
80

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Design and Classification of Mutation Operators for
Abstract State Machines

Jameleddine Hassine
Department of Information and Computer Science

King Fahd University of Petroleum and Minerals, Dhahran, KSA
jhassine@kfupm.edu.sa

Abstract—Mutation testing is a well established fault-based
technique for assessing and improving the quality of test suites.
Mutation testing can be applied at different levels of abstraction,
e.g., the unit level, the integration level, and the specification level.
Designing mutation operators is the most critical activity towards
conducting effective mutation testing and analysis. Mutation
operators are well defined for a number of programming (e.g., C,
Java, etc.) and specification (e.g., FSM, Petri Nets, etc.) languages.
In this paper, we design and classify mutation operators for
the Abstract State Machines (ASM) formalism. The designed
operators are defined based on the types of faults that may
occur in ASM specifications and can be classified into three
categories: (1) Domain operators, (2) function update operators,
and (3) transition rules operators. Furthermore, a prototype
mutation tool for the CoreASM language, has been built to
automatically generate mutants and check their validity. We
illustrate our approach using a simple CoreASM implementation
of the Fibonacci series. Finally, an empirical comparison of the
designed operators is presented and discussed.

Keywords—Mutation testing; specification; mutation operator;
Abstract State Machines (ASM); domain operators; function update
operators; transition rules operators; CoreASM.

I. INTRODUCTION

In this article, we describe an extension of our work on de-
signing Abstract State Machines mutation operators published
in [1].

Fault based testing strategies aim at finding prescribed faults
in a program [2]. Mutation testing [3] is a well established
fault-based testing technique for assessing and improving the
quality of test suites. Mutation testing uses mutation opera-
tors to introduce small modifications, or mutations, into the
software artifact (i.e., source code or specification) under test.
Mutation operators are classified by the language constructs
they are created to alter. Given the fact that a program/spec-
ification being mutated is syntactically correct, a mutation
operator must produce a mutant that is also syntactically
correct. The objective is then to select test cases that are
capable to distinguish the behavior of the mutants from the
behavior of the original artifact. Such test cases are said to
kill the mutants. However, it may also be that the mutant
keeps the program’s semantics unchanged-and thus cannot be
detected by any test case. Such mutants are called equivalent
mutants. The detection of equivalent mutants is, in general, one
of biggest obstacles for practical usage of mutation testing. The

effort needed to check if mutants are equivalent or not, can be
very high even for small programs [4].

Since the number of possible faults for a given program or
specification can be large, mutation-based testing strategies are
based on the following two principles: (1) the Competent Pro-
grammer Hypothesis [3], which states that competent program-
mers tend to write programs that are close to being correct. In
other words, a program written by a competent programmer
may be incorrect but it is generally likely close to being correct
(containing relatively simple faults) (2) the Coupling Effect [3],
which states that a test data set that catches all simple faults in
a program is so sensitive that it will also catch more complex
faults. Analogously to the Competent Programmer Hypothesis
[3], Ammann and Black [5] have proposed the Competent
Specifier Hypothesis stating that analysts write specifications
which are likely to be close to what is desired.

In a recent survey on the development of mutation testing,
Jia and Harman [4] have stated that more than 50% of the
mutation related publications have been applied to Java [6],
[7], Fortran [8], [9] and C [10]. Although mutation testing
has mostly been applied at the source code level, it has also
been applied at the specification and design level [11], [4].
Formal specification languages to which mutation testing has
been applied include Finite State Machines [12], [13], [14],
Statecharts [15], Petri Nets [16], and Estelle [17].

Fabbri et al. [12] have applied specification mutation to
validate specifications based on Finite State Machines (FSM).
They have proposed 9 mutation operators, representing faults
related to the states (e.g., wrong-starting-state, state-extra,
etc.), transitions (e.g., event-missing, event-exchanged, etc.)
and outputs (e.g., output-missing, output-exchanged, etc.) of
an FSM. In a related work, Fabbri et al. [15] have defined
mutation operators for Statecharts, an extension of FSM for-
malism, while Batth et al. [18] have applied mutation testing to
Extended Finite State Machines (EFSM) formalism. Hierons
and Merayo [14] have investigated the application of mutation
testing to Probabilistic (PFSMs) or stochastic time (PSFSMs)
Finite State Machines. The authors have defined new mutation
operators representing FSM faults related to altering proba-
bilities (PFSMs) or changing its associated random variables
(PSFSMs) (i.e., the time consumed between the input being
applied and the output being received).

The widespread interest in model-based testing techniques
provides the major motivation of this research. We, in par-
ticular, focus on investigating the applicability of fault-based



81

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

testing (vs. scenario-based testing) to Abstract State Machines
(ASM) [19] specifications. In this paper, we extend our pre-
vious work [1] on designing ASM-based mutation operators
by:
• Extending the set of operators, introduced in [1], by

adding the Call Rule Operators, the Pick Rule Oper-
ators, and the Extend Rule Operators.

• Refining the classification of the proposed ASM-based
mutation operators. The resulting ASM-based operators
can be classified using three categories: (1) ASM domain
operators, (2) ASM function update operators, and (3)
ASM transition rules operators.

• Presenting CoreASM [20], an ASM-based language,
illustrative examples of the proposed mutation operators.

• Presenting an enhanced version of our CoreASM [20]
mutation prototype tool, for automatic generation, vali-
dation, and execution of CoreASM mutants.

• Analyzing the generated mutants using an illustrative
example of a CoreASM specification of Fibonacci series.

• Presenting an empirical comparison of the pro-
posed CoreASM mutation operators using three Core-
ASM specifications: Dining Philosophers, Vending Ma-
chine, and Rail Road Crossing.

The remainder of this paper is organized as follows. The
next section provides an overview of the Abstract State Ma-
chines (ASM) [19] formalism and the CoreASM language.
In Section III, we define and classify a collection of mu-
tation operators for CoreASM language. An analysis of the
generated mutants is presented in Section IV. Section V
describes the CoreASM Mutation toolkit. To demonstrate the
applicability of the proposed approach, Section VI describes
the application of CoreASM mutation operators to Fibonacci
specification. An empirical comparison of CoreASM-based
mutation operators is presented in Section VII. Finally, con-
clusions are drawn in Section VIII.

II. ABSTRACT STATE MACHINES

Abstract State Machines (ASMs), originally known
as Evolving Algebras, were first introduced by Yuri Gure-
vich [21], [19] in an attempt to improve on Turing’s thesis [22]
so that:

“Every algorithm is an ASM as far as the behav-
ior is concerned. In particular the given algorithm
can be step-for-step simulated by an appropriate
ASM [23].” (The ASM Thesis)

This means that an activity that is conceptually done in one
step can be executed in the model in one step. This is in
contrast to Turing machines, where simple operations might
need any finite number of steps.

Abstract State Machines have been used to capture sequen-
tial, parallel and distributed algorithms. ASMs combine two
fundamental concepts of transition systems: (1) transitions to
model the dynamic aspects of a system, and (2) abstract states
to model the static aspects at any desired level of abstraction.
Börger and Stärk [24] further developed ASMs into a system
engineering method that guides the development of software
from requirements capture to implementation.

Widely recognized applications of ASMs include semantic
foundations of a wide variety of programming languages
like C++ [25], C# [26], and Java [27], logic programming
languages such as Prolog [28] and its variants, hardware
languages such as VHDL [29], system design languages like
the ITU-T standard for SDL [30], [31], Web service description
languages [32], design of distributed systems [33], [34], etc.

A. ASM Program
Abstract State Machines (ASM) [19] define a state-based

computational model, where computations (runs) are finite or
infinite sequences of states {Si} obtained from a given initial
state S0 by repeatedly executing transitions δi:

S0
δ1 // S1

δ2 // S2
. . . δn // Sn

An ASM A is defined over a fixed vocabulary V , a finite
collection of function names and relation names. Each function
name f has an arity (number of arguments that the function
takes). Function names can be static (i.e., fixed interpretation
in each computation state of A) or dynamic (i.e., can be altered
by transitions fired in a computation step). Dynamic functions
can be further classified into:
• Input functions that A can only read, which means that

these functions are determined entirely by the environ-
ment of A. They are also called monitored.

• Controlled functions of A are those which are updated
by some of the rules of A and are never changed by the
environment.

• Output functions of A are functions which A can only
update but not read, whereas the environment can read
them (without updating them).

• Shared functions are functions which can be read and
updated by both A and the environment.

Static nullary (i.e., 0-ary) function names are called constants
while Dynamic nullary functions are called variables.

Given a vocabulary V , an ASM A is defined by its program
P and a set of distinguished initial states S0. The program
P consists of transition rules and specifies possible state
transitions of A in terms of finite sets of local function updates
on a given global state. Such transitions are atomic actions. A
transition rule that describes the modification of the functions
from one state to the next has the following form:

if Condition then <Updates> endif

where Updates is a set of function updates (containing only
variable free terms) of the form:

f(t1,t2,. . .,tn) := t

where t1, t2, . . ., tn, and t are first order terms.
The set of function updates are simultaneously executed

when Condition (called also guard) is true. In a given state,
first all parameters ti, t are evaluated to their values, vi, v,
then the value of f(v1,. . .,vn) is updated to v. Such pairs of
a function name f, which is fixed by the signature, and an
optional argument (v1,. . .,vn), which is formed by a list of
dynamic parameters value vi, are called locations.



82

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Example 1: The following rule yields the update-set {(x, 2),
(y(0), 1)}, if the current state of the ASM is {(x, 1), (y(0),
2)}:

if (x = 1) then x := y(0)
y(0) := x

In every state, all the rules which are applicable are simulta-
neously applied. A set of ASM updates is called consistent if it
contains no pair of updates with the same location updated with
two different values, i.e., no two elements (loc,v) and (loc,v’)
with v ̸=v’. In the case of inconsistency, the computation does
not yield a next state.

Example 2: The following update set {(x, 1), (y, 2), (x, 2),
(y, 2)}, is inconsistent due to the conflicting updates for x (i.e.,
x is updated with different values 1 and 2). It is worth noting
that even though y is updated twice, it does not lead to an
inconsistent update since it has been updated with the same
value 2.

x := 1

y := 2

x := 2

y := 2

For a detailed description and a rigorous mathematical defi-
nition of the semantic foundations of Abstract State Machines,
the reader is invited to consult [19], [24], [35], [36].

B. CoreASM Language
The CoreASM project [37] focuses on the design of a lean

executable ASM language, in combination with a supporting
tool environment for high-level design, experimental validation
and, where appropriate, formal verification of abstract system
models [20]. The CoreASM engine, implemented in Java,
consists of a parser, an interpreter, a scheduler, and an abstract
storage. The interpreter, the scheduler, and the abstract storage
work together to simulate an ASM run. For a detailed descrip-
tion of CoreASM architecture, reader is invited to consult [20].

CoreASM is designed with extensibility in mind, supporting
the extension of both the specification language and the exe-
cution engine’s behavior through plug-ins (e.g., Standard, Ker-
nelExtensions, Abstraction, TurboASM, etc.).

Figure 1 shows a typical structure of a CoreASM specifi-
cation. Every specification starts with the keyword CoreASM
followed by the name of the specification. Plugins that are
required are then listed with the keyword use followed by the
name of the plugin (e.g., use Standard). The Header block
is where various definitions take place (e.g., Declaration of
an enumeration type). The init rule (the rule that creates the
initial state) is defined by the keyword init followed by a rule
name. This would be the rule that initializes the state of the
ASM machine. The body of the init rule must be declared in
the rule declaration block along with other user defined rules.

To run a CoreASM specification, two user interfaces are
available:

enum MyEnum = {Ele1, Ele2}

function controlled Association: MyEnum -> NUMBER

Specify the Init Rule

use Standard

use TurboASM

CoreASM SpecificationName

Use plugins

CoreASM Specification (.coreasm)

Header Block (various definitions)

init InitRule

rule InitRule =

// InitRule body

rule rule1 =
// rule1 body

Rule Declaration Block

Fig. 1. Typical Structure of a CoreASM Specification

• A comprehensive command-line user interface
called Carma, which accepts the name of the
specification file and optional termination conditions
(e.g., --steps 10 and/or --empty-updates) as arguments.
For example, the following command runs Spec.coreasm
using Carma and stops after 10 steps, or after a step
that generates empty updates.

carma --steps 10 --empty-updates Spec.coreasm
• A graphical interactive development environment in the

Eclipse platform, known as the CoreASM Eclipse Plugin.
In what follows, we define and classify mutation operators

for Abstract State Machines.

III. ABSTRACT STATE MACHINES MUTATION OPERATORS

In order to formulate mutation operators for ASM for-
malism, we use the following guiding principles, introduced
in [38]:
• Mutation categories should model potential faults.
• Only simple, first order mutants (i.e., a single change to

an artifact) should be generated.
• Only syntactically correct mutants should be generated.

A. Categories of ASM Mutation Operators
There exist several aspects of an ASM specification that can

be subject to faults. These aspects can be classified into three
main categories of mutation operators, each category contains
many mutation operators, one per a fault class:

1) ASM domain mutation operators.
2) ASM function update mutation operators.
3) ASM transition rules mutation operators.
Although the proposed categorization yields few generic

categories that can be applied to any ASM-based language,
the operators themselves are dependent on the syntax of the
ASM-based language. Indeed, given that a specification being
mutated is syntactically correct, a mutation operator must
produce a mutant that is also syntactically correct. To do so,



83

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

it is required that a valid syntactic construct be mapped to
another syntactic construct in the same language. In addition,
peculiarities of language syntax have an effect on the kind
of mistakes that a modeler could make. For instance, aspects
such as procedural (e.g., CoreASM [20] language) versus
object oriented (e.g., AsmL [39] language) are captured in the
language syntax. In this paper, we target the CoreASM [20]
language.

B. ASM Domain Mutation Operators
A domain (called also universe or background) consists

of a set of declarations that establish the ASM vocabulary.
Each declaration establishes the meaning of an identifier
within its scope. For example, the following CoreASM [20]
code defines a new enumeration background PRODUCT
having three elements (Soda, Candy, and Chips) and three
functions selectedProduct, price, and packaging:

enum PRODUCT = {Soda, Candy, Chips}
function selectedProduct: → PRODUCT
function price: PRODUCT → NUMBER
function packaging: PRODUCT*PRODUCT → NUMBER

ASM domains/universes can be mutated by adding or re-
moving elements:
• Extend Domain Operator (EDO): the domain is extended

with a new element.
• Reduce Domain Operator (RDO): the domain is reduced

by removing one element.
• Empty Domain Operator (EYDO): the domain is emp-

tied.
These mutation operators can be applied to enumeration

(See Table I), universes, collections, the set background, the
list background, and the map background.

TABLE I. EXAMPLES OF ASM DOMAIN MUTATION OPERATORS
FOR CoreASM

Domain Mutation Operator CoreASM Mutant S’

Extend Domain Operator
(EDO)

enum PRODUCT = {Soda, Candy,
Chips, Sandwich}

Reduce Domain Operator
(RDO)

enum PRODUCT = {Soda, Candy}

Empty Domain Operator
(EYDO)

enum PRODUCT = {}

C. ASM Function Update Mutation Operators
A function update has the following form:

f(t1, t2, . . ., tn):= value

Depending on the type of operands, the traditional opera-
tors [8], [40] such as Absolute Value Insertion (ABS), Arith-
metic Operator Replacement (AOR), Logical Operator Re-
placement (LOR), Statement Deletion (SDL), Scalar Variable
Replacement (SVR), and Unary Operator Insertion (UOI) can
be applied. In addition to these traditional mutation operators,
we define Function Parameter Replacement (FPR) operator,

where parameters of a function are replaced by other parame-
ters of a compatible type. Two Types are compatible if values
of one type can appear wherever values of the other type are
expected, and vice versa.
• Function Parameter Replacement (FPR): parameters of

a function are replaced by other parameters of the same
type.

• Function Parameter Permutation (FPP): parameters of
a function of same type are permuted.

Table II illustrates some examples of the proposed function
update mutation operators.

TABLE II. EXAMPLES OF FUNCTION UPDATE MUTATION OPERATORS
FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

ABS x := a + b x := a + abs(b)
AOR x := a + b x := a - b
LOR y := m and n y := m or n
SDL x := a + b skip
SVR x := a * b a := a * b
UOI x := 3 * a x := 3 * -a
FPR price(Soda):=70 price(Candy):=70
FPP packaging(Soda, Candy):=1 packaging(Candy, Soda):=1

D. ASM Transition Rules Mutation Operators
The transition relation is specified by guarded function

updates, called rules, describing the modification of the func-
tions from one state to the next. An ASM state transition is
performed by firing a set of rules in one step.

1) Conditional Rule Mutation Operators: The general
schema of an ASM transition system appears as a set of
guarded rules:

if Cond then Rulethen else Ruleelse endif

where Cond, the guard, is a term representing a boolean
condition. Rulethen and Ruleelse are transition rules.

Many types of faults may occur on the guards of conditional
rules [41]. Some of these faults include Literal Negation
fault (LNF), Expression Negation fault (ENF), Missing Literal
fault (MLF), Associative Shift fault (ASF), Operator Refer-
ence fault (ORF), Relational Operator fault (ROF), Stuck at
0(true)/1(false) fault (STF). Table III illustrates the mutation
operators addressing the above fault classes. Furthermore, we
define three additional conditional rule mutation operators:
• Then Rule Replacement Operator (TRRO): replaces the

rule Rulethen by another existing rule.
• Else Rule Replacement Operator (ERRO): replaces the

rule Ruleelse by another existing rule.
• Then Else Rule Permutation Operator (TERPEO): per-

mutes the Rulethen and the Ruleelse rules. It is worth
noting that operators TERPEO and ENO would produce
syntactically different but semantically equivalent mu-
tants.

2) Sequence Rule Mutation Operators: The sequence rule
aims at executing rules/function updates in sequence. Tur-
boASM plugin offers two forms of sequential rules:

seq Rule1 next Rule2 (1)



84

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. EXAMPLES OF CONDITIONAL RULE MUTATION OPERATORS FOR CoreASM

Mutation Operator CoreASM Spec S CoreASM Mutant S’

LNO (Literal Negation) if (a and b) if (not a and b)
ENO (Expression Negation) if (a and b) if not (a and b)
MLO (Missing Literal) if (a and b) if (b)
ASO (Associative Shift) if (a and (b or a)) if ((a and b) or a)
ORO (Operator Reference) if (a and b) if (a or b)
ROO (Relational Operator) if (x >= c) if (x <= c)
STO (Stuck at 0/1) if (a and b) if (true)
TRRO (Then Rule Replacement) if a then R1 else R2 if a then R3 else R2
ERRO (Else Rule Replacement) if a then R1 else R2 if a then R1 else R3
TERPEO (Then Else Rule Permutation) if a then R1 else R2 if a then R2 else R1

Evaluates Rule1, applies the generated updates in a virtual
state, and evaluates Rule2 in that state. The resulting update
set is a sequential composition of the updates generated by
Rule1 and Rule2.

seqblock Rule1 . . . Rulen endseqblock (2)

Similar to the seq rule (above), this rule form executes the
listed rules in sequence. The resulting update set is a sequential
composition of the updates generated by Rule1 . . . Rulen.

We define the following mutation operators for the sequence
rule:
• Add Rule Operator (ARO): adds a new rule to the

sequence of rules.
• Delete Rule Operator (DRO): deletes a rule from the

sequence of rules.
• Replace Rule Operator (RRO): replaces one of the rules

in the sequence by another rule.
• Permute Rule Operator (PRO): changes the order of the

sequence rules by permuting two rules.
Table IV illustrates examples of the sequence rule mutation

operators.

TABLE IV. EXAMPLES OF THE SEQUENCE RULE MUTATION
OPERATORS FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

ARO seqblock R1 R2 endseqblock seqblock R1 R2 R3 endseqblock
DRO seqblock R1 R2 R3 endseqblock seqblock R1 R3 endseqblock
RRO seqblock R1 R2 endseqblock seqblock R1 R3 endseqblock
PRO seqblock R1 R2 endseqblock seqblock R2 R1 endseqblock

3) Block Rule Mutation Operators: If a set of ASM tran-
sition rules have to be executed simultaneously, a block rule
(included in the BlockRule plugin) is used:

par Rule1 . . . Rulen endpar

The update generated by this rule is the union of all the updates
generated by Rule1 . . .Rulen. The sequence rule operators
(i.e., ARO, DRO, and RRO defined in Section III-D2) can be
applied to the block rule. Table V illustrates the sequence-block
exchange mutation operator.

Applying PRO to a block rule, will produce an equiv-
alent specification (i.e., par R1 R2 endpar is equivalent
to par R2 R1 endpar). Section IV-B discusses equivalent
mutants.

TABLE V. EXAMPLES OF THE BLOCK RULE MUTATION OPERATORS
FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

ARO par R1 R2 endpar par R1 R2 R3 endpar
DRO par R1 R2 R3 endpar par R1 R3 endpar
RRO par R1 R2 endpar par R1 R3 endpar

4) Sequence-Block Exchange Operator: In addition to
the sequence and block mutation operators, we define
the Sequence-Block Exchange Operator (SBEO) to exchange
a sequence rule with a block rule and vice versa. Table VI
illustrates the sequence-block exchange mutation operator.

TABLE VI. EXAMPLES OF THE SEQUENCE-BLOCK RULE MUTATION
OPERATOR

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

SBEO seqblock R1 R2 endseqblock par R1 R2 endpar
SBEO par R1 R2 endpar seqblock R1 R2 endseqblock

5) Choose Rule Mutation Operators: The choose rule con-
sists on selecting elements (non deterministically) from spec-
ified domains that satisfy guards φ, then evaluates Ruledo. If
no such elements exist, then evaluates Ruleifnone.

choose x1 in D1, . . ., xn in Dn with φ (x1, . . ., xn) do
Ruledo ifnone Ruleifnone

The with and ifnone blocks are optional. The guard φ may
be a simple boolean expression of predicate logic expressions.

To cover the choose rule, we define the following mutation
operators:
• Choose Domain Replacement Operator (CDRO): re-

places a variable domain with another compatible do-
main.

• Choose Guard Modification Operator (CGMO): alters
the guard φ using the operators described in Table III.
In this paper, we consider simple boolean expressions
as guards. Predicate logic expressions such as exists are
left for future work.

• Choose DoRule Replacement Operator (CDoRO): re-
places the rule Ruledo by another rule.

• Choose IfNoneRule Replacement Operator (CIRO):
replaces the rule Ruleifnone by another rule.

• Choose Rule Exchange Operator (CREO): replaces the
Ruledo rule by Ruleifnone rule.

Table VII illustrates the choose rule mutation operators.



85

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VII. EXAMPLE OF THE CHOOSE RULE MUTATION OPERATORS
FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

CDRO choose x in Set1 with (x
>= 0)

choose x in Set2 with (x
>= 0)

CGMO choose x in Set1 with (x
>= 0)

choose x in Set1 with (x
<= 0)

CDoRO choose x in Set1 do R1 choose x in Set1 do R2
CIRO choose x in Set1 do R1

ifnone R2
choose x in Set1 do R1
ifnone R3

CREO choose x in Set1 do R1
ifnone R2

choose x in Set1 do R2
ifnone R1

6) Forall Rule Mutation Operators: The synchronous par-
allelism is expressed by a forall rule, which has the following
form:

forall x1 in D1, . . ., xn in Dn with φ do Ruledo

where x1, . . ., xn are variables, D1, . . ., Dn are the domains
where xi take their value, φ is a boolean condition, Ruledo
is a transition rule containing occurences of the variables xi

bound by the quantifier.
We define the following mutation operators for the forall

rule that are quite similar to the ones of the choose rule :
• Forall Domain Replacement Operator (FDRO): replaces

a variable domain with another compatible domain.
• Forall Guard Modification Operator (FGMO): alters the

guard φ using the set of operators introduced in Table
III.

• Forall DoRule Replacement Operator (FDoRO): re-
places the rule Ruledo by any other rule.

TABLE VIII. EXAMPLES OF THE FORALL RULE MUTATION
OPERATORS FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

FDRO forall x in Set1 with (x = 0)
do R1

forall x in Set2 with (x >=
0) do R1

FGMO forall x in Set1 with (x = 0)
do R1

forall x in Set1 with (x <=
0) do R1

FDoRO forall x in Set1 do R1 forall x in Set1 do R2

7) Choose-Forall Exchange Operator: In addition to the
proposed forall and choose rule mutation operators illustrated
in Tables VIII and VII, we define the Choose-Forall Exchange
Operator (CFEO) to exchange a choose rule with a forall rule
and vice versa (See Table IX).

TABLE IX. EXAMPLES OF THE CHOOSE-FORALL EXCHANGE
OPERATOR FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

CFEO forall x in Set1 do R1 choose x in Set1 do R1
CFEO choose x in Set1 do R1 forall x in Set1 do R1

8) Let Rule Mutation Operators: The let rule, included in
the LetRule plugin, assigns a value of a term t to the variable x
and then execute the rule Rule which contains occurrences of
the variable x. The syntax of a Let rule is:

let (x = t) in Rule

We define the following Let rule mutation operators (see
Table X):
• Let Variable Assignment Operator (LVAO): assigns a

different value to x, other than t, of a compatible type.
• Let Rule Replacement Operator (LRRO): replaces the

rule Rule by another rule that has occurrences of x.
• Let Rule Variable Replacement (LRVR): replaces the

variable x by another variable of same type.

TABLE X. EXAMPLES OF THE LET RULE OPERATORS FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

LVAO let x = 1 in R1 let x = 2 in R1
LRRO let x = 1 in R1 let x = 1 in R2
LRVR let x = 1 in R1 let y = 1 in R1

9) Call Rule Mutation Operators: The call rule executes the
previously defined transition rule R with the given parameters.
Parameters are passed in a call-by-name fashion; i.e., they are
passed unevaluated. The syntax of a Call rule is:

R(a1, . . . , an)

We define the following Call rule mutation operators (see
Table XI):
• Call Rule Parameter Replacement (CRPR): replaces the

actual rule parameter by another parameter of the same
type.

• Call Rule Parameter Exchange (CRPE): permutes actual
parameters if they are of the same type.

TABLE XI. EXAMPLE OF CALL RULE MUTATION OPERATOR

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

CRPR rule Add(a, b)= rule Add(a, b)=
return a+b return a+b

rule Main = rule Main =
addition := Add(x,y) addition := Add (x,z)

CRPE rule Add(a, b)= rule Add(a, b)=
return a+b return a+b

rule Main = rule Main =
addition := Add(x,y) addition := Add (y,x)

10)Pick Rule Mutation Operators: The pick rule, part of
the ChooseRule plugin, provides another way of pick non-
deterministically a value that satisfies a given condition from
an enumerable. Its syntax is as follows:

pick x in D with guard

To cover the pick rule, we define the following mutation
operators:
• Pick Domain Replacement Operator (PDRO): replaces

the domain D with another compatible domain.
• Pick Guard Modification Operator (PGMO): alters the

guard φ using the operators described in Table III.
Table XII illustrates the pick rule mutation operators.
11)Extend Rule Mutation Operators: The extend rule, part

of ExtendRule plugin, is used to construct new elements and
add them to a specific domain. The resulting update set is the
updates generated by Rule.



86

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XII. EXAMPLE OF THE PICK RULE MUTATION OPERATORS
FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

PDRO pick x in D1 with (x >=
0)

pick x in D2 with (x >=
0)

PGMO pick x in D1 with (x >=
0)

pick x in D1 with (x <=
0)

extend D with id do Rule

We define the following Extend rule mutation operators (see
Table XIII):
• Extend Domain Replacement Operator (EDRO): re-

places the domain by another compatible domain.
• Extend Rule Replacement Operator (ERRO): replaces

the rule Rule by another one.
• Extend Id Replacement Operator (EIRO): extends the

domain with another element of a compatible type (e.g.,
extend the domain D1 with id2 instead of id1). All
occurrences of the id are replaced in Rule.

TABLE XIII. EXAMPLES OF THE EXTEND RULE OPERATORS
FOR CoreASM

Mutation
Operator

CoreASM Spec S CoreASM Mutant S’

EDRO extend D1 with id1 do R1 extend D2 with id1 do R1
ERRO extend D1 with id1 do R1 extend D1 with id1 do R2
EIRO extend D1 with id1 do R1 extend D1 with id2 do R1

Other CoreASM-specific rules and constructs such as Case
rule, add/remove List constructs, enqueue/dequeue Queue con-
structs, etc. are not covered in this paper.

E. CoreASM: What is not Mutated
Some mutation operators may have a possible infinite do-

main on which they operate. For instance, given the fact that
the set of types might be infinite, it is difficult to determine
how the declaration of a variable of one specific type may
be mutated. This is applicable to libraries, functions names,
etc. For the CoreASM language, the following entities are not
mutated:
• Variable declarations.
• Format of strings in I/O functions.
• The init rule declaration (i.e., init InitRule)
• Plugin names introduced using the use keyword.
• Rule declarations
• Rule names indicating a call to a rule. Note that the

actual parameters in a Call rule are mutated (e.g., CRPR
and CRPE operators) but the rule names are not.

IV. ANALYSIS OF THE GENERATED MUTANTS

A. Inconsistent Updates
Applying SBEO operator may result into mutants that

are syntactically correct but containing inconsistent updates.
Therefore, the computation does not yield a next state. Ta-
ble XIV shows a simple CoreASM sequence rule and its

corresponding mutant after applying SBEO operator. The ex-
ecution of the produced mutant may lead to an inconsistent
update of variable a (i.e., in case variable a is updated twice
simultaneously with different values (a+1 ̸= b)).

TABLE XIV. APPLYING SBEO OPERATOR THAT LEADS TO AN
INCONSISTENT UPDATE

CoreASM Spec S CoreASM Mutant S’

rule Main = rule Main =
seqblock par

a := a + 1 a := a + 1
a := b a := b

endseqblock endpar

B. Equivalent Mutants
In many cases, applying CoreASM mutation operator pro-

duces a specification that is equivalent to the original specifica-
tion. For instance, the application of the PRO (Permute Rule
Operator) to a block rule (e.g., par R1 R2 endpar), would
produce a mutant (e.g., par R2 R1 endpar) that is equivalent
to the original specification.

Similarly, applying SBEO operator may produce a mutant
that is equivalent to the original specification. This might be
the case when the rules enclosed within the parallel/sequence
blocks are independent (i.e., with different functions updates).
Table XV shows a specifications S and its mutant S’. Rules “
a:=a+1” and “b:=b+1” are independent (i.e., Variables a and b
are updated independently). Hence, no test cases would kill
mutant S’. However, the original specification S produces 2
states (i.e., one a:= a + 1 and one for b := b +1) whereas its
mutant S’ produces only one single state (i.e., a:= a +1 and b
:= b + 1 are executed in one single step).

TABLE XV. APPLYING SBEO OPERATOR PRODUCES A MUTANT
THAT IS EQUIVALENT TO THE ORIGINAL SPEC

CoreASM Spec S CoreASM Mutant S’

rule Main = rule Main =
seqblock par

a := a + 1 a := a + 1
b := b + 1 b := b + 1

endseqblock endpar

In general, like traditional programming languages, detect-
ing CoreASM equivalent mutants is an undecidable prob-
lem [40].

V. COREASM MUTATION TOOLKIT

Figures 2, 3, and 4 illustrate the Microsoft .NET C#-
based, CoreASM Mutation Toolkit GUI. The GUI is composed
of four tab pages: (1) Mutants Generator tab (Figure 2), (2)
Mutants Viewer tab (Figure 3), (3) Test Execution tab (Figure
4), and (4) Help tab. The user starts with loading a CoreASM
specification, then he/she selects one or multiple operators
from the three operator categories. The produced mutants are
created and stored in separate files in a separate directory.

In Section III, we have stated that only syntactically correct
mutants are generated, as a result of applying the mutation



87

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

operators. This guiding principle is further enforced by check-
ing the validity of the produced mutants using the Carma
command line. The invalid mutants, if any, are then discarded.
The error output for syntactically invalid mutants is stored in
a log file.

The generated mutants can be viewed using the second tab
page (see Figure 3). Statistics about the type and the number
of produced valid mutants are listed in the log section.

The test execution GUI (Figure 4) allows for the execution
of test cases against the generated mutants. The test case
definition include a sequence of inputs that the specification
requires the user to enter, a sequence of expected outputs (one
per line), and a sequence of strings from which the output will
be extracted (one per line).

VI. ILLUSTRATIVE EXAMPLE: FIBONACCI SERIES

In this section, we apply mutation testing to a CoreASM
specification that produces Fibonacci numbers. The Fibonacci
numbers or Fibonacci series are the numbers in the following
integer sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . .

By definition, the first two numbers in the Fibonacci sequence
are 0 and 1, and each subsequent number is the sum of
the previous two. In mathematical terms, the sequence Fn of
Fibonacci numbers is defined by the recurrence relation:

Fn = Fn−1 + Fn−2

Figure 5 describes the CoreASM recursive implementation
for producing Fibonacci numbers. The user is asked to enter
a number from the standard input (the entered string is
converted into a Number and stored in variable n), then the
function fibo r is invoked and the output is printed on the
standard output using the print directive.

CoreASM Fibonacci
use Standard
init InitRule
rule InitRule =

seqblock
n := toNumber(input(”Enter n now \n:”))
print ”Fibonacci(” + n + ”) using pure recursion: ” + fibo r(n)
program(self) := undef

endseqblock
derived fibo r(x) =

local r in return r in
if x < 0 then r := 0
else if x < 2 then r := x
else r := fibo r(x-2) + fibo r(x-1)

Fig. 5. CoreASM Fibonacci Recursive Specification

The input domain for the Fibonacci example can be parti-
tioned into three blocks: (1) negative numbers, (2) zero, and
(3) positive numbers. The refinement of the resulting three
blocks lead to the creation of three test cases: (TC1) input:-
1, expected output:0, (TC2) input:0, expected output:0, and

Fig. 2. CoreASM Mutation Toolkit: Mutants Generation GUI



88

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 3. CoreASM Mutation Toolkit: Mutants Viewer GUI

Fig. 4. CoreASM Mutation Toolkit: Mutants Executor GUI



89

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(TC3) input:10, expected output:55.
Table XVI shows the distribution breakdown into separate

operators of the 48 generated mutants (i.e, valid mutants only).
The execution of a test case leads to one the following two
outputs:
• A numeric output value. For example, the execution

of the TC3 against mutant FibonacciRecursiveInput-
Mutant-ROO-27.coreasm (Figure 4) produces an output
equal to 0, which is different from the expected output
55. Hence the test case has killed the mutant. This
mutant is said to be of type error revealing.

• A null output in case the execution is not
conclusive. For example, the execution of TC3
against mutant FibonacciRecursiveInput-Mutant-AOR-
9.coreasm which replaces fibo r(x-2) with fibo r(x+2)
leads to a null output. Again, the test case has killed
the mutant.

Fourty seven mutants have been killed by the pro-
posed test suite. Mutant FibonacciRecursiveInput-Mutant-
ROO-1.coreasm that replaces x<0 by x<=0) remains alive.
This mutant is equivalent to the original specification and
cannot be killed by any test case.

TABLE XVI. GENERATED MUTANTS STATISTICS FOR THE FIBONACCI
EXAMPLE (FIGURE 5)

Mutation
Operator

Number of Valid Mutants Number of Killed
Mutants

ABS 6 6
AOR 4 4
SDL 3 3
SVR 3 3
UOI 6 6
STO 4 4
ENO 2 2
ROO 8 7
TRRO 2 2
ERRO 2 2
TERPEO 1 1
CRPR 6 6
SBEO 1 1
Total 48 47

The test set effectiveness (TCeff ) (also called adequacy
score) is computed by the following equation:

TCeff =
Mk

Mt −Me
(3)

where Mk is the number of killed mutants, Mt is the total
number of generated mutants, and Me is the number of
equivalent mutants.

A test set effectiveness score of 100% is acquired for the
three proposed test cases.

VII. EMPIRICAL COMPARISON OF MUTATION
OPERATORS

To empirically compare the proposed mutation operators,
we ran experiments on three CoreASM specifications:
• Dining Philosophers [42] (98 LOC).
• Vending Machine [43] (208 LOC).
• Rail Road Crossing [44] (107 LOC).

Tables 6(a), 6(b), and 6(c) illustrate the number of resulting
mutants for each mutation operators for each specification. We
made the following observations:
• The number of mutants produced by domain operators

is low (2, 3, and 4 respectively). Indeed, we were able
to apply EDO only. Applying RDO and EYDO have
produced syntactically incorrect mutants for the three
specifications.

• The number of mutants produced by transition rules
operators (e.g., ROO, STO, etc.) is the highest amongst
the three categories. This is expected because the general
schema of an ASM transition system appears as a set of
guarded rules.

• The number of rules, the number of used variables, the
number of conditions, the number of rule calls, etc.
are important factors impacting the number of produced
CoreASM mutants.

• ROO (relational operator) is the operator that have
produced the largest number of mutants for the vending
machine and the rail road crossing examples.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have extended our previous work [1] on
designing mutation operators for the Abstract State Machines
(ASM) formalism. The developed operators are classified into
three categories: (1) Domain operators, (2) function update
operators, and (3) transition rules operators. Furthermore, a
prototype mutation tool for the CoreASM language, has been
built to automatically generate mutants and check their validity.
We have illustrated our approach using a simple CoreASM
implementation of the Fibonacci series. An initial empirical
comparison of the number of generated mutants is presented
and discussed.

As a future work, we are planning to enhance our em-
pirical study by considering parameters such as the number
of variables, the number of rules, etc, and by assessing the
effectiveness of the defined mutation operators.

REFERENCES

[1] J. Hassine, “Absbtract state machines mutation operators,” in The
Seventh International Conference on Software Engineering Advances
(ICSEA 2012), Lisbon, November 18-23, 2012, pp. 436–441.

[2] L. J. Morell, “A theory of fault-based testing,” IEEE Transactions on
Software Engineering, vol. 16, no. 8, pp. 844–857, Aug. 1990.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on
test data selection: Help for the practicing programmer,” Computer,
vol. 11, no. 4, pp. 34–41, Apr. 1978. [Online]. Available:
http://dx.doi.org/10.1109/C-M.1978.218136

[4] Y. Jia and M. Harman, “An analysis and survey of the development of
mutation testing,” IEEE Transactions on Software Engineering, vol. 37,
no. 5, pp. 649 –678, sept.-oct. 2011.

[5] P. Ammann and P. E. Black, “A specification-based coverage metric to
evaluate test sets,” in The 4th IEEE International Symposium on High-
Assurance Systems Engineering, ser. HASE ’99. Washington, DC,
USA: IEEE Computer Society, 1999, pp. 239–248.

[6] P. Chevalley and P. Thévenod-Fosse, “A mutation analysis tool for
java programs,” International Journal on Software Tools for Technology
Transfer, vol. 5, no. 1, pp. 90–103, 2003.



90

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

EDO, 2
LOR, 1

SDL, 21

SVR, 10FPR, 10

LNO, 5

ENO, 3

MLO, 4

ORO, 2
STO, 6

TRRO, 2 CFEO, 2

(a) Dining Philosophers Mutants Distribution

ABS, 5
EDO, 3

AOR, 

16

SDL, 33

UOI, 4FPR, 16

SVR

, 14

PRO, 3LVAO, 5

SBEO, 

15
CFEO, 5

ENO, 9

ROO, 36

STO, 18

TRRO, 5
ERRO, 5

(b) Vending Machine Mutants Distribution

EDO, 4

SVR, 9

SDL, 18

AOR, 12

CFEO, 4

ARO, 1

ENO, 12

LNO, 6MLO, 6

ORO, 3

ROO, 40

STO, 12

SBEO, 1

(c) Rail Road Crossing Mutants Distribution

Fig. 6. Number of Generated Mutants for Dining Philosophers, Vending Machine, and Rail Road Crossing CoreASM Specifications

[7] Y.-S. Ma, J. Offutt, and Y. R. Kwon, “Mujava: an automated class
mutation system: Research articles,” Softw. Test. Verif. Reliab., vol. 15,
pp. 97–133, June 2005.

[8] A. J. Offutt, VI and K. N. King, “A fortran 77 interpreter for mutation
analysis,” in Papers of the Symposium on Interpreters and interpretive
techniques, ser. SIGPLAN ’87. New York, NY, USA: ACM, 1987, pp.
177–188. [Online]. Available: http://doi.acm.org/10.1145/29650.29669

[9] K. N. King and A. J. Offutt, “A fortran language system for mutation-
based software testing,” Software:Practice and Experience, vol. 21, pp.
685–718, June 1991.

[10] H. Agrawal, “Design of mutant operators for the C programming
language,” Software Engineering Research Center/Purdue University,
Tech. Rep., 1989.

[11] P. E. Black, V. Okun, and Y. Yesha, “Mutation operators for specifi-
cations,” in Proceedings of the 15th IEEE international conference on
Automated software engineering, ser. ASE ’00. Washington, DC, USA:
IEEE Computer Society, 2000, pp. 81–88.

[12] S. Pinto Ferraz Fabbri, M. Delamaro, J. Maldonado, and P. Masiero,
“Mutation analysis testing for finite state machines,” in Proceedings of
the 5th International Symposium on Software Reliability Engineering,
November 1994, pp. 220 –229.

[13] J.-h. Li, G.-x. Dai, and H.-h. Li, “Mutation analysis for testing finite
state machines,” in Proceedings of the 2009 Second International
Symposium on Electronic Commerce and Security - Volume 01, ser.
ISECS ’09. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 620–624.

[14] R. M. Hierons and M. G. Merayo, “Mutation testing from probabilistic
and stochastic finite state machines,” J. Syst. Softw., vol. 82, pp. 1804–
1818, November 2009.

[15] S. C. P. F. Fabbri, J. C. Maldonado, T. Sugeta, and P. C. Masiero,
“Mutation testing applied to validate specifications based on state-
charts,” in Proceedings of the 10th International Symposium on Software
Reliability Engineering, ser. ISSRE ’99. Washington, DC, USA: IEEE
Computer Society, 1999, pp. 210–.

[16] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E. Delamaro,
and E. Wong, “Mutation testing applied to validate specifications based
on petri nets,” in Proceedings of the IFIP TC6 Eighth International
Conference on Formal Description Techniques VIII. London, UK,
UK: Chapman & Hall, Ltd., 1996, pp. 329–337.

[17] S. D. R. S. De Souza, J. C. Maldonado, S. C. P. F. Fabbri, and W. L.
De Souza, “Mutation testing applied to estelle specifications,” Software
Quality Control, vol. 8, pp. 285–301, December 1999.

[18] S. S. Batth, E. R. Vieira, A. Cavalli, and M. U. Uyar, “Specification of
timed efsm fault models in sdl,” in Proceedings of the 27th IFIP WG
6.1 international conference on Formal Techniques for Networked and
Distributed Systems, ser. FORTE ’07. Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 50–65.

[19] Y. Gurevich, “Evolving Algebras 1993: Lipari Guide,” in Specification
and Validation Methods, E. Börger, Ed. Oxford University Press, 1995,
pp. 9–36.

[20] R. Farahbod, V. Gervasi, and U. Glässer, “CoreASM: An Extensible
ASM Execution Engine,” Fundamenta Informaticae, vol. 77, pp. 71–
103, January 2007.

[21] Y. Gurevich, “Evolving Algebras. A Tutorial Introduction,” Bulletin of
The European Association for Theoretical Computer Science, vol. 43,
pp. 264–284, 1991.

[22] A. M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem,” Proc. London Math. Soc., vol. 2, no. 42, pp.



91

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

230–265, 1936.
[23] Y. Gurevich, “Abstract state machines: An overview of the project,” in

Foundations of Information and Knowledge Systems, ser. Lecture Notes
in Computer Science, D. Seipel and J. Turull-Torres, Eds. Springer
Berlin Heidelberg, 2004, vol. 2942, pp. 6–13.

[24] E. Börger and R. F. Stärk, Abstract State Machines: A Method for
High-Level System Design and Analysis. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2003.

[25] C. Wallace, “The semantics of the C++ programming language,” in
Specification and validation methods. New York, NY, USA: Oxford
University Press, Inc., 1995, pp. 131–164.

[26] E. Börger, N. G. Fruja, V. Gervasi, and R. F. Stärk, “A high-level
modular definition of the semantics of c#,” Theor. Comput. Sci., vol.
336, no. 2-3, pp. 235–284, May 2005.

[27] E. Börger and W. Schulte, “Defining the java virtual machine as plat-
form for provably correct java compilation,” in MFCS ’98: Proceedings
of the 23rd International Symposium on Mathematical Foundations of
Computer Science. London, UK: Springer-Verlag, 1998, pp. 17–35.

[28] E. Börger and D. Rosenzweig, “A mathematical definition of full
prolog,” Sci. Comput. Program., vol. 24, no. 3, pp. 249–286, 1995.

[29] U. Glässer, E. Börger, and W. Müller, “Formal definition of an abstract
vhdl’93 simulator by ea-machines,” in Formal Semantics for VHDL,
C. Delgado Kloos and P. T. Breuer, Eds. Kluwer Academic Publishers,
1995.

[30] U. Glässer and R. Karges, “Abstract state machine semantics of SDL,”
Journal of Universal Computer Science, vol. 3, no. 12, pp. 1382–1414,
1997.

[31] R. Eschbach, U. Glässer, R. Gotzhein, M. von Löwis, and A. Prinz,
“Formal definition of SDL-2000: Compiling and running SDL spec-
ifications as ASM models,” Journal of Universal Computer Science,
Special Issue on Abstract State Machines - Theory and Applications,
2001, springer-Verlag.

[32] R. Farahbod, U. Glsser, and M. Vajihollahi, “Specification and valida-
tion of the business process execution language for web services,” in
Abstract State Machines 2004. Advances in Theory and Practice, ser.
Lecture Notes in Computer Science, W. Zimmermann and B. Thalheim,
Eds. Springer Berlin / Heidelberg, 2004, vol. 3052, pp. 78–94.

[33] U. Glässer and Q.-P. Gu, “Formal description and analysis of a

distributed location service for mobile ad hoc networks,” Theor. Comput.
Sci., vol. 336, no. 2-3, pp. 285–309, May 2005.

[34] U. Glässer, Y. Gurevich, and M. Veanes, “Abstract communication
model for distributed systems,” IEEE Transactions on Software Engi-
neering, vol. 30, no. 7, pp. 458–472, Jul. 2004.

[35] Y. Gurevich, “Sequential abstract-state machines capture sequential
algorithms,” ACM Trans. Comput. Logic, vol. 1, no. 1, pp. 77–111,
Jul. 2000.

[36] A. Blass and Y. Gurevich, “Abstract state machines capture parallel
algorithms: Correction and extension,” ACM Trans. Comput. Logic,
vol. 9, no. 3, pp. 19:1–19:32, Jun. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1352582.1352587

[37] CoreASM, “The CoreASM Project,” http://www.coreasm.org, 2012, last
accessed, June 2013.

[38] M. Woodward, “Errors in algebraic specifications and an experimental
mutation testing tool,” Software Engineering Journal, vol. 8, no. 4, pp.
211 –224, jul 1993.

[39] AsmL, “Microsoft Research: The Abstract State Machine Language,”
http://research.microsoft.com/en-us/projects/asml/, 2006, last accessed,
June 2013.

[40] P. Ammann and J. Offutt, Introduction to Software Testing, 1st ed. New
York, NY, USA: Cambridge University Press, 2008.

[41] M. F. Lau and Y. T. Yu, “An extended fault class hierarchy for
specification-based testing,” ACM Trans. Softw. Eng. Methodol., vol. 14,
pp. 247–276, July 2005.

[42] G. Ma and R. Farahbod, “Dining Philosphers: A Sample
Specification in CoreASM,” 2006, last accessed, June

2013. [Online]. Available: http://coreasm.svn.sourceforge.net/viewvc/
coreasm/engine-carma/trunk/sampleSpecs/DiningPhilosophers.coreasm

[43] M. Vajihollahi and R. Farahbod, “Vending Machine CoreASM
Spec,” 2006, last accessed, June 2013. [Online]. Avail-
able: http://coreasm.svn.sourceforge.net/viewvc/coreasm/engine-carma/
trunk/sampleSpecs/VendingMachine.coreasm

[44] R. Farahbod, “Rail Road Crossing CoreASM Spec,”
2009, last accessed, June 2013. [Online]. Avail-
able: http://coreasm.svn.sourceforge.net/viewvc/coreasm/engine-carma/
trunk/sampleSpecs/RailroadCrossing.coreasm


