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Abstract—The paper develops a method for transformational 
implementation and optimization of business processes in a 
service oriented architecture. The method promotes separation 
of concerns and allows making business decisions by business 
people and technical decisions by technical people. To achieve 
this goal, a description of a business process designed by 
business people is automatically translated into a program in 
Business Process Execution Language, which is then subject to 
a series of transformations developed by technical people. Each 
transformation changes the process structure in order to 
improve the quality characteristics. Two approaches to the 
verification of the process correctness are discussed. The  first 
one applies a correct-by-construction approach to 
transformations. The other one relies on automatic verification 
of the transformed process behavior against the behavior of 
the original reference process. The verification mechanism is 
based on a mapping from Business Process Execution 
Language to Language of Temporal Ordering Specification, 
followed by a comparison of the trace set that is generated 
using a program dependence graph of the reference process 
and the trace set of the transformed one. When the design 
goals have been reached, the transformed BPEL process can be 
executed on a target SOA environment using a BPEL engine. 

Keywords-business process; service oriented architecture; 
BPEL; LOTOS; transformational implementation. 

I.  INTRODUCTION 
This paper is an extension of the ICSEA paper [1] on 

transformational implementation of business processes in a 
service oriented architecture. A business process is a set of 
logically related activities performed to achieve a defined 
business outcome [2]. The structure of a business process 
and the ordering of activities reflect business decisions made 
by business people and, when defined, can be visualized 
using an appropriate notation, e.g., Business Process Model 
and Notation [3] or the notation of ARIS [4]. The 
implementation of a business process on a computer system 
is expected to exhibit the defined behavior at a satisfactory 
level of quality. Reaching the required level of quality may 
need decisions, made by technical people and aimed at 
restructuring of the initial process in order to benefit from the 
characteristics offered by an execution environment. The 
structure of the implementation can be described using 
another notation, e.g., Business Process Execution Language 
[5] or UML activity diagrams [6]. 

This paper describes a transformational method for the 
implementation and optimization of business processes in a 

service oriented architecture (SOA). The method begins with 
an initial definition of a business process, written by business 
people using Business Process Modeling Notation (BPMN). 
The business process is automatically translated into a 
program in Business Process Executable Language (BPEL), 
called a reference process. The program is subject to a series 
of transformations, each of which preserves the behavior of 
the reference process, but changes the order of activities, as  
means to improve the quality of the process implementation, 
e.g., by benefiting from the parallel structure of services. 
Transformations applied to the reference process are selected 
manually by human designers (technical people) and 
performed automatically, by a software tool. When the 
design goals have been reached, the iteration stops and the 
result is a transformed BPEL process, which can be executed 
on a target SOA environment. 

Such an approach promotes separation of concerns and 
allows making business decisions by business people and 
technical decisions by technical people. 

A critical part of the method is providing assurance on 
the correctness of the transformational implementation of a 
business process. Two approaches to the verification of the 
process correctness are discussed in this paper. The  first one 
applies a correct-by-construction approach that consists in 
defining a set of safe transformations, which do not change 
the process behavior. If all transformations are safe, then the 
transformed program will also be correct, i.e., semantically 
equivalent to the original reference process.  

The other approach relies on automatic verification of the 
transformed process behavior against the behavior of the 
original reference process. The verification mechanism is 
based on a mapping from BPEL to Language of Temporal 
Ordering Specification (LOTOS), followed by a comparison 
of the trace set that is generated using a program dependence 
graph of the reference process and the trace set of the 
transformed one. 

The rest of this paper is organized as follows. Related 
work is briefly surveyed in Section II. The semantics of a 
BPEL process and its behavior are defined in Section III. A 
set of safe transformations are introduced in Section IV. An 
illustrative case study is provided in Section V. A method for 
the verification of correctness, based on LOTOS language 
and a BPEL to LOTOS mapping is covered in Section VI. 
Quality metrics to assess transformation results are described 
in Section VII. Conclusions and plans for future research are 
given in Section VIII. 
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II. RELATED WORK 
Transformational implementation of software is not a 

new idea. The approach was developed many years ago 
within the context of monolithic systems, with the use of 
several executable specification techniques. The formal 
foundation was based on problem decomposition into a set of 
concurrent processes, use of functional languages [7] and 
formal modeling by means of Petri nets [8]. 

An approach for transformational implementation of 
business processes was developed in [9]. This four-phase 
approach is very general and not tied to any particular 
technology. Our method, which can be placed in the fourth 
phase (implementation), is much more specific and focused 
on the implementation of runnable processes described in 
BPMN and BPEL. 

BPMN defines a model and a graphical notation  for 
describing business processes, standardized by OMG [3]. 
The reference model of SOA [10,11] and the specification of 
BPEL [5] are standardized by OASIS. An informal mapping 
of BPMN to BPEL was defined in [3]. A comprehensive 
discussion of the translation between BPMN and BPEL, and 
of some conceptual discrepancies between the languages, 
can be found in [12,13]. An open-source tool is available for 
download at [14]. 

The techniques of building program dependence graph 
and program slicing, which we adopted for proving safeness 
of transformations, were developed in [15,16] and applied to 
BPEL programs in [17]. 

Several metrics to measure the quality of parallel 
programs have been proposed in the literature and studied for 
many years. A traditional metric for measuring performance 
of a parallel application is Program Activity Graph, which 
describes parallel flow of control within the application [18]. 
We do not use such a graph, nevertheless, our two metrics: 
Length of thread and Response time, can be viewed as an 
approximation of Critical path metric described in [18]. 
Similarly, our Number of threads metric is similar to 
Available concurrency defined in [19]. 

To the best of our knowledge, our work on the 
implementation of business processes in service oriented 
architecture is original. Preliminary results of our research 
were published in [1]. An extended version, including a 
revised algorithm for building program dependence graph 
and an original method for the verification of transformation 
correctness are introduced in this paper. 

III. THE SEMANTICS OF A BUSINESS PROCESS 
A business process is a collection of logically related 

activities, performed in a specific order to produce a service 
or product for a customer. The activities can be implemented 
on-site, by local data processing tasks, or externally, by 
services offered by a service-oriented environment. The 
services can be viewed from the process perspective as the 
main business data processing functions. 

A specification of a business process can be defined 
textually, e.g., using a natural language, or graphically, using 
BPMN. An example BPMN process, which executes a 
simplified processing of a bank transfer order is shown in 
Fig. 1. The process begins and waits for an external 
invocation from a remote client (another process). When the 
invocation is received, the process extracts the source and the 
target account numbers from the message, checks the 
availability of funds at source and splits into two alternative 
branches. If the funds are missing, the process prepares a 
negative acknowledgement message, replies to the invoker, 
and ends. Otherwise, the alternative branch is empty. Then, 
the process invokes the withdraw service at source account, 
invokes the deposit service at target account, packs the 
results returned by the two services into a single reply 
message, replies to the invoker and ends. This way, the 
process implements a service, which is composed of another 
services. 

BPMN specification of a business process can be 
automatically translated into a BPEL program, which can be 
used for a semi-automatic implementation.  

 BPEL syntax is composed of a set of instructions, called 
activities, which are XML elements indicated in the 
document by explicit markup. The set of BPEL activities is 
rich. However, in this paper, we focus on a limited subset of 
activities for defining control flow, service invocation, and 
basic data handling.  

The body of a BPEL process consists of simple activities, 
which are elementary pieces of computation, and structured 
elements, which are composed of other simple or structured 
activities, nested in each other to an arbitrary depth. Simple 
activities are <assign>, which implements substitution, 
<invoke>, which invokes an external service, and <receive>, 
<reply> pair, which receives and replies to an invocation. 
Structured activities are <sequence> element to describe 
sequential execution, <flow> element to describe parallel 
execution and <if> alternative branching. An example BPEL 
program, which implements the business process in Fig. 1, is 

Extract source 
account no

Extract target 
account no

Check funds 
at source

Prepare 
negative ack

Empty

Pack the 
results

Withdraw at 
source

Deposit at 
target

Figure 1. BPMN specification of a business process 
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shown in Fig. 2. Name attribute will be used to refer to 
particular activities of the program in the subsequent figures. 

The first executable activity of the program is <receive>, 
which waits for a message that invokes the process execution 
and conveys a value of the input argument. The last activity 
of the process is <reply>, which responds to the invocation 
and sends a message that returns the result. The activities 
between <receive> and <reply> execute a business process, 
which invokes other services and transforms the input into 
the output. This is a typical construction of a BPEL process, 
which can be viewed as a service invoked by other services. 

SOA services are assumed stateless [20], which means 
that the result of a service execution depends only on values 
of data passed to the service at the invocation, and manifests 
to the outside world as values of data sent by the service in 
response to the invocation. Therefore, we assume that the 
observable behavior of a process in a SOA environment 
consists of data values, which the process passes as 
arguments when it invokes external services, and data values, 
which it sends in reply to the invoker.  

A. Program Dependence Graph 
To capture the influence of a process structure into the 

process behavior, we use a technique called program slicing 
[15,16], which allows finding all the instructions in a 
program, which influence the value of a variable in a specific 
point of the program. For example, finding the instructions 
that influence the value of a variable that is used as an 
argument by a service invocation activity or by a reply 
activity of the process. 

The conceptual tool for the analysis is Program 
Dependence Graph (PDG), whose nodes are activities of a 
BPEL program, and edges reflect dependencies between the 
activities. An algorithm for constructing PDG of a BPEL 
program consists of the following steps: 

<sequence> 
     <receive name="rcv" variable="transfer"/> 
     <assign name="src"> 
          <copy> <from variable="transfer" part="srcAccNo"/> 
          <to variable="source" part="account"/> </copy> 
          <copy> <from variable="transfer" part="srcAmount"/> 
          <to variable="source" part="amount"/> </copy> 
     </assign> 
     <assign name="dst"> 
          <copy> <from variable="transfer" part="dstAccNo"/> 
          <to variable="target" part="account"/> </copy> 
          <copy> <from variable="transfer" part="dstAmount"/> 
          <to variable="target" part="amount"/> </copy> 
     </assign> 
     <invoke name="verify" inputVariable="source" 
          outputVariable="fundsAvailable"/> 
     <if> <condition> $fundsAvailable.res </condition> 
          <empty name="empty"/> 
     <else> <sequence> 
          <assign name="fail"> 
               <copy> <from> 'lack of funds' </from> 
               <to variable="response" part="fault"/> </copy> 
          </assign> 
          <reply name="nak" variable="response"/> 
          <exit name="exit"/> 
     </sequence> </else> </if> 
     <invoke name="withdraw" inputVariable="source" 
               outputVariable="wResult"/> 
     <invoke name="deposit" inputVariable="target" 
               outputVariable="dResult"/> 
     <assign name="success"> 
          <copy> <from variable="wResult" part="res"/> 
          <to variable="result" part="withdraw"/> </copy> 
          <copy> <from variable="dResult" part="res"/> 
          <to variable="result" part="deposit"/> </copy> 
     </assign> 
     <reply name="ack" variable="result"/> 
</sequence> 

 
Figure 2. A skeleton of a BPEL program of a bank transfer (Fig. 1) 

1. Define nodes of the graph, which are activities at all 
layers of nesting. 

2. Define control edges (solid lines in Fig. 3), which follow 
the nested structure of the program, e.g., an edge from 
<sequence> to <if> shows that <if> activity is nested 
within the <sequence> element. Output edges of <if> 
node are labeled "Yes" or "No", respectively. 

3. Define dataflow edges (dashed lines in Fig. 3), which 
reflect dataflow dependencies between the activities, e.g., 
an edge from activity "rcv" to activity "src" shows that an 
output variable of "rcv" is used as input variable to "src".  

4. Add dataflow edges from <receive> activity, which is 
nested within a <sequence> element, to each subsequent 
activity of this <sequence> such that no paths from 
<receive> to this activity exists (there are no such items 
in Fig. 3).  

5. If an <exit> activity is nested within a <sequence>, then: 
a. remove all the activities, which are subsequent to 

<exit>, together with all the input and output edges, 

<sequence> 

Figure 3. Program dependence graph of the bank transfer process 

"dst" 

"withdraw" "ack" "deposit" "success" 

"empty" 

<sequence> 

"nak" "exit" 

"fail" 

"verify" 

"src" 

<if> 

Yes 
No 

"rcv" 

Yes 
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b. for each antecedent activity with no path to <exit>, 
add a dataflow edge from this activity to <exit> 
("nak" to "exit" edge in Fig. 3). 

6. If an <if> element is nested within a <sequence> and 
there is an <exit> within "Yes" ("No") branch of <if>, 
then add "No" ("Yes") edges from <if> to subsequent 
activities with no path from <if> (<if> to "deposit" and 
<if> to withdraw edges in Fig. 3). 

7. Convert "Yes" and "No" edges that output <if> activities 
into dataflow edges. 

Dataflow edges within a program dependence graph 
reflect the dataflow dependencies between subsequent 
activities, which determine values of the program variables. 
The edges added in step 4 reflect the semantics of the 
process as a service, which starts after receiving an 
invocation message. The edges added in steps 5 and 6 reflect 
the semantics of <exit>, which stops the program and 
prevents execution of all the subsequent activities. Dataflow 
edges introduced in step 7 reflect the semantics of <if> 
statement, which outgoing branches may execute only after 
evaluating the condition. An example program dependence 
graph of the business process in Fig. 2 is shown in Fig. 3. It 
can be noted, that the flow of control within the original 
BPEL program complies with dataflow edges of its program 
dependence graph.  

In the rest of this paper, we adopt a definition that a 
transformation preserves the process behavior, if it keeps the 
set of messages sent by the process as well as the data values 
carried by these messages unchanged. Such a definition 
neglects the timing aspects of the process execution. This is 
justified, given that it does not change the business 
requirements. There are many delays in a SOA system and 
the correctness of software must not relay on a specific order 
of activities, unless they are explicitly synchronized.  

A transformation that preserves the process behavior is 
called safe. 

Definition (Safeness of a transformation) 
A transformation is safe, if the set of messages sent by 

the activities of a program remains unchanged and the flow 
of control within the transformed program complies with the 
direction of dataflow edges within the program dependence 
graph of the reference process. □ 

The set of activities executed within a program may vary, 
depending on decisions made when passing through decision 
points of <if> activities. To fulfill the above definition, the 
set of messages must remain unchanged, for each particular 
combination of these decisions. 

A path composed of dataflow edges in a program 
dependence graph reflects the dataflow relationships 
between the activities, and implies that the result of the 
activity at the end of the path depends only on the preceding 
activities on this path. If the succession of activities executed 
within a program complies with the dataflow edges, then the 
values of variables computed by the program remain the 
same, regardless of the ordering of other activities of this 
program.  

Safeness of a transformation guarantees that the 
transformation preserves the behavior of the transformed 
program as observed by other services in a SOA 
environment. Safeness is transitive and a sequence of safe 
transformations is also safe. Therefore, a process resulting 
from a series of safe transformations applied to a reference 
process preserves the behavior of the reference process. 

IV. SAFE TRANSFORMATIONS 
The body of a BPEL process consists of simple activities, 

e.g., <assign>, which define elementary pieces of 
computation, and structured elements, e.g., <flow>, which is 
composed of other simple or structured activities. The 
behavior of the process results from the order of execution of 
activities, which stem from the type of structured elements 
and the positioning of activities within these elements. A 
transformation applies to a structured element and consists in 
replacing one element, e.g., <flow>, by another element, e.g., 
<sequence>, or in relocation of activities within the 
structured element. If the behavior of the transformed 
element before and after the transformation is the same, then 
the behavior of the process stands also unchanged. 

Several transformations have been defined. The basic 
ones: simple and alternative displacement, parallelization 
and serialization of the process operations, and process 
partitioning are described in detail below. All the 
transformations are safe, according to definition of safeness 
given in Section III. As pointed out in Section III, a safe 
transformation does not change the behavior of a process, 
which is composed of stateless services. A problem may 
arise, if the services invoked by a process have an impact on 
the real world. If this is the case, a specific ordering of these 
services may be required. In our approach, a designer can 
express the necessary ordering conditions adding 
supplementary edges to the program dependence graph. 

Transformation 1: Simple displacement 
Consider a <sequence> element, which contains n 

arbitrary activities executed in a strictly sequential order. 
Transformation 1 moves a selected activity A from its 
original position i, into position j within the sequence. 

Theorem 1. Transformation 1 is safe, if no paths between 
activity A and the activities placed on positions i+1, … j in 
the sequence existed in the program dependence graph of the 
transformed program. 

Proof: Assume that i < j (move forward). The 
transformation has no influence on activities placed on 
positions lower than i or higher than j. However, moving 
activity A from position i to j reverts the direction of the flow 
of control between A and the activities that are in-between. 
This could be dangerous if a dataflow from A to those 
activities existed. However, if no dataflow paths from A to 
the activities placed on positions i+1, … j existed in the 
program dependence graph, then no inconsistency between 
the control and data flow can exist. 

If j < i (move backward), the proof is analogous. The lack 
of dataflow path guarantees lack of inconsistency between 
the data and control flows within the program. □ 
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Transformation 2: Pre-embracing <invoke name="xxx" (a)
     inputVariable="source"  outputVariable="target" 
/> 
 
<sequence> (b)
     <invoke name="xxx_i"  inputVariable="source"/> 
     <receive name="xxx_r"  variable="target"/> 
</sequence> 
 

Figure 4. Synchronous (a) and asynchronous service invocation (b) 

Consider a <sequence> element, which includes an <if> 
element preceded by an <assign> activity, among others. 
Branches of <if> element are <sequence> elements. 
Transformation 2 moves <assign> activity from its original 
position in the outer <sequence>, into the first position 
within one branch of <if> element. 

Theorem 2. Transformation 2 is safe, if neither a path from 
the moved <assign> to an activity placed in the other branch 
of <if>, nor a path from the moved <assign> to the activities 
positioned after <if> in the outer sequence, existed in the 
program dependence graph of the transformed program. 

Proof: The transformation has no influence on activities 
placed prior to <if> element in the outer <sequence>. 
Moving <assign> activity to one branch of <if> removes the 
flow of control from <assign> to activities in the other 
branch of <if> and – possibly – to activities placed after 
<if>. But according to the assumption of this theorem, there 
is no data flow between these activities. Therefore, no 
inconsistency between the control and data flow can exist.  □ 

Transformation 3: Post-embracing 
Consider a <sequence> element, which includes an <if> 

activity followed by a number of another activities. Branches 
of <if> element are <sequence> elements, one of which 
contains <exit> activity. Transformation 3 moves the 
activities, which follow <if>, from its original position in the 
outer <sequence> into the end of the second <sequence> of 
<if> element. 

Theorem 3. Transformation 3 is safe. 
Proof: Activities, which are placed after an <if> element 

in the reference process, are executed only after the 
execution of <if> is finished. The existence of <exit> in one 
branch of <if> prevents execution of these activities when 
this branch is selected. The activities are executed only in 
case the other branch is selected. Therefore, neither the flow 
of control nor the flow of data is changed in the program, 
when the activities are moved to the other branch of <if>, 
i.e., the branch without <exit> activity.  □ 

Transformation 4: Parallelization 
Consider a <sequence> element, which contains n 

arbitrary activities executed in a strictly sequential order. 
Transformation 4 parallelizes the execution of activities by 
replacing <sequence> element by <flow> element composed 
of the same activities, which – according to the semantics of 
<flow> – are executed in parallel. 

Theorem 4. Transformation 4 is safe, if for each pair of 
activities Ai , Aj neither a path from Ai to Aj nor a path from Aj 
to Ai existed in the program dependence graph of the 
transformed program. 

Proof: The transformation changes the flow of control 
between the activities of the transformed element. The lack 
of dataflow paths between these activities means that no 
inconsistency between the control and data flow can exist. □ 

Transformation 5: Serialization 
Consider a  <flow> element, which contains n arbitrary 

activities executed in parallel. Transformation 5 serializes the 

execution of activities by replacing <flow> element by 
<sequence> element, composed of the same activities, which 
are now executed sequentially. 

Theorem 5. Transformation 5 is safe. 
Proof: The proof is obvious. Parallel commands can be 

executed in any order, also sequentially. 

Transformation 6: Asynchronization 
Consider a two-way <invoke> activity, which sends a 

message to invoke an external service and then waits for a 
response (Fig. 4a). Transformation 6 replaces the two-way 
<invoke> activity with a sequence of a one-way <invoke> 
activity followed by a <receive> (Fig. 4b). This way, a 
synchronous invocation of a service is converted into an 
asynchronous one.  

Transformation 6 can be proved safe, if we add a 
dataflow edge from <invoke> node to <receive> node in the 
program dependence graph of each program, which includes 
an asynchronous service invocation shown in Fig. 4b. 
Theorem 6. Transformation 6 is safe. 

Proof: The transformation has no influence on activities 
executed prior to <invoke> activity. Dataflow edges from 
these activities to <invoke> remain unchanged. The 
transformation has no influence on activities executed after 
<invoke>, as well. Dataflow edges to these activities from 
<invoke> are redirected to begin at node <receive>. Hence, 
there is a one-to-one mapping between the sets of dataflow 
paths, which exist in program dependence graph of a 
program before and after the transformation. Therefore, no 
inconsistency between the control and data flow can exist. 

Transformations 1 through 6 can be composed in any 
order, resulting in a complex transformation of the process 
structure. Transformations 7 and 8 play an auxiliary role and 
facilitate such a composition. These transformations are safe, 

<sequence> (a) <flow> (b)
     <sequence>      <flow> 
          <C1> </C1>           <C1> </C1> 
          ......           ...... 
          <Ck> </Ck>           <Ck> </Ck> 
     </sequence>      </flow> 
     <sequence>      <flow> 
          <Ck+1> </Ck+1>           <Ck+1> </Ck+1> 
          ......           ...... 
          <Cn> </Cn>           <Cn> </Cn> 
     </sequence>      </flow> 
</sequence> </flow> 

 
Figure 5. Sequential (a) and parallel (b) partitioning of commands
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because they do not change the order of execution of any 
activities within a BPEL program. □ 

Transformation 7: Sequential partitioning 
Transformation 7 divides a single <sequence> element 

into a nested structure of <sequence> elements (Fig. 5a). 

Transformation 8: Parallel partitioning 
Transformation 8 divides a single <flow> element into a 

nested structure of <flow> elements (Fig. 5b). 

V. CASE STUDY 
Consider a process of transferring funds between two 

different bank accounts, shown in Fig. 1, implemented by a 
BPEL process. A skeleton of the simplified BPEL program 
of this process is shown in Fig. 2. 

The process body is a sequence of activities, which starts 
at <receive>. Then, it proceeds through a series of steps to 
process the received bank transfer order and to invoke 
services offered by the banking systems to verify availability 
of funds at source account, to withdraw funds and to deposit 
the funds at the destination account. Finally, it ends after 
replying positively, if the transfer has successfully been 
done, or negatively, if the required amount of funds was not 
available at source.  

PDG of this program is shown in Fig. 3. The first two 
<assign> activities process the contents of the received 
message in order to extract the source and destination 
account numbers and the amount of money to transfer. 
Therefore, there are dataflow edges from "rcv" to "src" and 
to "dst" nodes in PDG. The next consecutive <invoke> 
activity uses the extracted source account number and the 
amount of money to invoke the verification service, and the 
response of the invocation is checked by <if> activity. 
Therefore, two dataflow edges from src to verify and from 
verify to <if> exist in the graph. Similarly, the <invoke> 
activities named "withdraw" and "deposit" use the account 
numbers calculated by "src" and "dst", respectively. Two 
dataflow edges from "withdraw" and "deposit" nodes to 
"success" node, and then an edge from "success" to "ack", 
reflect the path of preparing the acknowledgement message 
that is sent to the invoker when the transfer is finished. 

The analysis of the program dependence graph in Fig. 3 
reveals that no dataflow path between activity named "dst" 
and the next two activities "src" and "verify" exists in the 
graph. Therefore, these activities can be executed in parallel. 
Similarly, there is no dataflow path between two consecutive 
<invoke> activities "withdraw" and "deposit". These two 
activities can also be executed in parallel. 

To perform these changes, we can partition the outer 
<sequence> element using transformation 6 three times, and 
then parallelize the program structure using transformation 4 
twice. A skeleton of the resulting BPEL program is shown in 
Fig. 6. Only names of the activities are shown in Fig. 6. The 
variables used by the activities are omitted for brevity. 

However, this is not the only way of transformation. 
Alternatively, the designer can displace "dst" forward, just 
before <if> activity, and then use transformation 2 in order to 
enter "dst" to the inside of <if> in place of <empty> activity. 
Next, transformation 3 can be used to embrace the last three 

activities of the outer <sequence> element into the first 
branch of <if> element, consecutively following "dst". Then, 
the designer can move "dst" forward, adjacent to "deposit", 
partition the inner sequence of <if> using transformation 6, 
and parallelize the program structure using transformation 4. 
A skeleton of the resulting BPEL program is shown in Fig. 7. 
We removed "exit" activity from the final program, because 
it is obviously redundant at the end of the program.  

<sequence> 
     <receive name="rcv"> - receive transfer order 
     <flow> 
          <assign name="dst"> - extract destination no 
          <sequence> 
               <assign name="src"> - extract source no 
               <invoke name="verify"> - verify funds at source 
          </sequence> 
     </flow> 
     <if> 
          <condition> ... </condition> - check availability 
               <empty name="empty"> - do nothing if available
          <else> <sequence> 
               <assign name="fail"> - set response 
               <reply name="nak"> - reply negatively 
               <exit name="exit"> - end of execution 
          </sequence> </else> 
     </if> 
     <flow> 
          <invoke name="withdraw"> - withdraw funds 
          <invoke name="deposit"> - deposit funds  
     </flow> 
     <assign name="success"> 
     <reply name="ack"> - reply positively 
</sequence> 
 
Figure 6. A skeleton of the transformed bank transfer process – variant I 

<sequence> 
    <receive name="rcv"> - receive order 
    <assign name="src"> - extract source no
    <invoke name="verify"> - verify funds 
    <if> 
          <condition> ... </condition> - check availability
          <sequence> 
               <flow> 
                    <invoke name="withdraw"> - withdraw funds 
                    <sequence> 
                        <assign name="dst"> - extract dst. no 
                        <invoke name="deposit"> - deposit funds 
                    </sequence> 
               </flow> 
               <assign name="success"> 
               <reply name="ack"> - reply positively 
          </sequence> 
          <else> <sequence> 
               <assign name="fail"> - set response 
               <reply name="nak"> - reply negatively 
          </sequence> </else> 
    </if> 
</sequence> 

 
Figure 7. A skeleton of the transformed bank transfer process – variant II 
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The main advantage of the transformed process over the 
original one is higher level of parallelism, which can lead to 
better performance of the program execution. If we compare 
the two alternative designs, then intuition suggests that the 
structure of the second process is better than of the first one. 
In order to verify this impression, the reference process and 
the transformed processes can be compared to each other, 
with respect to a set of quality metrics. Depending on the 
results, the design phase can stop, or a selected candidate (a 
transformed process) can be substituted as the reference 
process for the next iteration of the design phase. 

TABLE I.  EXPRESSIONS IN BASIC LOTOS 

Syntax Explanation 
stop inaction, lack of action 
µ ; B action µ  precedes execution of 

expression B 
B1 [ ] B2 alternative choice of expressions B1 

and B2 
B1 |[ g1,…gn ]| B2 parallel execution of B1 and B2 

synchronized at actions g1,…,gn 
B1 ||| B2 parallel execution with no 

synchronization between B1 and B2 
exit successful termination; generates a 

special action δ 
B1 >> B2 sequential composition: successful 

execution of B1 enables B2 
B1 [> B2 disabling: successful execution of B1 

disables execution of B2 
hide g1,…,gn in B hiding: actions g1,…,gn are 

transformed into unobservable ones 

VI. VERIFICATION OF CORRECTNESS 
The correct-by-construction approach is appealing for the 

implementation designer because it can open the way 
towards automatic process optimization. However, the 
approach has also some practical limitations. It is possible 
that small changes to a process behavior can be acceptable 
within the application context. If this was the case, then a 
verification method is needed, capable not only of verifying 
the process behavior, but also showing the designer all the 
potential changes, if they exist. In this section, we introduce 
LOTOS language, which is used as a formal basis for such a 
verification method. 

A. The language LOTOS 
Language of Temporal Ordering Specification (LOTOS) 

is one of the formal description techniques developed within 
ISO [21] for the specification of open distributed systems. 
The semantics of LOTOS is based on algebraic concepts and 
is defined by a labeled transition system (LTS), which can be 
built for each LOTOS expression. 

A process, or a set of processes, is modeled in LOTOS as 
a behavior expression, composed of actions, operators and 
parenthesis. Actions correspond to activities, which 
constitute the process body. Operators describe the ordering 
of actions during the process execution. The list of operators, 
together with an informal explanation of their meaning is 
given in Table I. We use µ to denote an arbitrary action and 
δ to denote a special action of a successful termination of an 
expression or sub-expression. 

LOTOS expression can be executed, generating a 
sequence of actions, which is called the execution trace. An 
expression that contains parallel elements can generate many 
traces, each of which describes an acceptable ordering of 
actions. Not all of the actions that are syntactic elements of 
an expression are directly visible within the execution trace. 
These actions are called observable actions and are denoted 
by alphanumeric identifiers, e.g., g1, g2, etc. Only 
observable actions are counted as members of an execution 
trace of the expression. Other actions cannot be identified 
when observing the trace. These actions are called 
unobservable actions. Unobservable actions are denoted by 
letter i and are not counted as members of an execution trace. 

Formally, unobservable actions are those that are listed 
within the hide clause of LOTOS. In this paper, we omit this 
clause to help keeping the expressions simple. 

The operational semantics of LOTOS provides a means 
to derive the actions that an expression may perform from 

the structure of the expression itself. Formally, the semantics 
of an expression B is a labeled transition system < S, A,→, I > 
where: 

S – is a set of states (LOTOS expressions), 
A – is a set of actions, 
→ – is a transition relation, → ⊆ S × A × S, 
B – is the initial state (the given expression). 

The transition relation is usually written as  B  →
µ

   B’. For 
example, the semantics of expression (g; B1) can be 
described by a labeled transition: 

g; B1  →
g

   B1 
This means that expression (g; B1) is capable of performing 
action g and transforming into expression B1. 

The semantics of a complex expression consists of a 
directed graph (a tree) of labeled transitions, which root is 
the expression itself, and which edges are the labeled 
transitions. Each path from the root node to a leaf node of the 
graph defines a sequence of actions, which is an execution 
trace of the expression.  

LOTOS expression can serve as a tool for modeling the 
set of traces of execution of a BPEL process. To use the tool, 
we can model BPEL activities as observable actions in 
LOTOS, and describe the ordering of activities during the 
process execution by means of a LOTOS expression.  

Simple activities of BPEL are mapped to observable 
actions of LOTOS, followed by exit symbol. For example: 

<assign name="ass"> is mapped to ass; exit 
<invoke name="inv"> is mapped to inv; exit 

Exceptions are BPEL <empty>, which is mapped to exit, and 
<exit>, which is mapped to stop. 

Structured activities of BPEL are translated into LOTOS 
expressions according to the following rules: 
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• <sequence> element is mapped into sequential 
composition (>>), 

• <flow> element is mapped to parallel execution (|||), 
• <if> element is mapped to alternative choice ([ ]). 
The semantics of parallelism in LOTOS is interleaved. 

Parallel execution of activities that are nested within <flow> 
element of a BPEL process is modeled by the possibility of 
executing the corresponding LOTOS actions in an arbitrary 
order. The semantics of choice is exclusive. When one 
branch of <if> element begins execution, then the other 
branch disappears. Special action δ generated by exit is not 
counted in the execution traces because it is an unobservable 
action. 

Consider, for example, BPEL process in Fig. 2. If we 
map the process activities according to the above rules, then 
the resulting LOTOS expression looks as follows: 

rcv;exit >> src;exit >> dst;exit >> verify;exit >>  
( exit [ ] fail;exit >> nak;exit >> stop ) >>  

withdraw;exit >> deposit;exit >> success;exit >> ack;exit 
The trace set generated by the labeled transition system 

of this expression consists of two traces composed of the 
following observable actions:  
rcv; src; dst; verify; withdraw; deposit; success; ack 
rcv; src; dst; verify; fail; nak 

B. The Verification Method 
The verification follows a two-phase approach illustrated 

in Fig. 8, where B2L acronym stands for: BPEL-to-LOTOS 
mapping. In the first phase, dataflow dependencies between 
the activities of the reference process are analyzed using the 
Program Dependence Graph (PDG) and all the unnecessary 
sequencing constraints on these activities are removed. The  
resulting reduced program dependence graph reflects all the 
dataflow dependencies between the activities of the reference 
process and is free from the initial process structuring. If we 
preserve the dataflow dependencies during the process 
transformation, then the values computed by all the activities 
remain unchanged. In particular, the values that are passed 
between the processes by means of the inter-process 
communication activities: <invoke> in one process and 
<receive> <reply> pair in the other one, remain also 
unchanged. The reduced program dependence graph is then 

transformed into a LOTOS expression, which is called a 
Minimal Dependence Process (MDP). The labeled transition 
system of the minimal dependence process defines a set of 
traces that define the behavior of all processes, which 
comply with dataflow dependencies defined within the 
reference process. The first phase is performed only once for 
a given reference process. 

The second phase is performed repetitively during the 
transformational implementation cycle. A transformed BPEL 
process is mapped into a LOTOS expression, as described in 
the previous subsection. The set of traces generated by the 
labeled transition system of this expression is compared with 
the set of traces generated by the labeled transition system of 
the minimal dependence process. If the trace set generated by 
the expression is within the trace set of MDP, then the 
behavior of the transformed BPEL process is safe in that it 
preserves the behavior of the reference process. 

C. The Reduced Program Dependence Graph 
A dataflow edge between two nodes in a program 

dependence graph implies that the result of the activity at the 
end of the edge depends on the result of the activity at the 
beginning of this edge. Therefore, the arrangement of 
activities during the program execution, reflected by the 
succession of activities in an execution trace, must comply 
with the direction of dataflow edges. Any change to this 
arrangement may lead to a change in the program behavior. 

Structured nodes <sequence> and <flow>, as well as 
control edges connected to these nodes, reflect the structure 
and the flow of control within the reference process. Both of 
the two can be changed during the process transformation. 
Therefore, <sequence> and <flow> nodes are removed from 
the program dependence graph. The reduced program 
dependence graph of the reference process in Figs. 2 and 3 is 
shown in Fig. 9. An algorithm for removing the nodes 
consists of the following steps: 

1. Remove all <sequence> and <flow> nodes, which are not 
directly nested within an <if> element. Redirect control 
edges, which output each removed node, to the direct 
predecessor node if one exists, or remove otherwise. 

2. If a <sequence> node is nested within an <if>, then:  
a. Remove <sequence> node together with the input 

"Yes" ("No") edge. 
b. Add dataflow edges labeled "Yes" ("No") from <if> 

node to each member of <sequence> such that no 
path from <if> to this node exists (<if> to "fail" 
edge in Fig. 9). Program 

Dependence 
Graph 

Minimal  
Dependence 

Process 

BPEL 
reference 
process  

B2L 
The services invoked by a process can have an impact on 

the real world. If this is the case, a specific ordering of these 
services can be required, regardless of the dataflow relation 
between the invoking activities. A designer can reflect this 
requirement adding supplementary edges between the 
appropriate nodes of the reduced program dependence graph. 

D. Minimal Dependence Process 
Let GP = (NP, EP) be a reduced program dependence 

graph of a BPEL process P. It can be proved that graph GP is 
acyclic. We say that node ni precedes node nj, denoted 

Transformations 

Transformed 
BPEL  

process  

B2L LTS

LTS

ResultLTS LOTOS  
expression ⊆ 

??

Figure 8. Verification of a process behavior 
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ni < nj, if there exists a path from ni to nj in the reduced 
program dependence graph. Precedence relation is a strict 
partial order in NP. 

An execution of a BPEL program can be modeled as a 
process of traversing through the program dependence graph, 
starting at the initial node and moving along the directed 
edges. The process stops when the last node of the graph is 
reached. Because the ordering of nodes is only partial, then 
the succession of visited nodes and edges may vary. For 
example, the first node in Fig. 9 is rcv. After visiting this 
node, data can be passed along the edge to src or along the 
edge to dst. If the former is true, then in the next step either 
node src can be visited or data can be passed along the edge 
to dst. However, node dst could not be visited before the data 
were passed through its incoming edge. 

Nodes and edges of a program dependence graph can be 
mapped to LOTOS actions in such a way that a visit to a 
node is mapped to an observable action, while moving along 
an edge is mapped to an unobservable action. A sequence of 
execution steps is mapped to a sequence of LOTOS actions. 
An example mapping of nodes and edges is shown in Fig. 
10. 

A visit to a node enables visiting all the succeeding 
nodes. However, the way of reaching this node (described by 
an expression B1) has no influence on the other part of 
execution after visiting the node (described by another 
expression B2), and vice versa. This means that actions 
performed before the visit (within B1) and actions performed 
after the visit (within B2) are independent. However, 
finishing the visit and passing data along the output edges of 
the visited node make a synchronization point between the 
two. This informal description can be expressed formally in 
LOTOS using the operator of parallel execution of B1 and 
B2 synchronized at action assigned to the output edge. 

Minimal dependence process is a LOTOS expression that 
defines the set of traces, which are compliant with dataflow 
dependencies described by the program dependence graph. 
This way, minimal dependence process defines the semantics 
of a BPEL reference process. The algorithm for building 
MDP searches through the reduced program dependence 
graph, starting at the initial node. LOTOS expression is 
constructed iteratively, by appending a new sub-expression 
to the existing part of MDP in each visited node. 

For example, the first action in the graph in Fig. 10 is rcv, 
followed by one of the actions a or b. Hence, the appropriate 
LOTOS expression begins with: 

rcv; (a|||b) … 

Passing data along one of the output edges enables 
traversing through the other parts of the graph. Action a 
enables src, while action b enables dst. Both of the enabled 
actions are independent and can be executed in parallel. 
Hence, the next part of the LOTOS expression is: 

( (rcv; (a||b) ) |[a]| a; src;…) |[b]| b; dst;… 

Formally, the algorithm for constructing MDP of a BPEL 
program described by a reduced program dependence graph 
consists of the following steps: 

1. Assign an observable LOTOS action to each node of the 
reduced program dependence graph, except of <if> 
nodes. The action is identified by the name attribute of 
the node (nodes in PDG are BPEL activities).  

2. Find paths in the reduced program dependence graph, 
such that the first node of a path has one output edge, the 
last node has one input edge and each other node has one 
input and one output edge. Substitute each path with a 
single node, and assign to this node LOTOS expression 
composed of actions, which were assigned to the 
removed nodes, separated by semicolons. 

3. Assign an unobservable LOTOS action to each edge of 
the graph. The actions should be distinct, except of the 
edges, which output the alternative nodes of an <if> 
activity and input the same node. These actions should be 
equal. 

4. Initiate graph search from the initial node. Create 
LOTOS expression, denoted MDP', composed of: 
• the expression assigned to the initial node,  
• semicolon and parallel composition of actions 

assigned to the output edges. 
5. Search through the nodes of the reduced program 

dependence graph in a sequence complying with the 
precedence relation (ni is visited before nj, if ni < nj). For 
each node, place parentheses around the MDP' and 
append the following expressions: 
• parallel composition synchronized on actions 

assigned to the input edges, 
• a sequence of actions assigned to the input edges, 

separated by semicolons, 
• semicolon and LOTOS expression assigned to the 

node (empty for <if> node), 
• semicolon, and parallel composition of actions 

assigned to the output dataflow edges or an 
alternative selection of actions assigned to the output 
control edges (the case of <if> activity). 

6. When the algorithm stops, after visiting the last node, 
MDP' becomes the minimal dependence process MDP. 

Figure 9. The reduced program dependence graph of the process in Figs. 2 and 3 
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"rcv" 

"src" 
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For example, let us consider the reduced program 
endence graph in Fig. 9. The steps of assigning LOTOdep S 

exp

ify;(y1;y2[ ]n)) |[d,y1]| d;y1;withdraw; f )  

The erates 
a set of 13 traces, each of which is a sequence of observable 
act

; src; dst; verify; fail; nak; exit , 
 

sit; success; ack , 
; success; ack , 

 

The trace set of the reference process in Fig. 2 consists of 

; src; dst; verify; withdraw; deposit; success; ack  } 

process in Fig. 6 
con ist

erify; fail; nak; exit , 
 

sit; success; ack , 
; success; ack , 

 

Th

; dst; withdraw; deposit; success; ack , 
 t; withdraw; success; ack , 

 

Ob

Thi

Many metrics re v s characteristics of 
software have be [18,19]. In this 
res

 program. More precisely, the 
val

f the process size 
me

 For example, The complexity of 
the

ribes the amount of excess in the graph, which 
can

 all 
lev

of a <flow> element is the sum of 
i.e., nodes 

• 
es (i.e., 

ressions to nodes (step 1), removing paths (step 2), and 
assigning unobservable actions to edges (step 3) change the 
graph as shown in Fig. 10. 

The minimal dependence process derived from the graph 
in Fig. 10 takes the form of the following LOTOS 
expression: 

(((((((rcv;(a|||b)) |[a]| a;src;(c|||d)) |[b]| b;dst;e)  
|[c]| c;ver

|[e,y2]| e;y2;deposit;g) |[f,g]| f;g;success;ack)  
|[n]| n;fail;nak;exit 

labeled transition system of this expression gen

ions: 

{ rcv; dst; src; verify; fail; nak; exit , 
 rcv

rcv; src; verify; dst; fail; nak; exit , 
 rcv; src; verify; fail; dst; nak; exit , 
 rcv; src; verify; fail; nak; dst; exit , 
 rcv; src; verify; fail; nak; exit; dst , 
 rcv; dst; src; verify; withdraw; depo
 rcv; dst; src; verify; deposit; withdraw
 rcv; src; dst; verify; withdraw; deposit; success; ack , 
 rcv; src; dst; verify; deposit; withdraw; success; ack , 
 rcv; src; verify; dst; withdraw; deposit; success; ack , 
 rcv; src; verify; dst; deposit; withdraw; success; ack , 
 rcv; src; verify; withdraw; dst; deposit; success; ack  }

2 traces: 

{ rcv; src; dst; verify; fail; nak; exit , 
 rcv

The trace set of the first transformed 
s s of 9 traces: 

{ rcv; dst; src; verify; fail; nak; exit , 
 rcv; src; dst; v

rcv; src; verify; dst; fail; nak; exit , 
 rcv; dst; src; verify; withdraw; depo
 rcv; dst; src; verify; deposit; withdraw
 rcv; src; dst; verify; withdraw; deposit; success; ack , 
 rcv; src; dst; verify; deposit; withdraw; success; ack , 

 rcv; src; verify; dst; withdraw; deposit; success; ack , 
 rcv; src; verify; dst; deposit; withdraw; success; ack  }

e trace set of the second transformed process in Fig. 7 
consists of 4 traces: 

{ rcv; src; verify; fail; nak , 
 rcv; src; verify

rcv; src; verify; dst; deposi
 rcv; src; verify; withdraw; dst; deposit; success; ack  }

viously, the trace set of MDP includes the trace sets of 
the reference process as well as of the transformed processes. 

s proves that both transformations are safe. 

VII. QUALITY METRICS 
 to measu ariou
en proposed in literature 

earch, we use simple metrics that characterize the size of a 
BPEL process, the complexity and the degree of parallel 
execution. The value of each metric can be calculated using a 
program dependence graph. 

The size of a process is measured as the number of 
simple activities in a BPEL

ue of this metric equals the number of leaf nodes in the 
program dependence graph of a BPEL process. For example, 
the size of the processes shown in Figs. 2 and 6 is 12, while 
the size of the process in Fig. 7 equals 10. 

Leaf nodes are simple activities, which perform the 
processing of data. Therefore, the value o

tric could be considered a measure of the amount of work, 
which can be provided by the process. However, smaller 
number of this metric may result from removing excessive, 
unstructured activities, like <empty> and <exit>. This is the 
case of program in Fig. 7. 

The complexity of a process is measured as the total 
number of nodes in PDG.

 process shown in Fig. 2 is 15, the complexity of the 
process in Fig. 6 is 18, and the complexity of the process in 
Fig. 7 is 16. 

The number of nodes in PDG, compared to the size of the 
process, desc

 be considered a measure of the process complexity.  
The number of threads is measured as the number of 

items within <flow> elements of a BPEL program, at
els of nesting. A problem with this metric is such that the 

number of executed items can vary, depending on values of 
conditions within <if> elements. Therefore, the metric is a 
vector of values, computed for all combinations of values of 
these conditions. The algorithm of computation assigns 
weights to nodes of the program dependence graph of the 
process, starting from the leaves up to the root, according to 
the following rules: 

• the weight of a simple BPEL activity is 1, 
• the weight 

weights assigned to the descending nodes (
directly nested within the <flow> element), 
the weight of a <sequence> element is the maximum 
of weights assigned to the descending nodFigure 10. Construction of MDP: The reduced program dependence graph 

(Fig. 9) after step 3 
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TABLE II.  NUMBER OF THREADS METRIC 

if - 
condition 

Process in 
Fig. 2 

Process in 
Fig. 6 

Process in 
Fig. 7 

YES 1 2 2 
NO 1 2 1 

nodes directly nested within the <sequence> 
element), 
the weight of an <if> element is the weight assigned 
to the act

• 
ivity in this branch of <if>, which is 

The
the pre , which ends the process 
exe

f PDG. Values of the metric for the 
pro

 executed activities within a BPEL program. 
Be

f a <flow> element is the maximum of 
i.e., nodes 

• 
e., nodes 

• 
 is 

Nod
ordered order of execution. Nodes 
sub

r the 
pro

xecuted 
wit

ution time of this activity, 

just dif ipulation activity 
and

s considered in the case study in Section V, one can 
not

executed according to a given value of condition 
within the <if> element. 

 number of executed items can be influenced also by 
sence of <exit> activity

cution. Therefore, the nodes directly nested within a 
<sequence> element are ordered in compliance with the 
order of execution. Nodes subsequent to a node, which is, or 
which comprises, <exit> activity, are not taken into account 
in the computation. 

The metric value equals the weight assigned to the top 
<sequence> node o

cesses in Figs. 2, 6, and 7 are shown in Table I. Program 
dependence graph and calculation of the metric for the 
program in Fig. 7 is shown in Fig. 11 (grey numbers right to 
the nodes). 

The length of thread is measured as the number of 
sequentially

cause the number of executed items can vary, depending 
on values of conditions within <if> elements, the metric is a 
vector of values, computed for all combinations of values of 
these conditions. The algorithm of computation assigns 
weights to nodes of the program dependence graph of the 
process, starting from the leaves up to the root, according to 
the following rules: 

• the weight of a simple BPEL activity is 1, 
• the weight o

weights assigned to the descending nodes (
directly nested within the <flow> element), 
the weight of a <sequence> element is the sum of 
weights assigned to the descending nodes (i.
directly nested within the <sequence> element), 
the weight of an <if> element is the weight assigned 
to the activity in this branch of <if>, which
executed according to a given value of condition 
within the <if> element. 
es directly nested within a <sequence> element are 
 in compliance with the 

sequent to a node, which is, or which comprises, <exit> 
activity, are not taken into account in the computation. 

The metric value equals the weight assigned to the top 
<sequence> node of PDG. Values of the metric fo

cesses in Figs. 2, 6, and 7 are shown in Table II.  

The response time is measured as the sum of estimated 
execution times of activities, which are sequentially e

hin a BPEL program. Because the number of executed 
items can vary, depending on values of conditions within 
<if> elements, the metric is a vector of values, computed for 
all combinations of values of these conditions The algorithm 
of computation is identical to the algorithm of computation 
of the length of thread metric, except of the first point, which 
now reads: 

• the weight of a simple activity is the estimated 
exec

In the simplest case, the estimated execution time can 
ferentiate between local data man

 a service invocation. Values of the metric for the 
processes in Figs. 2, 6, and 7, calculated under an assumption 
that a local data manipulation time equals 1, while a service 
execution time equals 10, are shown in Table III. Program 
dependence graph and calculation of the metric for the 
program in Fig. 7 is shown in Fig. 11 (numbers left to the 
nodes). 

Comparing the values of metrics calculated for the 
processe

e that both transformed processes are faster than the 
original reference process (smaller value of the response time 

TABLE III.  LENGTH OF THREAD METRIC 

if - 
condition 

Process in 
Fig. 2 

Process in 
Fig. 6 

Process in 
Fig. 7 

YES 9 7 7 
NO 7 6 5 

TABLE IV.  RESPONSE TIME METRIC 

if - 
condition 

Process in 
Fig. 2 

Process in 
Fig. 6 

Process in 
Fig. 7 

YES 36 25 25 
NO 16 15 14 

verify 

dst 

<if> 

<sequence> 

withdraw 

deposit ack 

nak 

Y 
N

<sequence> 

src 

<sequence> 

<flow> 

1 10

11

10

11

1 

13

1 

1 

2 

1 1 10 

Y: 25 / N: 14 Y: 2 / N: 1

1 1 1 

1 

1 1 1 

1 

2 

2 

1 

1 

1 

success 
1 

rcv 

fail 

<sequence> 

1 

Figure 11. Program dependence graph of the program in Fig. 7 and 
calculation of metrics: Number of threads (grey numbers right to the 

nodes) and length of execution (left to the nodes)
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metric). Speeding up the process execution is a benefit from 
parallel invocation of services in a SOA environment. 
Comparing the variants of the transformed bank transfer 
process (Fig. 6 and Fig. 7), one can note that the second 
variant is a bit faster and simpler (smaller values of the size 
metrics). This variant can be accepted by the customer or 
used as a new reference process in the next transformation 
cycle. 
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a computer system is a technical decision. The 
transformational method for implementing business 
processes in a service oriented architecture, described in this 
paper, promotes separation of concerns and allows making 
business decisions by business people and technical 
decisions by technical people.  

The transformations described in this paper are correct by 
construction in that they do n

sformed process. However, the transformations change 
the process structure in order to improve efficiency and 
benefit from the parallel execution of services in a SOA 
environment. The quality characteristics of the process 
implementation are measured by means of quality metrics, 
which account for the process size, complexity and the 
response time of the process as a service. Other quality 
features, such as modifiability or reliability, are not covered 
in this paper. 

The correct-by-construction approach opens the way 
towards auto

roach has also some practical limitations. If the external 
services invoked by a process have an impact on the real 
world, as is usually the case, a specific ordering of these 
services may be required, regardless of the dataflow 
dependencies between the service invocation activities 
within a program. In our approach, a designer can express 
the necessary ordering conditions adding supplementary 
edges to the program dependence graph. Therefore, the 
approach cannot be fully automated and a manual 
supervision over the transformation process is needed.  

It is also possible that small changes to a process 
behavior can be acceptable within the application con

erefore, part of our research was aimed at finding a 
verification method capable not only of verifying the process 
behavior, but also of showing the designer all the potential 
changes, if they exist. A decision on whether to accept the 
changes or not is made by a human. 
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