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Abstract—The paper addresses two fundamental problems in
requirements engineering. First, the conflict between understand-
ability for non-programmers and a semantically well-founded
representation of business rules. Second, the verification of pro-
ductive code against business rules in requirements documents.
As a solution, a language to specify business rules that are close
to natural language and at the same time formal enough to be
processed by computers is introduced. A case study with 30 test
persons indicates that the proposed language caters to a better
understandability for domain experts. For more domain specific
expressiveness, the language framework permits the definition
of basic language statements. The language also defines business
rules as atomic formulas, that are frequently used in practice.
This kind of constraints is also called common constraints.
Each atomic formula has a precise semantics by means of
predicate or Interval Temporal Logic. The customization feature
is demonstrated by an example from the logistics domain.
Behavioral business rule statements are specified for this domain
and automatically translated to an executable representation
of Interval Temporal Logic. Subsequently, the verification of
requirements by automated test generation is shown. Thus, our
framework contributes to an integrated software development
process by providing the mechanisms for a human and machine
readable specification of business rules and for a direct reuse of
such formalized business rules for test cases.

Keywords—Requirements engineering; business rules; common
constraints; natural language; testing; logic.

I. INTRODUCTION

In software development, different stakeholders with dif-
ferent knowledge and intention cooperate, typically domain
experts and developers. Requirements engineers are acting as
negotiators between these two worlds and prepare requirement
specifications in a way that can be understood by both sides.
Unstructured natural language in requirements documents does
not ensure identical interpretations by different stakeholders,
especially by domain experts and developers. In order to
overcome the problem of divergence between specification
and implementation we proposed AtomsPro Rule Integration
Language (APRIL) [1] [2], a business rule language that is
both, understandable enough to domain experts and translat-
able to executable representations. To raise the expressiveness
of APRIL we have also defined a framework to add new
language constructs.

By the introduction of APRIL, we propose a means to
develop a formalized version of business rules specifications

by precise semantics that support human- as well as machine-
readability. The APRIL statements representing business rules
are easy to design and can be customized by the construction
of tailored statements, a feature, which we introduce via a
novel combination of pattern building mechanisms. In this
paper, we show how to utilize the framework for extending
APRIL’s expressiveness using atomic formulas that constitute
the link between statements that are like natural language and
formal frameworks. Moreover, we also present some common
constraints that are incorporated as atomic formulas.

Formal specifications enhance the established software de-
velopment process. As a general advantage, such specifications
allow consistency checking of business rules, e.g., reveal
conflicts or proof properties. The aspect we want to focus on
in this work is based on the fact that in the established soft-
ware development process, code and corresponding tests are
developed based on the natural language specification. In order
to reduce complexity of the development process, we support
automated creation of tests based on formal APRIL state-
ments representing business rules. With our method, human
understandable formal specifications can be used to directly
generate formal logical conditions and behavior specifications
for testing. This approach shifts the creation of the test code
from the developer to the requirements engineer, which helps
to improve test-driven development projects [3] [4].

The paper is structured as follows: Section II gives an
impression of the context and the facets of the work presented.
Section III presents the framework for our language to describe
business rules close to natural language. After laying down
the fundamentals, we demonstrate in Section VII the transfor-
mation of example statements in our language into computer
processable test code. In Section IV, we present the utilization
of the extension mechanism to incorporate a set of frequently
used constraints, known as common constraints, into APRIL.
Section VII-B deals with usability aspect of APRIL, explored
in a case study. After the discussion of related work (Section
VIII), a conclusion will be drawn and future work will be
presented (Section IX).

II. OVERVIEW

The APRIL framework can be embedded into standard
software development processes. As an example, the seamless
integration into the V-Model is shown in Figure 1. Aspects
that will be detailed in this paper are highlighted in dark grey.
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Fig. 1. Overview of the software development process using APRIL.

Next to the clear definition of business rules, our framework
aims at supporting the generation of computer executable test
code from formal specifications that are close to natural lan-
guage and thus enable the verification of the productive code
against the original user specification. In Section III, a detailed
explanation of the substantial concepts of the APRIL language
is given, exemplifying the formalization of business rules as
APRIL statements in Section III-A. Section VII-B presents the
results of a case study that shows that ARPIL is understandable
even to untrained test persons. The specification of complex
real-world business rules using mix-fix notation and decom-
position into reusable sub-statements (APRIL-Definitions) is
presented in Section III-B. Section III-C deals with support
for customizing parts of the language using so-called atomic
formulas. These are verbalized versions of operations on sets,
predicate-logic formulas and special common constraints and
provide a precise semantics for APRIL Definitions. In Section
IV we present common constraints that are incorporated into
APRIL using the extension mechanism to add atomic formulas.
In practice, these frequently used constraints can make up a
significant part of the overall constraints defined on a software
system.

Tests based on APRIL statements can be generated to
check conditions using invariants, pre- and post-conditions in
the Object Constraint Language (OCL) [5] notation. Checking
process behavior is done by the use of a subset of Interval
Temporal Logic (ITL) called Tempura [6]. The rationale for
applying our testing-framework is laid down in Section VII-A.
Section VII-B presents the testing-framework by example,
taking into account the significant concepts for defining a
custom atomic formula for modeling a simple example-process
and the relation to the semantic frameworks presented in
Section VI. This section will also include a presentation
of the automated test generation for behavior testing using
Tempura. Due to space limitations, the detailed presentation
of generating OCL-statements is omitted and can be reviewed
in [2]. Some translation examples are shown alongside the
introduction of the APRIL language.

After the discussion of related work (Section VIII), a
conclusion will be drawn and future work will be sketched
(Section IX).

III. THE APRIL FRAMEWORK - SPECIFYING BUSINESS
RULES IN FORMAL NATURAL LANGUAGE

Business rules are restrictions of certain object constella-
tions and behaviors based on domain models [7]. Typically in
software development, requirements engineers produce busi-
ness rules in natural language and hand them to developers
along with the respective domain models to enable the devel-
opment of a software-system compliant to these input artifacts.
Mostly, those natural language business rules are informal
and suffer from ambiguity and imprecision. Therefore, we
introduced APRIL, which is a language to specify business
rules, close to natural language and such is easy to use. On
the other hand, APRIL has a formal semantics, which is based
on OCL and in consequence, an unambiguous description of
business rules is possible.

A. Business Rules in APRIL

In general, the different types of business rules in the
industrial practice are: Integrity Rules, Derivation Rules and
Rules to describe behavior [8]. Despite the fact that there are
fundamental intentional differences, these rule types have one
aspect in common: The description of the semantics of parts of
the real world into formal representations by means of logic. In
APRIL, we use UML-class models [9] to formally represent
business domain models. The reason is that the UML-class
model is widely used for representing conceptual schemas and
is easily understood by people. APRIL requires UML-class
models as the domain of discourse to specify business rules as
constraints, which are of the following types: invariant, pre-
, post-condition and behavioral rules. Invariants describe
allowed system states that must not be violated during any
point in time. This is unlike the pre- and post-conditions, which
have a restricted scope right before and after a transition. The
fourth rule type describes behavior explicitly. Behavioral rules
can describe operations lasting over multiple state transitions
[7], which is not possible with a single pair of pre- and post-
condition.

In Figure 2, a simple domain model of an order system,
with the basic concepts Order, Customer Shipment, Vehicle
and Product is shown as UML-class model. As an example of

Fig. 2. UML-model of the example domain model.
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APRIL usage on the class model, the corresponding statement
for the invariant rule1 can be seen in Listing I.

1 Invariant rule1 concerns Customer:
2 aaaA premium customer who buys a special offer must pay
3 aaa0 EURO for the shipment of that order.

Listing I. TOP-LEVEL RULE, COMPOSED OF SEVERAL APRIL
DEFINITIONS.

The header (line 1) of a rule contains its name (rule1)
and the token after the keyword concerns, which represents
the context set (represented by the class name Customer) of
the business rule to which the formula after the colon applies.
With respect to UML-models, the context in invariant rules
is represented by a class name and by a qualified method
name in the case of pre- and post-conditions respectively.
The rule body (lines 2-3) contains the actual business rule. In
order to use a natural language sentence in the needed formal
way, a couple of definitions have to be installed, which are
explained in Section III-B continuing this example. Moreover,
a detailed specification of APRIL including default logic- and
set- operators, is given in [2].

The mathematical representation of the rule can be ex-
pressed as predicate logic formula as follows.

∀c ∈ {CustomerallInstances} (isPremium(c) =⇒
∃p ∈ {c.orders.product} isSpecialOffer(p) =⇒
∀o ∈ {c.orders} {isSpecialOffer(o.product) ∧
isFreeOfCharge(o.shipment)})

B. APRIL-Definitions

APRIL Definitions are special mix-fix operators, which
allow the intuitive construction of patterns that decompose
large business rules into smaller, comprehensible and reusable
sub-statements. Mix-fix is a particularly useful technique to
form natural language statements [10]. Mix-fix operators al-
low to compose an operator’s constants and placeholders in
arbitrary order. The design of the APRIL-Definition’s headers
is based on sequences of static name parts and placeholders.
Both static name parts and placeholders can be arbitrarily
composed to express a business statement reflected as a natural
language sentence pattern. This makes them particularly easy
to construct for humans [11]. The below given example D.1,
shows a definition signature between the Definition and the
yielding keyword. Here placeholders, wrapped by the outmost
brackets, and keywords are mixed together to constitute a
pattern. Sentences based on the pattern come close to a natural
language sentence, when the placeholders get filled out with
the correct concepts of the domain model.

Despite the convenience that mix-fix operators provide to
humans, it is quite challenging to implement the parser logic
[12], especially for nested definition calls. The problem is that
the parser has to recognize a definition call embedded inside
an ID-token sequence in what is in the grammar specification
another definition call (see highlighted EBNF-grammar rules
in Listing II). As a consequence, a conventional context free
grammar provides only insufficient means to specify sub ID-
token streams with a different semantics to their embedding
ID-token streams. To overcome this, we use the ANTLR
v3 [13] parser-/compiler-generator framework. The framework

allows to specify semantic annotations [14], which is actually
user defined code (e.g., in Java), that gets inserted into the
proper positions of the grammar to guide parser decisions,
based on the semantics of tokens. Consider Listing II, where
the Boolean return-values of the semantic annotations indicated
by α0 and α1 influence the generated parsers resolution
algorithm. The semantic annotations indicated by the symbols
αn represent Java code that gets integrated into the parser.
The implemented logic performs the link between syntax and
semantics. For instance, when a token with the value Customer
gets recognized, the semantic annotation allows to conclude on
further decision steps for the parser. Or also trigger some type-
checking mechanism. However, for parsing mix-fix operators,
we limit the nesting depth to three, which was shown to be
sufficient in our preliminary case study.

definition::= ’Definition’ nameSignature ’yielding’
definition::= typeDef ’is defined as’ ruleBody ’.’
nameSignature::= (ID | parameterDef)+
parameterDef::= ’(’ name=ID ’as’ type=ID ’)’;
typeDef::= ID | ID ’(’ typeDef ’)’;
ruleBody::= statement+ ;
statement::= ... | referenceOrDefinitionCall | ...;
referenceOrDefinitionCall::= {α0}modelReference
referenceOrDefinitionCall:: |{α1} definitionCall | ...;
definitionCall::= ID (ID | referenceOrDefinitionCall)* ;

Listing II. GRAMMAR SNIPPET FOR APRIL DEFINITIONS

Given the example from Section III-A, the APRIL-
Definitions (D.1)-(D.3) decompose the business rule statement
from Listing I into reusable and easy to define sub-statements
with a signature in mix-fix notation.

(D.1) Definition All (customers as Collection(Customer)) who
buy (products as Collection(Product)) must pay (price as
Number) EURO for the shipment yielding Boolean
is defined as
every customer satisfies that every ”ordered product”
satisfies that shipment.fee = prize
with
”ordered products” (orderer as Customer) is defined as
each product where product.order.customer = orderer.

(D.2) Definition premium customer yielding Collec-
tion(Customer)
is defined as
each customer in all instances of Customer where
customer.AverageAnnualTurnover > 20,000 .

(D.3) Definition special offer yielding Collection(Product)
is defined as
each product in all instances of Product where prod-
uct.IsSpecialOffer.

In (D.1), the orders of specific customers are mapped
to a shipment prize. On the other hand, (D.2) is a set-
comprehension on the set of all customers defining, what a
premium customer is. Furthermore, (D.3) defines attributes that
characterize special offers.

In order to provide a precise semantics, APRIL atomic for-
mulas are used. They are verbalized versions of operations on
sets, predicate-logic formulas and special common constraints
sketched by Halpin [10]. For example, the every-satisfies-that-
statement of Definition (D.1) is an atomic formula in APRIL
that constitutes a universal quantification that is by default
incorporated into the language. Some more operators are
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described in [2]. Default atomic formulas are for maintaining
sufficient expressive power and straight-forward translation
into executable representations.

Moreover, we have defined some syntactical rules for the
default atomic formulas to make their syntax a bit more
appealing. For example the auto-mapping of plural to singular
symbols. Like in D.1, in which the symbol ”ordered products”
represents a collection of objects of type Product and the
symbol ”ordered product”, which is used as iterator symbol for
the univesal quantification. One auto-mapping rule says that if
any iterator symbol postfixed with an ”s” equals a symbol that
is in the scope of the same function or definition the short
form, omitting the ”in Collection(<Type>)” declarator can be
used. This only applies if the types can be resolved and the
symbol is unique in the entire scope stack.

In order to resolve symbols from their usage to their defi-
nition, APRIL uses different scope levels, e.g., like global and
local variables known from the most programming languages.
The precendences for resolving symbols are as follows:

• Atomic formulas (with iterator(s))

• Local variable / local method symbols

• Definition signatures (symbolic name with types of
parameters)

• Class names and role names from the UML model
used in the rule header after the concerns keyword

If we consider the example from Listing D.1 the
body of the definition contains two nested universal quan-
tification opertors ∀1.customer(i1|P (i1)) with P (i1) :=
∀2.fLM (i1)(i2|P (i2))) and fLM (i1) := ”ordered product”(i1)
with in are iterator variables, bound to the respective universal
quantification operator. Note that we have marked the universal
quantifiers with indexes, which makes it easier to refer to them
later. The following annotated excerpt of D.1 illustrates the
earlier definition:

every∀1
customer satisfies that (

every∀2
”ordered product” satisfies that (shipment.fee = prize)P2

)P1

In this case the iterators i1 and i2 are related by i2 ∈
Ret1 := fLM (i1), whereas fLM (i1) is actually defined in the
local members (LM) section of definition D.1 after the with
keyword. Ret1 is the return value yielded by fLM . That is the
local method fLM with the symbolic name ”ordered products”,
which takes a single parameter of type Customer. The method
itself is implicitly typed as collection by the set comprehension
function used in the proposition PfLM of its body, which is:

”ordered products” (orderer as Customer) is defined as
(each product where product.order.customer = orderer)PfLM

.

The inference mechanism of the typing of fLM works as
described earlier by simply adding a ”s”-postfix of the iterator
so the short form of the operator ”each product where . . . ”
can be resolved to the conventional form ”each product in
products where . . . ”. The symbol products can be resolved
within the scope of D.1 as this is one of the parameters of
type ”Collection(Product)”. Thus, the set comprehension also
yields the same type. If we memorize ∀1 that uses the symbol

”ordered product” as iterator symbol and we also apply the
”s”-postfix mechanism then ”ordered products” is resolvable
as local method. As ∀2 is nested in ∀1 that uses an iterator
variable (i1) represented by symbol customer of type Cus-
tomer, the call to fLM does not necessitate to explicitly state
the parameter, which would be the iterator of the surrounding
operator i1 of ∀1. This abbreviation mechanism is similar
to that, e.g., used in λ-expressions in C# 4.0. Resuming the
body statement of ∀2, the scope stack now adds the symbol
”ordered product”, which is actually i2, at its lowest level.
Thus, both the immediate short navigation shipment.fee and
the conventional navigation ”ordered product”.shipment.fee are
both valid in this context. We chose the short form for our
example. The ability to unambiguously resolve the types of
the used symbols is obligatory to detect trivial typing faults
during design time of a business rule. Moreover, it is helpful
in the translation process into the target language as it gives at
least some evidence that the business rule is formally correct.

APRIL uses OCL as target language for translating in-
variants and pre-and post conditions. Behavioral rules are
translated into Tempura, which is briefly explained later.In
order to extend APRIL’s expressiveness over general purpose
operators provided by OCL, we allow the customization of
atomic formulas that can be tailored to a certain domain. This
delegates the design of the atomic formulas as natural language
statements to the human user, who is still the best choice for
this creative task.

C. Extending APRIL with Custom Atomic Formulas

Like definitions, customizable atomic formulas are defined
using textual business patterns (bp). Here, a requirements
engineer can, e.g., reuse his already existing, informal textual
business patterns [11], which, unlike the more abstract Defini-
tions, express a very basic business rule- or business process
pattern that regulates the business concepts and facts under
consideration. For example, if a requirements engineer wants
to verbalize business process statements which specify that in
a warehouse all elements in a goods-stock move to a dedicated
truck-loading bay and have to pass a certain gate on their way,
she would have to specify parts of the grammar. Generally, a
context free grammar consists of a start symbol, production
rules, terminals and non-terminals [15]. Therefore, a state
of practice language implementation mechanism described by
Parr [14] is used. First, a formal production rule of the new
atomic formula must be specified. Formal production rules are
used to generate text recognition algorithms of a parser that
processes statements of a language to generate a parse tree.
Second, a parse tree rewrite rule has to be specified along with
the production rule. Parse tree rewrite rules are instructions for
the parser on how to construct the abstract syntax tree (AST)
from the parse tree.

The AST is a condensed version of the parse tree that can
be influenced by semantic considerations to form a concise
and expressive logical representation of the parsed statements.
For APRIL the AST provides the necessary flexibility to
incorporate user defined language parts and also makes it
particularly easy to extract the necessary parameters for the
compiler. For clarification, Listing III sketches the definition
of a user defined atomic formula. It formalizes the example
operator that reflects the scenario mentioned above. In line 1,
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the production rule with the name of the non-terminal (atomic
formula) moveTo is introduced. The definition of the new
atomic formula’s regular syntax is defined in the lines 2-7.
Here, the non-terminal referenceOrDefinitionCall is similar to
that in Listing II. This non-terminal is a predefined APRIL
concept and can either refer to an element of the related domain
model (e.g., to class names Store, Bay, Gate) or to values in
the scope stack of the parent rule or definition, in which the
formula is used. The references to the parse tree nodes of type
referenceOrDefinitionCall in the lines 3, 5 and 7 are stored
one by one in the local variables source, target and routeNode.
Line 9 concludes the specification of the grammar rule with
the parse tree rewrite rule. It is delimited from the syntax rule
by the ”→” sign. It tells the parser to construct a tree with the
MOVETO-terminal as root node having three leaves: source,
target and routeNode.

1 moveTo :
2 ’all elements in’
3 source=referenceOrDefinitionCall
4 ’move to’
5 target=referenceOrDefinitionCall
6 ’over’
7 routeNode=referenceOrDefinitionCall
8
9 → â(MOVETO $source $target $routeNode);

Listing III. GRAMMAR RULE AND PARSE TREE REWRITE RULE FOR THE
OPERATOR MOVETO IN ANTLR 3.0.

The grammar rule and the parse tree rewrite rule in
Listing III get injected into dedicated areas of the APRIL core
grammar. Parameterization of the APRIL-compiler is straight
forward, which is depicted in Figure 3. In the second pass,
a so called tree parser interprets the AST (of the rewrite
rule MOVETO) and decides, which target language template
to apply to the AST of the atomic formula. It then passes
the values of the leaf-nodes (here the values of the variables
$source, $target and $routeNode) to the parameters of the
respective template. The instantiated template is the actual
translation of the atomic formula into the target language,
representing the semantics of the respective operator. Please
see Listing V as an example instantiation.

Fig. 3. Translation example of the atomic operator moveTo.

IV. FREQUENTLY USED BUSINESS RULES AS ATOMIC
FORMULAS

A central aspect that increases the expressiveness of APRIL
is the utilization of language constructs that allow to shortly
specify business rules. These abbreviations are frequently used
in practice and would be partly complicated to formulate in
the underlying target languages. Such constraints are also often
referred to as common constraints. Costal et.al. [16] show that
these types of business rules can cover a significant amount
of the overall constraints occurring in real life systems. In
order to give the presented common constraints a structure, we
have grouped them together based on the taxonomy presented
in Figure 4, which was inspired by Halpin et al. [10] and
Miliauskaite et al. [17] [18] and will be explained in the
following subchapters.

A. Constraints on Values

Restricting values of variables can be done in several
ways. For example assigning an integer data type to a variable
restricts its values to a given range of natural numbers. Another
way is to use relational operators with, e.g., constants to explic-
itly constrain variables. Therefore, the conventional and well
known binary relational operators (e.g.,{<,>,=,<>,<=,>=})
are used. Although APRIL’s is meant to be close to natural
language, we use the mathematical representation for the afore
mentioned operators as atomic formulas as we think this is
well known enough to anyone. Moreover, if this might be too
disconcerting for a user to use in a language like APRIL, it is
possible to redefine that particular part of the grammar to give
these operators a natural language syntax (e.g., ”A>B” may
become ”A greater than B”). Here is an example:

Invariant Values concerns Vehicle:
MilesTotal<100000 .

B. Identifier

According to Miliauskaite et al. [18], a useful and strongly
demanded constraint is the identifier or primary identifier
known to ERM [19], ORM [20], xUML [21] and relational
database management systems (RDBMS). UML’s class at-
tributes are predestined for holding a primary identification
rule stated in APRIL or OCL, as UML class diagrams by
default lack such means. This can be shown with the help

Fig. 4. Taxonomy of some important common constraints.
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of the model in Figure 2. A common scenario is that an object
is identified by an attribute that carries a unique value over
all objects of the entire population. This can be formalized as
follows:

APRIL:

Invariant id concerns Customer:
each ID is unique .

OCL:

context id inv Customer:
Customer.allInstances→isUnique(ID)

A more general version of the primary identifier constraint
is the internal uniqueness constraint also called composed
identifier. It says that value combinations of two or more
attributes of an object are unique [10] [17]. The APRIL and
OCL versions look like:

APRIL:

Invariant composedId concerns Customer:
each Name, DateOfBirth combination is unique .

OCL:

context Customer inv composedId:
Customer.allInstances→forAll(c1,c2 | c1 <> c2 implies
not((c1.Name = c2.Name and c1.DateOfBirth = c2.DateOfBirth)))

Towards a reasoning of common constraints we can say
that if a class has a tuple of attributes {a1,...,ai} out of which
at least one has to obey a primary identifier constraint it
is redundant to additionally specify that the combination of
{a1,...,ai,...,an} has to obey a composed identifier constraint.

C. External Uniqueness

A uniqueness constraint is denoted as external if the identi-
fication scheme is bound to another attribute of an associated
class. For example an object a may be related to an object
b only once. This does not restrict the overall occurrence of
object b throughout the entire model as it might be that a is
also related to an object c.

In the example below, the constraint only holds if different
instances of Vehicle with potentially equivalent values in
VRN (vehicle registration number) are not linked to the same
instance of Shipment. The combination of Shipment and
the attribute VRN of the class Vehicle is inherently done
by the navigation path from Shipment to Vehicle by
stating its concrete role name, vehicles. This collects all
instances of Vehicle that are linked with the current instance
of Shipment.

APRIL:

Invariant externalUniqueness concerns Shipment:
VRN is unique in vehicles.

OCL:

context Shipment inv externalUniqueness:
vehicles→isUnique(VRN)

D. External Uniqueness Involving Objectification

This type of constraints deals with associations that are
regarded as objects. Hence, objectification [29], known as
reification in UML, aims to combine multiple classes or
attributes to a single one in order to apply constraints on the
combination. In UML, this is typically done using association
classes which objectify the association between two classes
[8]. Hence, an object of an association class identifies a
unique n-tuple of linked objects. In an attempt to generalize
several UML concepts, Gogolla et al. [23] uncover how to
transform association classes and association-qualifiers into n-
ary associations (with n>=2 at this point). As they show in
[24], there are several problems with the use and constraining
of n-ary associations and thus, the n-ary association has to
be transformed into a proper set of binary associations. For
our example in Figure 2 it would mean that the association
diamond in the middle of the three associated classes (Order,
Shipment, Product) is transformed into an additional synthetic
class, e.g., called ASSOC being associated to each of the
afore mentioned classes with a binary association. In order
to handle objectification in business rule statements between
two or more Classes {c1,...,cN} the APRIL ”each c1,...,cN
combination” expression is used. It returns a set of synthetic
association objects instanciated from class ASSOC each of
which is associated to one object of the corresponding type
of c1,...,cN . The first example shows how to constrain tuples
of classes. We omit the prose explanation for the APRIL
constraint here because we consider it to be self explanatory.

APRIL:

Invariant externalUniqueness concerns Product:
each Product, Order, Shipment combination is unique .

OCL:

context Product
inv externalUniqueness:
Product.allInstances→forAll( c |
Order.allInstances→forAll ( b |
Shipment.allInstances→forAll ( a |
ASSOC.allInstances→select( assoc | assoc.product = c and
assoc.order = b and assoc.shipment = a )→size()<=1 ) ) )

E. Recursive Associations

A UML class can be associated with itself (see class
Product in Figure 2). This allows recursions between objects.
Rules on such models are called ring constraints [10]. Common
ring constrains follow typical association properties. Here are
some examples:

• Irreflexive constraints do not allow objects to refer to
theirselves which is formally stated below. Note that
the OCL keyword self corresponds to the lower-
cased class name in the APRIL rule body.
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APRIL:

Invariant irreflexive concerns Package:
package is not in elements .

OCL:

context Package inv:
elements→excludes(self)

• A transitive constraint says that if a first object bears
the relationship to a second and the second to a third
one then the first also bears a relationship to the third.
This can be formally stated as follows.

• An intransitive constraint is the negation of the core-
sponding transitive constraint.

• Symmetric means that if the first bears the relationship
to the second, then the second bears the relationship
to the first. However, a ring constraint defined in a
UML class diagram is by default symmetric so there
is no need to state that an association is symmetric if
it is meant to be optional. If not the following example
shows how it can be stated.

• Asymmetric means that if the first bears the relation-
ship to the second, then the second cannot bear the
relationship to the first.

• Anti-Symmetric means that if the objects are different,
then if the first bears the relationship to the second,
then the second cannot bear that relationship to the
first.

• Acyclic means that a chain of one ore more instances,
which are linked to objects of the same type cannot
form a recursive loop (cycle).

As acyclic constraints are common practice in business rule
modelling [10] we can define a new atomic formula. That is the
”deep collection of ”-operator. The notation of the operator is
exemplified in the listing below. The semantics of the operator
is as follows:

Let A be a set of objects of type τ and {a0. . .an} ∪ ∅
be elements of A. Let Rn(an, An:= {an+1,j . . .an+1,k}\∅ ) be
the representation of a set of relations between an element an
and a non-empty set An ⊂ A.

Then Adeep :=
⋃

Am(Rm); with 0 ≤ m ≤ n. After all
(a0, Adeep) |= ”deep collection of”(a0).

APRIL:

Invariant acyclic concerns Package:
package is not in deep collection of elements.

OCL:

context Package def :
successors(): Collection(Product) =
self.elements→
union(self.elements.successors())
context Package inv acyclic:
self.successors()→excludes(self)

In the OCL example, the first constraint defines a synthetic
operation named successor() that is recursively called
within an OCL union operation which is called on the set of
elements of the current object. The intent is to unite all the
Package objects linked with the current objects elements
that also play this role in the linked subordinated objects. This
construct is inherently typed as collection type Collection.

F. Sets

The upper part of the Table I shows the verbalization of
common constraints on sets according to Costal et al. [16] and
Miliauskaite et al. [18]. Note that lower case latters denote
elements of sets and upper case letters denote sets.

The lower, folded part of the table handles a specialization
of the natural-join operator, indicated by on′. In APRIL it
is used to ”navigate” through UML class models, gathering
(sets-of) objects along association graphs, which then can be
utilized to formulate constraints. Hence, this is one of the most
important constructs in APRIL and deserves special mention.
The semantics is equivalent to OCL’s [5] collect-operation.

mathematical APRIL OCL
a ∈ A a is in A A→ includes (a)
B ∈ A B is in A A→ includesAll (B)
A = B A = B A = B

A ∩ B = ∅ A is not in B B → excludesAll(A)
a /∈ A a is not in A A→ excludes(a)

A on′ B A.B A.B
A→collect(B)

TABLE I. SOME COMMON CONSTRAINTS ON SETS.

More conventional and common constraints in APRIL can
be found in [2].

V. CASE STUDY ON THE ACCEPTANCE OF APRIL

The goal of the case study was to discover, if the APRIL
syntax is understandable to untrained users with a basic
understanding of logic. For this, a representative group of thirty
computer science students in their first and second year could
be motivated to participate. The major part was completely
inexperienced in the field of UML-modeling and has never
heard of OCL before. We considered OCL version 2.0 as the
benchmark language. That was because OCL 2.0 -as a part
of the UML specification- is an established and well defined
language that is close to our purpose: defining business rules on
UML-class models. Two days before the case study, an infor-
mation sheet was handed to the test persons, that explained the
very basics of the APRIL and OCL syntax. This included pred-
icate logic operators (e.g., universal and existential quantifier),
operators on sets (e.g., for union, exclusion and intersection of
sets) and the very important join operator. Moreover, necessary
concepts of UML-class models were explained, necessary to
comprehend the APRIL and OCL materials. This comprised
the use of the most important class models concepts, e.g.,
classes, associations, roles and multiplicities. Directly before
launching the case study session, a brief introduction into the
domain of discourse was given, on which the APRIL and
OCL constraints were written against. The case study sheet
consisted of four sections. The first section dealt with questions
on an example UML-class model and intended to show how
mature the skills of the experimentees in UML modeling were
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and also if the essentials of the related UML-model were
comprehended that were necessary to understand the tasks
given in the succeeding parts. The second and third section
demanded to try to interpret and write down the meaning of
a given sequence of 18 APRIL and 18 OCL constraints in
own words. The 36 constraints were based on an example
UML-class model that consisted of 5 classes. Each APRIL and
OCL constraint had its semantic counterpart in the opposite
language. The complexity of the constraints was increasing
continually, whereas the simplest constraint was like the listing
for the value constraint in Section IV-A. The APRIL constraint
with the highest complexity was comparable to that in Listing I
including all related Definitions from D.1 to D.3 and Listing IV
as its OCL representation, respectively. In the last and shortest
section, the test persons had to formulate OCL and APRIL
constraints, based on business rules, given in real natural
language. The conduction of the case study was organized
as follows. The group of test persons was divided into two
equally sized subgroups each starting either with the third part
(OCL) or the second part (APRIL). This was to counterbalance
potential learning effects. Remember, each constraint had its
semantic counterpart in the opposite language and that is why
learning effects could not be precluded. The results were as
follows with respect to the average ratio of correct answers or
correctly interpreted APRIL or OCL business rules:

• UML-part: 74% with an average spread of 10%.

• Simple expressions: OCL: 38%, APRIL: 69%

• Complex expressions: OCL: 36%, APRIL: 57%

• Writing expressions: OCL: 12%, APRIL: 27%

Textual feedback of the test persons:

• About 50 per cent of the test persons spent less than
20 minutes in their preparation phase. About 30 per
cent were unprepared. Persons of the remaining 20
per cent invested one to two hours to prepare for the
survey.

• About 90 per cent of the test persons subjectively esti-
mated that APRIL is more understandable than OCL.
Whereas, 2 students found both languages equally
understandable and one student with a significant
background in other formal languages found, that OCL
is more understandable.

The resulting percentage of APRIL, reflecting the correctly
interpreted constraints, allows to conclude that it is possible
for untrained test persons to understand APRIL statements.
A surprisingly high number of test persons was able to write
rules. This discipline has been considered to pose a bigger
problem, regarding the low preparation effort of 20 minutes
for the major part of the testees. Students who invested more
time for preparation gained better results in both interpreting
and writing APRIL rules. For OCL we were not able to observe
a similarly strong coherence between preparation time and
improved results. The unexpectedly very good understand-
ability of UML-class models, even without any preparation,
might be a good indication that the combination of a graphical
notation to represent concept models and a textual notation for
constraints is suitable to specify understandable business rules.

VI. APRIL’S TARGET LANGUAGES

APRIL makes use of the logical frameworks OCL and
Tempura to underpin its language constituents with a well
defined semantics. Both languages are briefly introduced in
the subsequent sections.

1) OCL: As part of the UML, OCL 2.3.1 is the target
language for APRIL-invariants, pre- and post- conditions. For
the sake of brevity, we give a rudimentary introduction to OCL
because it is well known. The interested reader should consult
the literature on OCL. The specification of OCL 2.3.1 can be
found on [5].

OCL restricts UML-class models using predicate logic
and operations on sets. Arithmetic-, Boolean- and relational
operators are used in the conventional way. Existential and
universal quantifiers allow to quantify on propositions holding
on an object population derived from a class model. In order
to give an idea of the OCL syntax, we provide in Listing IV
a translation into OCL of the example mentioned earlier in
Listing I and the definitions from (D.1)-(D.3). Here, we used
OCL’s decomposition mechanisms to cater to an improved
readability.

context Customer inv rule1:
Customer::
All customers who buy products must pay price for shipment(
aaCustomer::premium customers(),
aaProduct::special offers(),
aa0)

context Customer def:
All customers who buy products must pay price for shipment(
aa customers : Collection(Customer),
aa products : Collection(Product),
aa price : Real) : Boolean =
aaaa customers→forAll(customer |
aaaaaa products→select(product |
aaaaaaaa product.order.customer = product)→forAll(orderedProduct |
aaaaaaaaaa orderedProduct.shipment.price = price))

context Customer def:
premium customers() : Collection(Customer) =
aaself.AverageAnnualTurnover > 20,000 EURO)

context Product def:
special offer(): Collection(Product) =
aa self.IsSpecialOffer = true

Listing IV. POSSIBLE OCL-TRANSLATION OF LISTING I

2) Tempura: Tempura is an executable subset of Interval
Temporal Logic (ITL) [6]. ITL enhances predicate calculus
with a notation of discrete time, expressed by separated states,
and associated operators. A key feature of ITL and Tempura is
that the states of a predicate are grouped together as nonempty
sequences of states called intervals σplus. For example the
shortest interval of states σ on a predicate can be represented
by < s > where s is a state. Please note that here the length σ
:= |σ| = 0, which is generally the number of states in σ minus
1. The semantics of ITL keeps the interpretations of function
and predicate symbols independent of intervals. Thus, well
known operators like {+, -, *, and, or, not,...} are interpreted
in the usual way. The characteristic operator for ITL is the
operator chop ( ; ), which says that a prefix subinterval is
followed by a suffix subinterval. Both subintervals share one
state ”between” them. Conventional temporal logic operators
such as next (#) and always (�) examine an interval’s suffix
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subintervals whereas chop splits the interval into two parts and
tests both. Furthermore, Moszkowski [6] shows how to derive
operators such as always and sometimes from chop. In ITL, the
formula w := w1;w2 is true if I〈σ0..σi〉 Jw1K and I〈σi..σ|σ|〉
Jw2K are true in the respective sub-formulas. Note that w1 and
w2 share the same subinterval σi. We adopt some examples
from [6], which are as follows:

σ P R
s 1 2
t 2 1
u 3 1

The lenght of interval σ is expressed by |σ| and is defined
as the number of the states in σ minus one. Thus, in our
example, |σ| = 2.

The following formulas on the predicates P and R are true
on the interval < stu >:

• P = 1. The initial value of P is 1.

• #(P ) = 2 and #(#(P )) = 3. The next value of P is
2 and the next next value of P is 3.

• P = 1 and P gets P + 1. The initial value of P is 1
and P gets increased by 1 in each subsequent state.

• R = 2 and #(�(R)) = 1 The initial value of R is 2
and R is always 1 beginning from the next state.

• P ← 1 ; P ← P + 1 ; P ← P + 1. The formula e2
← e1 is true on an interval if σ0(e1) equals σ|σ|(e2).
Thus, ← is called temporal assignment.

We adopt Tempura because it is able to model operations
lasting over multiple state transitions, which would not be
possible with a single pair of OCL pre- and post-conditions.
Moreover, the reader will recognize similarities with the ratio-
nale of the test-definitions given in Section VII-A.

VII. GENERATING TEST CODE FROM APRIL
STATEMENTS

This section clarifies the connection between APRIL and
its target languages utilizing the moveTo-operator example
introduced earlier. Section VII-A describes the basic rationale
that influence the test framework presented in Section VII-B.
The test framework is applied to an application, which helps to
track movements of goods in a logistics centre. For testing the
correct routing, we use the example operator moveTo described
in Section III-C.

A. Testing

For generating proper test-code based on APRIL state-
ments, the classification of different test types into black- and
white-box testing has to be clarified. Our definition of the test
types is as follows: Each function fi in the set of functions F
::= {f0, . . . , fn} of a component under test (CUT) triggers a
state transition and obeys a predefined signature. This signature
requires a tuple of input values (fIN ) and yields a tuple of
output values (fOUT ). A signature of a function is an interface
describing a contract [22] with IN- and OUT-data, which is
specified in UML-class models. We assume that a composite

function gik is a conglomerate of some functions fi to fk, for
some natural numbers 0 <= i < k <= n. Then, any OUT-
signature of a proceeding function fj must correspond to the
IN-signature of the succeeding function fj+1, for some natural
numbers k < j <= i. This convention of the inner structure
can be formalized by OUT (fj) == IN(fj+1), which we want
to abbreviate with Dj . It represents an element of a function
sequence. Moreover, the following holds IN(gik) == IN(fi)
and OUT (gik) == OUT (fk).

A white-box test necessitates the knowledge of the entire
sequence of DD0,...,Dn as the internal structure of g (gik),
which is normally the case as the user knows the source code.
If D(g) is unknown, tests are limited to reason on the data
given by IN(g) and OUT (g), they are called black-box tests.
In APRIL, black-box tests are issued to the invariants, pre-
and post-conditions.

For the specification of behavioral models, we extend our
recent definition of white-box tests beyond reasoning on D. We
use Interval Temporal Logic (ITL) [6] for modeling behavior in
white-box-tests. Therefore, we introduce behavioral constraints
in APRIL, which we regard as orthogonal to the invariants as
well as pre- and post-conditions. Assume D represents a state
σ1 that maps a set of values to their corresponding variables at
one certain point in time. Then let σ be an ordered set of states
σ0 to σn, each of which describes a different D at different
subsequent, discrete points in time. In our understanding, the
knowledge of σ is sufficient for applying white-box-tests,
which we want to utilize in our framework.

B. Test Framework and Case Study

In this section, we build a representative example around
the behavioral all-elements-move-to-operator introduced in
Section III-C. The definitions of the previous section are used
in our test framework, which deals with logistic processes
to handle the material flow in a warehouse. It consists of a
simple 3-tier architecture with RFID-readers and light sensors
at the field-level and an ERP-system at the top level. Between
these two levels, we use an RFID-middleware -Rifidi [23]- for
information exchange and filtering.

The connection between a specification in Tempura and
a function in the productive code is the test data. Therefore,
the user has to provide initial test data IN(f0), constituting
an important part of a test-case. The productive code affects
the data OUT (fi) in the memory for each invocation of fi,
which marks a new interval at the same time. Thus, each time a
function under test fi gets invoked a snapshot of the input data
(fIN ) prior to the invocation and output data (fOUT ) when fi
is left gets generated. The test data for the Tempura-statements
is provided by recorded history-data that is stored in a properly
formatted log-file containing a condensed version of the data-
snapshots. The retrieval of the test data from the running
system is achieved via AspectJ [24]. Therefore, AspectJ point-
cut statements are generated based on the reference-nodes (see
Listing III) to class-attributes found in the AST of an APRIL
statement. The use of AspectJ permits us to leave the original
code of the productive system untouched.

The use case for the earlier mentioned example with the
behavioral operator moveTo formalized in Listing III is as
follows: Imagine a warehouse that has a high-bay storage
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and a loading bay for lorries. Both, storage and lorry-bay are
connected with a conveyor belt. Each of the three components
is equipped with one RFID-reader that can detect tagged-goods
in its near field to allow tracking whether the correct thing
takes the right path in the right direction. For a customer order,
all goods in store contained in the order must go from the
store to the lorry-bay via the conveyor belt. For simplicity
we assume that each good will be detected by exactly one
of the three RFID-readers at a time. This simplification is
an abstraction of the real world, which does not influence
considerations regarding the presented methodology.

O
U

T
PU

T

σI STORE GATE1 BAY
I=1 ”a”,”b”
I=2 ”b” ”a”
I=3 ”b” ”a”
I=4 ”b” ”a”
I=5 ”a”,”b”

TABLE II. REPRESENTATION OF LOG-FILE RECORDED FOR
EXAMPLE-OPERATOR

The described scenario can be reflected by a log file as
depicted in Table II, if the actual memories of the readers
holding the IDs of the tags can be accessed in the productive
application via the following reference-IDs: STORE for the
RFID-reader observing the near-field of the storage, GATE1
for the conveyor and BAY for the lorry-bay. The data in the log
file is formatted as array with the symbolic name OUTPUT.

define store moves to Bay over Gate1 () = {
aalen(|OUTPUT|-1) and
aaI = 0 and
aaI gets I+1 and
aamoveAtoB(OUTPUT[I][Store], OUTPUT[I][Gate1]) and
aamoveAtoB(OUTPUT[I][Gate1], OUTPUT[I][Bay]) and
aaOUTPUT[|OUTPUT|-1] [Bay] ← OUTPUT[0] [Store]
}.

define moveAtoB (A,B) = {
aaif (|A| > 0) then {
aaaafirst(A) gets last(B) and skip
aa}
}.

Listing V. TEMPLATE FOR THE ALL-ELEMENTS-MOVE-TO OPERATOR.

With regard to the model, the Tempura statements in
Listing V hold. They are actually an instantiation of a template
that is used by the APRIL-compiler for translating the move-
to-operator if used in an APRIL statement like in Listing VI.

all elements in Store move to Bay over Gate1.

Listing VI. USAGE OF THE ALL-ELEMENTS-MOVE-TO OPERATOR.

The formatting of the statements is according to String-
Template described by Parr [25] and contains generic parts
that get filled according to the parameters of the operator in
Listing VI.

VIII. RELATED WORK

SBVR-Structured-English (SE) and similarly RuleSpeak
[26] are so-called controlled languages to express business
rules in a restricted version of natural language. Both are based
on SBVR, which defines semantic parts, e.g., terms and facts to
determine business concepts and their relations. The syntactic

representation of these parts is achieved by text formatting and
coloring, which could be used to aid parsing SE-statements.
From our viewpoint, mixing technical information with the
textual representation is problematic because formalized and
natural language semantics have to be maintained in one and
the same statement. However, natural language does not utilize
text formatting information for transporting semantics.

Nevertheless, SE is used for model representation, which
Kleiner et al. [27] utilize as a starting point for translating
schema descriptions (in SE) into UML-class models, which
is helpful for software development. Unfortunately, they leave
the treatment of business rules for further work. Regarding the
customizability aspect of business statements, the approach of
Sosunovas et al. [28] presents another way, utilizing regular
patterns. They pursue a three-step approach to constructing
business rule templates that are first defined on an abstract level
and then tailored to fit a specific domain with every further
refinement step. Therewith, they provide precise meta-model-
based semantics to the template elements but -as they admit-
not to the business rule resulting from using the template.

In the field of semantic web, several controlled natural
language (CNL) approaches have been elaborated. Hart et al.
[29] propose a CNL called Rabbit to specify ontologies. The
language provides means to specify concepts and relations in a
dictionary like manner. Axioms describe the kind of relations
between concepts and also allow to specify cardinalities on
relations and constraints based on propositional logic. More-
over, Rabbit allows to reference other ontologies to make use
of already existing concepts and axioms.

A pragmatic approach to define natural language constructs
in CNL is presented by Spreeuwenberg et al. [30] and van
Grondelle et al. [31]. They use patterns with a regular syntax
consisting of constants and placeholders that can be replaced
by instances of meta model concepts. Each pattern is related to
a graph in the meta model to represent its semantics exclusively
based on that meta model. However, from our viewpoint the
interesting thing is that they emphasis the particular simplicity
of the construction of patterns even for untrained persons. That
is also what we found out with our APRIL definitions.

Another interesting approach in generating tests from re-
quirements specifications is introduced by Nebut et al. [32].
They utilize UML use-case models combined with contracts
represented by pre- and post- conditions to specify sequences
of state transitions. Based on these contracts, they simulate
the modeled behavior by intentionally ”instantiating” the use
case model. This approach could be a worthy extension to
ours, which uses historical data that could also be generated by
simulation. Moreover, Nebut et al. show how to generate test-
cases from sequence diagrams and test objectives, that cater
to a defined test coverage.

IX. CONCLUSION AND FUTURE WORK

With APRIL we want to provide a customizable and
semantically well-founded notation that is close to natural
language and suitable for humans as well as for computers. A
core feature of APRIL is the ability to define abstract mix-fix
operators that are particularly useful to define natural language
expressions as reusable patterns. We consider this pattern
building technique as sufficiently intuitive even for untrained
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persons, which we could show in a case study with 30 test
persons. The semantic underpinning of the mix-fix operators
is achieved by customizable atomic formulas. Te ease the use
of APRIL, we have encorporated additional atomic formulas
that are based on frequently used constraints in practice, so
called common constraints. The syntax of atomic formulas
can be tailor-made for any domain. This is exemplified by
a new atomic formula taken from the logistics domain to
model behavior. We extend APRIL’s grammar and present
a mapping to the interpretation function based on Interval
Temporal Logic. With the use of the new atomic formula and
the transformation into the instantiated Tempura statement, ex-
ecutable test code can be generated. This way, our framework
contributes to an integrated software development process by
providing unambiguous and understandable business rules that
can be used for specification purposes and for automatically
generating tests.

From the current viewpoint, some issues are still open. Fur-
ther evaluation is needed to determine wether the specification
of the grammar rules and their corresponding rewrite rules are
suitable to a typical requirements engineer. The use of OCL
and especially Tempura, for creating the templates requires a
considerable amount of skills. Moreover, using APRIL require-
ments requires a basic understanding of logic and set-theory.
It has to be discovered if the aforementioned challenges are
manageable by the typical requirements engineer in reasonable
amout of training-time. Hence, future work will target on
refining the presented approach with a focus on methodologies
to improve APRIL’s usability.
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[16] D. Costal, C. Gómez, A. Queralt, R. Raventós, and E. Teniente,

“Facilitating the Definition of General Constraints in UML,” in Model
Driven Engineering Languages and Systems, ser. Lecture Notes in
Computer Science, O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio,
Eds. Springer Berlin / Heidelberg, 2006, vol. 4199, pp. 260–274.

[17] E. Miliauskait and L. Nemurait, “Representation of integrity constraints
in conceptual models,” Information technology and control, Kauno
technologijos universitetas, ISSN, pp. 34–4, 2005.

[18] E. Miliauskaite and L. Nemuraite, “Taxonomy of integrity constraints
in conceptual models,” Proceedings of IADIS Database Systems, 2005.

[19] S. Navathe and e. Ramez, Fundamentals of Database Systems.
Addison-Wesley, 2002.

[20] T. Halpin, A. Morgan, and T. Morgan, Information modeling and
relational databases. Morgan Kaufmann, 2008.

[21] S. Mellor and M. Balcer, Executable UML: A foundation for model-
driven architectures. Addison-Wesley Longman Publishing Co., Inc,
2002.

[22] B. Meyer, “Applying Design by Contract,” Computer, vol. 25, no. 10,
pp. 40–51, 1992.

[23] Rifidi Community. (2012) Rifidi-Platform. [retrieved: 09,2012].
[Online]. Available: http://www.transcends.co/community

[24] Eclipse Open Plattform Community. (2012) AspectJ: Version 1.7.0. [re-
trieved: 09,2012]. [Online]. Available: http://www.eclipse.org/aspectj/

[25] T. Parr. (2012) String Template: Version 4.0. [retrieved: 09,2012].
[Online]. Available: http://www.stringtemplate.org/

[26] Object Management Group. (2008) SBVR Specification:
version 1.0. [retrieved: 09,2012]. [Online]. Available:
http://www.omg.org/spec/SBVR/1.0/

[27] M. Kleiner, P. Albert, and J. Bézivin, “Parsing SBVR-Based Controlled
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