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Abstract—The age of Big Data introduces a variety of
challenges in how to store, access, process, and stream mas-
sive amounts of structured and unstructured data effectively.
Among those domains that are impacted by the Big Data
problem at most, the Semantic Web holds a leading position.
By current estimates, the volume of Semantic Web data is ex-
ceeding the order of magnitude of billions of triples. Using High
Performance Computing infrastructures is essential in dealing
with these massive data volumes. Unfortunately, the most
Semantic Web applications are developed in Java language,
which makes them incompatible with the traditional high
performance computing software solutions, which are tailored
for compiled codes developed in C and Fortran languages. The
known attempts to port existing parallelization frameworks,
such as the Message-Passing Interface, to the Java platform
have proved either a poor efficiency in terms of performance
and scalability, or a limited usability due to a considerable
configuration and installation overhead. We present an efficient
porting of Java bindings based on Open MPI - one of the most
popular Message-Passing Interface implementations for the
traditional (C, C++, and Fortran) supercomputing applications.
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I. INTRODUCTION

The data volumes collected by the Semantic Web have
already reached the order of magnitude of billions of triples
and is expected to further grow in the future, which positions
this Web extension to dominate the data-centric computing
in the oncoming decade. Processing (e.g., inferring) such
volume of data, such as generated in the social networks
like Facebook or Twitter, or collected in domain-oriented
knowledge bases like pharmacological data integration plat-
form OpenPHACTS, poses a lot of challenges in terms of
reaching the high performance and scalability by the soft-
ware applications. As discussed in our previous publication
[1], while there is a number of existing highly-scalable
software solutions for storing data, such as Jena [2], the
scalable data processing constitutes the major challenge for
data-centric applications. This work is discussing application
of the techniques elaborated in the previous paper to the
Big Data application domain. In the literature, it is often
referred as “Big Data” a set of issues related to scaling

Figure 1. Parallelization patterns in a Reasoning application’s workflow.

existing processing techniques to large amounts of data, for
which standard computing platforms have proved inefficient
[3]. Among those data-centric communities that address the
Big Data, the Semantic Web enjoys a prominent position.
Semantic Data are massively produced and published at the
speed that makes traditional processing techniques (such
as reasoning) inefficient when applied to the real-scale
data. It is worth mentioning that the typical Semantic Web
application workflows are highly parallel in their nature (see
Figure 1) and are well-suited to run in high performance
computing environments.

The data scaling problem in the Semantic Web is con-
sidered in two its main aspects - horizontal and vertical
scale. Horizontal scaling means dealing with heterogeneous,
and often unstructured data acquired from heterogeneous
sources. The famous Linked Open Data cloud diagram [4]
consists of hundreds of diverse data sources, ranging from
geo-spatial cartographic sources like Open Street Map, to
governmental data, opened to the publicity, like data.gov.
Vertical scaling implies scaling up the size of similarly
structured data. Along the open government data spawns
over 851,000 data sets across 153 catalogues from more than
30 countries, as estimated in [5] at the beginning of 2012.
Processing data in such an amount is not straightforward and
challenging for any of the currently existing frameworks and
infrastructures. Whereas there are some known algorithms
dealing with the horizontal scaling complexity, such as
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Figure 2. Execution of a reasoning application’s workflow on a high
performance computing system.

identification of the information subsets related to a specific
problem, i.e., subsetting, the vertical scaling remains the
major challenge for all existing algorithms.

Another essential property of the Big Data is complexity.
Semantic applications must deal with rich ontological mod-
els describing complex domain knowledge, and at the same
time highly dynamic data representing recent or relevant in-
formation, as produced by streaming or search-enabled data
sources. A considerable part of the web data is produced as
a result of automatic reasoning over streaming information
from sensors, social networks, and other sources, which are
highly unstructured, inconsistent, noisy and incomplete.

The availability of such an amount of complex data makes
it attractive for Semantic Web applications to exploit High
Performance Computing (HPC) infrastructures to effectively
process the Big Data. There have been several pilot research
projects aiming to enable the potential of supercomputing
infrastructures to the Semantic Web application develop-
ment. One of the prominent examples of such projects is
the Large Knowledge Collider (LarKC), which is a software
platform for large-scale incomplete reasoning. In particular,
LarKC provides interfaces for loading off the computation-
intensive part of a reasoning application’s workflow to a
supercomputing infrastructure (see Figure 2).

Both commodity and more dedicated HPC architectures,
such as the Cray XMT [6], have been held in focus of
the data-intensive Web applications. The XMT dedicated
system, however, has proved successful only for a limited
number of tasks so far, which is mainly due to the complex-
ity of exploiting the offered software frameworks (mainly
non-standard pragma-based C extensions).

Unfortunately, most Semantic Web applications are writ-
ten in the Java programming language, whereas current
frameworks that make the most out of HPC infrastructures,
such as the Message Passing Interface (MPI), only target C
or Fortran applications. MPI is a process-based paralleliza-
tion strategy, which is a de-facto standard in the area of
parallel computing for C, C++, and Fortran applications.
Known alternative parallelization frameworks to MPI that

conform with Java, such as Hadoop[7] or Ibis [8], prove to
be scalable though but are not even nearly as efficient or
well-developed as numerous open-source implementations
of MPI, such as MPICH or Open MPI[9].

The implementation in Java has prevented MPI to be
adopted by Semantic Web applications. However, given the
vast data size addressed by the modern Web applications,
and given the emergence of the new communities interested
in adopting MPI, it seems natural to explore the benefits of
MPI for Java applications on the HPC platforms as well.
Introducing MPI to Java poses several challenges. First,
the API set should be compliant with the MPI standard
[9], but not downgrade the flexibility of the native Java
language constructions. Second, the hardware support should
be offered in a way that overcomes the limitation of the Java
run-time environment, but meet such important requirements
as thread-safety. Third, MPI support should be seamlessly
integrated in the parallel application’s execution environ-
ment. All of these three issues of functionality, adaptivity,
and usability must complexly be addressed to make the use
of MPI in Java applications practical and useful.

We look how to resolve the above-mentioned issues in
a way that leverages the advances of the existing MPI
frameworks. We present and evaluate our solution for intro-
ducing Java support in Open MPI [10], which is one of the
most popular open source MPI-2 standard’s implementations
nowadays. Our approach is based on the integration of Java
MPI bindings developed for mpiJava [11] directly in the
native C realization of Open MPI, thus minimizing the
bindings overhead and leveraging the Open MPI’s run-time
and development environment to ensure the high scalability
of the Java parallel application. We also give examples of
successful pilot scenarios implemented with our solution and
discuss future work in terms of the development, implemen-
tation, and standardization activities.

II. RELATED WORK

There are only a few alternatives to MPI in introducing
the large-scale parallelism to Java applications. The most
promising among those alternatives in terms of the perfor-
mance and usability are solutions offered by IBIS/JavaGAT
and MapReduce/Hadoop.

IBIS [12] is a middleware stack used for running Java
applications in distributed and heterogeneous computing en-
vironments. IBIS leverages the peer-to-peer communication
technology by means of the proprietary Java RMI (Re-
mote Memory Invocation) implementation, based on GAT
(Grid Application Toolkit) [13]. The Java realization of
GAT (JavaGAT) is a middleware stack that allows the Java
application to instatiate its classes remotely on the network-
connected resource, i.e., a remote Java Virtual Machine.
Along with the traditional access protocols. e.g., telnet or
ssh, the advanced access protocols, such as ssh-pbs for
clusters with PBS(cluster Portable Batch System)-like job
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scheduling or gsissh for grid infrastructures are supported.
IBIS implements a mechanism of multiple fork-joins to
detect and decompose the application’s workload and ex-
ecute its parts concurrently on distributed machines. While
[8] indicates some successful Java applications implemented
with IBIS/JavaGAT and shows a good performance, there
is no clear evidence about the scalability of this solution
for more complex communication patterns, involving nested
loops or multiple split-joins. Whereas IBIS is a very effective
solution for the distributed computing environments, e.g.,
Grid or Cloud, it is definitively not the best approach to be
utilized on the tightly-coupled productional clusters.

The MapReduce framework [14] and its most prominent
implementation in Java, Hadoop, has got a tremendous
popularity in modern data-intensive application scenarios.
MapReduce is a programming model for data-centric appli-
cations exploiting large-scale parallelism, originally intro-
duced by Google in its search engine. In MapReduce, the
application’s workflow is divided into three main stages (see
Figure 3): map, process, and reduce. In the map stage, the
input data set is split into independent chunks and each of
the chunks is assigned to independent tasks, which are then
processed in a completely parallel manner (process stage).
In the reduce stage, the output produced by every map task
is collected, combined and the consolidated final output is
then produced. The Hadoop framework is a service-based
implementation of MapReduce for Java. Hadoop considers
a parallel system as a set of master and slave nodes,
deploying on them services for scheduling tasks as jobs
(Job Tracker), monitoring the jobs (Task Tracker), managing
the input and output data (Data Node), re-executing the
failed tasks, etc. This is done in a way that ensures a
very high service reliability and fault tolerance properties
of the parallel execution. In Hadoop, both the input and the
output of the job are stored in a special distributed file-
system. In order to improve the reliability, the file system
also provides an automatic replication procedure, which
however introduces an additional overhead to the inter-
node communication. Due to this overhead, Hadoop pro-
vides much poorer performance than MPI, however offering
better QoS characteristics related to the reliability and fault-
tolerance. Since MPI and MapReduce paradigms have been
designed to serve different purposes, it is hardly possible
to comprehensively compare them. However they would
obviously benefit from a cross-fertilization; e.g., MPI could
serve a high-performance communication layer to Hadoop,
which might help improve the performance by omitting the
disk I/O usage for distributing the map and gathering the
reduce tasks across the compute nodes.

III. DATA-CENTRIC PARALLELIZATION AND MPI

By “data-centric parallelization” we mean a set of tech-
niques for: (i) identification of non-overlapping application’s
dataflow regions and corresponding to them instructions; (ii)

Figure 3. MapReduce processing schema.

partitioning the data into subsets; and (iii) parallel processing
of those subsets on the resources of the high performance
computing system. For Semantic Web applications utilizing
the data in such well-established formats as RDF [15],
parallelization relies mainly on partitioning (decomposing)
the RDF data set on the level of statements (triples), see
Figure 4a. The ontology data (also often referred as tbox)
usually remains unpartitioned as its size is relatively small
as compared with the actual data (abox), so that it is just
replicated among all the compute nodes.

The Message-Passing Interface (MPI) is a process-based
standard for parallel applications implementation. MPI pro-
cesses are independent execution units that contain their
own state information, use their own address spaces, and
only interact with each other via interprocess communica-
tion mechanisms defined by MPI. Each MPI process can
be executed on a dedicated compute node of the high
performance architecture, i.e., without competing with the
other processes in accessing the hardware, such as CPU
and RAM, thus improving the application performance and
achieving the algorithm speed-up. In case of the shared
file system, such as Lustre [16], which is the most utilized
file system standard of the modern HPC infrastructures, the
MPI processes can effectively access the same file section
in parallel without any considerable disk I/O bandwidth
degradation. With regard to the data decomposition strategy
presented in Figure 4a, each MPI process is responsible for
processing the data partition assigned to it proportionally to
the total number of the MPI processes (see Figure 4b). The
position of any MPI process within the group of processes
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involved in the execution is identified by an integer R (rank)
between 0 and N-1, where N is a total number of the
launched MPI processes. The rank R is a unique integer
identifier assigned incrementally and sequentially by the
MPI run-time environment to every process. Both the MPI
process’s rank and the total number of the MPI processes
can be acquired from within the application by using MPI
standard functions, such as presented in Listing 1.

import java.io.*;
import mpi.*;

class Hello {
public static void main(String[] args) throws

MPIException
{
int my_pe, npes; // rank and overall number of MPI

processes
int N; // size of the RDF data set (number of

triples)

MPI.Init(args); // intialization of the MPI RTE

my_pe = MPI.COMM_WORLD.Rank();
npes = MPI.COMM_WORLD.Size();

System.out.println("Hello from MPI process" + my_pe +
" out of " + npes);

System.out.println("I’m processing the RDF triples
from " + my_pe/npes + " to " + (my_pe+1)/npes);

MPI.Finalize(); // finalization of the MPI RTE
}

}

Listing 1. Acquiring rank and total number of processes in a simple MPI
application.

The typical data processing workflow with MPI can be
depicted as shown in Figure 5. The MPI jobs are executed by
means of the mpirun command, which is an important part
of any MPI implementation. mpirun controls several aspect
of parallel program execution, in particular launches MPI
processes under the job scheduling manager software like
OpenPBS [17]. The number of MPI processes to be started
is provided with the -np parameter to mpirun. Normally, the
number of MPI processes corresponds to the number of the
compute nodes, reserved for the execution of parallel job.
Once the MPI process is started, it can request its rank as
well as the total number of the MPI processes associated
with the same job. Based on the rank and total processes
number, each MPI process can calculate the corresponding
subset of the input data and process it. The data partitioning
problem remains beyond the scope of this work; particularly
for RDF, there is a number of well-established approaches
discussed in several previous publications, e.g., horizontal
[18], vertical [19], and workload driven [20] partitioning.

Since a single MPI process owns its own memory space
and thus can not access the data of the other processes
directly, the MPI standard foresees special communication
functions, which are necessary, e.g., for exchanging the
data subdomain’s boundary values or consolidating the final
output from the partial results produced by each of the
processes. The MPI processes communicate with each other

Figure 4. Data decomposition and parallel execution with MPI.

Figure 5. Typical MPI data-centric application’s execution workflow.

by sending messages, which can be done either in “point-to-
point”(between two processes) or collective way (involving
a group of or all processes).

More details about the MPI communication can also be
found in our previous publication [21].

IV. OPEN MPI JAVA BINDINGS

This section discusses implementation details of Java
bindings for the Open MPI library.

A. MPI bindings for Java

Although the official MPI standard’s bindings are limited
to C and Fortran languages, there has been a number of
standardization efforts made towards introducing the MPI
bindings for Java. The most complete API set, however, has
been proposed by mpiJava [22] developers.
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There are only a few approaches to implement MPI
bindings for Java. These approaches can be classified in two
following categories:

• Pure Java implementations, e.g., based on RMI (Re-
mote Method Invocation) [23], which allows Java ob-
jects residing in different virtual machines to commu-
nicate with each other, or lower-level Java sockets API.

• Wrapped implementations using the native methods
implemented in C languages, which are presumably
more efficient in terms of performance than the code
managed by the Java run-time environment.

In practice, none of the above-mentioned approaches
satisfies the contradictory requirements of the Web users
on application portability and efficiency. Whereas the pure
Java implementations, such as MPJ Express [24] or MPJ/Ibis
[8], do not benefit from the high speed interconnects, e.g.,
InfiniBand [25], and thus introduce communication bottle-
necks and do not demonstrate acceptable performance on the
majority of today’s production HPC systems [26], a wrapped
implementation, such as mpiJava [27], requires a native C
library, which can cause additional integration and interop-
erability issues with the underlying MPI implementation.

In looking for a trade-off between the performance and
the usability, and also in view of the complexity of providing
Java support for high speed cluster interconnects, the most
promising solution seems to be to implement the Java
bindings directly in a native MPI implementation in C.

B. Native C Implementation

Despite a great variety of the native MPI implementations,
there are only a few of them that address the requirements
of Java parallel applications on process control, resource
management, latency awareness and management, and fault
tolerance. Among the known sustainable open-source imple-
mentations, we identified Open MPI[28] and MPICH2[29]
as the most suitable to our goals to implement the Java MPI
bindings. Both Open MPI and MPICH2 are open-source,
production quality, and widely portable implementations of
the MPI standard (up to its latest 2.0 version). Although
both libraries claim to provide a modular and easy-to-extend
framework, the software stack of Open MPI seems to better
suit the goal of introducing a new language’s bindings,
which our research aims to. The architecture of Open MPI
[10] is highly flexible and defines a dedicated layer used
to introduce bindings, which are currently provided for C,
F77, F90 and some other languages (see also Figure 7).
Extending the OMPI-Layer of Open MPI with the Java
language support seems to be a very promising approach to
the the discussed integration of Java bindings, taking benefits
of all the layers composing Open MPI’s architecture.

C. Design and Implementation in Open MPI

We have based our Java MPI bindings on the mpiJava
code, originally developed in HPJava[30] project and cur-

Figure 6. mpiJava architecture.

rently maintained by the High Performance Computing Cen-
ter Stuttgart[31]. mpiJava provides a set of Java Native Inter-
face (JNI) wrappers to the native MPI v.1.1 communication
methods, as shown in Figure 6. JNI enables the programs
running inside a Java run-time environment to invoke native
C code and thus use platform-specific features and libraries
[32], e.g., the InfiniBand software stack. The application-
level API is constituted by a set of Java classes, designed in
conformance to the MPI v.1.1 and the specification in [22].
The Java methods internally invoke the MPI-C functions
using the JNI stubs. The realization details for mpiJava can
be obtained from [11][33].

Open MPI is a high performance, production quality, MPI-
2 standard compliant implementation. Open MPI consists
of three combined abstraction layers that provide a full
featured MPI implementation: (i) OPAL (Open Portable
Access Layer) that abstracts from the peculiarities of a
specific system away to provide a consistent interface adding
portability; (ii) ORTE (Open Run-Time Environment) that
provides a uniform parallel run-time interface regardless
of system capabilities; and (iii) OMPI (Open MPI) that
provides the application with the expected MPI standard in-
terface. Figure 7 shows the enhanced Open MPI architecture,
enabled with the Java bindings support.

The major integration tasks that we performed were as
follows:

• extend the Open MPI architecture to support Java
bindings,

• extend the previously available mpiJava bindings to
MPI-2 (and possibly upcoming MPI-3) standard,

• improve the native Open MPI configuration, build,
and execution system to seamlessly support the Java
bindings,

• redesign the Java interfaces that use JNI in order to
better conform to the native realization,

• optimize the JNI code to minimize its invocation over-
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Figure 7. Open MPI architecture.

head,
• and create test applications for performance bench-

marking.
Both Java classes and JNI code for calling the native meth-

ods were integrated into Open MPI. However, the biggest
integration effort was required at the OMPI (Java classes,
JNI code) and the ORTE (run-time specific options) levels.
The implementation of the Java class collection followed
the same strategy as for the C++ class collection, for which
the opaque C objects are encapsulated into suitable class
hierarchies and most of the library functions are defined as
class member methods. Along with the classes implementing
the MPI functionality (MPI package), the collection includes
the classes for error handling (Errhandler, MPIException),
datatypes (Datatype), communicators (Comm), etc. More
information about the implementation of both Java classes
and JNI-C stubs can be found in previous publications
[11][26].

D. Performance

In order to evaluate the performance of our implementa-
tion, we prepared a set of Java benchmarks based on those
well-recognized in the MPI community, such as NetPIPE
[34] or NAS [35]. Based on those benchmarks, we compared
the performance of our implementation based on Open MPI
and the other popular implementation (MPJ Express) that
follows a “native Java” approach. Moreover, in order to
evaluate the JNI overhead, we reproduced the benchmarks
also in C and ran them with the native Open MPI. Therefore,
the following three configurations were evaluated:

• ompiC - native C implementation of Open MPI (the
actual trunk version), built with the GNU compiler
(v.4.6.1),

Figure 8. Message rate for the point-to-point communication.

• ompiJava - our implementation of Java bindings on top
of ompiC, running with Java JDK (v.1.6.0), and

• mpj - the newest version of MPJ Express (v.0.38),
a Java native implementation, running with the same
JDK.

We examined two types of communication: point-to-
point (between two nodes) and collective (between a group
of nodes), varying the size of the transmitted messages.
We did intentionally not rely on the previously reported
benchmarks[36] in order to eliminate the measurement de-
viations that might be caused by running tests in a different
hardware or software environment. Moreover, in order to
ensure a fair comparison between all these three implementa-
tions, we ran each test on the absolutely same set of compute
nodes.

The point-to-point benchmark implements a “ping-pong”
based communication between two single nodes; each node
exchanges the messages of growing sizes with the other
node by means of blocking Send and Receive operations.
As expected, our ompiJava implementation was not as
efficient as the underlying ompiC, due to the JNI function
calls overhead, but showed much better performance than
the native Java based mpj (Figure 8). Regardless of the
message size, ompiJava achieves around eight times higher
throughput than mpj (see Figure 9).

The collective communication benchmark implements a
single blocking message gather from all the involved nodes.
Figure 10 shows the results collected for P = 2k (where
k=2-7) nodes, with a varying size of the gathered messages.
The maximal size of the aggregated data was 8 GByte on 128
nodes. Figure 11 demonstrates the comparison of collective
gather performance for all tested implementations on the
maximal number of the available compute nodes (128).
Whereas the InfiniBand-aware ompiJava and ompiC scaled
quite well, the native Java based mpj has shown very poor
performance; for the worst case (on 128 nodes) a slow-down
up to 30 times compared with ompiJava was observed.
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Figure 9. Comparison of the message rate for ompiJava and mpj for a)
low and b) high message size range.

Figure 10. Collective gather communication performance of ompiJava.

Figure 11. Collective gather communication performance on 128 nodes.

Figure 12. Similarity index computation in a document collection.

V. MPI IMPLEMENTATION OF RANDOM INDEXING

Random indexing [37] is a word-based co-occurrence
statistics technique used in resource discovery to improve
the performance of text categorization. Random indexing
offers new opportunities for a number of large-scale Web
applications performing the search and reasoning on the
Web scale [38]. We used Random Indexing to determine the
similarity index (based on the words’ co-occurance statistic)
between the terms in a closed document collection, such as
Wikipedia or Linked Life Data (see Figure 12).

The main challenges of the Random Indexing algorithms
lay in the following:

• Huge and high-dimensional vector space. A typical ran-
dom indexing search algorithm performs traversal over
all the entries of the vector space. This means, that the
size of the vector space to the large extent determines
the search performance. The modern data stores, such
as Linked Life Data or Open PHACTS consolidate
many billions of statements and result in vector spaces
of a very large dimensionality. Performing Random
indexing over such large data sets is computationally
very costly, with regard to both execution time and
memory consumption. The latter poses a hard constraint
to the use of random indexing packages on the serial
mass computers. So far, only relatively small parts
of the Semantic Web data have been indexed and
analyzed.

• High call frequency. Both indexing and search over the
vector space is highly dynamic, i.e., the entire indexing
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Figure 13. MPI-based parallel implementation of Airhead Search.

process repeats from scratch every time new data is
encountered.

In our previous work [39], we have already reported on the
efforts done on parallelizing the search operation of Airhead
- an open source Java implementation of Random Indexing
algorithm. Our MPI implementation of the Airhead search
is based on a domain decomposition of the analyzed vector
space and involves both point-to-point and collective gather
and broadcast MPI communication (see the schema in Fig-
ure 13). In our current work, we evaluated the MPI version
of Airhead with both ompijava and mpj implementations.

We performed the evaluation for the largest of the avail-
able data sets reported in [39] (namely, Wiki2), which com-
prises 1 Million of high density documents and occupies 16
GByte disk storage space. The overall execution time (wall
clock) was measured. Figure 14a shows that both ompijava
and mpj scale well until the problem size is large enough
to saturate the capacities of a single node. Nevertheless, our
implementation was around 10% more efficient over mpj
(Figure 14b).

VI. PERFORMANCE ANALYSIS AND OPTIMIZATION
TOOLS

Development of parallel communication patterns with
MPI is quite a nontrivial task, in particular for large-scale
use cases, which consist of hundreds and even thousands of
parallel processes. The synchronization among the MPI pro-
cesses of the parallel application can be a key performance
concern. Among the typical problems the following appear
most frequently:

• non-optimal balancing of the MPI processes load (i.e.,
wrong data decomposition),

• misconfiguration of the communication pattern prevent-
ing the applications scalability to the growing number

Figure 14. Airhead performance with ompiJava and mpj.

of compute nodes,
• incorrect usage of the MPI communication functions

(e.g., when point-to-point communication are used in-
stead of the collective ones, which lowers the perfor-
mance and also prevents the scalability).

One of the advantages of the C-based Java binding imple-
mentation as compared with the “native-Java” approach is
the possibility to use numerous performance optimization
tools available for the traditional HPC applications. This
is leveraged by the special profiling interface provided by
the MPI standard - PMPI (see Figure 6). Using PMPI,
performance analysis tools can inject the measurement code
directly in the parallel application’s object file and capture
and aggregate statistics about the application execution at
run-time. Among the parameters measured with PMPI are
duration of a single MPI communication, total number of
communications, processes that are involved in the commu-
nication, etc. The profiling code is dynamically linked with
the MPI library and thus does not require any changes in
either the application code or the MPI library. The captured
events are stored in trace files using a special format, such
as OTF - the Open Trace Format, which can then be
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Figure 15. MPI Global Broadcast Communication visualization for four
MPI processes with Paraver.

analyzed in order to retrieve and visualize the application’s
communication profile.

In our pilot investigations, we evaluated the ability of the
Extrae [40] profiling library, developed by the Barcelona
Supercomputing Center, to collect event traces of the MPI-
parallelized Airhead Search application. For this purpose,
we linked Extrae with our Java-enabled version of Open
MPI and run the instrumented version of Airhead on the
cluster. The traces collected as result of the execution were
visualized with the Paraver [41] tool (see Figure 15), similar
to any other MPI application in C or Fortran.

VII. FUTURE WORK

Our future work will concentrate on promoting both MPI
standard and our ompiJava implementation to Semantic Web
applications as well as improving the current realization of
Java bindings in Open MPI.

With regard to promotion activities, we will be introduc-
ing our data-centric and MPI-based parallelization approach
to further challenging data-intensive applications, such as
Reasoning [42]. Regarding this application, there are highly
successful MPI imlementations in C, e.g., the parallel RDFS
graph closure materialization presented in [43], which are
indicatively much more preferable over all the existing Java
solutions in terms of performance. Our implementation will
allow the developed MPI communication patterns to be
integrated in existing Java-based codes, such as Jena [2] or
Pellet [44], and thus drastically improve the competitiveness
of the Semantic Web application based on such tools.

The development activities will mainly focus on extend-
ing the Java bindings to the full support of the MPI-3
specification. We will also aim at adding Java language-
specific bindings into the MPI standard, as a reflection of
the Semantic Web value in supercomputing.

The integration activities will concentrate on adapting the
performance analysis tools to the specific of Java applica-
tions. Unfortunately, the existing performance analysis tools,
such as Extrae discussed in the previous section, does not
provide a deep insight in the intrinsic characteristics of the
Java Virtual Machine, which however might be as important

for the application performance optimization as the com-
munication profile tailoring. For this purpose, the traditional
performance analysis tools for the Java applications, such as
ones provided by the Eclipse framework, must be extended
with the communication profiling capabilities. Several EU-
projects, such as JUNIPER, are already working in this
direction.

VIII. CONCLUSION

High Performance Computing is a relatively new trend for
the Semantic Web, which however has gained a tremendous
popularity thanks to the recent advances in developing data-
intensive applications.

The Message Passing Interface provides a very promising
approach for developing parallel data-centric applications.
Unlike its prominent alternatives, the MPI functionality is
delivered on the library-level, and thus does not require any
considerable development efforts to parallelize an existing
serial application. Apart from a very flexible parallelization
strategy, which foresees a number of parallelization options,
either on the code, data, or both levels, but also delivers a
very efficient communication mechanism, which takes full
advantages of the modern supercomputing communication
networks. Using MPI, the Semantic Web applications can
enjoy the full backing of the high performance computing
architectures. We would like to point out, that the current
work is in no case an attempt to undermine the value of
data-centric parallel implementations (like Hadoop), nor it
is a replacement for any current data processing infrastruc-
tures. However many of the current parallel data processing
systems can benefit from adopting MPI and ompiJava offers
a set of good tools for this.

We introduced a new implementation of Java bindings for
MPI that is integrated in one of the most popular open source
MPI-2 libraries - Open MPI. The integration allowed us to
deliver a unique software environment for flexible develop-
ment and execution of parallel MPI applications, integrating
the Open MPI framework’s capabilities, such as portability
and usability, with those of mpiJava, such as an extensive
set of Java-based API for MPI communication. We evaluated
our implementation for Random Indexing, which is one of
the most challenging Semantic Web applications in terms
of the computation demands currently. The evaluation has
confirmed our initial considerations about the high efficiency
of MPI for parallelizing Java applications. In the following,
we are going to investigate further capabilities of MPI for
improving the performance of data-centric applications, in
particular by means of MPI-IO (MPI extension to support
efficient file input-output). We will also concentrate on
promoting the MPI-based parallelization strategy to the other
challenging and performance-demanding applications, such
as Reasoning. We believe that our implementation of Java
bindings of MPI will attract Semantic Web development
community to increase the scale of both its serial and parallel
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applications. The successful pilot application implementa-
tions done based on MPI, such as materialization of the
finite RDFS closure presented in [43], offer a very promising
outlook regarding the future perspectives of MPI in the
Semantic Web domain.
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