 422

SLF/LLL 112 132 318 288 161 431

doubling alg. 324 2594 47678 233517 4756 364714
Floyd-Warshall 184 1031 16045 70420 2057 112880

Johnson 418 879 9309 12970 2959 41904
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Figure 4. Chart of running (execution) times of the algorithms
solving the shortest path problem with one initial vertex (SSSP)

differences between SSSP algorithms. Again, the SLF algo-
rithm was the quickest, whereas Bellman-Ford and D’Esopo-
Pape algorithms handled the problem the worst. Except
Dijkstra’s algorithm with a heap, which was performing
slightly longer than the rest, the remaining algorithms had
similar running times. This situation for the APSP algorithms
was exactly as in the case of the previous graph — Johnson’s
algorithm was the quickest and the doubling algorithm was
the slowest, while the distance between Johnson’s and Floyd-
Warshall algorithms increased.

The SLF proved to be the quickest for the multistage 2
graph, and hence, it was faster than the generic algorithm
and the SLF/LLL algorithm that came second and third,
accordingly. The D’Esopo-Pape and the Bellman-Ford algo-
rithms performed the worst and were 10 to 14 times slower
than other algorithms. In the group of APSP algorithms
the Johnson’s algorithm took the shortest time to solve the
problem, about 5 times faster than Floyd-Warshall algorithm
and about 18 times faster than the doubling algorithm.

Another graph under consideration, random 1, was solved
the quickest in the SSSP mode by the SLF algorithm, with
Dijkstra’s algorithm as the runner up and the Bellman-Ford
and the D’Esopo-Pape algorithms well behind the two. The
latter two were the worst as compared to all involved SSSP
algorithms. This time, the quickest APSP algorithm was the
Floyd-Warshall algorithm. Johnson’s algorithm performed
slightly worse, while the doubling algorithm was the worst
(the longest) of the lot.

The last graph, random 2, consists of the highest number
of edges. However, it poses no problem for the SLF algo-
rithm to solve it in the shortest time in the group of SSSP
algorithms. Dial and Dijkstra’s algorithms gave good results
as well. Bellman-Ford algorithm operated clearly longer as
compared to the rest of the algorithms. The D’Esopo-Pape
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Figure 5. Chart of running (execution) times of the algorithms solv-
ing the shortest path problem between all pairs of vertices (APSP)

algorithm was also slow once again. If we take a look at
the APSP algorithm the results are analogical to the most
of the prior results. Johnson’s algorithm is the most time-
efficient with the Floyd-Warshall algorithm being almost 3
times slower and the doubling algorithm to be far behind,
and thus, the last one in the race.

The procedures that solve the SSSP problem best include
the SLF algorithm, that had the shortest times for each tested
graph, and Dijkstra’s algorithm, that always performed with
a quite similar time. The LLL and the SLF/LLL algorithms
performed very well and did not generate solutions over
times that differ much from those provided by the quickest
algorithm. The generic algorithm and Dial’s algorithm per-
formed slightly better or slightly worse depending on the
chosen graph. Dijkstra’s algorithm with a heap had some
problems and, instead of performing quicker than Dijkstra’s
algorithm, was slower. In this particular case, this can be
most probably explained by the missing optimization of the
heap that formed the base for the algorithm. Undoubtedly,
however, an improvement in the running time during, which
solutions are provided is still possible. At least, an improve-
ment in the execution time needed for the algorithm to
generate solutions is possible. As it is clear from Fig. 4, for
the Bellman-Ford and D’Esopo-Pape algorithms, the worst
case occurs far too often, which may result from both non-
optimal implementation and from the possibility of their
operation on graphs that were unsuitable for them. The
D’Esopo-Pape algorithm was much quicker to solve graphs,
but irrespective of the fact it underperformed far too much as
compared to the rest of the algorithms. Underperformance
of the latter group of algorithms is particularly visible in
graphs that have a higher number of edges, which results
from the assumptions, as they were, that served as a basis
for their design.

The APSP algorithms were decidedly varied across dif-
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ferent performance dimensions, in particular in relation to
the time necessary to generate results, which is clearly
shown in Fig. 5. The doubling algorithm was the slowest
and performed several times slower than the competitors.
The Floyd-Warshall algorithm was the fastest for 2 graphs,
while for the remaining graphs it was in second place. The
differences in the time needed for graphs to be solved are in
its case significant as compared to Johnson’s algorithm that
overall turned out to be the fastest one.

IX. CONCLUSION

This article provides a detailed presentation of 12 al-
gorithms solving the shortest path problem and presents
an analysis of their performance. The study showed that
in a prepared simulation environment that ensured directed
graphs of different type to be provided, the weakest aggre-
gated time results from among all the available algorithms
solving the Single-Source Shortest Paths problem were those
of, in the descending order, the Bellman-Ford and the
D’Esopo-Pape algorithms. The fastest algorithm was Small
Label First algorithm, slightly faring better than Dijkstra’s
algorithm. From the pool of the algorithms dedicated for
All-Pairs Shortest Path problem, the doubling algorithm
performed decidedly worst, while the best results were those
of Johnson’s algorithm.

In addition to the presentation of run-time relationships
between the algorithms, the study indicates the importance
and significance of an appropriate choice of a method des-
tined to solve the problem that would be the most efficient
for a type of the graph structure that is to be used. Moreover,
it is worthwhile to remember that details concerning the
implementation as well as the architecture of the structures
for the representation of data can significantly influence the
performance of an algorithm.

Future work could focus on conducting experiments in
larger graphs, including those obtained by using Internet-
like topology generators, and in the structures that reflect
the relationships in the society or complex databases. The
operation in graphs with a power-law distribution of node
degrees may prove to be interesting and useful as well.
Furthermore, the performance measured and evaluated in
FLOPS (FLoating point Operations Per Second), instead of
average running time, may give a new and broader insight
into the problem.
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