
A Technique to Avoid Atomic Operations

on Large Shared Memory Parallel Systems

Rudolf Berrendorf

Computer Science Department

Bonn-Rhein-Sieg University

Sankt Augustin, Germany

e-mail: rudolf.berrendorf@h-brs.de

Abstract—Updating a shared data structure in a parallel
program is usually done with some sort of high-level synchro-
nization operation to ensure correctness and consistency. The
realization of such high-level synchronization operations is done
with appropriate low-level atomic synchronization instructions
that the target processor architecture provides. These instructions
are costly and often limited in their scalability on larger multi-
core / multi-processor systems. In this paper, a technique is
discussed that replaces atomic updates of a shared data structure
with ordinary and cheaper read/write operations. The necessary
conditions are specified that must be fulfilled to ensure overall
correctness of the program despite missing synchronization. The
advantage of this technique is the reduction of access costs
as well as more scalability due to elided atomic operations.
But on the other side, possibly more work has to be done
caused by missing synchronization. Therefore, additional work is
traded against costly atomic operations. A practical application
is shown with level-synchronous parallel Breadth-First Search on
an undirected graph where two vertex frontiers are accessed in
parallel. This application scenario is also used for an evaluation
of the technique. Tests were done on four different large parallel
systems with up to 64-way parallelism. It will be shown that
for the graph application examined the amount of additional
work caused by missing synchronization is neglectible and the
performance is almost always better than the approach with
atomic operations.

Index Terms—atomic operation, CAS, scalability, shared mem-
ory, redundant work, parallel work queue, parallel Breadth-First
Search

I. INTRODUCTION

Updating a shared data structure in a parallel program as

for example the state check/update whether a vertex in a

graph is visited or not [1] is usually done on an application

level with some sort of high-level atomic update operation.

In OpenMP [2] this could be realized lock-protected, in a

critical section, or if syntax allows with an atomic pragma

construct. Pthread-related API’s (Application Programming

Interface) [3] [4] [5] can use for example a mutex variable to

protect access to a shared data structure and to ensure mutual

exclusion of parallel threads. A general discussion on using

different synchronization constructs in parallel and concurrent

programming can be found in [6] and [7].

The implementation of such a high-level synchronization

operation itself is done by the compiler or inside a runtime

system often with one or even more atomic instructions

(Compare-And-Swap, Atomic-Add, Fetch-And−Φ, Test-And-

Set, etc.) of the underlying processor architecture [8] [9]

[10]. The general problem with atomic instructions of type

read-modify-write is that these are rather costly compared to

ordinary memory accesses and not really scalable on larger

systems [11] [12] (see also Section IV for investigations

on that). The time for one such atomic operation increases

significantly under contention as the number of cores in a

multi-core / multi-processor system gets larger. Therefore,

frequently accessing shared data structures with atomic op-

erations imposes a severe performance problem, especially on

large parallel systems.

The use of such synchronized updates on shared data

guarantees correct operations on the data when using multiple

threads. But this strict enforcement is often not really nec-

essary. An example is a work queue, where working threads

insert new work items and idle threads remove such items to be

worked on. But for certain algorithmic scenarios (e.g., within

a certain program phase), a work item may be inserted even

multiple times without violating the overall correctness of the

algorithm, but only causing additional redundant work to be

done as the same work item may exist multiple times in a

queue. In such cases, the costly synchronized access could

be completely removed and replaced with cheaper non-atomic

accesses, but eventually introducing additional work to be done

if work items get inserted multiple times.

An example for such a scenario is a Breadth First Search

(BFS) for undirected graphs (see Section III for details).

Many of the published parallel BFS algorithms iterate over a

vertex frontier where the vertices of the current vertex frontier

determine, which unvisited vertices are part of the following

vertex frontier. In this scenario, adding a vertex twice in such

a frontier generates more work to be done in the next level

iteration but does not influence the correctness of the algorithm

(see Section V for details). Another, more general scenario is

the development of asynchronous algorithms [13] [14].

In this paper, a general optimization strategy is introduced

that replaces costly atomic modifiers with cheaper read/write

accesses. Necessary conditions are defined that need to be met

to apply the technique. The motivation for this optimization

technique and the evaluation is done using a concrete parallel

BFS algorithm on large shared memory multi-core multi-

processor systems with up to 64 cores. Factors are discussed

that influence the amount of potential additional work and

whether this additional work without any synchronized access

trades off against the traditional synchronized access to a work

197

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

queue doing exactly the amount of work that is necessary.

The paper is organized as follows. After the introduction,

the paper starts with an overview of related work. After this,

a brief overview is given on parallel BFS algorithms; level

synchronous BFS is an example where the new approach

can be applied and will also be used in the evaluation of

the new technique. In Section IV, evidence is given that

certain atomic operations including Compare-And-Swap have

scalability problems on larger systems. In Section V, the

new approach is introduced first for a special scenario, a

generalization of the technique follows in Section VI. After

that, the experimental setup is pointed out, and then the

new approach is evaluated in detail. The paper ends with a

summary.

II. RELATED WORK

There are several papers on certain aspects on the opti-

mization of synchronization constructs in a wider sense. This

includes, amongst others, reducing the number of consec-

utive mutex locks/unlocks [15] in a program and compiler

optimizations for read/write barriers [16]. Furthermore, there

are advanced synchronization techniques trying to minimize

synchronization costs including RCU (Read-Copy-Update)

[17], special monitors [18] and read-writer optimizations [19].

An interesting general approach to handle possible con-

current accesses to shared data structures is the concept

of transactional memory (original concept paper [20]). This

approach has some similarities with the approach introduced

in this paper as both are optimistic: do a read-modify-write

operation without a critical section and react only is something

went wrong. The idea with transactional memory as well as in

the new approach discussed later in this paper is that the bad

thing happens rather seldom. Transactional memory detects the

problem and, depending on the Application Program Interface

(API) in use, rolls back the whole transaction and restarts the

operation. The technique proposed in this paper instead ignores

the problem (and does not even detect the problem) and has

more work to do in the remaining execution of the algorithm.

Transactional memory is implemented on a hardware level in

recent processors (IBM processors PowerPC for BlueGene/Q

[21] and System z [22]; Intel Haswell [23]).

Lock-free and wait-free data structures are often proposed

as a way to reduce/avoid synchronization problems (priority

inversion, deadlock) that may occur using mutual exclusion

or other blocking synchronization constructs. Starting with

the fundamental idea by Leslie Lamport [24], many papers

followed on certain aspects, e.g., [25] [26] [27] [28] [29] [30]

[31] [32] [33] [34]; see [35] for a comprehensive view. As

lock- and wait-free data structures are internally often realized

with (as will be shown, non-scalable) atomic Compare-And-

Swap operations, similar ideas as presented in this paper might

be interesting in that area, too.

In [36], a parallel graph algorithm for the construction

of a spanning tree is discussed using mutual exclusion and

lock-free data structures. The authors discuss the problem of

overlapping work and how to ensure that every work item

(newly visited vertex of the graph) is handled by one thread

only using atomic Test-And-Set operations. In our paper, it

is proposed the other way to allow that a work item may be

handled by more than one thread and avoiding even a test-

and-set operation that is still necessary in [36].

Reference [6] gives an overview of different aspects on

related topics. [37] shows a similar benign race as ours in

a parallel BFS algorithm, but without analyzing the influence

of that in detail.

III. PARALLEL ALGORITHMS FOR BFS

Parallel level-synchronous BFS algorithms will be used as

a motivating application as well as in the evaluation of the

new idea that is introduced later in detail. Therefore, a short

introduction to parallel BFS follows. Breadth-First Search is a

visiting strategy for all vertices of a graph. BFS is most often

used as a building block for many other graph algorithms, in-

cluding single-source shortest paths, minimum spanning tree,

connected components, bipartite graphs, maximum flow, and

others [38] [39]. Additionally, BFS is used in many application

areas where certain application aspects are modeled by a graph

that needs to be traversed according to the BFS visiting pattern.

Amongst others, exploring state space in model checking,

image processing, investigations of social and semantic graphs,

machine learning are such application areas [40].

In the application scenario used for the examination, undi-

rected graphs G = (V,E) are of interest, where V = {v1, ...,vn}
is a set of vertices and E = {e1, ...,em} is a set of edges. An

edge e is given by an unordered pair e= (vi,v j) with vi,v j ∈V .

The number of vertices of a graph will be denoted by |V |= n

and the number of edges is |E|= m.

Assume a connected graph and a source vertex v0 ∈V . For

each vertex u ∈V define depth(u) as the number of edges on

the shortest path from v0 to u, i.e., the edge distance from v0.

With depth(G,v0) the depth of a graph G is denoted defined

as the maximum depth of any vertex in the graph relative

to the given source vertex v0. Please be aware, that this may

be different to the diameter of a graph, the largest distance

between any two vertices.

The problem of Breadth First Search for a given graph

G = (V,E) and a source vertex v0 ∈V is to visit each vertex in

a way such that a vertex v1 must be visited before any vertex

v2 with depth(v1)< depth(v2). As a result of a BFS traversal,

either the level of each vertex is determined or a (non-unique)

BFS spanning tree with a father-linkage of each vertex is

created. Both variants can be handled by BFS algorithms with

small modifications and without extra computational effort.

The problem can be easily extended and handled with directed

or unconnected graphs. A sequential solution to the problem

can be found in textbooks, based on a queue where all non-

visited adjacent vertices of a visited vertex are enqueued [38]

[39]. The computational complexity is O(|V + |E|).
If one tries to design a parallel BFS algorithm, different

challenges might be encountered. As the computational density

of BFS is rather low, BFS is bandwidth limited for large

graphs and therefore memory bandwidth has to be handled

198

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

with care. For a similar reason in cache coherent NUMA

systems (Non-Uniform Memory Access [41]), data layout and

memory access should respect processor locality. In multicore

multiprocessor systems, things get even more complicated,

as several cores share higher level caches and NUMA-node

memory, but have private lower-level caches.

1: function BFS(graph g, vertex source)

2: var

3: d, distance vector of size |V |. Initial values: ∞

4: current,next, vertex container. Initially empty

5: end var

6: d[source]← 0

7: current.insert(source)
8: while current is not empty do

9: for all v in current do

10: for all neighbours w of v do

11: old =CompareAndSwap(d[w],∞,d[v]+1)
12: if old == ∞ then

13: next.insert(w)
14: end if

15: end for

16: end for

17: Barrier

18: swap current with next

19: end while

20: return d

21: end function

Fig. 1: Parallel BFS with an atomic Compare-And-Swap-operation

In BFS algorithms housekeeping has to be done on visited

/ unvisited vertices with several possibilities how to do that.

Some of them are based on special container structures for ver-

tex frontiers where information has to be inserted and deleted.

Scalability and administrative overhead of these containers are

of interest. Generally speaking, these approaches deploy two

identical containers (current frontier, next frontier) whose roles

are swapped at the end of each level iteration. Fig. 1 shows

this in a rather straightforward formulation with an atomic

Compare-And-Swap (CAS) operation in an inner loop (line

11) to detect and update unvisited vertex neighbors. In this

atomic operation, a vertex w is checked whether it is visited

already (d[w] 6= ∞), and if not, marks the vertex as visited.

Based on this knowledge, only an unvisited vertex gets inserted

into the next vertex frontier. After all vertices in the current

container are visited, all threads wait at a barrier before work

on the next container / frontier gets started (level iteration).

This version can be further optimized using chunked lists

for every thread. The insert operation of a new vertex into a

thread-local chunk can be done in a non-atomic way. But the

construction of a global list from thread-local chunks (i.e., the

insertion of each chunk into a global list) must still be done

in a synchronized way. But as this is done only if a chunk

gets full, this is not the critical operation of this algorithm

but the detection of whether a vertex is visited or not in line

11. Container centric approaches are eligible for dynamic load

TABLE I: PROCESSORS AND SYSTEMS USED

name Intel-IB Intel-SB AMD-IL AMD-MC

processor:

manufacturer Intel Intel AMD AMD
CPU name E5-2697 E5-2670 Opteron 6272 Opteron 6168
architecture Ivy Bridge Sandy Bridge Interlagos Magny Cours
frequ.[GHz] 2.7 2.6 2.1 1.9

system:

memory [GB] 256 128 128 32
CPU sockets 2 2 4 4
n-way parallel 48 32 64 48

balancing but are sensible to data locality on NUMA systems.

Container centric approaches for BFS can be found in some

parallel graph libraries [42] [43]. Reference [44] contains an

overview and evaluation of several parallel BFS algorithms.

For level synchronized approaches, a simple list is a suf-

ficient container. There are approaches in which each thread

manages two private lists to store the vertex frontiers and uses

additional lists as buffers for communication [45] [46]. This

approach deploys a static one dimensional partitioning of the

graph’s vertices and therefore supports data locality.

Level synchronous algorithms are quite easy to understand

and often to realize, too. With certain additional optimizations

performance is often very good [44]. This type of BFS

algorithm is used as an instance of the problem scenario

where the newly proposed technique can be applied. It should

be mentioned, that for certain classes of graphs (e.g., high

diameter graphs) parallel algorithms exist that perform better

than the level synchronous approach [47] [48] [49] [50].

IV. PERFORMANCE PROBLEM OF ATOMIC

READ-MODIFY-WRITE OPERATIONS ON LARGE PARALLEL

SYSTEMS

Atomic operations in a higher level parallel API for shared

memory systems as mutual exclusion, atomic update, locks,

Compare-And-Swap etc. [6] [7] [51] [52] are usually mapped

on shared memory systems to atomic instructions that the un-

derlying processor architecture provides [8] [9] [10]. Some of

these atomic instructions are by itself rather costly compared

to a simple memory access if no contention exists. For exampe,

embedded in a function call and executed by one thread on an

Intel E5-2697 CPU, an atomic CAS operation on a 64 bit data

type takes 7 ns compared to 3 ns that a compound non-atomic

read-test-write operation takes. Table I describes in detail and

names the systems used in the following.

But under contention, if multiple threads concurrently ac-

cess a shared state with such instructions, the cost per oper-

ation increases significantly for certain types of atomic oper-

ations. This is especially true for read-test/modify-write type

operations like Compare-And-Swap and Fetch-And-Add. And

the contention penalty gets higher the more CPU sockets a sys-

tem has [11] [12]. Fig. 2 shows the cost for one 64-bit atomic

Compare-And-Swap operation (of type read-modify/test-write)

on different shared memory systems dependend on the number

of threads utilised. The number of threads used does not

exceed the degree of hardware parallelism a system under

199

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 1000

 2000

 3000

 4000

 5000

 6000

 10 20 30 40 50 60

ns
ec

 p
er

 C
A

S
 o

pe
ra

tio
n

number of threads

Intel-IB
Intel-SB

AMD-IL
AMD-MC

Fig. 2: Cost per Compare-And-Swap operation on different parallel systems.

consideration has. Therefore, every thread is mapped (in an

operating system specific manner) to a different core of the

system and is always runnable (ignoring operating system

effects like interrupt handling). In this test, p threads do

in parallel in a loop n = 1,000,000 atomic CAS operations

each. The test was executed on parallel systems of different

generations of processors, processor manufacturers, degree of

parallelism, and number of processor sockets. Similar results

can be seen for other atomic read-test/modify-write operations,

too, e.g., atomic Fetch-And-Add. As can be easily seen from

the results, the overhead on larger systems with four sockets

(the AMD-based systems used) is significantly higher than

on smaller systems with two sockets (the Intel-based systems

used). The minimum time for a CAS operation is between 7

and 22 ns without contention on the systems used, the time

gets as high as approx. 1,000 ns per operation on the two

socket systems and up to approx. 6,000 ns on the four socket

systems under heavy contention. This means that performance

problems with atomic operations hurt on larger systems with

more sockets even more than on smaller systems.

V. ALTERNATIVE TO ATOMIC ACCESSES

In this section, a technique is proposed to replace the

costly and non-scalable atomic accesses with cheaper non-

atomic accesses. First, the technique will be motivated on

the concrete BFS application introduced in Fig. 1. It will be

shown, that under certain conditions atomic operations can

be traded against additional work and therefore traded against

additional overhead. Then a discussion follows, what factors

influence this possible overhead. And finally, in Section VI, a

generalization is given under what circumstances the technique

can be applied generally.

A. Optimizing BFS

Looking at the formulation of the parallel BFS algorithm in

Fig.1, an atomic CAS-Operation is used in line 11 to check

whether the neighbour vertex w is unvisited (d[w] = ∞), and

if so, replace the depth-value of w with the depth value of

the current vertex v incremented by one. And if the neighbour

vertex w was unvisited, additionally insert w into the next

vertex frontier. The replacement of the value ∞ by a non-

∞ value (the depth value) marks the vertex as visited. The

CAS operation guarantees, that every vertex is inserted exactly

once into a vertex frontier (detection and mark of visitedness).

Without the atomic operation, a race condition [53] exists on

d[w]. Replacing the critical operation with a non-atomic code

results in Fig. 3 (only relevant parts are shown here).

1: for all neighbours w of v do

2: if d[w] = ∞ then

3: d[w] = d[v]+1

4: next.insert(w)
5: end if

6: end for

Fig. 3: Parallel non-atomic BFS (relevant part)

The code of interest is in lines 2 and 3, that was previously

guarded by the CAS-operation. There are two possibilities

when executing this code in parallel:

1) Between the read access d[w] in line 2 and the com-

pletion of the write access in line 3 no other thread

accesses d[w]. In this case, there is no problem with this

version, the vertex w is inserted exactly once in a vertex

frontier as before. But see additionally the discussion of

the appropriate memory model below.

2) More than one thread detects for a certain vertex wx that

wx is unvisited (i.e., d[wx] = ∞) before any of the other

threads can change the d[wx] to some visited value. In

this case, the vertex wx gets inserted twice or even more

into the next vertex frontier.

The insert operation in line 4 has to be done with care as

this might be done concurrently by multiple threads. As this

has to be handled in all version similar and is not really critical

in all versions of discussion, this is not further discussed here.

It is important to state that even the second case produces no

wrong results as any thread that detects that d[wx] is unvisited,

writes into d[wx] in the next step the value d[v]+1 that is the

same value for all threads in one level iteration. Therefore,

correctness is guaranteed in our scenario even if multiple

threads concurrently detect that the same vertex is unvisited.

But, as stated above, in such a case the vertex wx is inserted

twice or even more into the next vertex frontier and due to

200

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that, generates more and redundant work in the next level

iteration. Working later on a vertex multiple times is again no

correctness problem. The resulting depth values for all vertices

are the same in a level-synchronous algorithm, independend

on how many times a vertex gets worked on.

Inspecting the generated assembler code for lines 2 and 3

of the code given in Fig. 3, the read access to d[w] in line 2

(i.e., a load instruction) and the write access to d[w] in line

3 (i.e., a store instruction) are nearby instructions in the code

sequence. These inspections were done for different compilers

(GNU gcc, Intel icc, PGI pgcc) and it was found that this

observation is more or less invariant of the compiler used

for the given code sequence (and it would be curious if this

observation would not hold for this code example). With an

assumption, that a thread is not suspended during execution,

the time window between the two instructions is therefore

rather small (few cycles in practice). This assumption will be

mostly true for many real scenarios where parallel programs

get executed, e.g., running OpenMP programs on a dedicated

system with not more threads than processor cores available.

Another aspect in this discussion is the memory consis-

tency model in use [54] [55] [56] [57]. In a strict memory

consistency model, it is guaranteed, that a read operation

always retuns the value of the last write operation to that

memory location. But todays, all memory consistency models

in practical use (e.g., [5] [4] [2] [58]) are rather relaxed and the

compiler may buffer the value of d[w] in a register, a processor

core may buffer that value in write buffers, or the new value

is not propagated between different processors soon, etc.

This can enlarge the time window for problems substantially

even under the assumption made above that a thread is not

suspended. A programmer may insert an appropriate flush

operation before line 2 and after line 3 such that all threads

/ processors are forced to read / write d[w] to / from main

memory in the corresponding operation. But dependend on

the implementation of such a flush-operation, this could lead

to substantial additional overhead as this is for example done

inside an inner loop iteration in the application example given.

B. Factors Influencing Additional Work

The question of interest is now, whether the relaxation using

non-atomic modifications to d[w] as given in Fig. 3 (which

surely is faster than a CAS-operation as explained in Section

IV) pays off. Due to the fact that without an atomic CAS

operation a vertex might get inserted multiple times into the

next vertex frontier, the question is whether the amount of

work to be done might be increased substantially. The amount

of additional work to be done will be influenced generally

speaking by:

1) the problem time window in relation to the time threads

spend in non-critical code. This is influenced by the

generated code sequence and implemented consistency

model as discussed above.

2) the number of threads in use, i.e., the number of con-

current parties.

3) the problem data influencing access collisions, i.e., in

our case the topology of the graph (vertex degrees,

shared neighbours)

The larger the time window is that another thread may see

the vertex in question as unvisited, and the more threads are

participating, and the more vertices have connections to the

unvisited vertex, the higher the probability that additional work

is generated.

VI. GENERALIZATION OF THE TECHNIQUE

Although the motivation of the technique was given here in

the context of a parallel BFS algorithm, the technique itself

is not specific to BFS and can be generalized. Therefore,

the suggestion is to replace costly atomic operations with

cheaper simple load/store operations without influencing the

correctness of the algorithm but probably doing more / redun-

dant work. The hypothesis is that especially on large shared

memory systems with many concurrent threads this technique

pays off.

Looking in a more abstract way on the suggested technique,

there is predicate p : X →{true, f alse} for some set X . If the

result of the predicate is true, there is a state-change operation

c : X → X for the same x ∈ X that the predicate was applied

to, followed by some operation f : Y →Y for some set Y . The

generalized application scenario is therefore given in Fig. 4.

1: if p(x) then

2: c(x)
3: f (y)
4: end if

Fig. 4: Generalized Scenario

As multiple threads might execute the predicate p, multiple

threads might detect the same true condition and therefore

execute c(x) and f (y) subsequently and also redundantly. As

a consequence, the operation c and f must be both idempotent

to ensure that executing the state-change function f multiple

times does not influence the correctness. A function g : A→ A

is called idempotent if g◦g = g, i.e., ∀a ∈ A : g(g(a)) = g(a).
For the BFS example, the p-Operation is the test d[w] = ∞

and the c-operation changes the state of d[w] to the same

value if executed multiple times for the same vertex. The f -

operation is the insertion of the vertex into the next vertex

front. The c-operation as well as the f -operation meet the

requirements for the two operations, respectively. As d[w] is

assigned the same value, this is an idemponent operation.

And the multiple insertion of a vertex into the next vertex

frontier is also (semantically) a idemtpotent operation, because

the result of working on the next vertex frontier will be the

same, independent how many times a vertex gets inserted into

a frontier.

VII. EXPERIMENTAL SETUP

In this section, the technique introduced in Section V is

systematically examined with the concrete scenario of parallel

BFS. Three factors were identified that may influence the

201

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance of an application using the new technique due

to additionally generated work. All factors are examined in

detail.

A. Algorithm Versions

The general algorithmic approach for parallel BFS chosen

for this discussion was already given in Fig. 1 in an easy to

formulate version. The concrete realization to handle vertex

fronts was done for this evaluation with chunked array based

lists where each thread inserts a new vertex unprotected into

a thread-private chunk of size 128. If such a chunk gets filled,

the chunk is inserted into a global list in a protected way. The

insertion of a whole chunk into the global list is done in all

algorithm versions examined with one atomic operation. But

the influence of that atomic operation is rather small as only

whole chunks get inserted and not single vertices.

In the first version named atomicBFS1 (see Fig. 5), every

thread uses a CAS operation as described in Fig. 1 to detect un-

visited vertices and updates them accordingly. This guarantees,

that every vertex is inserted exactly once in a vertex frontier.

But on the other side, every check is done atomically even on

vertices that were visited already, even in any previous level

iteration. This is a save but somewhat naı̈ve implementation.

This last aspect can be optimized for many program kernels

easily with a standard optimization technique for parallel

programs in prefixing the expensive CAS-operation with a

normal read operation followed by the CAS-operation only, if

the test was successful, i.e., a test-and-test-and-set operation

(see Fig. 6). This technique has significant advantages if

vertices get visited many times (e.g., graphs with high vertex

degrees). Then, only the first visit must be atomic, all other

accesses would detect that the vertex is visited already. This

optimization technique is also used in the OpenMP reference

implementation of the Graph500 benchmark [42] for BFS.

This optimized version is named atomicBFS2. In this version,

all vertices already visited are no longer handled with a CAS

operation. The discussion of the performance effect of this

optimization is given later in detail.

The third approach named nonatomicBFS does not use

atomic operations for the detection of unvisitedness, but rather

uses the technique proposed (see Fig. 7). Therefore, a vertex

may be inserted more than once in the next vertex frontier.

The main difference to the other two versions is therefore

that the detection of an unvisited vertex and the subsequent

update to a visited state is no longer done atomically but

rather with simple read/write accesses including the possibility

of multiple insertions of a vertex as multiple threads may

see concurrently a vertex as unvisited. Further algorithmic

optimizations different to that discussed here and a general

overview of parallel BFS algorithms can be found in another

paper [44]. There is also shown, that there are better but more

complex algorithms for the parallel BFS problem for large

shared memory systems. In this paper, only the discussion

atomic operations vs. redundant work is of interest, and there-

fore the relative comparism of the introduced three versions

is sufficient for that.

To filter out unrelated effects, all test runs were repeated 5

times and the best result out of these 5 results was taken as

the final result of a test.

1: for all neighbours w of v do

2: old =CompareAndSwap(d[w],∞,d[v]+1)
3: if old == ∞ then

4: next.insert(w)
5: end if

6: end for

Fig. 5: Kernel for atomicBFS1

1: for all neighbours w of v do

2: if d[w] 6= ∞ then

3: old =CompareAndSwap(d[w],∞,d[v]+1)
4: if old == ∞ then

5: next.insert(w)
6: end if

7: end if

8: end for

Fig. 6: Kernel for atomicBFS2

1: for all neighbours w of v do

2: if d[w] == ∞ then

3: d[w] = d[v]+1

4: next.insert(w)
5: end if

6: end for

Fig. 7: Kernel for nonatomicBFS

B. Factors Influencing Overhead

As discussed already in Section V, the first factor influenc-

ing the probability of multiple insertions is the time window

related to the time spent in non-critical code. Although the

BFS algorithm has only few instructions between the read and

write operation on the critical data, there is not much work to

do in the non-critical part (just the insert operation) executing

the critical part with high frequence and therefore increasing

the probability for collisions. Therefore, BFS is an example

for a rather problematic algorithm in this sense.

The second factor influencing the probability of double in-

sertion is the degree of parallelism. Different parallel systems

were used in the tests as described already in Table I. The

largest one is a 64-way AMD-6272 Interlagos based system

with 128 GB shared memory organised in 4 NUMA nodes

(i.e., 4 CPU sockets). A second AMD-based systems has also

four sockets, while the remaining two systems are two-socket

systems (see Table I for details and names to refer to a specific

system).

The third factor influencing additional work is the probabil-

ity of a data collision, i.e., in the given application the proba-

bility that two vertices with the same depth share a common

unvisited neighbor in the graph. Only unvisited neighbours

leed to an atomic operation in version atomicBFS2 and to

202

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 200 400 600 800 1000 1200 1400 1600 1800

fr
on

tie
r

si
ze

level

(a) Frontiers for delaunay

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250

fr
on

tie
r

si
ze

level

(b) Frontiers for nlpkkt240

 1

 10

 100

 1000

 10000

 100000

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000

fr
on

tie
r

si
ze

level

(c) Frontiers for road-europe

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 5 10 15 20 25

fr
on

tie
r

si
ze

level

(d) Frontiers for friendster

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 0 50 100 150 200 250 300 350 400

fr
on

tie
r

si
ze

level

(e) Frontiers for R-1M-10M-57

Fig. 8: Vertex and edge frontier sizes of selected graphs (part 1). Upper curve
is edge frontier, lower curve is vertex frontier.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 10 20 30 40 50 60 70 80 90

fr
on

tie
r

si
ze

level

(a) Frontiers for R-1M-100M-57

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 0 5 10 15 20 25 30

fr
on

tie
r

si
ze

level

(b) Frontiers for R-1M-1G-57

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 2 4 6 8 10 12 14 16

fr
on

tie
r

si
ze

level

(c) Frontiers for R-100M-2G-30

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 5 10 15 20 25 30

fr
on

tie
r

si
ze

level

(d) Frontiers for R-100M-2G-45

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

fr
on

tie
r

si
ze

level

(e) Frontiers for R-100M-2G-57

Fig. 9: Vertex and edge frontier sizes for selected graphs(part 2). Upper curve
is edge frontier, lower curve is vertex frontier.

203

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II: CHARACTERISTICS FOR USED GRAPHS

degree graph

graph name |V |×106 |E|×106 avg. max. depth

delaunay [59] 16.7 100.6 6 26 1650

nlpkkt240 [60] 27.9 802.4 28.6 29 242

road-europe [59] 50.9 108.1 2.1 13 17345

friendster [61] 65.6 3612 55 5214 22

R-1M-10M-30 1 10 10 107 11
R-1M-10M-45 1 10 10 4726 16
R-1M-10M-57 1 10 10 43178 400
R-1M-100M-30 1 100 100 1390 9
R-1M-100M-45 1 100 100 58797 8
R-1M-100M-57 1 100 100 530504 91
R-1M-1G-30 1 1000 1000 13959 8
R-1M-1G-45 1 1000 1000 599399 8
R-1M-1G-57 1 1000 1000 5406970 27

R-100M-1G-30 100 1000 10 181 19
R-100M-1G-45 100 1000 10 37935 41
R-100M-1G-57 100 1000 10 636217 3328
R-100M-2G-30 100 2000 20 418 16
R-100M-2G-45 100 2000 20 85494 31
R-100M-2G-57 100 2000 20 1431295 1932
R-100M-4G-30 100 4000 40 894 15
R-100M-4G-45 100 4000 40 180694 31
R-100M-4G-57 100 4000 40 3024348 1506

a possible double-insertion in version nonatomicBFS. This

factor is mainly influenced in the given scenario by the graph

topology / degree distribution. To examine this influence, sev-

eral large graphs were used from different application domains

including real graphs from social networks, road networks,

optimization problems, and triangulation graphs. The graph

instances were taken from then DIMACS-10 challenge [59],

the Florida Sparse Matrix Collection [60], and the Stanford

Large Dataset Collection [61]. The graph friendster and

larger RMAT-graphs could not be used on all systems due

to memory requirements. Additionally, synthetically gener-

ated pseudo-random graphs were used that guarantee certain

topological properties. R-MAT [62] is such a graph generator

with parameters a,b,c influencing the topology and clustering

properties of the generated graph (see [62] for details). R-MAT

graphs are mostly used to model scale-free graphs. For the

evaluation tests, graphs of the following classes werde used:

• Graphs with a very low average and maximum vertex

degree resulting in a rather high graph depth and limited

vertex fronts. A representative for this class is the road

network road-europe.

• Graphs with a moderate average and maximum vertex

degree. For this class, Delaunay graphs representing De-

launay triangulations of random points (delaunay) and

a graph for a 3D PDE-constraint optimization problem

(nlpkkt240) are used.

• Graphs with a large variation of degrees including few

very large vertex degrees. Related to the graph size, they

have a smaller graph depth. For this class of graphs,

a real social network (friendster), and synthetically

generated Kronecker R-MAT graphs are used, the later

with different vertex and edge counts and three R-MAT

parameter sets. The first parameter set named 30 is

a = 0.3,b = 0.25,c = 0.25, the second parameter set 45 is

a = 0.45,b = 0.25,c = 0.15, and the third parameter set

named 57 is a = 0.57,b = 0.19,c = 0.19.

All test graphs are connected, for R-MAT graphs guaranteed

with n−1 artificial edges connecting vertex i with vertex i+1.

Some important graph properties for the graphs used are given

in Table II. For a general discussion on degree distributions

of R-MAT graphs see [63].

C. Factors Influencing Performance and Scalabilty

To interpret results in the following section, frontier sizes

during the level-synchronous execution of the BFS algorithm

will be given in relation to the level number as an additional

information (see Figs. 8 and 9). The edge frontier size gives

the number of outgoing edges from vertices in the current

frontier, i.e., the number of vertex candidates that have to be

checked for inclusion into the next frontier. On the other side,

the vertex frontier size gives the number of unique vertices that

get inserted into the next vertex frontier, i.e., the vertex was

checked, found unvisited, and then sucessfully inserted. The

edge frontier size is therefore the amount of checks to be done

(in algorithm version atomicBFS1 with a CAS operation, in

the other versions by a simple read operation), and the vertex

frontier size is the amount of actual insertions into the next

frontier (in version atomicBFS2 as part of the CAS, in version

nonatomicBFS with a simple write). The edge frontier size

is always at least as large as the vertex frontier size. In the

figures, the edge frontier size is always the upper curve.

Setting this frontier information in relation to the perfor-

mance numbers, a large difference between edge frontier size

and vertex frontier size in a level iteration means that many

atomic checks were made in version atomicBFS1 that did not

lead to an unvisited neighbor vertex / insert operation. On the

other side, if the difference between vertex and edge frontier

size is small, the difference between the two atomic algorithm

versions should be less as most of the atomic operations are

executed in both atomic versions.

Figs. 8 and 9 show frontier sizes during each level. Please

be aware that the y-axis has a logarithmic scale. The higher

a number for the vertex frontier is, the more parallel work is

available. A frontier size of 1,000 or even less on a parallel

system with 64 threads all working in parallel on this problem

means a severe performance limitation.

All BFS algorithms introduced here are limited for large

graphs by memory bandwidth demands, especially when using

many threads. This means that for many large graphs and

using many threads, the effects under discussion here may be

hidden by memory bandwidth restrictions [44]. Additionally, if

there is not enough parallelism available (small vertex frontier

at any level iteration), performance is again limited in all

versions using many threads. In such situations, algorithms

atomicBFS2 and nonatomicBFS will most likely perform very

similar. In Section VIII-C, statistical filters are used to handle

this in the discussion.

204

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. EVALUATION RESULTS

In the following, performance results are discussed com-

paring the three algorithm versions on the different parallel

systems and with different input data as specified in Section

VII. Not all results can be shown here in detail. Rather, the

influence of the stated factors is discussed, results are sum-

marized where reasonable, and overall statistics are presented.

Additionally, the amount of overhead for nonatomicBFS is

discussed. Performance number for BFS will be given as a

rate Million Traversed Edges per Second (MTEPS), a usual

measure for BFS performance [42] (the higher, the better).

A. Absolute Performance Results

Figs. 10 - 13 show absolute performance results for the three

algorithm versions of investigation on the different parallel

systems using selected data sets. The performance limitation

or even degradation using many threads (especially with graph

road-europe) is caused by the limited parallelism (see Figs. 8a

and 8c for that) or memory bandwidth restrictions. More

sophisticated BFS algorithms that are out of the scope of this

paper can handle that more efficient. Details on that can be

found in [44].

For all graphs shown other than road-europe the algorithm

version performing worst is the algorithm version atomicBFS1

as with every access to d[w] in the relevant code section an

atomic CAS operation is executed. This is true on all systems

used and with nearly all thread counts. The performance

difference to the other two algorithm versions is very high, if

many of the atomic operation were done unneccesarily, i.e., a

vertex of investigation was visited already before. This is the

case if the difference between edge and vertex frontier is large.

And the performance difference is large as long as no other

effects (limited parallelism, memory bandwidth restriction)

superimpose this effect. Both other algorithm versions use

no CAS at all (nonatomicBFS) or only if a vertex has been

seen in a non-atomic pre-test as unvisited (atomicBFS2). This

behaviour clearly underpins the central message that atomic

operations should be avoided whenever possible.

B. Relative Improvements

As algorithm version atomicBFS1 has in most configura-

tions severe performance limitations, a closer look will be done

on the other two version only: atomicBFS2 using CAS only if

necessary and nonatomicBFS using the introduced technique

of avoiding atomic operations at all.

Fig. 14 shows relative performance improvements in percent

of algorithm version nonatomicBFS without atomic operations

relative to algorithm version atomicBFS2 with (already opti-

mized) atomic updates. A positive value means that the non-

atomic version performs better than atomicBFS2. The figures

show that for many threads the difference between the two

versions of discussion is rather small (and then often below

the accuracy of measurement). The reason for that was given

already: with this rather simple BFS algorithm versions, for

many threads and large graphs, memory bandwidth and/or

limited parallelism is the limiting factor, and not the atomic

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(a) delaunay

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(b) nlpkkt240

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35 40 45 50
M

T
E

P
S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(c) road-europe

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(d) friendster

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(e) R-100M-2G-45

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(f) R-100M-2G-57

Fig. 10: Performance data on system Intel-IB.

205

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(a) delaunay

 0

 200

 400

 600

 800

 1000

 1200

 0 5 10 15 20 25 30 35

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(b) nlpkkt240

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5 10 15 20 25 30 35

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(c) road-europe

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(d) friendster

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(e) R-100M-2G-45

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 5 10 15 20 25 30 35

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(f) R-100M-2G-57

Fig. 11: Performance data on system Intel-SB.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(a) delaunay

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(b) nlpkkt240

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70
M

T
E

P
S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(c) road-europe

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(d) friendster

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(e) R-100M-2G-45

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60 70

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(f) R-100M-2G-57

Fig. 12: Performance data on system AMD-IL.

206

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(a) delaunay

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(b) nlpkkt240

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(c) road-europe

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10 12 14 16

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(d) friendster

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(e) R-100M-2G-45

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35 40 45 50

M
T

E
P

S

number of threads

atomicBFS1 atomicBFS2 nonatomicBFS

(f) R-100M-2G-57

Fig. 13: Performance data on system AMD-MC.

accesses. But the smaller the number of threads used, the

higher is the difference between the two version in the favour

of nonatomicBFS. This is because the atomic accesses are

the main performance problem, and not memory bandwidth or

limited parallelism. Often, the single thread case has the largest

relative improvement for the non-atomic version. This is

mostly related to the additional overhead for atomic operations

(see Section IV) compared to a cheaper non-atomic read and

write operation.

On the two AMD systems with 4 CPU sockets the non-

atomic version shows more improvements than on the 2-socket

Intel systems. The reason for that is the higher overhead for

CAS operations on systems with more sockets (see Section IV

and especially Fig. 2).

C. Statistical Analysis

In Section VII, the test setup was described. Tests were

done on 4 different systems, with different thread numbers

depending on the available parallelism of a system, and

different input graphs. In total, 761 configurations were tested.

So far, selected results were presented in detail. In this section,

statistics on all results summarize the performance results.

Although all tests were repeated several times (see Section

VII for details), there are variations in runtime caused by

several and partly non-deterministic factors in a complex

parallel system. To leave these artefacts out of the discussion,

we define a difference between two results that is below 3% as

within the accuracy of measurement and therefore not related

to the discussion here.

Fig. 15 shows a statistical analysis of all 761 results. Five

classes of test results are shown, given for each system:

• < −10: where the atomic version atomicBFS2 per-

formoms significantly better (better than 10%) than

nonatomicBFS (in total 2 out of 761 instances)

• −10 <= x <−3: where the atomic version atomicBFS2

performoms better than nonatomicBFS (in total 20 in-

stances)

• −3 <= x < 3: where differences are within the accuracy

of measurement (in total 406 instances, most of them with

large threads counts)

• 3 <= x < 10: where the non-atomic version

nonatomicBFS performoms better than atomicBFS2 (in

total 220 instances)

• >= 10: where the non-atomic version nonatomicBFS

performoms significantly better than atomicBFS2 (in total

113 instances)

It can be seen that large improvements (more than 10%

performance increase) are mainly on the 4-socket systems

while the 2-socket systems show increases that mostly lie

below 10%.

Summarizing the results over all systems, in approx. 2.9%

of all test cases the new approach performs worse than

atomicBFS2, in approx. 43.8% of all test cases the new

approach performs better, and in the rest of the test cases

the two versions performed rather similar (less than 3%

difference). As can be easily seen from Figs. 10 - 13, this is

207

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

-5

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60 70

im
pr

ov
em

en
t [

%
]

number of threads

Intel-IB Intel-SB AMD-IL AMD-MC

(a) delaunay

-2

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70

im
pr

ov
em

en
t [

%
]

number of threads

Intel-IB Intel-SB AMD-IL AMD-MC

(b) nlpkkt240

-10

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70

im
pr

ov
em

en
t [

%
]

number of threads

Intel-IB Intel-SB AMD-IL AMD-MC

(c) road-europe

-10

-5

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70

im
pr

ov
em

en
t [

%
]

number of threads

Intel-IB Intel-SB AMD-IL AMD-MC

(d) friendster

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70

im
pr

ov
em

en
t [

%
]

number of threads

Intel-IB Intel-SB AMD-IL

(e) R-100M-4G-45

-4

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60 70

im
pr

ov
em

en
t [

%
]

number of threads

Intel-IB Intel-SB AMD-IL

(f) R-100M-4G-57

Fig. 14: Relative improvements of non-atomic version nonatomicBFS com-
pared to optimized atomic version atomicBFS2.

 0

 20

 40

 60

 80

 100

Intel-IB

Intel-SB

AM
D-IL

AM
D-M

C

%
 o

f i
ns

ta
nc

es

<-10
-10<=x<-3

-3<=x<3
3<=x<10

>=10

Fig. 15: Classes of performance improvements between nonatomicBFS and
atomicBFS2. x > 0 are test instances, where nonatomicBFS was faster than
atomicBFS2).

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 5 10 15 20 25 30 35 40 45 50

ov
er

he
ad

 [%
 a

dd
iti

on
al

 v
er

tic
es

]

number of threads

delaunay nlpkkt240 road-europe friendster

(a) Percentage of additional vertices (non RMAT graphs)

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0 5 10 15 20 25 30 35 40 45 50

ov
er

he
ad

 [%
 a

dd
iti

on
al

 v
er

tic
es

]

number of threads

RMAT-1M-10M-57
RMAT-1M-100M-57

RMAT-1M-1000M-57
RMAT-1M-1000M-30

(b) Percentage of additional vertices (selected RMAT graphs)

Fig. 16: Overhead in percentage of additional vertices for selected graphs on
the system Intel-IB, shown with error bars.

often the case when using many threads, where other effects

then superimpose the discussion atomic / non-atomic.

D. Additional Overhead

The newly introduced technique avoids atomic operations

in exchange with a probability of more work to be executed.

To examine the amount of additional work, it was measured

how many vertices get inserted multiple times in version

nonatomicBFS, which is proportional to the additional and

redundant work that is generated. The general factors influ-

encing that were discussed already in Section V-B.

208

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 16 shows exemplarily for the system Intel-IB the

overhead for selected graphs including the worst case for that

system. The program was run for this test 100 times. Shown in

the figure is the average overhead in percent and the standard

deviation as an error bar, for a specific number of threads

respectively.

As can be seen, the probability increases slightly with

more threads, but still this overhead is for the scenario used

negligible. Even with 48-fold concurrency, there are very rare

situations that lead to multiple insertions. In all tests executed

– on all systems, with all number of threads, with all data

sets, with different compilers – the additional overhead was

in a neglectible range for the application used. In all tests the

overhead in percent of additional vertices to be handled was

always below 0.1 %, and most times even far less than that.

The maximum overhead seen on the system Intel-IB was

0.047 percent, or in absolute numbers, instead of 27,993,600

vertices to be inserted, with nonatomicBFS 29,314,002 ver-

tices were inserted. The difference in this worst case that

happened was therefore 13,204 additional vertices. For RMAT-

graphs, the difference was even always below 500 additional

vertices in absolute values.

IX. CONCLUSIONS

In this paper, it was proposed (in parallel programs and

within certain scenarios) to replace costly atomic update

operations on shared data structures with simple read-write

updates. If the correctness of the algorithm is not affected by

this change, this leads to an algorithm variant that does not

need atomic operations to update the shared data structure.

This program variant still works correctly, but on the other

side, it may generate more and redundant work to be done.

As an example for such a scenario, a parallel BFS algorithm

was used where the atomic detection and update of univisited

neighbour vertices was replaced with simple non-atomic read-

/write updates. The results for this application show, that the

non-atomic version has a huge performance improvement in

many situations compared to a straightforward implementation

with atomic accesses (atomicBFS1). And even compared to

an already optimized version using atomic operations only

if necessary, the proposed new technique has comparable or

many times better performance (approx. 43,9% of all test

instances). Especially larger parallel systems with more CPU

sockets benefit.

The reason for the performance boost was the avoidance of

atomic operations. The additional overhead, which the tech-

nique may introduce, was in the BFS application neglectible.

To apply the technique in general, it was shown what

requirements must be fulfilled: the test and update operations

must be idempotent.

The mainstream transactional memory hardware implemen-

tations introduced in recent processors generations (e.g., Intel

Haswell) use a different approach. But similar to the approach

introduced in this paper, this is an optimistic approach, too, as

only the conflict case has to be handled, and not every access.

It would be rather interesting to compare these two alternatives

with relevant scenarios.

ACKNOWLEDGEMENTS

The system infrastructure was partially funded by an in-

frastructure grant of the Ministry for Innovation, Science, Re-

search, and Technology of the state North-Rhine-Westphalia.

Matthias Makulla did most of the implementation work on

several parallel graph algorithms including an initial version

of the ones used in this paper.

REFERENCES

[1] R. Berrendorf, “Trading redundant work against atomic operations on
large shared memory parallel systems,” in Proc. Seventh Intl. Conference

on Advanced Engineering Computing and Applications in Sciences

(ADVCOMP), 2013, pp. 61–66.

[2] OpenMP Application Program Interface, 4th ed., OpenMP Archi-
tecture Review Board, http://www.openmp.org/, Jul. 2013, retrieved:
08.03.2014.

[3] IEEE, Posix.1c (IEEE Std 1003.1c-2008), Institute of Electrical and
Electronics Engineers, Inc., 2008.

[4] ISO/IEC 14882:2011 Programming Languages – C++, ISO, Genf,
Schweiz, 2011.

[5] ISO/IEC 9899:2011 - Programming Languages – C, ISO, Genf,
Schweiz, 2011.

[6] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming.
Burlington, MA: Morgan Kaufmann, 2008.

[7] M. Ben-Ari, Principles of Concurrent and Distributed Programming,
second edition ed. Harlow, England: Pearson Eduction, 2006.

[8] Intel c©64 and IA-32 Architectures Software Developer’s Manual. Intel
Press, 2013, vol. 2: Instruction Set Reference.

[9] AMD64 Architecture Programmers Manual. Advanced Micro Devices,
2013, vol. 3: General-Purpose and System Instructions.

[10] ARM v8 Instruction Set Architecture. ARM Limited, 2013.

[11] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, “Scalable graph
exploration on multicore processors,” in ACM/IEEE Intl.Conf. for High

Performance Computing, Networking, Storage and Analysis, 2010, pp.
1–11.

[12] P. E. McKenney, Synchronization and Scalability in the Macho Multicore

Era, http://www2.rdrop.com/∼paulmck/scalability/paper/ MachoMulti-
core.2010.08.09a.pdf, retrieved: 27.01.2014.

[13] G. M. Baudet, “Asynchronous iterative methods for multiprocessors,”
Journal of the ACM, vol. 25, no. 2, pp. 226–244, Apr. 1978.

[14] M. Wu, “Asynchronous algorithms for shared memory machines,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, 1992.

[15] P. Diniz and M. Rinard, “Synchronization transformations for parallel
computing,” in Proc. ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL), 1997, pp. 187–200.

[16] D. Novillo, R. Unrau, and J. Schaeffer, “Optimizing mutual exclusion
synchronization in explicitly parallel programs,” in Proc. 5th Interna-

tional Workshop on Languages, Compilers, and Run-Time Systems for

Scalable Computers, 2000, pp. 128–142.

[17] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and
J. Walpole, “User-level implementations of read-copy update,” IEEE

Transactions on Parallel and Distributed Systems, vol. 23, no. 2, pp.
375– 382, Feb. 2012.

[18] D. Dice, “Implementing fast Java monitors with relaxed locks,” in
Proc. JavaTM Virtual Machine and Technology Symposium, Monterey,
2001, pp. 79–90.

[19] S. Haldar and K. Vidyasankar, “Constructing 1-writer multireader mul-
tivalued atomic variables from regular variables,” Journal of the ACM,
vol. 42, no. 1, pp. 186–203, 1995.

[20] M. Herlihy and J. B. Moss, “Transactional memory: Architectural
support for lock-free data structures,” in Proc. 20th Intl. Symposium

on Computer Architecture, 1993, pp. 289–300.

[21] A. Wang, M. Gaudet, P. Wu, J. N. Amaral, M. Ohmacht, C. Barton,
R. Silbera, and M. Michael, “Evaluation of Blue Gene/Q hardware
support for transactional memories,” in Proceedings of the 21st Interna-

tional Conference on Parallel architectures and compilation techniques

(PACT’12). New York, NY: ACM, 2012, pp. 127–136.

209

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] C. Jacobi, T. Siegel, and D. Greiner, “Transactional memory architecture
and implementation for IBM system z,” in Proceedings of the IEEE/ACM

45th Annual Intl. Symposium on Microarchitecture, 2012, pp. 25–36.

[23] J. Reinders, Transactional Synchronization in Haswell,
http://software.intel.com/en-us/blogs/2012/02/07/ transactional-
synchronization-in-haswell, 2012, retrieved 30.01.2014.

[24] L. Lamport, “Concurrent reading and writing,” Journal of the ACM,
vol. 20, no. 11, pp. 906–811, 1977.

[25] J. Aspnes and M. Herlihy, “Wait-free dats structures in the asynchronous
PRAM model,” in Proc. 2nd Annual Symposium on Parallel Algorithms

and Architectures (SPAA-90), Crete, Greece, Jul. 1990, pp. 240–349.

[26] M. Herlihy, “Wait-free synchronization,” ACM Trans. Programming

Languages and Systems, vol. 13, no. 1, pp. 124–149, 1991.

[27] A. LaMarca, “A performance evaluation of lock-free synchronization
protocols,” in Proceedings of the 13th Annual ACM Symposium on

Principles of Distributed Computing, Los Angeles, CA, Aug. 1994, pp.
130–140.

[28] V. Lanin and D. Sasha, “Concurrent set manipulation without locking,”
in Proceedings of the 7thACM SIGACT-SIGMOD-SIGART Symposium

on Principles of Database Systems, Austin, TX, Mar. 1988, pp. 211–220.

[29] P. Tsigas and Y. Zhang, “A simple, fast and scalable non-blocking
concurrent FIFO queue for shared memory multiprocessor systems,” in
Proceedings of the 13th Annual Symposium on Parallel Algorithms and

Architectures (SPAA-01), Crete, Greece, Sep. 2001, pp. 134–143.

[30] G. Barnes, “Wait-free algorithms for heaps,” University of Washington,
Seattle, WA, Tech. Rep. TR-94-12-07, 1994.

[31] J. Valois, “Lock-free data structures,” Ph.D. dissertation, Rensselaer
Polytechnic Institute, Troy, NY, May 1995.

[32] ——, “Lock-free linked lists using compare-and-swap,” in Proceedings

of the 14th Annual ACM Symposium on Principles of Distributed

Computing, Ottawa, Canada, 1995, pp. 214–222.

[33] H. Sundell and P. Tsigas, “Scalable and lock-free concurrent dictionar-
ies,” Chalmers University, Gteborg, Sweden, Tech. Rep. 2003-10, 2003.

[34] H. Sundell, “Efficient and practical non-blocking data stccutures,” Ph.D.
dissertation, Chalmers University, Gtebord, Sweden, 2004.

[35] K. Fraser and T. Harris, “Concurrent programming without locks,” IEEE

Trans. Computers, vol. 25, no. 2, 2007.

[36] G. Cong and D. A. Bader, “Designing irregular parallel algorithms
with mutual exclusion and lock-free protocols,” Journal of Parallel and

Distributed Computing, no. 66, pp. 854–866, 2006.

[37] C. E. Leiserson and T. B. Schardl, “A work-efficient parallel breadth-
first search algorithm (or how to cope with the nondeterminism of
reducers),” in Proc. 22nd ACM Symp. on Parallelism in Algorithms and

Architectures, 2010, pp. 303–314.

[38] R. Sedgewick, Algorithms in C++, Part 5: Graph Algorithms, 3rd ed.
Addison-Wesley Professional, 2001.

[39] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to

Algorithms, 3rd ed. The MIT Press, 2009.

[40] C. Wilson, B. Boe, A. Sala, K. Puttaswamy, and B. Zhao, “User
interactions in social networks and their implications,” in Eurosys, 2009,
pp. 205–218.

[41] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-

tative Approach, 5th ed. Morgan Kaufmann Publishers, Inc., 2012.

[42] Graph 500 Comitee, Graph 500 Benchmark Suite,
http://www.graph500.org/, retrieved: 08.03.2014.

[43] D. Bader and K. Madduri, “SNAP, small-world network analysis and
partitioning: an open-source parallel graph framework for the exploration
of large-scale networks,” in 22nd IEEE Intl. Symp. on Parallel and

Distributed Processing, 2008, pp. 1–12.

[44] R. Berrendorf and M. Makulla, “Level-synchronous parallel breadth-
first search algorithms for multicore- and multiprocessors systems,” in
submitted for publication, 2014.

[45] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson,
and U. Catalyurek, “A scalable distributed parallel breadth-first search
algorithm on BlueGene/L,” in ACM/IEEE Conf. on Supercomputing,
2005, pp. 25–44.

[46] Y. Xia and V. Prasanna, “Topologically adaptive parallel breadth-first
search on multicore processors,” in 21st Intl. Conf. on Parallel and

Distributed Computing and Systems, 2009, pp. 1–8.

[47] J. D. Ullman and M. Yannakakis, “High-probability parallel transitive
closure algorithms,” SIAM Journal Computing, vol. 20, no. 1, pp. 100–
125, 1991.

[48] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing
breadth-first search,” in Proc. Supercomputing 2012, 2012, pp. 1–10.

[49] J. Chhungani, N. Satish, C. Kim, J. Sewall, and P. Dubey, “Fast
and efficient graph traversal algorithm for CPUs: Maximizing single-
node efficiency,” in Proc. 26th Intl.Parallel and Distributed Processing

Symposium. IEEE, 2012, pp. 378–389.
[50] Y. Yasui, K. Fujusawa, and K. Goto, “NUMA-optimized parallel

breadth-first search on multicore single-node system,” in Proc. IEEE

Intl. Conference on Big Data, 2013, pp. 394–402.
[51] G. Taubenfeld, Synchronization Algorithms and Concurrent Program-

ming. Harlow, Essex: Pearson Education Limited, 2006.
[52] C. Hoare, “Monitors: An operating system structuring concept,”

Comm. ACM, vol. 17, no. 10, pp. 549–557, 1974.
[53] A. Silberschatz, J. B. Galvin, and G. Gagne, Operating System Concepts,

8th ed. John Wiley & Sons Inc, 2008.
[54] L. Lamport, “Time, clocks, and the ordering of events in a distributed

system,” Comm. ACM, vol. 21, no. 7, pp. 558 – 565, Jul. 1978.
[55] S. V. Adve and K. Gharachorloo, “Shared memory consistency models:

A tutorial,” IEEE Computer, pp. 66–76, Dec. 1996.
[56] M. Dubois, C. Scheurich, and F. A. Briggs, “Synchronization, coherence,

and event ordering in multiprocessors,” IEEE Computer, pp. 9–21, Feb.
1988.

[57] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy, “Memory consistency and event ordering in scalable
shared-memory multiprocessors,” in Proc. 17th Intl. Symposium on

Computer Architecture. IEEE, 1990, pp. 15–26.
[58] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language

Specification, 3rd ed. Addison Wesley, 2005.
[59] DIMACS, DIMACS’10 Graph Collection,

http://www.cc.gatech.edu/dimacs10/, retrieved: 08.03.2014.
[60] T. Davis and Y. Hu, Florida Sparse Matrix Collection,

http://www.cise.ufl.edu/research/sparse/matrices/, retrieved: 08.03.2014.
[61] J. Leskovec, Stanford Large Network Dataset Collection,

http://snap.stanford.edu/data/index.html, retrieved: 08.03.2014.
[62] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model

for graph mining,” in SIAM International Conference on Data Mining,
2004, pp. 442 – 446.

[63] C. Groër, B. D. Sullivan, and S. Poole, “A mathematical analysis of the
R-MAT random graph generator,” Networks, vol. 58, no. 3, pp. 159–170,
Oct. 2011.

210

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

