
92

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Transformational Implementation of Business Processes in SOA

Krzysztof Sacha and Andrzej Ratkowski
Warsaw University of Technology

Warszawa, Poland
{k.sacha, a.ratkowski}@ia.pw.edu.pl

Abstract—The paper develops a method for transformational
implementation and optimization of business processes in a
service oriented architecture. The method promotes separation
of concerns and allows making business decisions by business
people and technical decisions by technical people. To achieve
this goal, a description of a business process designed by
business people is automatically translated into a program in
Business Process Execution Language, which is then subject to
a series of transformations developed by technical people. Each
transformation changes the process structure in order to
improve the quality characteristics. Two approaches to the
verification of the process correctness are discussed. The first
one applies a correct-by-construction approach to
transformations. The other one relies on automatic verification
of the transformed process behavior against the behavior of
the original reference process. The verification mechanism is
based on a mapping from Business Process Execution
Language to Language of Temporal Ordering Specification,
followed by a comparison of the trace set that is generated
using a program dependence graph of the reference process
and the trace set of the transformed one. When the design
goals have been reached, the transformed BPEL process can be
executed on a target SOA environment using a BPEL engine.

Keywords-business process; service oriented architecture;
BPEL; LOTOS; transformational implementation.

I. INTRODUCTION
This paper is an extension of the ICSEA paper [1] on

transformational implementation of business processes in a
service oriented architecture. A business process is a set of
logically related activities performed to achieve a defined
business outcome [2]. The structure of a business process
and the ordering of activities reflect business decisions made
by business people and, when defined, can be visualized
using an appropriate notation, e.g., Business Process Model
and Notation [3] or the notation of ARIS [4]. The
implementation of a business process on a computer system
is expected to exhibit the defined behavior at a satisfactory
level of quality. Reaching the required level of quality may
need decisions, made by technical people and aimed at
restructuring of the initial process in order to benefit from the
characteristics offered by an execution environment. The
structure of the implementation can be described using
another notation, e.g., Business Process Execution Language
[5] or UML activity diagrams [6].

This paper describes a transformational method for the
implementation and optimization of business processes in a

service oriented architecture (SOA). The method begins with
an initial definition of a business process, written by business
people using Business Process Modeling Notation (BPMN).
The business process is automatically translated into a
program in Business Process Executable Language (BPEL),
called a reference process. The program is subject to a series
of transformations, each of which preserves the behavior of
the reference process, but changes the order of activities, as
means to improve the quality of the process implementation,
e.g., by benefiting from the parallel structure of services.
Transformations applied to the reference process are selected
manually by human designers (technical people) and
performed automatically, by a software tool. When the
design goals have been reached, the iteration stops and the
result is a transformed BPEL process, which can be executed
on a target SOA environment.

Such an approach promotes separation of concerns and
allows making business decisions by business people and
technical decisions by technical people.

A critical part of the method is providing assurance on
the correctness of the transformational implementation of a
business process. Two approaches to the verification of the
process correctness are discussed in this paper. The first one
applies a correct-by-construction approach that consists in
defining a set of safe transformations, which do not change
the process behavior. If all transformations are safe, then the
transformed program will also be correct, i.e., semantically
equivalent to the original reference process.

The other approach relies on automatic verification of the
transformed process behavior against the behavior of the
original reference process. The verification mechanism is
based on a mapping from BPEL to Language of Temporal
Ordering Specification (LOTOS), followed by a comparison
of the trace set that is generated using a program dependence
graph of the reference process and the trace set of the
transformed one.

The rest of this paper is organized as follows. Related
work is briefly surveyed in Section II. The semantics of a
BPEL process and its behavior are defined in Section III. A
set of safe transformations are introduced in Section IV. An
illustrative case study is provided in Section V. A method for
the verification of correctness, based on LOTOS language
and a BPEL to LOTOS mapping is covered in Section VI.
Quality metrics to assess transformation results are described
in Section VII. Conclusions and plans for future research are
given in Section VIII.

93

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. RELATED WORK
Transformational implementation of software is not a

new idea. The approach was developed many years ago
within the context of monolithic systems, with the use of
several executable specification techniques. The formal
foundation was based on problem decomposition into a set of
concurrent processes, use of functional languages [7] and
formal modeling by means of Petri nets [8].

An approach for transformational implementation of
business processes was developed in [9]. This four-phase
approach is very general and not tied to any particular
technology. Our method, which can be placed in the fourth
phase (implementation), is much more specific and focused
on the implementation of runnable processes described in
BPMN and BPEL.

BPMN defines a model and a graphical notation for
describing business processes, standardized by OMG [3].
The reference model of SOA [10,11] and the specification of
BPEL [5] are standardized by OASIS. An informal mapping
of BPMN to BPEL was defined in [3]. A comprehensive
discussion of the translation between BPMN and BPEL, and
of some conceptual discrepancies between the languages,
can be found in [12,13]. An open-source tool is available for
download at [14].

The techniques of building program dependence graph
and program slicing, which we adopted for proving safeness
of transformations, were developed in [15,16] and applied to
BPEL programs in [17].

Several metrics to measure the quality of parallel
programs have been proposed in the literature and studied for
many years. A traditional metric for measuring performance
of a parallel application is Program Activity Graph, which
describes parallel flow of control within the application [18].
We do not use such a graph, nevertheless, our two metrics:
Length of thread and Response time, can be viewed as an
approximation of Critical path metric described in [18].
Similarly, our Number of threads metric is similar to
Available concurrency defined in [19].

To the best of our knowledge, our work on the
implementation of business processes in service oriented
architecture is original. Preliminary results of our research
were published in [1]. An extended version, including a
revised algorithm for building program dependence graph
and an original method for the verification of transformation
correctness are introduced in this paper.

III. THE SEMANTICS OF A BUSINESS PROCESS
A business process is a collection of logically related

activities, performed in a specific order to produce a service
or product for a customer. The activities can be implemented
on-site, by local data processing tasks, or externally, by
services offered by a service-oriented environment. The
services can be viewed from the process perspective as the
main business data processing functions.

A specification of a business process can be defined
textually, e.g., using a natural language, or graphically, using
BPMN. An example BPMN process, which executes a
simplified processing of a bank transfer order is shown in
Fig. 1. The process begins and waits for an external
invocation from a remote client (another process). When the
invocation is received, the process extracts the source and the
target account numbers from the message, checks the
availability of funds at source and splits into two alternative
branches. If the funds are missing, the process prepares a
negative acknowledgement message, replies to the invoker,
and ends. Otherwise, the alternative branch is empty. Then,
the process invokes the withdraw service at source account,
invokes the deposit service at target account, packs the
results returned by the two services into a single reply
message, replies to the invoker and ends. This way, the
process implements a service, which is composed of another
services.

BPMN specification of a business process can be
automatically translated into a BPEL program, which can be
used for a semi-automatic implementation.

 BPEL syntax is composed of a set of instructions, called
activities, which are XML elements indicated in the
document by explicit markup. The set of BPEL activities is
rich. However, in this paper, we focus on a limited subset of
activities for defining control flow, service invocation, and
basic data handling.

The body of a BPEL process consists of simple activities,
which are elementary pieces of computation, and structured
elements, which are composed of other simple or structured
activities, nested in each other to an arbitrary depth. Simple
activities are <assign>, which implements substitution,
<invoke>, which invokes an external service, and <receive>,
<reply> pair, which receives and replies to an invocation.
Structured activities are <sequence> element to describe
sequential execution, <flow> element to describe parallel
execution and <if> alternative branching. An example BPEL
program, which implements the business process in Fig. 1, is

Extract source
account no

Extract target
account no

Check funds
at source

Prepare
negative ack

Empty

Pack the
results

Withdraw at
source

Deposit at
target

Figure 1. BPMN specification of a business process

94

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

shown in Fig. 2. Name attribute will be used to refer to
particular activities of the program in the subsequent figures.

The first executable activity of the program is <receive>,
which waits for a message that invokes the process execution
and conveys a value of the input argument. The last activity
of the process is <reply>, which responds to the invocation
and sends a message that returns the result. The activities
between <receive> and <reply> execute a business process,
which invokes other services and transforms the input into
the output. This is a typical construction of a BPEL process,
which can be viewed as a service invoked by other services.

SOA services are assumed stateless [20], which means
that the result of a service execution depends only on values
of data passed to the service at the invocation, and manifests
to the outside world as values of data sent by the service in
response to the invocation. Therefore, we assume that the
observable behavior of a process in a SOA environment
consists of data values, which the process passes as
arguments when it invokes external services, and data values,
which it sends in reply to the invoker.

A. Program Dependence Graph
To capture the influence of a process structure into the

process behavior, we use a technique called program slicing
[15,16], which allows finding all the instructions in a
program, which influence the value of a variable in a specific
point of the program. For example, finding the instructions
that influence the value of a variable that is used as an
argument by a service invocation activity or by a reply
activity of the process.

The conceptual tool for the analysis is Program
Dependence Graph (PDG), whose nodes are activities of a
BPEL program, and edges reflect dependencies between the
activities. An algorithm for constructing PDG of a BPEL
program consists of the following steps:

<sequence>
 <receive name="rcv" variable="transfer"/>
 <assign name="src">
 <copy> <from variable="transfer" part="srcAccNo"/>
 <to variable="source" part="account"/> </copy>
 <copy> <from variable="transfer" part="srcAmount"/>
 <to variable="source" part="amount"/> </copy>
 </assign>
 <assign name="dst">
 <copy> <from variable="transfer" part="dstAccNo"/>
 <to variable="target" part="account"/> </copy>
 <copy> <from variable="transfer" part="dstAmount"/>
 <to variable="target" part="amount"/> </copy>
 </assign>
 <invoke name="verify" inputVariable="source"
 outputVariable="fundsAvailable"/>
 <if> <condition> $fundsAvailable.res </condition>
 <empty name="empty"/>
 <else> <sequence>
 <assign name="fail">
 <copy> <from> 'lack of funds' </from>
 <to variable="response" part="fault"/> </copy>
 </assign>
 <reply name="nak" variable="response"/>
 <exit name="exit"/>
 </sequence> </else> </if>
 <invoke name="withdraw" inputVariable="source"
 outputVariable="wResult"/>
 <invoke name="deposit" inputVariable="target"
 outputVariable="dResult"/>
 <assign name="success">
 <copy> <from variable="wResult" part="res"/>
 <to variable="result" part="withdraw"/> </copy>
 <copy> <from variable="dResult" part="res"/>
 <to variable="result" part="deposit"/> </copy>
 </assign>
 <reply name="ack" variable="result"/>
</sequence>

Figure 2. A skeleton of a BPEL program of a bank transfer (Fig. 1)

1. Define nodes of the graph, which are activities at all
layers of nesting.

2. Define control edges (solid lines in Fig. 3), which follow
the nested structure of the program, e.g., an edge from
<sequence> to <if> shows that <if> activity is nested
within the <sequence> element. Output edges of <if>
node are labeled "Yes" or "No", respectively.

3. Define dataflow edges (dashed lines in Fig. 3), which
reflect dataflow dependencies between the activities, e.g.,
an edge from activity "rcv" to activity "src" shows that an
output variable of "rcv" is used as input variable to "src".

4. Add dataflow edges from <receive> activity, which is
nested within a <sequence> element, to each subsequent
activity of this <sequence> such that no paths from
<receive> to this activity exists (there are no such items
in Fig. 3).

5. If an <exit> activity is nested within a <sequence>, then:
a. remove all the activities, which are subsequent to

<exit>, together with all the input and output edges,

<sequence>

Figure 3. Program dependence graph of the bank transfer process

"dst"

"withdraw" "ack" "deposit" "success"

"empty"

<sequence>

"nak" "exit"

"fail"

"verify"

"src"

<if>

Yes
No

"rcv"

Yes

95

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

b. for each antecedent activity with no path to <exit>,
add a dataflow edge from this activity to <exit>
("nak" to "exit" edge in Fig. 3).

6. If an <if> element is nested within a <sequence> and
there is an <exit> within "Yes" ("No") branch of <if>,
then add "No" ("Yes") edges from <if> to subsequent
activities with no path from <if> (<if> to "deposit" and
<if> to withdraw edges in Fig. 3).

7. Convert "Yes" and "No" edges that output <if> activities
into dataflow edges.

Dataflow edges within a program dependence graph
reflect the dataflow dependencies between subsequent
activities, which determine values of the program variables.
The edges added in step 4 reflect the semantics of the
process as a service, which starts after receiving an
invocation message. The edges added in steps 5 and 6 reflect
the semantics of <exit>, which stops the program and
prevents execution of all the subsequent activities. Dataflow
edges introduced in step 7 reflect the semantics of <if>
statement, which outgoing branches may execute only after
evaluating the condition. An example program dependence
graph of the business process in Fig. 2 is shown in Fig. 3. It
can be noted, that the flow of control within the original
BPEL program complies with dataflow edges of its program
dependence graph.

In the rest of this paper, we adopt a definition that a
transformation preserves the process behavior, if it keeps the
set of messages sent by the process as well as the data values
carried by these messages unchanged. Such a definition
neglects the timing aspects of the process execution. This is
justified, given that it does not change the business
requirements. There are many delays in a SOA system and
the correctness of software must not relay on a specific order
of activities, unless they are explicitly synchronized.

A transformation that preserves the process behavior is
called safe.

Definition (Safeness of a transformation)
A transformation is safe, if the set of messages sent by

the activities of a program remains unchanged and the flow
of control within the transformed program complies with the
direction of dataflow edges within the program dependence
graph of the reference process. □

The set of activities executed within a program may vary,
depending on decisions made when passing through decision
points of <if> activities. To fulfill the above definition, the
set of messages must remain unchanged, for each particular
combination of these decisions.

A path composed of dataflow edges in a program
dependence graph reflects the dataflow relationships
between the activities, and implies that the result of the
activity at the end of the path depends only on the preceding
activities on this path. If the succession of activities executed
within a program complies with the dataflow edges, then the
values of variables computed by the program remain the
same, regardless of the ordering of other activities of this
program.

Safeness of a transformation guarantees that the
transformation preserves the behavior of the transformed
program as observed by other services in a SOA
environment. Safeness is transitive and a sequence of safe
transformations is also safe. Therefore, a process resulting
from a series of safe transformations applied to a reference
process preserves the behavior of the reference process.

IV. SAFE TRANSFORMATIONS
The body of a BPEL process consists of simple activities,

e.g., <assign>, which define elementary pieces of
computation, and structured elements, e.g., <flow>, which is
composed of other simple or structured activities. The
behavior of the process results from the order of execution of
activities, which stem from the type of structured elements
and the positioning of activities within these elements. A
transformation applies to a structured element and consists in
replacing one element, e.g., <flow>, by another element, e.g.,
<sequence>, or in relocation of activities within the
structured element. If the behavior of the transformed
element before and after the transformation is the same, then
the behavior of the process stands also unchanged.

Several transformations have been defined. The basic
ones: simple and alternative displacement, parallelization
and serialization of the process operations, and process
partitioning are described in detail below. All the
transformations are safe, according to definition of safeness
given in Section III. As pointed out in Section III, a safe
transformation does not change the behavior of a process,
which is composed of stateless services. A problem may
arise, if the services invoked by a process have an impact on
the real world. If this is the case, a specific ordering of these
services may be required. In our approach, a designer can
express the necessary ordering conditions adding
supplementary edges to the program dependence graph.

Transformation 1: Simple displacement
Consider a <sequence> element, which contains n

arbitrary activities executed in a strictly sequential order.
Transformation 1 moves a selected activity A from its
original position i, into position j within the sequence.

Theorem 1. Transformation 1 is safe, if no paths between
activity A and the activities placed on positions i+1, … j in
the sequence existed in the program dependence graph of the
transformed program.

Proof: Assume that i < j (move forward). The
transformation has no influence on activities placed on
positions lower than i or higher than j. However, moving
activity A from position i to j reverts the direction of the flow
of control between A and the activities that are in-between.
This could be dangerous if a dataflow from A to those
activities existed. However, if no dataflow paths from A to
the activities placed on positions i+1, … j existed in the
program dependence graph, then no inconsistency between
the control and data flow can exist.

If j < i (move backward), the proof is analogous. The lack
of dataflow path guarantees lack of inconsistency between
the data and control flows within the program. □

96

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Transformation 2: Pre-embracing <invoke name="xxx" (a)
 inputVariable="source" outputVariable="target"
/>

<sequence> (b)
 <invoke name="xxx_i" inputVariable="source"/>
 <receive name="xxx_r" variable="target"/>
</sequence>

Figure 4. Synchronous (a) and asynchronous service invocation (b)

Consider a <sequence> element, which includes an <if>
element preceded by an <assign> activity, among others.
Branches of <if> element are <sequence> elements.
Transformation 2 moves <assign> activity from its original
position in the outer <sequence>, into the first position
within one branch of <if> element.

Theorem 2. Transformation 2 is safe, if neither a path from
the moved <assign> to an activity placed in the other branch
of <if>, nor a path from the moved <assign> to the activities
positioned after <if> in the outer sequence, existed in the
program dependence graph of the transformed program.

Proof: The transformation has no influence on activities
placed prior to <if> element in the outer <sequence>.
Moving <assign> activity to one branch of <if> removes the
flow of control from <assign> to activities in the other
branch of <if> and – possibly – to activities placed after
<if>. But according to the assumption of this theorem, there
is no data flow between these activities. Therefore, no
inconsistency between the control and data flow can exist. □

Transformation 3: Post-embracing
Consider a <sequence> element, which includes an <if>

activity followed by a number of another activities. Branches
of <if> element are <sequence> elements, one of which
contains <exit> activity. Transformation 3 moves the
activities, which follow <if>, from its original position in the
outer <sequence> into the end of the second <sequence> of
<if> element.

Theorem 3. Transformation 3 is safe.
Proof: Activities, which are placed after an <if> element

in the reference process, are executed only after the
execution of <if> is finished. The existence of <exit> in one
branch of <if> prevents execution of these activities when
this branch is selected. The activities are executed only in
case the other branch is selected. Therefore, neither the flow
of control nor the flow of data is changed in the program,
when the activities are moved to the other branch of <if>,
i.e., the branch without <exit> activity. □

Transformation 4: Parallelization
Consider a <sequence> element, which contains n

arbitrary activities executed in a strictly sequential order.
Transformation 4 parallelizes the execution of activities by
replacing <sequence> element by <flow> element composed
of the same activities, which – according to the semantics of
<flow> – are executed in parallel.

Theorem 4. Transformation 4 is safe, if for each pair of
activities Ai , Aj neither a path from Ai to Aj nor a path from Aj
to Ai existed in the program dependence graph of the
transformed program.

Proof: The transformation changes the flow of control
between the activities of the transformed element. The lack
of dataflow paths between these activities means that no
inconsistency between the control and data flow can exist. □

Transformation 5: Serialization
Consider a <flow> element, which contains n arbitrary

activities executed in parallel. Transformation 5 serializes the

execution of activities by replacing <flow> element by
<sequence> element, composed of the same activities, which
are now executed sequentially.

Theorem 5. Transformation 5 is safe.
Proof: The proof is obvious. Parallel commands can be

executed in any order, also sequentially.

Transformation 6: Asynchronization
Consider a two-way <invoke> activity, which sends a

message to invoke an external service and then waits for a
response (Fig. 4a). Transformation 6 replaces the two-way
<invoke> activity with a sequence of a one-way <invoke>
activity followed by a <receive> (Fig. 4b). This way, a
synchronous invocation of a service is converted into an
asynchronous one.

Transformation 6 can be proved safe, if we add a
dataflow edge from <invoke> node to <receive> node in the
program dependence graph of each program, which includes
an asynchronous service invocation shown in Fig. 4b.
Theorem 6. Transformation 6 is safe.

Proof: The transformation has no influence on activities
executed prior to <invoke> activity. Dataflow edges from
these activities to <invoke> remain unchanged. The
transformation has no influence on activities executed after
<invoke>, as well. Dataflow edges to these activities from
<invoke> are redirected to begin at node <receive>. Hence,
there is a one-to-one mapping between the sets of dataflow
paths, which exist in program dependence graph of a
program before and after the transformation. Therefore, no
inconsistency between the control and data flow can exist.

Transformations 1 through 6 can be composed in any
order, resulting in a complex transformation of the process
structure. Transformations 7 and 8 play an auxiliary role and
facilitate such a composition. These transformations are safe,

<sequence> (a) <flow> (b)
 <sequence> <flow>
 <C1> </C1> <C1> </C1>

 <Ck> </Ck> <Ck> </Ck>
 </sequence> </flow>
 <sequence> <flow>
 <Ck+1> </Ck+1> <Ck+1> </Ck+1>

 <Cn> </Cn> <Cn> </Cn>
 </sequence> </flow>
</sequence> </flow>

Figure 5. Sequential (a) and parallel (b) partitioning of commands

97

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

because they do not change the order of execution of any
activities within a BPEL program. □

Transformation 7: Sequential partitioning
Transformation 7 divides a single <sequence> element

into a nested structure of <sequence> elements (Fig. 5a).

Transformation 8: Parallel partitioning
Transformation 8 divides a single <flow> element into a

nested structure of <flow> elements (Fig. 5b).

V. CASE STUDY
Consider a process of transferring funds between two

different bank accounts, shown in Fig. 1, implemented by a
BPEL process. A skeleton of the simplified BPEL program
of this process is shown in Fig. 2.

The process body is a sequence of activities, which starts
at <receive>. Then, it proceeds through a series of steps to
process the received bank transfer order and to invoke
services offered by the banking systems to verify availability
of funds at source account, to withdraw funds and to deposit
the funds at the destination account. Finally, it ends after
replying positively, if the transfer has successfully been
done, or negatively, if the required amount of funds was not
available at source.

PDG of this program is shown in Fig. 3. The first two
<assign> activities process the contents of the received
message in order to extract the source and destination
account numbers and the amount of money to transfer.
Therefore, there are dataflow edges from "rcv" to "src" and
to "dst" nodes in PDG. The next consecutive <invoke>
activity uses the extracted source account number and the
amount of money to invoke the verification service, and the
response of the invocation is checked by <if> activity.
Therefore, two dataflow edges from src to verify and from
verify to <if> exist in the graph. Similarly, the <invoke>
activities named "withdraw" and "deposit" use the account
numbers calculated by "src" and "dst", respectively. Two
dataflow edges from "withdraw" and "deposit" nodes to
"success" node, and then an edge from "success" to "ack",
reflect the path of preparing the acknowledgement message
that is sent to the invoker when the transfer is finished.

The analysis of the program dependence graph in Fig. 3
reveals that no dataflow path between activity named "dst"
and the next two activities "src" and "verify" exists in the
graph. Therefore, these activities can be executed in parallel.
Similarly, there is no dataflow path between two consecutive
<invoke> activities "withdraw" and "deposit". These two
activities can also be executed in parallel.

To perform these changes, we can partition the outer
<sequence> element using transformation 6 three times, and
then parallelize the program structure using transformation 4
twice. A skeleton of the resulting BPEL program is shown in
Fig. 6. Only names of the activities are shown in Fig. 6. The
variables used by the activities are omitted for brevity.

However, this is not the only way of transformation.
Alternatively, the designer can displace "dst" forward, just
before <if> activity, and then use transformation 2 in order to
enter "dst" to the inside of <if> in place of <empty> activity.
Next, transformation 3 can be used to embrace the last three

activities of the outer <sequence> element into the first
branch of <if> element, consecutively following "dst". Then,
the designer can move "dst" forward, adjacent to "deposit",
partition the inner sequence of <if> using transformation 6,
and parallelize the program structure using transformation 4.
A skeleton of the resulting BPEL program is shown in Fig. 7.
We removed "exit" activity from the final program, because
it is obviously redundant at the end of the program.

<sequence>
 <receive name="rcv"> - receive transfer order
 <flow>
 <assign name="dst"> - extract destination no
 <sequence>
 <assign name="src"> - extract source no
 <invoke name="verify"> - verify funds at source
 </sequence>
 </flow>
 <if>
 <condition> ... </condition> - check availability
 <empty name="empty"> - do nothing if available
 <else> <sequence>
 <assign name="fail"> - set response
 <reply name="nak"> - reply negatively
 <exit name="exit"> - end of execution
 </sequence> </else>
 </if>
 <flow>
 <invoke name="withdraw"> - withdraw funds
 <invoke name="deposit"> - deposit funds
 </flow>
 <assign name="success">
 <reply name="ack"> - reply positively
</sequence>

Figure 6. A skeleton of the transformed bank transfer process – variant I

<sequence>
 <receive name="rcv"> - receive order
 <assign name="src"> - extract source no
 <invoke name="verify"> - verify funds
 <if>
 <condition> ... </condition> - check availability
 <sequence>
 <flow>
 <invoke name="withdraw"> - withdraw funds
 <sequence>
 <assign name="dst"> - extract dst. no
 <invoke name="deposit"> - deposit funds
 </sequence>
 </flow>
 <assign name="success">
 <reply name="ack"> - reply positively
 </sequence>
 <else> <sequence>
 <assign name="fail"> - set response
 <reply name="nak"> - reply negatively
 </sequence> </else>
 </if>
</sequence>

Figure 7. A skeleton of the transformed bank transfer process – variant II

98

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The main advantage of the transformed process over the
original one is higher level of parallelism, which can lead to
better performance of the program execution. If we compare
the two alternative designs, then intuition suggests that the
structure of the second process is better than of the first one.
In order to verify this impression, the reference process and
the transformed processes can be compared to each other,
with respect to a set of quality metrics. Depending on the
results, the design phase can stop, or a selected candidate (a
transformed process) can be substituted as the reference
process for the next iteration of the design phase.

TABLE I. EXPRESSIONS IN BASIC LOTOS

Syntax Explanation
stop inaction, lack of action
µ ; B action µ precedes execution of

expression B
B1 [] B2 alternative choice of expressions B1

and B2
B1 |[g1,…gn]| B2 parallel execution of B1 and B2

synchronized at actions g1,…,gn
B1 ||| B2 parallel execution with no

synchronization between B1 and B2
exit successful termination; generates a

special action δ
B1 >> B2 sequential composition: successful

execution of B1 enables B2
B1 [> B2 disabling: successful execution of B1

disables execution of B2
hide g1,…,gn in B hiding: actions g1,…,gn are

transformed into unobservable ones

VI. VERIFICATION OF CORRECTNESS
The correct-by-construction approach is appealing for the

implementation designer because it can open the way
towards automatic process optimization. However, the
approach has also some practical limitations. It is possible
that small changes to a process behavior can be acceptable
within the application context. If this was the case, then a
verification method is needed, capable not only of verifying
the process behavior, but also showing the designer all the
potential changes, if they exist. In this section, we introduce
LOTOS language, which is used as a formal basis for such a
verification method.

A. The language LOTOS
Language of Temporal Ordering Specification (LOTOS)

is one of the formal description techniques developed within
ISO [21] for the specification of open distributed systems.
The semantics of LOTOS is based on algebraic concepts and
is defined by a labeled transition system (LTS), which can be
built for each LOTOS expression.

A process, or a set of processes, is modeled in LOTOS as
a behavior expression, composed of actions, operators and
parenthesis. Actions correspond to activities, which
constitute the process body. Operators describe the ordering
of actions during the process execution. The list of operators,
together with an informal explanation of their meaning is
given in Table I. We use µ to denote an arbitrary action and
δ to denote a special action of a successful termination of an
expression or sub-expression.

LOTOS expression can be executed, generating a
sequence of actions, which is called the execution trace. An
expression that contains parallel elements can generate many
traces, each of which describes an acceptable ordering of
actions. Not all of the actions that are syntactic elements of
an expression are directly visible within the execution trace.
These actions are called observable actions and are denoted
by alphanumeric identifiers, e.g., g1, g2, etc. Only
observable actions are counted as members of an execution
trace of the expression. Other actions cannot be identified
when observing the trace. These actions are called
unobservable actions. Unobservable actions are denoted by
letter i and are not counted as members of an execution trace.

Formally, unobservable actions are those that are listed
within the hide clause of LOTOS. In this paper, we omit this
clause to help keeping the expressions simple.

The operational semantics of LOTOS provides a means
to derive the actions that an expression may perform from

the structure of the expression itself. Formally, the semantics
of an expression B is a labeled transition system < S, A,→, I >
where:

S – is a set of states (LOTOS expressions),
A – is a set of actions,
→ – is a transition relation, → ⊆ S × A × S,
B – is the initial state (the given expression).

The transition relation is usually written as B →
µ

 B’. For
example, the semantics of expression (g; B1) can be
described by a labeled transition:

g; B1 →
g

 B1
This means that expression (g; B1) is capable of performing
action g and transforming into expression B1.

The semantics of a complex expression consists of a
directed graph (a tree) of labeled transitions, which root is
the expression itself, and which edges are the labeled
transitions. Each path from the root node to a leaf node of the
graph defines a sequence of actions, which is an execution
trace of the expression.

LOTOS expression can serve as a tool for modeling the
set of traces of execution of a BPEL process. To use the tool,
we can model BPEL activities as observable actions in
LOTOS, and describe the ordering of activities during the
process execution by means of a LOTOS expression.

Simple activities of BPEL are mapped to observable
actions of LOTOS, followed by exit symbol. For example:

<assign name="ass"> is mapped to ass; exit
<invoke name="inv"> is mapped to inv; exit

Exceptions are BPEL <empty>, which is mapped to exit, and
<exit>, which is mapped to stop.

Structured activities of BPEL are translated into LOTOS
expressions according to the following rules:

99

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• <sequence> element is mapped into sequential
composition (>>),

• <flow> element is mapped to parallel execution (|||),
• <if> element is mapped to alternative choice ([]).
The semantics of parallelism in LOTOS is interleaved.

Parallel execution of activities that are nested within <flow>
element of a BPEL process is modeled by the possibility of
executing the corresponding LOTOS actions in an arbitrary
order. The semantics of choice is exclusive. When one
branch of <if> element begins execution, then the other
branch disappears. Special action δ generated by exit is not
counted in the execution traces because it is an unobservable
action.

Consider, for example, BPEL process in Fig. 2. If we
map the process activities according to the above rules, then
the resulting LOTOS expression looks as follows:

rcv;exit >> src;exit >> dst;exit >> verify;exit >>
(exit [] fail;exit >> nak;exit >> stop) >>

withdraw;exit >> deposit;exit >> success;exit >> ack;exit
The trace set generated by the labeled transition system

of this expression consists of two traces composed of the
following observable actions:
rcv; src; dst; verify; withdraw; deposit; success; ack
rcv; src; dst; verify; fail; nak

B. The Verification Method
The verification follows a two-phase approach illustrated

in Fig. 8, where B2L acronym stands for: BPEL-to-LOTOS
mapping. In the first phase, dataflow dependencies between
the activities of the reference process are analyzed using the
Program Dependence Graph (PDG) and all the unnecessary
sequencing constraints on these activities are removed. The
resulting reduced program dependence graph reflects all the
dataflow dependencies between the activities of the reference
process and is free from the initial process structuring. If we
preserve the dataflow dependencies during the process
transformation, then the values computed by all the activities
remain unchanged. In particular, the values that are passed
between the processes by means of the inter-process
communication activities: <invoke> in one process and
<receive> <reply> pair in the other one, remain also
unchanged. The reduced program dependence graph is then

transformed into a LOTOS expression, which is called a
Minimal Dependence Process (MDP). The labeled transition
system of the minimal dependence process defines a set of
traces that define the behavior of all processes, which
comply with dataflow dependencies defined within the
reference process. The first phase is performed only once for
a given reference process.

The second phase is performed repetitively during the
transformational implementation cycle. A transformed BPEL
process is mapped into a LOTOS expression, as described in
the previous subsection. The set of traces generated by the
labeled transition system of this expression is compared with
the set of traces generated by the labeled transition system of
the minimal dependence process. If the trace set generated by
the expression is within the trace set of MDP, then the
behavior of the transformed BPEL process is safe in that it
preserves the behavior of the reference process.

C. The Reduced Program Dependence Graph
A dataflow edge between two nodes in a program

dependence graph implies that the result of the activity at the
end of the edge depends on the result of the activity at the
beginning of this edge. Therefore, the arrangement of
activities during the program execution, reflected by the
succession of activities in an execution trace, must comply
with the direction of dataflow edges. Any change to this
arrangement may lead to a change in the program behavior.

Structured nodes <sequence> and <flow>, as well as
control edges connected to these nodes, reflect the structure
and the flow of control within the reference process. Both of
the two can be changed during the process transformation.
Therefore, <sequence> and <flow> nodes are removed from
the program dependence graph. The reduced program
dependence graph of the reference process in Figs. 2 and 3 is
shown in Fig. 9. An algorithm for removing the nodes
consists of the following steps:

1. Remove all <sequence> and <flow> nodes, which are not
directly nested within an <if> element. Redirect control
edges, which output each removed node, to the direct
predecessor node if one exists, or remove otherwise.

2. If a <sequence> node is nested within an <if>, then:
a. Remove <sequence> node together with the input

"Yes" ("No") edge.
b. Add dataflow edges labeled "Yes" ("No") from <if>

node to each member of <sequence> such that no
path from <if> to this node exists (<if> to "fail"
edge in Fig. 9). Program

Dependence
Graph

Minimal
Dependence

Process

BPEL
reference
process

B2L
The services invoked by a process can have an impact on

the real world. If this is the case, a specific ordering of these
services can be required, regardless of the dataflow relation
between the invoking activities. A designer can reflect this
requirement adding supplementary edges between the
appropriate nodes of the reduced program dependence graph.

D. Minimal Dependence Process
Let GP = (NP, EP) be a reduced program dependence

graph of a BPEL process P. It can be proved that graph GP is
acyclic. We say that node ni precedes node nj, denoted

Transformations

Transformed
BPEL

process

B2L LTS

LTS

ResultLTS LOTOS
expression ⊆

??

Figure 8. Verification of a process behavior

100

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ni < nj, if there exists a path from ni to nj in the reduced
program dependence graph. Precedence relation is a strict
partial order in NP.

An execution of a BPEL program can be modeled as a
process of traversing through the program dependence graph,
starting at the initial node and moving along the directed
edges. The process stops when the last node of the graph is
reached. Because the ordering of nodes is only partial, then
the succession of visited nodes and edges may vary. For
example, the first node in Fig. 9 is rcv. After visiting this
node, data can be passed along the edge to src or along the
edge to dst. If the former is true, then in the next step either
node src can be visited or data can be passed along the edge
to dst. However, node dst could not be visited before the data
were passed through its incoming edge.

Nodes and edges of a program dependence graph can be
mapped to LOTOS actions in such a way that a visit to a
node is mapped to an observable action, while moving along
an edge is mapped to an unobservable action. A sequence of
execution steps is mapped to a sequence of LOTOS actions.
An example mapping of nodes and edges is shown in Fig.
10.

A visit to a node enables visiting all the succeeding
nodes. However, the way of reaching this node (described by
an expression B1) has no influence on the other part of
execution after visiting the node (described by another
expression B2), and vice versa. This means that actions
performed before the visit (within B1) and actions performed
after the visit (within B2) are independent. However,
finishing the visit and passing data along the output edges of
the visited node make a synchronization point between the
two. This informal description can be expressed formally in
LOTOS using the operator of parallel execution of B1 and
B2 synchronized at action assigned to the output edge.

Minimal dependence process is a LOTOS expression that
defines the set of traces, which are compliant with dataflow
dependencies described by the program dependence graph.
This way, minimal dependence process defines the semantics
of a BPEL reference process. The algorithm for building
MDP searches through the reduced program dependence
graph, starting at the initial node. LOTOS expression is
constructed iteratively, by appending a new sub-expression
to the existing part of MDP in each visited node.

For example, the first action in the graph in Fig. 10 is rcv,
followed by one of the actions a or b. Hence, the appropriate
LOTOS expression begins with:

rcv; (a|||b) …

Passing data along one of the output edges enables
traversing through the other parts of the graph. Action a
enables src, while action b enables dst. Both of the enabled
actions are independent and can be executed in parallel.
Hence, the next part of the LOTOS expression is:

((rcv; (a||b)) |[a]| a; src;…) |[b]| b; dst;…

Formally, the algorithm for constructing MDP of a BPEL
program described by a reduced program dependence graph
consists of the following steps:

1. Assign an observable LOTOS action to each node of the
reduced program dependence graph, except of <if>
nodes. The action is identified by the name attribute of
the node (nodes in PDG are BPEL activities).

2. Find paths in the reduced program dependence graph,
such that the first node of a path has one output edge, the
last node has one input edge and each other node has one
input and one output edge. Substitute each path with a
single node, and assign to this node LOTOS expression
composed of actions, which were assigned to the
removed nodes, separated by semicolons.

3. Assign an unobservable LOTOS action to each edge of
the graph. The actions should be distinct, except of the
edges, which output the alternative nodes of an <if>
activity and input the same node. These actions should be
equal.

4. Initiate graph search from the initial node. Create
LOTOS expression, denoted MDP', composed of:
• the expression assigned to the initial node,
• semicolon and parallel composition of actions

assigned to the output edges.
5. Search through the nodes of the reduced program

dependence graph in a sequence complying with the
precedence relation (ni is visited before nj, if ni < nj). For
each node, place parentheses around the MDP' and
append the following expressions:
• parallel composition synchronized on actions

assigned to the input edges,
• a sequence of actions assigned to the input edges,

separated by semicolons,
• semicolon and LOTOS expression assigned to the

node (empty for <if> node),
• semicolon, and parallel composition of actions

assigned to the output dataflow edges or an
alternative selection of actions assigned to the output
control edges (the case of <if> activity).

6. When the algorithm stops, after visiting the last node,
MDP' becomes the minimal dependence process MDP.

Figure 9. The reduced program dependence graph of the process in Figs. 2 and 3

Yes

"rcv"

"src"

"dst"

"verify" <if> "fail" "nak" "exit"

"deposit"

"success" "ack"

No

"withdraw"
Yes

101

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For example, let us consider the reduced program
endence graph in Fig. 9. The steps of assigning LOTOdep S

exp

ify;(y1;y2[]n)) |[d,y1]| d;y1;withdraw; f)

The erates
a set of 13 traces, each of which is a sequence of observable
act

; src; dst; verify; fail; nak; exit ,

sit; success; ack ,
; success; ack ,

The trace set of the reference process in Fig. 2 consists of

; src; dst; verify; withdraw; deposit; success; ack }

process in Fig. 6
con ist

erify; fail; nak; exit ,

sit; success; ack ,
; success; ack ,

Th

; dst; withdraw; deposit; success; ack ,
 t; withdraw; success; ack ,

Ob

Thi

Many metrics re v s characteristics of
software have be [18,19]. In this
res

 program. More precisely, the
val

f the process size
me

 For example, The complexity of
the

ribes the amount of excess in the graph, which
can

 all
lev

of a <flow> element is the sum of
i.e., nodes

•
es (i.e.,

ressions to nodes (step 1), removing paths (step 2), and
assigning unobservable actions to edges (step 3) change the
graph as shown in Fig. 10.

The minimal dependence process derived from the graph
in Fig. 10 takes the form of the following LOTOS
expression:

(((((((rcv;(a|||b)) |[a]| a;src;(c|||d)) |[b]| b;dst;e)
|[c]| c;ver

|[e,y2]| e;y2;deposit;g) |[f,g]| f;g;success;ack)
|[n]| n;fail;nak;exit

labeled transition system of this expression gen

ions:

{ rcv; dst; src; verify; fail; nak; exit ,
 rcv

rcv; src; verify; dst; fail; nak; exit ,
 rcv; src; verify; fail; dst; nak; exit ,
 rcv; src; verify; fail; nak; dst; exit ,
 rcv; src; verify; fail; nak; exit; dst ,
 rcv; dst; src; verify; withdraw; depo
 rcv; dst; src; verify; deposit; withdraw
 rcv; src; dst; verify; withdraw; deposit; success; ack ,
 rcv; src; dst; verify; deposit; withdraw; success; ack ,
 rcv; src; verify; dst; withdraw; deposit; success; ack ,
 rcv; src; verify; dst; deposit; withdraw; success; ack ,
 rcv; src; verify; withdraw; dst; deposit; success; ack }

2 traces:

{ rcv; src; dst; verify; fail; nak; exit ,
 rcv

The trace set of the first transformed
s s of 9 traces:

{ rcv; dst; src; verify; fail; nak; exit ,
 rcv; src; dst; v

rcv; src; verify; dst; fail; nak; exit ,
 rcv; dst; src; verify; withdraw; depo
 rcv; dst; src; verify; deposit; withdraw
 rcv; src; dst; verify; withdraw; deposit; success; ack ,
 rcv; src; dst; verify; deposit; withdraw; success; ack ,

 rcv; src; verify; dst; withdraw; deposit; success; ack ,
 rcv; src; verify; dst; deposit; withdraw; success; ack }

e trace set of the second transformed process in Fig. 7
consists of 4 traces:

{ rcv; src; verify; fail; nak ,
 rcv; src; verify

rcv; src; verify; dst; deposi
 rcv; src; verify; withdraw; dst; deposit; success; ack }

viously, the trace set of MDP includes the trace sets of
the reference process as well as of the transformed processes.

s proves that both transformations are safe.

VII. QUALITY METRICS
 to measu ariou
en proposed in literature

earch, we use simple metrics that characterize the size of a
BPEL process, the complexity and the degree of parallel
execution. The value of each metric can be calculated using a
program dependence graph.

The size of a process is measured as the number of
simple activities in a BPEL

ue of this metric equals the number of leaf nodes in the
program dependence graph of a BPEL process. For example,
the size of the processes shown in Figs. 2 and 6 is 12, while
the size of the process in Fig. 7 equals 10.

Leaf nodes are simple activities, which perform the
processing of data. Therefore, the value o

tric could be considered a measure of the amount of work,
which can be provided by the process. However, smaller
number of this metric may result from removing excessive,
unstructured activities, like <empty> and <exit>. This is the
case of program in Fig. 7.

The complexity of a process is measured as the total
number of nodes in PDG.

 process shown in Fig. 2 is 15, the complexity of the
process in Fig. 6 is 18, and the complexity of the process in
Fig. 7 is 16.

The number of nodes in PDG, compared to the size of the
process, desc

 be considered a measure of the process complexity.
The number of threads is measured as the number of

items within <flow> elements of a BPEL program, at
els of nesting. A problem with this metric is such that the

number of executed items can vary, depending on values of
conditions within <if> elements. Therefore, the metric is a
vector of values, computed for all combinations of values of
these conditions. The algorithm of computation assigns
weights to nodes of the program dependence graph of the
process, starting from the leaves up to the root, according to
the following rules:

• the weight of a simple BPEL activity is 1,
• the weight

weights assigned to the descending nodes (
directly nested within the <flow> element),
the weight of a <sequence> element is the maximum
of weights assigned to the descending nodFigure 10. Construction of MDP: The reduced program dependence graph

(Fig. 9) after step 3

rcv

src

dst

withdraw

fail;nak;exit

deposit

success;ack

n

a

b

c

d

e

y2

f

g

verify

y1

102

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. NUMBER OF THREADS METRIC

if -
condition

Process in
Fig. 2

Process in
Fig. 6

Process in
Fig. 7

YES 1 2 2
NO 1 2 1

nodes directly nested within the <sequence>
element),
the weight of an <if> element is the weight assigned
to the act

•
ivity in this branch of <if>, which is

The
the pre , which ends the process
exe

f PDG. Values of the metric for the
pro

 executed activities within a BPEL program.
Be

f a <flow> element is the maximum of
i.e., nodes

•
e., nodes

•
 is

Nod
ordered order of execution. Nodes
sub

r the
pro

xecuted
wit

ution time of this activity,

just dif ipulation activity
and

s considered in the case study in Section V, one can
not

executed according to a given value of condition
within the <if> element.

 number of executed items can be influenced also by
sence of <exit> activity

cution. Therefore, the nodes directly nested within a
<sequence> element are ordered in compliance with the
order of execution. Nodes subsequent to a node, which is, or
which comprises, <exit> activity, are not taken into account
in the computation.

The metric value equals the weight assigned to the top
<sequence> node o

cesses in Figs. 2, 6, and 7 are shown in Table I. Program
dependence graph and calculation of the metric for the
program in Fig. 7 is shown in Fig. 11 (grey numbers right to
the nodes).

The length of thread is measured as the number of
sequentially

cause the number of executed items can vary, depending
on values of conditions within <if> elements, the metric is a
vector of values, computed for all combinations of values of
these conditions. The algorithm of computation assigns
weights to nodes of the program dependence graph of the
process, starting from the leaves up to the root, according to
the following rules:

• the weight of a simple BPEL activity is 1,
• the weight o

weights assigned to the descending nodes (
directly nested within the <flow> element),
the weight of a <sequence> element is the sum of
weights assigned to the descending nodes (i.
directly nested within the <sequence> element),
the weight of an <if> element is the weight assigned
to the activity in this branch of <if>, which
executed according to a given value of condition
within the <if> element.
es directly nested within a <sequence> element are
 in compliance with the

sequent to a node, which is, or which comprises, <exit>
activity, are not taken into account in the computation.

The metric value equals the weight assigned to the top
<sequence> node of PDG. Values of the metric fo

cesses in Figs. 2, 6, and 7 are shown in Table II.

The response time is measured as the sum of estimated
execution times of activities, which are sequentially e

hin a BPEL program. Because the number of executed
items can vary, depending on values of conditions within
<if> elements, the metric is a vector of values, computed for
all combinations of values of these conditions The algorithm
of computation is identical to the algorithm of computation
of the length of thread metric, except of the first point, which
now reads:

• the weight of a simple activity is the estimated
exec

In the simplest case, the estimated execution time can
ferentiate between local data man

 a service invocation. Values of the metric for the
processes in Figs. 2, 6, and 7, calculated under an assumption
that a local data manipulation time equals 1, while a service
execution time equals 10, are shown in Table III. Program
dependence graph and calculation of the metric for the
program in Fig. 7 is shown in Fig. 11 (numbers left to the
nodes).

Comparing the values of metrics calculated for the
processe

e that both transformed processes are faster than the
original reference process (smaller value of the response time

TABLE III. LENGTH OF THREAD METRIC

if -
condition

Process in
Fig. 2

Process in
Fig. 6

Process in
Fig. 7

YES 9 7 7
NO 7 6 5

TABLE IV. RESPONSE TIME METRIC

if -
condition

Process in
Fig. 2

Process in
Fig. 6

Process in
Fig. 7

YES 36 25 25
NO 16 15 14

verify

dst

<if>

<sequence>

withdraw

deposit ack

nak

Y
N

<sequence>

src

<sequence>

<flow>

1 10

11

10

11

1

13

1

1

2

1 1 10

Y: 25 / N: 14 Y: 2 / N: 1

1 1 1

1

1 1 1

1

2

2

1

1

1

success
1

rcv

fail

<sequence>

1

Figure 11. Program dependence graph of the program in Fig. 7 and
calculation of metrics: Number of threads (grey numbers right to the

nodes) and length of execution (left to the nodes)

103

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

metric). Speeding up the process execution is a benefit from
parallel invocation of services in a SOA environment.
Comparing the variants of the transformed bank transfer
process (Fig. 6 and Fig. 7), one can note that the second
variant is a bit faster and simpler (smaller values of the size
metrics). This variant can be accepted by the customer or
used as a new reference process in the next transformation
cycle.

VIII. CONCLUSION AND FUTURE WORK
Defi siness

decision rocess
on

ot change the behavior of a
tran

matic process optimization. However, the
app

text.
Th

[1] K. Sacha and A. Ratkowski, “Impleme ness Processes
in Service Oriented A The Seventh International

[2]
d Business Process Redesign,” Sloan

[3]
N/2.0/PDF/,10.06.2013.

ge Version 2.0,” OASIS Standard, Apr. 2007,

[6]

[7]

ol. 6, 1994, pp. 153–172.

ystems,”

[10]
tecture 1.0,” OASIS

ning the behavior of a business process is a bu
. Defining the implementation of a business p

a computer system is a technical decision. The
transformational method for implementing business
processes in a service oriented architecture, described in this
paper, promotes separation of concerns and allows making
business decisions by business people and technical
decisions by technical people.

The transformations described in this paper are correct by
construction in that they do n

sformed process. However, the transformations change
the process structure in order to improve efficiency and
benefit from the parallel execution of services in a SOA
environment. The quality characteristics of the process
implementation are measured by means of quality metrics,
which account for the process size, complexity and the
response time of the process as a service. Other quality
features, such as modifiability or reliability, are not covered
in this paper.

The correct-by-construction approach opens the way
towards auto

roach has also some practical limitations. If the external
services invoked by a process have an impact on the real
world, as is usually the case, a specific ordering of these
services may be required, regardless of the dataflow
dependencies between the service invocation activities
within a program. In our approach, a designer can express
the necessary ordering conditions adding supplementary
edges to the program dependence graph. Therefore, the
approach cannot be fully automated and a manual
supervision over the transformation process is needed.

It is also possible that small changes to a process
behavior can be acceptable within the application con

erefore, part of our research was aimed at finding a
verification method capable not only of verifying the process
behavior, but also of showing the designer all the potential
changes, if they exist. A decision on whether to accept the
changes or not is made by a human.

REFERENCES
ntation of Busi

rchitecture,” Proc.
Conference on Software Engineering Advances (ICSEA 2012),
IARIA, 2012, pp. 129–136.

T. H. Davenport and J. E. Short, “The New Industrial Engineering:
Information Technology an
Management Review, 1990, pp. 11–27.
OMG, “Business Process Model and Notation (BPMN), Version 2.0,”
Jan. 2011, http://www.omg.org/spec/BPM

[4] A. W. Scheer, ARIS – Business Process Modeling, Springer, Berlin
Heidelberg, 2007.

[5] D. Jordan and J. Evdemon, “Web Services Business Process
Execution Langua
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html, 10.06.2013.
OMG, “OMG Unified Modeling Language (OMG UML),
Superstructure, V2.1.2,” Nov. 2007, http://www.omg.org/spec/UML/
2.1.2/Superstructure/PDF, 10.06.2013.
P. Zave, “An Insider's Evaluation of Paisley,” IEEE Trans. Software
Eng., vol. 17, 1991, pp. 212–225.

[8] K. Sacha, “Real-Time Software Specification and Validation with
Transnet,” Real-Time Systems J., v

[9] F. J. Duarte, R. J. Machado, and J. M. Fernandes, “BIM: A
methodology to transform business processes into software s
SWQD 2012, LNBIP vol. 94, 2012, pp. 39–58.
C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and R. Metz,
“Reference Model for Service Oriented Archi
Standard, Oct. 2006, http://docs.oasis-open.org/soa-rm/v1.0/soa-
rm.html, 10.06.2013.
J. A. Estefan, K. Laskey, F. G. McCabe, and D. Thornton, “Reference
Architecture for Servi

[11]
ce Oriented Architecture Version 1.0,” OASIS

Public Review Draft 1, Apr. 2008, http://docs.oasis-open.org/soa-
rm/soa-ra/v1.0/soa-ra-pr-01.pdf, 10.06.2013.
S. A. White, “Using BPMN to Model a BPEL Process,” BPTrends 3,
2005, pp. 1–18.

[12]

al Mismatch between Process Modeling Languages,”

[14]

[13] J. Recker and J. Mendling, “On the Translation between BPMN and
BPEL: Conceptu
The 18th International Conference on Advanced Information Systems
Engineering (CAISE 2006), Proc. Workshops and Doctoral
Consortium, Namur University Press, 2006, pp. 521–532.
Bpmn2bpel, “A tool for translating BPMN models into BPEL
processes,” http://code.google.com/p/bpmn2bpel/, 10.06.2013

, pp. 1–50.

Service-Oriented Computing and

[18]
EEE Conference

[19]

[20]
l, Englewood Cliffs, 2005.

 Technique Based on

[15] M. Weiser, “Program slicing,” IEEE Trans. Software Eng., vol. 10,
1984, pp. 352–357.

[16] D. Binkley and K. B. Gallagher, “Program slicing,” Advances in
Computers, 43, 1996

[17] C. Mao, “Slicing web service-based software,” Proc. IEEE
International Conference on
Applications (SOCA 2009), IEEE, 2009, pp. 1–8.
J. K. Hollingsworth and B. P. Miller, “Parallel program performance
metrics: A comparison and validation,” Proc. ACM/I
on Supercomputing (SC 92), IEEE Computer Society Press, pp. 4–13.
A. S. Van Amesfoort, A. L. Varbanescu, and H. J. Sips, “Parallel
Application Characterization with Quantitative Metrics,”
Concurrency and Computation: Practice and Experience, vol. 24,
2012, pp. 445–462.
T. Erl, Service-oriented Architecture: Concepts, Technology, and
Design. Prentice Hal

[21] ISO 8807, “Information Processing Systems: Open Systems
Interconnection: LOTOS: A Formal Description
the Temporal Ordering of Observational Behaviour,” International
Organization for Standards, 1989.

