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Abstract—Application lifecycle management approaches are
used to tame the increasing complexity, size and number of
development artifacts. Throughout the application lifecycle, a
number of tools are used to create a diversity of development
artifacts. It is widely believed that the efficiency of development
can be improved by the integration of these tools. However,
such integrated solutions are not accepted by practitioners if
the solutions are not aligned with the established development
culture, processes and standards. Thus, application lifecycle
management needs to be tailored to the specific corporate
needs. The tailoring, however, is typically performed manually
and is thus resource intensive. We propose a cost efficient
tailoring approach for application lifecycle management, which
is based on reuse and automation. We explore to what extent
existing process models can be reused for automatically con-
figuring the application lifecycle management system, so it is
aligned with the development process. We identify a number
of relationship patterns between the development process and
its supporting tool chain and show how the patterns can be
used for constructing a tool chain. In three case studies, we
examine the practical applicability of the approach.

Keywords-Application Lifecycle Management; Process Model-
ing; Tool Integration; Tool Chain; Generative Approach; Model
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I. INTRODUCTION

The development of software-intensive products, such as
embedded systems, produces a large number of diverse
development artifacts, such as documents, models and source
code. The artifacts are produced and used throughout the
product lifecycle and are ideally managed systematically in
an application lifecycle management (ALM) system [1]. In
this article, we focus on one specific aspect of application
lifecycle management systems – the aspect of tool integra-
tion. Currently available commercial application lifecycle
management systems do not provide adequate tool integra-
tion, as shown in a recent analysis [2]. Tool integration is an
essential aspect of ALM, since the development artifacts in
the ALM system are typically developed with a number of
different development tools. The development tools ideally
interoperate seamlessly, however, the tools are often “island
solutions” and a considerable engineering effort is necessary
to make a specific set of tools interoperate. Thus, tool
integration is realized externally to the development tools,

in the form of tool chains. A tool chain can be regarded
as an integrated development environment consisting of
several development tools, which is intended to increase the
efficiency of development by providing connections between
the tools used in a development process [3].

To be effectively used, tool chains need to be customized
to a specific selection of development tools and a specific
development process. For example, a company might se-
lect IBM DOORS for requirements management, Enterprise
Architect for UML modeling and MATLAB/Simulink for
designing and simulating control algorithms. The tool chain
needs to include these development tools. The way in which
these tools are connected, is determined by the development
process, which might prescribe that a connection between
requirements and UML models is needed, and a connection
between UML models and MATLAB/Simulink models.

Building automated tool chains that fit the individual
needs is an expensive and time-consuming task. In Section
II, we describe the challenges involved in building such
customized tool chains and study the perspective of involved
stakeholders. If a systematic and automated development
approach for tool chains was available, tool chains could
be efficiently developed for each new development context.
We introduce a domain-specific modeling language for tool
chains in Section III. The language allows us to express
the essential design decisions for creating a tool chain. In
Section V, we propose a systematic development process for
building tool chains with this language, including the design
phase, analysis phase, verification phase and implementation
phase of tool chains. In Section IV, we focus in-depth on the
relationship between process models and tool chain models
and ways of leveraging this relationship in the conceptual
design and verification phases of tool chain construction.
We describe the relationship between process and tool
chain in the form of patterns, implement them as model
transformations and leverage these patterns for design and
verification. We apply the approach in three case studies in
Section VI. In the remaining Sections VII - IX, we relate
our approach to other work in the field, sketch future work
and consider the implications of this work.
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II. CHALLENGES

To develop modern software-intensive systems, such as an
embedded system, a large number of development tools are
used. Each of these tools can help us to be more productive,
manage knowledge, and manage the complexity of devel-
opment. The use of single, specialized tools has the poten-
tial to improve the efficiency of the development process,
improve knowledge management, and improve complexity
management, depending on the degree of automation they
provide [4]. Multiple tools have the potential to improve
the productivity in the development process, depending on
how well they are integrated with each other and their
degree of automation [3]. The reasons for using multiple
tools can be found in the high degree of specialization
of the tools, which is necessary to support the different
engineering disciplines and the different engineering phases.
The engineering of a software intensive system requires
experts from a number of different engineering disciplines,
such as control, hardware, software and mechanics. Each
engineering discipline prefers a different set of development
tools that excel in that particular discipline [5]. Throughout
the different phases of the development process, specific
tools are used, such as tools for prototyping, requirements
engineering, design, implementation, verification and test-
ing. In addition, crosscutting tools are used that support
the process as a whole, such as repositories or tools for
data management. The used tools are for the largest part
commercial-off-the-shelf tools. The tools can thus not be
changed and have to be used as they are.

Since engineers use the various tools to develop a single
system, they need to relate the data that is captured in
different tools, exchange data for reusing it in another tool
or even to automate tasks that involve different tools. Most
development tools do not interoperate well with one another,
this is why additional software external to the tools – a tool
chain – is needed as the glue to facilitate the integration.

Tool chains can provide different coverage of the de-
velopment process; therefore, we distinguish between task-
oriented tool chains with a small coverage and lifecycle-
oriented tool chains with a larger coverage. Many existing
tool chains cover only one task in the development process,
e.g., the tool chain between source code editor, compiler and
linker. We call these tool chains task-oriented. The tools are
used in a linear chain, so that the output of one tool is the
input for the next tool. These tool chains have a relatively
small scope and integrate a small number of tools from
within one phase in the lifecycle. Characteristic for these
traditional tool chains are their linear connections, using a
pipes and filter design pattern [6].

Along with the efforts to capture the complete application
lifecycle in systems for ALM, there is a need for tool integra-
tion with a larger scope. Lifecycle-oriented tool chains sup-
port data exchange, tracing, and automation across the com-

plete development lifecycle, from requirements engineering
over verification, design and implementation to maintenance.
When creating software-intensive systems, such tool chains
may span multiple disciplines such as software engineering,
hardware engineering and mechanical engineering and inte-
grate a large number of different development and lifecycle
management tools. In addition, modern development pro-
cesses put new demands on the tool chain: processes might
be agile, iterative or model-driven, which implies that the
supporting tool chain cannot be linear.

With the large number of alternative development tools
available in the marketplace and the large number of
company-specific development processes, there is an even
larger number of potential, different development processes
that need to be supported by tool chains. A static, one-size-
fits-all application lifecycle management system cannot ful-
fill these needs. Ideally, a tailor-made, customizable solution
is available that addresses the individual needs. Since there
is limited methodological and tool support and little reuse
of tool chain parts, either one-size-fits-all tool chains are
used despite their suboptimal support or customized tool
chains are built, in a mostly manual way, which requires
a tremendous development effort and investment.

In this article, we present one approach for solving this
issue: by providing cost-efficient methods for building tool
chains, the individual development of tailored tool chains
becomes feasible. The approach manages to be cost-efficient
by reuse of existing information and automation of develop-
ment activities. The approach thus provides an opportunity
to bring tailored tool chains within the reach of industrial
application.

A. Stakeholders

As part of the description of challenges, some of the
most important stakeholders of tools and tool chains are
introduced, as depicted in Figure 1, including their roles
as users or creators of tools and tool chains. The embedded
systems developers work with multiple development tools
and take on the role of the users of tools. In addition,
the embedded systems developers take on the role of the
users of tool chains, motivated by the expected efficiency
gains in development provided by tool chains. The vendors
of tools for embedded systems development take on the
role of the creators of tools. IT infrastructure deploys the
development tools. Process engineers have the big picture
of the development process, which is hopefully consistent
with the actual development practices of the embedded
developers. Tool integration specialists are the only ones
who know the integration technologies and conventions.
A challenge is the effective communication between the
stakeholders, as it requires a description of the different
needs and possibilities of the stakeholders on the appropriate
level of abstraction.
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Figure 1. Stakeholders of tool chain development

Each one of the different stakeholders for tool chain de-
velopment provides some important information for building
a tool chain. Based on observations and interactions with
industry in the research projects iFEST [7] and CESAR [8],
the assignment of the role of the creator of tool chains is
not clearly defined in industry. The role might be assigned to
third party tool integration developers, but also to embedded
systems developers or to tool vendors, which is problematic.
Tool vendors are mostly interested in connecting only their
tools to other tools, resulting in a limited scope of the in-
tegration. For embedded systems developers, the implemen-
tation of a tool chain is an additional burden that distracts
them from their primary task of developing an embedded
system. The observed constellation of stakeholders requires
an approach for describing and communicating tool chains
both in early design phases and in later phases, when more
precision is needed.

III. MODELING THE DESIGN OF TOOL CHAINS

We need an early design model that describes all im-
portant design decisions of a tool chain. Such a design
model can also serve as a boundary object [9] for the
communication between different stakeholders. We chose
to use the Tool Integration Language (TIL) [10], a domain
specific modeling language for tool chains. TIL allows us not
only to model a tool chain, but also to analyze it and generate
code from it. The implementation of a tool chain can be
partly synthesized from a TIL model, given that metamodels
and model transformations are provided. Here we can only
give a short overview of TIL, for an elaborated description
of concrete graphical syntax, abstract syntax and semantics
we refer to [10].

The graphical concrete syntax of each language concept
is introduced by a simple example in Figure 2, the concrete
mapping function, which maps abstract to concrete syntax,
is defined by corresponding circled numbers 0©.. 7© in Figure

2 and the following text. This section also briefly and
informally introduces the semantics of TIL concepts.

Figure 2. A simple TIL model illustrating the graphical concrete syntax
of the language concepts

A ToolChain 0© provides a container for instances of TIL
concepts. An instance of the ToolChain concept describes
the tool chain by the composition of its contained instances
of TIL concepts.

A ToolAdapter 1© is a software component that describes
the role of a tool in the tool chain by exposing the services
and data of the tool, which are relevant for the specific role.
Exposing the services of a tool enables control integration.
Exposing the data of a tool enables data integration. A
ToolAdapter makes two kinds of adaptation: (1) It adapts
between the technical space of the tool and the technical
space of integration for both data and services. (2) It adapts
the structure of data and the signature of services available
in the development tool to the data structure and service
signatures defined by the ToolAdapter metamodel.

Each ToolAdapter has two associated ToolAdapter meta-
models: one that specifies the structure of the exposed
tool data and another that specifies the signature of the
exposed services. In addition to the services defined in the
metamodel, all ToolAdapters provide the default services
activate to start the tool, injectData to load data (which is an
instance of the ToolAdapter data metamodel) into the tool
and extractData to access the tool data (as an instance of the
ToolAdapter data metamodel). The ToolAdapter metamodels
serve as an interface specification for the ToolAdapter and
describe which data and services of the tool are exposed.
More information on the structure of the ToolAdapter meta-
models is provided in [10], [11].

Subtypes of ToolAdapters are defined, such as a Repos-
itory 7©, which provides storage and version management,
e.g., a ToolAdapter for Subversion [12].

A DataChannel 5© describes the possibility to transfer
and transform data from a source ToolAdapter to a target
ToolAdapter at the run-time of the tool chain; it is a directed
connection. The data originates from the source service of
the source ToolAdapter (default service: extractData), is
transformed and is finally received by the target service
of the target ToolAdapter (default service: injectData). A
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model transformation is attached to the DataChannel; the
source and target metamodels of the transformation need to
match the respective data metamodels of source and target
ToolAdapters.

A TraceChannel 6© describes the possibility to establish
trace links between the data of two ToolAdapters at the run-
time of the tool chain; it is an undirected connection. A
TraceChannel is a design-time representative for a number
of trace links at run-time. At design-time one can specify
the type of data that can be linked by traces. The endpoints
of the traces can be restricted to a subset of the tool data
by specifying the source service and target service (default
service: extractData), which provide the data. At run-time,
these services provide a list of all the source and target
elements that are offered as endpoints for specifying a trace.

A ControlChannel 2© describes an invocation or notifi-
cation, it is a directed connection originating from a source
component and ending in a target component. If the target
of the ControlChannel is a ToolAdapter, the ControlChannel
denotes the invocation of a tool service; if the target is a
DataChannel, the data-transfer is executed; if the target is
a TraceChannel, a dialog for creating traces is presented.
If the target is a User, it denotes notification of the User.
A condition for the execution of the ControlChannel can
be specified by a guard expression. A service of the source
component, called source service (default value: activate),
can be specified as the event that triggers the ControlChan-
nel. The invoked service in the target component is spec-
ified as the target service (default value: activate) of the
ControlChannel.

A Sequencer 3© describes a sequence of invocations or
notifications. When a Sequencer is activated by an incoming
ControlChannel, it activates the outgoing ControlChannels
in the specified order. The order is specified by the events
(0..n), which are specified as the source service in the
outgoing ControlChannels from the Sequencer. Only after
the service executed by the previous ControlChannel is
finished, will the next ControlChannel be activated.

A User 4© represents a real-world tool chain user. The
concept is used to describe the possible interactions of the
real-world users with the tool chain. Outgoing ControlChan-
nels from the User denote the invocation of tool chain
services by the real-world user. Incoming ControlChannels
to a User denote a notification sent to the real-world user,
e.g., by e-mail.

By default, all TIL concepts describe parts of an auto-
mated tool chain, however some parts of the tool chain
may not need to be automated and are manually integrated.
TIL allows marking ControlChannels, DataChannels and
TraceChannels as manually executed, in which case they
are depicted by dashed lines.

The semantics of TIL is defined in the text above, in
addition, compatible formal semantics of the behavior of TIL
can be described by a mapping of TIL concepts to networks

of finite state machines (FSMs) [13].

IV. RELATIONSHIP BETWEEN PROCESS AND TOOL
CHAIN

When building a tool chain, it is important to study which
development tools need to be connected. This information
about the relationship between development tools is often
already available in a process model. Process models exist
for a variety of reasons, i.e., for documenting, planning or
tracking progress in a development project. The Software
& Systems Process Engineering Metamodel (SPEM) [14] is
the standardized formalism by the OMG for this purpose.
A SPEM model might already be available independently
from a tool integration effort, e.g., as it is the case in
development with the Automotive Open Software Architec-
ture (AUTOSAR) [15]. The information available in process
models forms the skeleton of a tool chain, i.e., which tools
are involved and how they are connected in the process. To
construct an executable tool chain as a software solution,
additional details are needed, e.g., information about the
data of tools, how to access it, how to convert it and how
to describe the relation between data of different tools. In
this Section we evaluate, to what extent information from
existing SPEM models can be used for constructing a tool
chain.

Ideally, connections for all tools used throughout the
development process are provided; and in this case the tool
chain supports the development process. The process pro-
vides constraints and requirements for the construction of the
tool chain. While generic process models are available, e.g.,
the SPEM models for the Rational Unified Process (RUP)
[16] or for AUTOSAR [15], companies also create individual
process models for various purposes, e.g., to customize
these generic models to their individual environments, to
document the development process, to plan the development
process, to track the progress in the development or to
document their selection of tools.

If both the process is described as a model and the tool
chain is described as a model, information from the process
model can be reused for constructing a tool chain model.
This approach ensures that the tool chain and the process are
aligned. Alignment decreases the friction experienced when
using the development tools according to the process model.
Process models only contain some, but not all information
necessary for specifying tool chains. Especially the type of
the connection between tools needs to be added later on.

1) Modeling the Product Development Process: In this
section, we introduce a modeling language that is used
for describing the development process. There are both
formal and informal processes in companies, documented to
different degrees and there is an increasing trend to model
processes. Several established languages exist for modeling
processes or workflows. These languages have various pur-
poses, for example BPMN [17] and BPEL [18] describe
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business processes and SPEM describes development pro-
cesses. We apply SPEM, since it is a standardized and
relatively widespread language for modeling development
processes with mature and diverse tool support. A SPEM
model describes both the product development process and
the set of tools used and can thus be applied to describe the
process requirements of a tool chain. An example model is
provided in Figure 5.

A number of concepts are defined in SPEM, we introduce
here the core concepts that are relevant in the context of
tool chains: a Process is composed of several Activities; an
Activity is described by a set of linked Tasks, WorkProducts
and Roles. A number of relationships, here represented by
�.�, are defined between the concepts of the metamodel:
a Role, typically an engineer or software, can �perform�
a Task and a WorkProduct can be marked as the �input�
or �output� of a Task. A WorkProduct can be �managed
by� a Tool and a Task can �use� a Tool.

A. Development Process Model as Requirements for Tool
Chains

In general, a requirement is a documented need of the
nature or behavior of a particular product or service. Re-
quirements can have different degrees of formalization and
structure. In the context of developing tool chains, the tool
chain is the product. The nature or behavior of a particular
tool chain is documented by process models, which thus can
be interpreted as the requirements. Process models contain
the selection of tools and the description of the connections
between the tools. Since process models describe the process
in a structured and formalized form, the requirements of
a tool chain are formalized and structured, which we will
use for describing the relationship between process and tool
chain and using this relationship for efficiently constructing
and verifying tool chains.

B. Relationship Patterns between Process and Tool Chain

If both the process and tool chain are described as a
model, we can also model the relationship between them. A
process described in SPEM might provide several opportu-
nities for tool integration. Such an opportunity involves two
tools and a direct or indirect connection between them. The
tools and the connections found in SPEM are included into
the tool chain architecture as ToolAdapters and Channels.
The direction of the DataChannel can be determined by the
involved work products, which have either the role of input
or output of the task. Tasks connected to only one tool or
tasks dealing with work products connected to the same tool
do not require support from a tool chain; in these tasks
engineers work directly with this tool, e.g., by using the
GUI of the tool.

The challenge is to identify those parts in a SPEM
model that are relevant for tool integration. The relationship
cannot be described by mapping single metaclasses, as in

Table I, instead the relationship needs to be described by
combinations of several connected metaclasses, which we
call patterns. To describe this relationship in more detail,
we list patterns of both SPEM and TIL models and their
correspondences.

Table I
CORRESPONDENCES BETWEEN SPEM AND TIL METACLASSES

SPEM Metaclass TIL Metaclass
Role User
Tool ToolAdapter
Task Channel

The relationship patterns consist of a SPEM part, which
matches a subgraph of a process model in SPEM, and a
TIL part, which will become a new subgraph in the tool
chain model in TIL. The mapping is established by pairs
of model elements from both SPEM and TIL, whose name
attribute is equivalent and whose types are mapped according
to the correspondences of metaclasses presented in Table I.
In the following, we show four SPEM patterns that describe
tool integration related activities, they are illustrated in the
top part of Figure 3, and the corresponding TIL pattern is
illustrated in the bottom.

1) Task-centered Integration Pattern: For each Task in
SPEM that has associated WorkProducts as input and
output, where the input WorkProduct has a different
associated Tool than the output WorkProduct, this
pattern produces ToolAdapters and a Channel between
them in the TIL model. The pattern is shown in (1)
and can be observed in case study 1 in Figure 5 for the
Task TraceReq2UML connecting the WorkProduct Re-
quirementsDatabase and the WorkProduct UMLFile.

2) Multi-tool Task-centered Integration Pattern: For each
SPEM Task with two SPEM Tools associated with it,
this pattern produces ToolAdapters and two Channels
between them in the TIL model, since no directionality
is modeled in SPEM. This pattern is theoretically pos-
sible according to the SPEM metamodel, but we have
not observed it in practice. The pattern is illustrated
in (2).

3) WorkProduct-centered Integration Pattern: For each
SPEM WorkProduct that is both input and output
of its associated Tasks, which have a different asso-
ciated Tool, this pattern produces ToolAdapters and
a Channel between them in the TIL model. The
pattern is illustrated in (3) and can be observed in
case study 2 in Figure 7 for the WorkProduct ECU-
ConfigurationDescription, which is output of the Task
GenerateBaseECUConfiguration and input to the Task
GenerateRTE.

4) Multi-tool WorkProduct-centered Integration Pattern:
For each SPEM WorkProduct in that is associated to
two different Tools, this pattern produces ToolAdapters
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Figure 3. SPEM and TIL Patterns

and two Channels between them in the TIL model,
since no directionality is modeled in SPEM. This
pattern is theoretically possible according to the SPEM
metamodel, but we have not observed it in practice.
The pattern is illustrated in (4).

For all relationship patterns, the following constraints
need to be fulfilled: For each Role in SPEM that is connected
to the Task, we create a User model element in the TIL
model, which means that the Role in SPEM and the User
in TIL are optional parts in the patterns of Figure I. If a
ToolAdapter corresponding to the Tool already exists in the
TIL model, the existing ToolAdapter is connected, otherwise
a new ToolAdapter is produced.

C. Implementation as Model Transformations

The implementation of the patterns offers possibilities
for automation of the pattern usage. We implement the
relationship patterns as model transformations, with SPEM
as the source metamodel and TIL as the target metamodel.
We chose the model-to-model transformation language in
QVT-R, with the mediniQVT engine, and the Eclipse Mod-
eling Framework (EMF) for realizing the metamodels. We
use a simplified SPEM metamodel in EMF, and for the
visualization of SPEM models we use Enterprise Architect.
For modeling and visualization of TIL, we use the TIL
Workbench described in [10].

Patterns (1) to (4) in Figure 3 are graphical representations
of the relational QVT model transformation rules. Since
QVT relational is a declarative language, the implementation
describes the source patterns and the corresponding target
patterns in the form of rules. Additionally, the attributes
between source and target pattern are mapped, as described
in Table I.

D. Usage of Relationship Patterns

The relationship patterns can be used in different ways.
Here, we apply the relationship patterns for constructing the
initial design of a new tool chain starting from a process
model. Other forms of using the relationship patterns are

possible, but are not considered in depth here. We can use the
patterns, e.g., for verification: based on a process model and
a tool chain model we check if the requirements provided
by the process are realized by the tool chain model.

In the following, we focus on the application of the
relationship patterns to create an initial tool chain design
in TIL based on the process requirements expressed in the
SPEM model. The patterns can be applied to a SPEM model
that is complete and contains all necessary references to
Tools. The patterns ensure that the design of the tool chain
is aligned with the process, a necessity for acceptance of the
tool chain with practitioners. This design of the tool chain
can be created in an automated way and might need to be
iteratively refined by adding details.

The process model only provides the skeleton for the
specification of a tool chain, such as the selection of tools,
the connections between the tools and the user role working
with the tools. The process model does not provide the
nature of the connections and the exact execution semantics
of the automated tool chain. The nature of the connection
can be data exchange, for creating trace links between tool
data or for accessing specific functionality of the tool. This
information needs to be added manually by configuring and
choosing the right type of channel in TIL, a DataChannel,
TraceChannel or ControlChannnel. Also, events need to be
specified that trigger the data transfer or activate the tracing
tool. For each ToolAdapter, a metamodel describing the data
and functionality of the tool need to be added to the TIL
model. For each DataChannel, a model transformation needs
to be added.

To handle these cases, we add a refinement step, which
complements the automated construction. Once this infor-
mation is added, the TIL model can be used as input to a
code generator for tool chains, as detailed in [11].

After focusing on the initial conceptual design phase
for tool chains in this section, we explain the complete
development process for tool chains in the following section.



110

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. TOOL CHAIN DEVELOPMENT PROCESS

When developing tool chains, two processes are relevant:
(1) the process for developing the embedded system as a
product, called PDP (Product Development Process) and (2)
the process for developing a tool chain (TCDP). The TCDP
is followed at design-time of the tool chain to ensure that
the developed tool chain can support the PDP at run-time
by automating its integration-related tasks. In this section
we address the TCDP.

A. Overview
In Figure 4, the TCDP – the process for developing a tool

chain with TIL – is illustrated using the SPEM [14] notation.
The development process for tool chains with TIL is struc-
tured into five phases: requirements engineering, conceptual
design, detailed design, analysis and implementation. These
phases are presented according to the order in which they
are traversed during tool chain development. The complete
tool chain development process has the following phases:

1) The requirements of the tool chain are elicited from the
selection of tools and from the dependencies of tasks
and tool usages in the product development process.

2) In the conceptual design phase, a conceptual model
of the tool chain is described using TIL based on the
requirements stipulated by the product development
process. The conceptual model conveys the overall
architecture of the tool chain, including the existing
ToolAdapters, Users and connections between the
ToolAdapters.

3) The alignment of the conceptual TIL model with
the process model can be verified to highlight any
intended or unintended discrepancies between tool
chain design and the requirements stipulated by the
product development process. Depending on the out-
come of the analysis, the conceptual design phase can
be iterated in order to create a conceptual model which
is better aligned with the requirements.

4) In the detailed design phase, the conceptual TIL
model is refined by different types of Channels and
ToolAdapter metamodels. ToolAdapter metamodels
are attached to each ToolAdapter in the TIL model to
describe the data and services of the tool, which are
exposed by the ToolAdapter. The connections between
ToolAdapters and other components are refined by
choosing the type of the connector (ControlChannel,
DataChannel or TraceChannel). A model transforma-
tion is attached to each DataChannel in the TIL model;
it describes the translation of data from the source
tool to the target tool. The model transformation can
be specified in different ways, either manually or
computed based on the information in an ontology
or weaving model). The conceptual TIL model with
attached metamodels and model transformations yields
a complete TIL model. Figure 4. Process for developing a tailored tool chain with semi-automated

support based on TIL, illustrated using SPEM [14] notation
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5) Additional analyses are possible based on the detailed
design. The syntactic correctness of the model can
be checked and non-functional properties, such as the
development cost of the tool chain, can be estimated.
Depending on the outcome of the analyses, the tool
chain design can be corrected before proceeding to
the implementation phase.

6) In the implementation phase, the TIL model can serve
as a blueprint for implementing the tool chain. The
code of the tool chain is compiled and deployed.

7) At run-time1 of the tool chain, the embedded devel-
opers use the deployed tool chain, which integrates
several embedded systems tools.

There are different stakeholders of the tool chain, who
are in contact with the tool chain at different points in the
lifecycle of the tool chain. For this purpose, a distinction
is made between the design-time of a tool chain and the
run-time.

At design-time of the tool chain, the tool chain develop-
ment process is executed, which involves a process engineer,
tool chain architect and tool chain developers. A process
engineer may model the product development process that is
supported by the tool chain. The tool chain architect defines
the conceptual and detailed design of the tool chain. One or
several tool chain developers implement the tool chain as
software based on the tool chain design.

At run-time, the tool chain software is executed to realize
the data-transfer, traceability, invocation and notification to
support the product development process of the embedded
system. The embedded systems developers have the role of
tool chain users.

The role of the tool chain architect has been explicitly
introduced to cover the responsibility of specifying, refining
and analyzing the architecture of the tool chain. Since TIL
allows the tool chain to be described independently of im-
plementation technology, the role of the tool chain architect
can be separated from that of the tool chain developer. As the
tool chain users, embedded systems developers are familiar
with the requirements for the tool chain, but not with their
implementation. Thus, embedded systems developers may
be suitable candidates to take on the role of the tool chain
architect and leave the implementation to dedicated tool
chain developers. This separation of responsibilities is one
attempt to resolve the unclear responsibility for the creation
of tool chains observed in industry (cf. Section II-A).

B. Requirements Engineering

As described in Section IV-A, the product development
process constitutes an important part of the requirements
for the tool chain. By modeling the product development
process in SPEM, we capture and model the requirements

1Strictly speaking, the run-time is outside the scope of the development
process but has been added here for illustrating the connection between the
tool chain and the embedded systems developers.

of the tool chain. We are thus in the situation to have semi-
formal requirements for the tool chain.

C. Conceptual Design

In the early design phase of the tool chain development
process, a conceptual TIL model is created, which only
describes the components and connections of the tool chain
without any additional details. The conceptual model of the
tool chain should be aligned to the product development
process and the choice of development tools, so the tool
chain can support the integration-related tasks in the devel-
opment process. Development processes can be modeled for
different purposes [19], however, here we focus on process
models that have been created as a means for documentation,
and are expressed by the Software and Process Engineering
Metamodel (SPEM) [14].

If in addition to describing the tool chain as a model
(e.g., using TIL), the process is also modeled (e.g., using
SPEM), the relationship between the process model and
tool chain model can be described. Possible relationships
between SPEM and TIL models are identified and expressed
by a mapping of a pattern of SPEM metaclasses to a pattern
of TIL metaclasses. This mapping is implemented as a model
transformation. Using the transformation and an existing
process model, an initial conceptual design model of the
tool chain is created. The main benefit of an automated
mapping between process models and tool chain models is
that an alignment between the design of the tool chain and
the process can be achieved. This approach was described
in detail in Section IV.

D. Refinement and Detailed Design

The conceptual TIL model needs to be refined by adding
ToolAdapter metamodels that describe the data and the
services exposed by each ToolAdapter and thus serve as
interface specifications. If the ToolAdapter is to be newly
implemented, the ToolAdapter metamodels need to be man-
ually specified.

If an existing, already deployed ToolAdapter is to be
reused and integrated into a tool chain, such as an existing
ToolAdapter provided by a third party, the integration of the
ToolAdapter would be possible on implementation level. In
this approach, however, we explore the integration at model
level, since a complete model of the tool chain enables
correctness checks, analysis of the tool chain and complete
synthesis of the implementation. The integration on model-
level entails representing the interface of the remotely de-
ployed ToolAdapter by ToolAdapter metamodels. This work
explores, how the ToolAdapter metamodels of the remotely
deployed ToolAdapter can be automatically discovered and
integrated into a comprehensive TIL model of the tool chain.

The approach allows for the efficient reuse of deployed
ToolAdapters in a new tool chain, ensures the consistency
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between the ToolAdapter metamodel and the deployed im-
plementation, and the consistency between the ToolAdapter
metamodel and the TIL model, enabled by the representation
of all relevant information on the model level. This approach
is further detailed in [20].

The conceptual TIL model needs to be further refined with
detailed specifications for each DataChannel. DataChannels
denote the transfer of data from a source ToolAdapter to
a target ToolAdapter. The tool data is exposed by the
ToolAdapter in the form of a model that conforms to the
ToolAdapter metamodel. If the metamodels of source and
target ToolAdapters are the same, the data can be simply
copied between the ToolAdapters. In the more common
case that the metamodels are different, the data needs to
be transformed before it can be transferred to the target
ToolAdapter. For this purpose, TIL offers the possibility to
link a model transformation to each DataChannel. The model
transformation converts the data between the metamodels of
source and target ToolAdapters.

Typically, the details of a DataChannel are manually
specified in the form of a model transformation, which
requires time and effort. Especially if the requirements
for the tool chain are still changing and prototypes of a
tool chain are developed, an automated approach for the
specification of model transformations can be valuable. In
this setting, the intention is to rapidly and automatically
create a first prototype of a model transformation, which
can be manually refined later on.

Under certain conditions it might be possible to provide
support for specifying a prototype model transformation
automatically. The TIL model contains relevant information
for generating the transformation, such as its execution
direction and both its source and target metamodels. This
information is not sufficient for an algorithmic approach, but
a heuristic approach for prototyping model transformations
can be realized. With the assumption that similar metaclasses
of the metamodels of source and target ToolAdapters should
be mapped, a model transformation can be computed using
heuristics. As a measure for the similarity of the metaclasses,
the similarity of the reference structure and the names of the
metaclasses are used. The automatic refinement of the tool
chain model by generating the information in DataChannels
is described in [21].

E. Verification and Analysis

The analysis of a tool chain design is intended to support
the tool chain architect when designing a tool chain. An
advantage of using an explicit model-based description of
the tool chain is the possibility for early analysis. Early
analysis allows for evaluating different designs of the tool
chain and especially allows finding problems during design
that would be more expensive to correct if discovered
later [22]. Instead of applying generic, existing analysis
techniques, we here focus on domain-specific analyses that

make use of the additional knowledge of the domain of tool
integration, which is encoded in TIL models.

1) Correctness Checks of the Tool Chain Design: Cor-
rectness checks are used to detect specification errors in
TIL models. Syntactic correctness of the TIL model is
checked by the TIL Workbench when a TIL model is
created. In addition, the following checks for semantic
correctness are performed. A TIL model provides language
concepts for both specifying service signatures and invoking
the services. All service calls need to be consistent with
their respective specification. Correctness checks compare
the usage with the specification. The services and data
structures are specified in the ToolAdapter metamodels and
are used in the ControlChannels. The TIL model is checked
for correctness by analyzing whether all service usages
in the ControlChannels comply with their definitions in
the ToolAdapter metamodels. The correctness check in the
current implementation checks whether the used services are
defined in the ToolAdapter metamodels by using the name
of the services. Future work on the implementation could
also take the parameters of the services into account.

2) Early Structural Design Verification of Tool Chain
Design: In general, design verification checks if the design
fulfills the specified requirements. The requirements for a
tool chain are provided by the selection of tools, the product
development process and additional information. Here the
verification effort focuses on structural design verification,
which is concerned with the extent to which the structure
of the design of the tool chain is aligned to the structure
required by the product development process. Early verifica-
tion of tool chain design can detect possible misalignments
between the structure of the product development process
and the structure of the tool chain, when corrections are still
relatively simple and cheap. By automating the early verifi-
cation of tool chain design, it can be performed repeatedly
with little effort, supporting the iterative refinement of tool
chains.

The alignment of the design provided by a TIL model
is checked against the requirements provided by a SPEM
model [23]. This alignment can be expressed by a mapping
of a pattern of SPEM metaclasses to a pattern of TIL meta-
classes. Even if the conceptual model has been constructed
based on a SPEM model, unintended changes might have
been introduced by manual refinements. The verification
produces a list of misalignments and a measurement indicat-
ing the degree of alignment between the tool chain and the
product development process using precision/recall metrics
[24], where a tool chain that is well-aligned to the process
model has both a high degree of precision and a high degree
of recall.

Structural design verification is only one part of a compre-
hensive design verification, since other requirements besides
the structure, such as the behavior and non-functional re-
quirements, need to be checked as well. Even a comprehen-
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sive design verification is a complement – not a replacement
– to testing and verification of the final implementation.

F. Implementation

To support the implementation phase of the tool chain
development process, the TIL approach provides a code
generator. For any correct TIL model the code generator
synthesizes a corresponding implementation automatically.
TIL is designed to be independent of any particular imple-
mentation technology and thus code for different implemen-
tation technologies could be generated for a TIL model. For
the purpose of showing that code generation is feasible, a
particular implementation technology was chosen as a target
platform and a code generator was built for it.

Code generation can produce a large part of the implemen-
tation automatically, however, it needs to be complemented
with some manual implementation for interfacing the APIs
of the integrated tools. We refer to [10] and [11] for a
detailed description of the support for the implementation
phase and code generator.

VI. CASE STUDIES

In this section, we apply the identified relationship pat-
terns between a process model and a tool chain (see Section
IV) in two industrial case studies and a case study that
recursively applies the approach to the development of tool
chains. The tool chain development process (see Section V)
and the tool integration language (see Section III) are used
as enabling technologies. The variety of case studies gives us
the opportunity to study different ways of using the patterns
and to explore the impact of different modeling styles.

A. Case Study 1: Conceptual Design of a Tool Chain Model
for a Hardware-Software Co-Design Process

This case-study deals with an industrial development
process of an embedded system that is characterized by
tightly coupled hardware and software components. The
development process for hardware-software co-design is
textually described in the following:

• The requirements of the embedded system are captured
in the IRQA2 tool. The system architect designs a UML
component diagram and creates trace links between
UML components and the requirements.

• The UML model is refined and a fault tree analysis is
performed by the safety engineer. When the results are
satisfactory, the control engineer creates a Simulink3

model for simulation and partitions the functionality
for realization in software and hardware.

• The application engineer uses Simulink to generate C
code, which is refined in the WindRiver4 tool. The

2http://www.visuresolutions.com/irqa-web
3http://www.mathworks.com/products/simulink
4http://www.windriver.com

data from UML and Simulink is input to the IEC-
61131-3 conform ControlBuilder tool. The data from
ControlBuilder, Simulink and WindRiver is integrated
in the Freescale development tool for compiling and
linking to a binary for the target hardware.

• A hardware engineer generates code in the hardware
description language VHDL from Simulink and refines
it in the Xilinx ISE5.

Based on the description of the process, we have created the
corresponding SPEM model visualized in Figure 5.

We apply the model-to-model transformation that realizes
the relationship patterns on the SPEM model in Figure 5.
This yields a tool chain model that is aligned with the
process, as shown in Figure 6. By applying the task-centered
integration pattern shown in (1), we identify integration
tasks that are linked to two work products that in turn
are linked to different development tools (e.g., the task
Trafo UML2Safety). Some other tasks are not concerned
with integration, they are related to one tool only (e.g., the
task Use UML).

The TIL model resulting from application of the rela-
tionship patterns is internally consistent; this means that
there are no conflicts, missing elements or duplications
in the model. All tools mentioned in the SPEM model
are also present in the TIL model as ToolAdapters and
all ToolAdapters are connected. In addition, the approach
ensures that the design of the tool chain matches the process.

Since the tool chain is modeled, we can easily change,
extend and refine the initial model before any source code
for the tool chain is developed. The TIL model is relatively
small compared to the SPEM model, thus hinting at its effect
to reduce complexity. When using the simple complexity
metric of merely counting model elements and connections,
we see that in the TIL model their number is reduced by
2/3 compared to the SPEM model (cf. Table II).

Table II
SIZE OF THE SPEM AND TIL MODEL OF CASE STUDY 1

Count Model Elements Connections
SPEM Model 43 71
TIL Model 13 26

The important architectural design decisions of the tool
chain (such as the adapters and their connections) can be
expressed in TIL, while the complexity has been decreased
compared to a SPEM model (cf. Table II). The tool chain
model can be analyzed and - after additional refinement with
tool adapter metamodels and transformations - can be used
for code generation, as detailed in [11], [10]. Moreover,
the presented model-driven construction of the tool chain
ensures that the tool chain is aligned with the process.

5http://www.xilinx.com/ise
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Figure 5. Case Study 1: Product Development Process of the Case Study as a SPEM Model

Figure 6. Case Study 1: Tool Chain of the Case Study as a TIL Model
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B. Case Study 2: Verification of a Tool Chain Model for
AUTOSAR ECU Design

In this case study, we model a tool chain for AUTOSAR.
AUTOSAR is developed by the automotive industry and de-
fines an architectural concept, a middleware and in addition
a methodology for creating products with AUTOSAR. The
AUTOSAR methodology describes process fragments, so
called capability patterns in SPEM. Generic AUTOSAR tool
chains are implemented in both commercial tools and open
frameworks, however, it is a challenge to set up tool chains
consisting of tools from different vendors [25] and tool
chains customized to the needs of a particular organization.

The SPEM process model is provided by the AUTOSAR
consortium and is publicly available, which contributes to
the transparency of this case study. An excerpt of this
model that is relevant for the design of a ECU, is depicted
in Figure 7. We use this excerpt of the SPEM model to
initialize a tool chain. Applying the patterns creates the
tool chain model in TIL, illustrated in Figure 8. Out of the
four different SPEM parts of the relationship patterns (1)
- (4), only the workproduct-centered integration pattern (3)
matched several times in the SPEM model. This is due to the
modeling style used in the AUTOSAR methodology, where
WorkProducts are used as an interface for integrating tools.

The generated skeleton of the tool chain lays the founda-
tion for ensuring that the AUTOSAR methodology can be
realized by this tool chain. The skeleton can now be refined
with metamodels, model transformations and the behavior.

C. Case Study 3: A Tool Chain for Developing Tool Chains

To create a tool chain for developing tool chains, we apply
the approach recursively onto itself: the tool chain is the
product that will be developed according to the process for
developing the tool chains. Using the terminology introduced
in Section V, this process is called tool chain development
process (TCDP) illustrated in Figure 4. We now interpret
the TCDP as the PDP and thus as the basis for tool chain
creation: the TCDP is interpreted as a description of the
requirements of the tool chain.

Figure 9. The tool chain for developing tool chains.

Only three tools are involved in the TCDP, and the tool
chain is a straightforward pipe-and-filter architecture. The
tool chain in TIL, which results from applying the patterns
described in Section IV-B, is depicted in Figure 9. For
each ToolAdapter, the metamodels are already defined and

can be reused: The SPEM metamodel is defined [14] the
TIL metamodel is defined [10] and the metamodel for Java
is simply text in this context. The model transformations
that need to be associated with the DataChannels are also
defined: the model transformation from SPEM to TIL is
described in Section IV-B in the form of patterns, the model
transformation from TIL to Java code is described in paper
[10]. With these cornerstones, it is thus perfectly feasible
to apply the approach onto itself. This exercise can also be
seen as an additional form of validation for the approach.

VII. RELATED WORK

Related work can be found in the areas tool integration
and process modeling. There are a number of approaches
for tool integration, as documented in the annotated bibli-
ographies [26], [27]. Most of the approaches do not take
the process into account; in this section, we focus on those
approaches that do.

Different process metamodels have been compared in
[28] and specifically process models based on UML [29].
These approaches are usually focused on the description
and documentation of processes. The execution of process
models can range from simple workflow systems to more
elaborate automation models. An example of an approach
in the latter category is the PM+FDT approach [30]. It
is based on a formalism for activity diagrams and uses
model transformations to realize activities for transitioning
from one formalism to another one. While dealing with
multiple formalisms through transformations is possible, the
connection to industrially used development tools is out of
scope.

In the following, we classify approaches for process
modeling according to two dimensions: The first dimension
comprises different execution mechanisms, which can be
interpretation vs. compilation. The second dimension com-
prises different process modeling languages, which can be
proprietary vs. standardized.

Interpretation-based approaches [31], [32], [33] use the
process definition for tool integration. This technique is also
known as enactment of process models. Since the description
of the process is identical to the specification of the tool
chain, no misalignment between process and tool chain is
possible. There are two preconditions for this approach: the
process model needs to be executable and the access to
data and functionality of the development tools needs to
be possible. The use of a proprietary process model for
interpretation in tool chains is introduced in [34], as the
process-flow pattern. Approaches that extend SPEM make
the process model executable [31], [32]. The orchestration
of tools by a process model is shown in [33]. However,
the interpretation of integration related tasks is often not
possible, since the interfaces to the development tools are
not standardized. Thus, the use of process enactment to build
tool chains is limited.
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Figure 7. Case Study 2: Excerpt of the AUTOSAR Methodology for Designing an ECU [15].

Figure 8. Case Study 2: AUTOSAR Tool Chain for Designing an ECU as a TIL Model

Compilation-based approaches transform the process
model into another format, where the process model serves
as a set of requirements. Proprietary process models provide
great flexibility to adapt them to the specific needs of tool
integration. An integration process model is developed in
[35], where each process step can be linked to a dedicated
activity in a tool. For execution, it is compiled into a low-
level process model. The proprietary process model needs to
be created specifically for constructing a tool chain. In this
work, we use the standardized process metamodel SPEM
[14], which allows us to reuse existing process models as a
starting point for building tool chains and as a reference for
verification for tool chains.

VIII. FUTURE WORK

This approach assumes that an appropriate process model
for tool chains is available. We assume that the process
model does not contain any integration related overhead,
i.e., explicit representation of a model transformation tool
and intermediate data model. We assume that tools have

been assigned to process activities. The choice for certain
tools is usually independent of automating the tool chain, the
choice merely needs to be documented in the process model.
SPEM offers several ways for describing tool integration.
Future work can identify additional SPEM patterns for
describing tool integration. Future work can also identify
possible uses of additional SPEM constructs for describing
tool integration, such as the the SPEM work breakdown
structure.

The use of the presented patterns is limited to processes
represented in SPEM and tool chains modeled in TIL.
However, the patterns could be adapted to similar process
metamodels, as long as the required concepts are present.
In the future, we would like to experiment with additional
languages for describing the process model, such as BPMN.
This might help us to further generalize the patterns.

We have evaluated the approach in two case studies from
the area of embedded systems and one case study from
software development. We do not see any reason why the
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patterns could not be applied for creating tool chain from
process models in other application areas in the future and
are thus generalizable. For further validation, we thus plan
to apply the presented techniques in another area of software
and systems engineering.

IX. CONCLUSION

In modern development processes, tools are no longer
used in a linear sequence, but as networks of interacting
tools. The tool chain represents this network of interacting
tools that needs to be tailored to the the development
process. Processes are increasingly described as process
models, which exist for a variety of reasons, i.e., for doc-
umenting, planning or tracking progress in a development
project. SPEM is the standardized language by the OMG for
this purpose. In this article, we recognize the development
process modeled in SPEM as a set of requirements for the
architecture of tool chains. We devise a number of patterns
for creating the skeleton of a tool chain model in TIL, which
is aligned with the process. This allows us to automate the
creation of an initial tool chain design.

We have further shown how a tool chain model can be
systematically developed into a tool chain implementation
by following a structured tool chain development process.
We have shown that many phases of this tool chain develop-
ment process can be automated. If this process is followed,
a semi-automated construction of tool chain software is
possible. The semi-automation makes the construction cost-
efficient, which is one of the decisive factors for building
and configuring tailored application lifecycle management
systems.

The presented cost-efficient construction has the potential
to resolves the dilemma faced by industry today: Applica-
tion lifecycle management can only deliver the promised
efficiency improvements and cost savings, if it is tailored
to the given set of tools and processes, but tailoring itself
is expensive, has a cost and thus reduces the net-value
of application lifecycle management. By automating the
tailoring, as described in this article, the cost of tailoring
is reduced and thus the net-value of application lifecycle
management is highly improved.
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