
14

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Basic Building Blocks for Column-Stores

Andreas Schmidt∗†, Daniel Kimmig†, and Reimar Hofmann∗
∗ Department of Computer Science and Business Information Systems,

Karlsruhe University of Applied Sciences
Karlsruhe, Germany

Email: {andreas.schmidt, reimar.hofmann}@hs-karlsruhe.de
† Institute for Applied Computer Science

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: {andreas.schmidt, daniel.kimmig}@kit.edu

Abstract—A constantly increasing CPU-memory gap as well
as steady growth of main memory capacities have increased
interest in column store systems due to potential performance
gains within the realm of database solutions. In the past, several
monolithic systems have reached maturity in the commercial and
academic spaces. However, a framework of low-level and modular
components for rapidly building column store based applications
has yet to emerge. A possible field of application is the rapid
development of high-performance components in various data-
intensive areas such as text-retrieval systems and recommenda-
tion systems. The main contribution of this paper is a column-
store-tool-kit, a basic building block of low-level components for
constructing applications based on column store principles. We
present a minimal amount of necessary structural elements and
associated operations required for building applications based on
our column-store-kit. The eligibility of our toolkit is demonstrated
subsequently in using the components of our toolkit for building
different query execution plans. This part of work is a first step
in our effort for the construction of a pure colmun-store based
query optimizer.

Keywords—Column store; basic components; framework; rapid
prototyping; TPC-H benchmark; query-optimizer; query-execution
plan.

I. INTRODUCTION

Within database systems, values of a dataset are usually
stored in a physically connected manner. A row store stores all
column values of each single row consecutively (see Figure 1,
bottom left). In contrast to that, within a column store, all
values of each single column are stored one after another
(see Figure 1, bottom right). In column stores, the relation-
ship between individual column values and their originating
datasets are established via Tuple IDentifiers (TID). The main
advantage of column stores during query processing is the fact
that only data from columns which are of relevance to a query
have to be loaded. To answer the same query in a row store,
all columns of a dataset have to be loaded, despite the fact,
that only a small portion of them are actually of interest to the
processing. On the other side, the column store architecture is
disadvantageous for frequent changes (in particular insertions)
to datasets. As the values are stored by column, they are
distributed at various locations, which leads to a higher number
of required write operations exceeding those within a row store
to perform the same changes. This characteristic makes this
type of storage interesting especially for applications with very

high data volume and few sporadic changes only (preferably
as bulk upload), as it is the case in, e.g., data warehouses,
business intelligence systems or text retrieval systems.

In our previous work [1], we identified the basic building
blocks of our Column Store ToolKit (CSTK) and its interfaces
with respect to providing a toolkit for building column store-
based applications. In this paper, we extend our formulated
ideas with a number of experiments which demonstrate the
suitability of our toolkit with regard to building a query
optimizer for column stores and the general suitability for
scientific questions in the field of column store research.

Interest in column store systems has recently been re-
inforced by steady growth of main memory capacities that
meanwhile allow for main memory-based database solutions
and, additionally, by the constantly increasing CPU-memory
gap [2]. Today’s processors can process data much quicker than
it can be loaded from main memory into the processor cache.
Consequently, modern processors for database applications
spend a major part of their time waiting for the required
data. Column stores and special cache-conscious [3] algorithms
are attempts to avoid this “waste of time”. A number of
commercial and academic column store systems have been
developed in the past. In the research area, MonetDB [4] and
C-Store [5] are widely known. Open Source and commercial
systems include Sybase IQ, Infobright, Vertica, LucidDB, and
Ingres. All these systems are more or less complete database
systems with an SQL interface and a query optimizer.

As column stores are a young field of research, numerous
aspects remain to be examined. For example, separation of
datasets into individual columns result in a series of addi-
tional degrees of freedom when processing a query. Abadi
et al. [6] developed several strategies as to when a result
is to be “materialized”, i.e., at which point in time result
tuples shall be composed. Depending on the type of query
and selectivity of predicates, an early or late materialization
may be reasonable. Interesting studies were published about
compression methods [7], various index types as well as the
execution of join operations, e.g., Radix-Join [2], Invisible
Join [8] or LZ-Join [9]. In addition to that, there are attempts at
creating hybrid approaches that try to combine the advantages
of column and row stores. The main objective of this paper is to
present a number of low-level building blocks for constructing
applications based on column store systems. Instead of copy-

15

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ID Name Firstname date-of-birth sex

31 Waits Tom 1949-12-07 M

45 Benigni Roberto 1952-10-27 M

65 Jarmusch Jim 1953-01-22 M

77 Ryder Winona 1971-10-29 F

81 Rowlands Gena 1930-06-19 F

82 Perez Rosa 1964-09-06 F

Ro
w-
St
or
e Column-Store

31 Waits Tom 1949-12-07 M

31
45 Benigni Roberto 1952-10-27 M

65 Jarmusch Jim 1953-01-22 M

77 Ryder Winona 1971-10-29 F

81 Rowlands Gena 1930-06-19 F

82 Perez Rosa 1964-09-06 F

45

65

77

81

82

Benigni

Jarmusch

Ryder

Rowlands

Perez

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

M

M

F

F

F

 Waits Tom 1949-12-07 M

Roberto

Jim

Winona

Gena

Rosa

Fig. 1. Comparison of the layouts of a row store and a column store

ing the low-level constructs of existing sophisticated column
stores, our research work is focused on identifying components
and operations that allow for building specialized column store
based applications in a rapid prototyping fashion. As our
components can be composed in a “plug and compute”-style,
our contribution is a column-store-tool-kit, which is a building
block for experimental and prototypical setup of applications
within the field of column stores. A possible field of applica-
tion is the rapid development of high-performance components
in various data-intensive areas such as text-retrieval systems.

This paper is structured as follows. In the next section,
related work is mentioned. Then, in Section III, some basic
considerations about column stores will be outlined. After-
wards, in Section IV and V the identified components and
corresponding operations will be explained on a logical level.
On this basis, various implementations of logical components
and operations will be presented in Section VI. Finally, results
will be summarized and an outlook will be given on future
research activities.

II. RELATED WORK

In the field of database systems, there are a number of
related approaches. For example the C++-fastbit-library [10]
provides a number of searching functions based on compressed
bitmap indexes. Beside the low-level bitmap components,
also a SQL interface exists in this library. The approach is
comparable to the bitmap index in some relational database
systems (i.e., Oracle, PostgreSQL). In contrast to these in-
dexes, the fastbit bitmaps are compressed and therefore also
usable for high cardinality attributes. The CSTK described in
this paper can benefit from the compressed bitmap classes
when implementing the PositionLists (see Section IV). Weather
this implementation variant is advantageous depends on a
number of factors. For details see [11]. In the field of query
optimization there are a number of different tools, i.e., the
Volcano project [12], developed by Goetz Graefe. Volcano
is a optimizer generator, which means, that the source code

of the optimizer is generated, based on a model specification
which consists of algebraic expressions. The library itself con-
tains modules for a file-system, buffer management, sorting,
duplicate elimination, B+-trees, aggregation, different join
implementations, set operations, and aggregation functions.
Based on the experiences gained with Volcano, the Cascades
framework [13] was started, which later forms the base for the
SQL Server 7.0 query optimizer [14].

III. COLUMN STORE PRINCIPLES

Nowadays, modern processors utilize one or more cache
hierarchies to accelerate access to main memory. A cache is a
small and fast memory that resides between main memory and
the CPU. In case the CPU requests data from main memory, it
is first checked, whether it already resides within the cache. In
this case, the item is sent directly from the cache to the CPU,
without accessing the much slower main memory. If the item
is not yet in the cache, it is first copied from the main memory
to the cache and then further sent to the CPU. However, not
only the requested data item, but a whole cache line, which
is between 8 and 128 bytes long, is copied into the cache.
This prefetching of data has the advantage, that requests to
subsequent items are much faster, because they already reside
within the cache. Meanwhile, the speed gain when accessing a
dataset in the first-level cache is up to two orders of magnitude
compared to regular main memory access [15]. Column stores
take advantage of this prefetching behavior, because values
of individual columns are physically connected together and,
therefore, often already reside in the cache when requested,
as the execution of complex queries is processed column by
column rather than dataset by dataset. This also means that
the decision whether a dataset fulfills a complex condition is
generally delayed until the last column is processed. Conse-
quently, additional data structures are required to administrate
the status of a dataset in a query. These data structures are
referred to as Position Lists. A PositionList stores the TIDs
of matching datasets. Execution of a complex query generates

16

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a PositionList with entries of the qualified datasets for every
simple predicate. Then, the PositionLists are linked by and/or
semantics. As an example, Figure 2 shows a possible execution
plan for the following query:

select birthday, name
from person
where birthdate < ’1960-01-01’
and sex=’F’

First, the predicates birthdate <’1960-01-01’ and
sex =’F’ must be evaluated against the correponding columns
(birthdate and sex), which results in the PositionLists PL1
and PL2. These two evaluations could also be done in par-
allel. Next, an and-operation must be performed on these
two PositionLists, resulting in the PositionList PL3. As we
are interested in the birthdate and name of the persons that
fulfil the query conditions, we have to perform another two
operations (extract), which finally returns the entries for the
TIDs, specified by the PositionList PL3.

name

Waits
Begnini

Jarmusch

Ryder

Rowlands

Perez

birthdate

1949-12-07

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

sex

 M
 M

 M

 F

 F

 F

PL2

4

6

5

PL1

1

3

5

2

sex=’F’birthdate < ’1960-01-01’

PL3

5

and

name

Rowlands

materializematerialize

birthdate

1930-06-19

 merge

birthdate

1930-06-19

name

Rowlands

Fig. 2. Processing of a query with PositionLists

IV. CONCEPT

The main focus of our components is to model the individ-
ual columns, which can occur both in the secondary store as
well as main memory. Their types of representation may vary.
To store all values of a column, for example, it is not necessary
to explicitly store the TID for each value, because it can be de-
termined by its position (dense storage). To handle the results

of a filter operation however, the TIDs must be stored explicitly
with the value (sparse storage). Another important component
is the PositionList already mentioned in Section III. Just like
columns, two different representation forms are available for
main and secondary storage. To generate results or to handle
intermediate results consisting of attributes of several columns,
data structures are required for storing several values (so-called
multi columns). These may also be used for the development
of hybrid systems as well as for comparing the performance of
row and column store systems. The operations mainly focus
on writing, reading, merging, splitting, sorting, projecting, and
filtering data. Predicates and/or PositionLists are applied as
filtering arguments. Figure 3 illustrates a high level overview
of the most important operations and transformations between
the components. In Section V, they will be described in detail.
Moreover, the components are to be developed for use on both
secondary store and main memory as well as designed for
maximum performance. This particularly implies the use of
cache-conscious algorithms and structures.

V. PRESENTATION OF LOGICAL COMPONENTS

In the following sections, the aforementioned components
will be presented together with their structure and their cor-
responding operations. Section VI will then outline potential
implementations to reach highest possible performance.

A. Structure

1) ColumnFile: The ColumnFile serves to represent a col-
umn on the secondary storage. Supported primitive data types
are: uint, int, char, date und float. Moreover, the composite type
SimpleStruct (see V-A2) is supported, which may consist of
a runtime definable list of the previously mentioned primitive
data types. As a standard, the TID of a value in the ColumnFile
is given implicitly by the position of the value in the file. If
this is not the case, a SimpleStruct is used, which explicitly
contains the TID in the first column.

2) SimpleStruct: SimpleStruct is a dynamic, runtime defin-
able data structure. It is used within ColumnFile as well as
within ColumnArrays (see below). The SimpleStruct plays a
role in the following cases:

• Result of a filter query, in which the TIDs of the
original datasets are also given.

• Combination of results consisting of several columns.

• Setup of hybrid systems having characteristics of both
column and row stores. For example, it may be advan-
tageous to store several attributes in a SimpleStruct
that are frequently requested together.

• Representation of sorted columns, where TIDs are
required. This is particularly reasonable for Join op-
erators or a run-length-encoded compression on their
basis.

3) ColumnArray and MultiColumnArray: A ColumnArray
represents a column in main memory, which consists of a
flexible number of lines. The data types correspond to those of
the previously defined ColumnFile. If the data type is a Sim-
pleStruct, it is referred to as MultiColumnArray. In addition to
the actual column values, the TIDs of the first and last dataset

17

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and/or

 Dense ColumnArray

 ColumnFile

 PositionList

 PositionListFile

 Sparse ColumnArray

load

filter

filter/split/sort/(project)

filter

 load

 store

split/sort/(project)
filter/split/sort

store

store

filter/sort

filter

merge/materialize

sort and/or

Fig. 3. Components and Operations

and the number of datasets stored are given in the header
of the (Multi)ColumnArray. Two types of representations are
distinguished:

• Dense: The type of representation is dense, if no gaps
can be found in the datasets, i.e., if the TIDs are
consecutive. In this case, the TID is given virtually
by the TID of the first data set and the position in the
array and does not have to be stored explicitly (see
Figure 4, left side). This type of representation is par-
ticularly suited for main memory-based applications,
in which all datasets (or a continuous section of them)
are located in main memory.

• Sparse: This type of representation explicitly stores
the TIDs of the datasets (see Figure 4, right). The pri-
mary purpose of a sparse ColumnArray is the storage
of (intermediate) results. As will be outlined in more
detail in Section V, it may be chosen between two
physical implementations depending on the concrete
purpose.

4) ColumnBlocks and MultiColumnBlocks: Apart from the
(Multi)ColumnArrays of flexible size, (Multi)ColumnBlocks
exist, which possess a arbitrary, but fixed size. They are
mainly used to implement ColumnArrays with their flexible
size. In addition, they may be applied in the implementation
of an custom buffer management as a transfer unit between
secondary and main memory and as a unit that can be indexed.

5) PositionList: A PositionList is nothing else than a
ColumnArray with the data type uint(4) as far as structure
is concerned. However, it has a different semantics. The Posi-
tionList stores TIDs. A PositionList is the result of a query via
predicate(s) on a ColumnFile or a (Multi)ColumnArray, where
the actual values are of no interest, but rather the information
about the qualified data sets. Position Lists store the TIDs in
ascending order without duplicates. This makes the typical
and/or operations very fast, as the cost for both operations
is O(|Pl1|+ |Pl2|). As will be outlined in Section VI, various
types of implementations may be applied. Analogously to the
(Multi)ColumnArray, there is a representation of the Position-
List for the secondary store, which is called PositionFile.

StartPos:1024
EndPos :2047

11

21

45

51

89

93

..

StartPos: 1024
EndPos :2047

11

21

45

51

89

93

name sex

name sex

..

StartPos : 1024
EndPos : 2047
Entries : 351

StartPos : 1024
EndPos : 2047
Entries : 351

ColumnArray MultiColumnArray ColumnArray MultiColumnArray

Dense Sparse

Fig. 4. Types of ColumnArrays

B. Operations

1) Transformations on ColumnFiles: Several operations
are defined on ColumnFiles. A filter operation (via predicate
and/or PositionList) can be performed on a ColumnFile and
the result can be written to another ColumnFile (with or
without explicit TIDs). Other operations are the splitting of
a ColumnFile as well as sorting among different criterias (see
Section V-B6) with and without explicitly storing the TID.

2) Transformations between ColumnFile and (Multi)-
Column-Array: ColumnFiles and (Multi)ColumnArrays are
different types of representation of one or more logical
columns. Physically, ColumnFiles are located in the secondary
storage, while ColumnArrays are located in main memory.
Consequently, both types of representations can also be trans-
formed into each other using the corresponding operators.

A ColumnFile can be transformed completely or partially
into a dense (Multi)ColumnArray. If not all, but only certain
datasets that match special predicates or PositionLists are to be
loaded into a (Multi)ColumnArray, this can be achieved using
filter operations that generate a sparse (Multi)ColumnArray.
A sparse (Multi)ColumnArray may also be transformed into
a ColumnFile. In this case, the TIDs are stored explicitly in
combination with the values. Other operations refer to the
insertion of new values and the deletion of values. An outline
of the most important operations of ColumnFiles is given in
Table I.

18

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. OUTLINE OF OPERATIONS ON COLUMNFILES

Operation Result type
read(ColumnFile) ColumnArray (dense)
read(ColumnFile, start, length) ColumnArray (dense)
filter(ColumnFile, predicate) ColumnArray (sparse)
filter(ColumnFile, predicate-list) ColumnArray (sparse)
filter(ColumnFile, positionlist) ColumnArray (sparse)
filter(ColumnFile, positionlist-list) ColumnArray (sparse)
filter(ColumnFile, predicate-list, ColumnArray (sparse)

positionlist-list)
fileFilter(ColumnFile, predicate) ColumnFile (explicit TIDs)
fileFilter(ColumnFile, predicate-list) ColumnFile (explicit TIDs)
fileFilter(ColumnFile, positionlist) ColumnFile (explicit TIDs)
fileFilter(ColumnFile, positionlist-list) ColumnFile (explicit TIDs)
fileFilter(ColumnFile, predicate-list, ColumnFile (explicit TIDs)

positionlist-list)
split(ColumnFile, predicate) ColumnFile, ColumnFile
split(ColumnFile, position) ColumnFile, ColumnFile
merge(ColumnFile-list, predicate-list) MultiColumnArray (sparse),
sort(ColumnFile, column(s), direction) ColumnFile
sort(ColumnFile, Orderlist) ColumnFile
mapSort(ColumnFile) ColumnFile, Orderlist
mapSort(ColumnFile) ColumnArray, Orderlist
insert(ColumnFile, value) Tupel-ID
insert(MultiColumnFile, value1, . . .) Tupel-ID
delete(ColumnFile, Tupel-ID) boolean
delete(ColumnFile, Positionlist) integer
delete(ColumnFile, predicate) integer
delete(ColumnFile, predicate-list) integer

3) Operations on ColumnArrays: Filter operations can
be executed on (Multi)ColumnArrays using predicates and/or
PositionLists. This may result in a sparse (Multi)ColumnArray
or a PositionList. Furthermore, ColumnArrays may also
be linked with each other by and/or semantics. If the
(Multi)ColumnArrays have the same structure, the result also
possesses this structure. The results correspond to the in-
tersection or union of the original datasets. The result is a
sparse (Multi)ColumnArray. If (Multi)ColumnArrays of dif-
fering structure are to be combined, only the and operation
is defined. The result is a (Multi)ColumnArray that contains
a union of all columns of the involved (Multi)ColumnArrays
and returns the values for the datasets having identical TIDs.
If the (Multi)ColumnArrays used as input are dense and if they
have the same TID interval, the resulting MultiColumnArray
is also dense. An outline of the most important operations of
ColumnArrays is given in Table II. ColumnArray may also
refer to a MultiColumnArray. A MultiColumnArray, however,
only refers to the version having several columns.

4) Transformation from PositionList to ColumnArray: If
the column values of the stored TIDs inside a PositionList
are needed, an extract operation must be performed. Input
to this operation is a PositionList as well as a dense (multi)
ColumnArray. The result is a sparse (Multi) ColumnArray.

5) Operations between PositionLists: Several PositionLists
may be combined by and, or semantics, with the result
being a PositionList. The result list is sorted in ascending
order corresponding to the TIDs. In addition, operations exist
to load and store PositionLists. An outline of operations of
PositionLists can be found in Table III.

6) Sorting: One basic operation on (Multi) ColumnArrays
as well as ColumnFiles is sorting. Beside the obvious task to
bring the result of a query in a specific order, sorting also
plays an important role regarding performance considerations.
For the elimination of duplicates, for join operations and for
compression using run-length encoding, previous sorting can

TABLE II. OUTLINE OF OPERATIONS ON ColumnArrays

Operation Result type
filter(ColumnArray, predicate) ColumnArray (sparse)
filter(ColumnArray, predicate-list) ColumnArray (sparse)
filter(ColumnArray, positionlist) ColumnArray (sparse)
filter(ColumnArray, positionlist-list) ColumnArray (sparse)
filter(ColumnArray, predicate-list, ColumnArray (sparse)

positionlist-list)
filter(ColumnArray, predicate) PositionList
filter(ColumnArray, predicate-list) PositionList
filter(ColumnArray, positionlist) PositionList
filter(ColumnArray, positionlist-list) PositionList
filter(ColumnArray, predicate-list, PositionList

positionlist-list)
and(ColumnArray, ColumnArray) ColumnArray
or(ColumnArray, ColumnArray) ColumnArray
and(ColumnArray, ColumnArray) PositionList
or(ColumnArray, ColumnArray) PositionList
project(MultiColumnArray, columns) (Multi)ColumnArray
asPositionList(ColumnArray, column) PositionList
split(ColumnArray, predicate) ColumnArray (sparse)

ColumnArray (sparse)
sort(ColumnArray) ColumnArray
sort(ColumnArray, Orderlist) ColumnArray
mapSort(ColumnArray) ColumnArray, Orderlist
split(ColumnArray(dense), position) ColumnArray (dense)

ColumnArray (dense)
split(ColumnArray (sparse), position) ColumnArray (sparse)

ColumnArray (sparse)
merge(ColumnArray-list (sparse), predicate-list) MultiColumnArray (sparse)
store(ColumnArray (dense)) ColumnFile
store(ColumnArray (sparse)) ColumnFile (explicit TIDs)

TABLE III. OUTLINE OF OPERATIONS ON PositionListS

Operation Result type
load(ColumnFile) PositionList
store(PositionList) ColumnFile
and(PositionList, PositionList) PositionList
or(PositionList, PositionList) PositionList
materialize(PositionList, ColumnArray,
. . .)

ColumnArray

materialize(PositionList, ColumnFile,
. . .)

ColumnArray

read(PositionListFile) PositionList
store(PositionList) PositionListFile

dramatically improve performance. As a consequence of sort-
ing, the natural order is lost. This is critical for dense columns
with implicit TIDs, because the relation to the other column
values is lost. The problem can be solved by an additional data
structure, similar to a PositionList that contains the mapping
information to the original order of the datasets. Figure 5 gives
an example of this situation. The Multi ColumnArray on the
left side is to be sorted according to the column “name”.
Additionally to the sorting of the MultiColumn (top right), a
list is generated which holds the information about the original
positions (down right). The list can then be reused by applying
it as a sorting criterion to other columns later, as shown in
Figure 6.

7) Compression: Compression plays an important role in
column stores [7], as it reduces the data volume that needs to
be loaded. Nevertheless, we decided not to include compres-
sion in the first prototype and to concentrate on the interfaces
of the components. To a certain extent, this constraint can be
compensated by the use of dictionary-based compression [16],
which will be implemented above the basic components. In
later versions, various compression methods will be integrated,
so first of all run-length encoding (RLE) [17].

19

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

StartPos: 1024
EndPos : 1029

name sex

Waits M

Begnini M

Jarmusch M

Ryder F

Rowlands F

Perez F

1024

1025

1026

1027

1028

1029

sort(name)

StartPos: 1024
EndPos : 1029

name sex

Waits M
Begnini M

Jarmusch M

Ryder F

Rowlands F

Perez F

Fig. 5. Sorting with explicit generation of an additional mapping list

StartPos: 1024
EndPos : 1029

birthdate

1949-12-07

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

1024

1025

1026

1027

1028

1029

sort()

StartPos: 1024
EndPos : 1029

birthdate

1949-12-07

1952-10-27

1953-01-22

1971-10-29

1930-06-19

1964-09-06

Fig. 6. Sorting with explicit given sort-order

VI. IMPLEMENTATION-SPECIFIC CONSIDERATIONS

After presenting the logical structure and the required
operations, this section will now focus on considerations for
achieving a performance-oriented implementation. Due to the
constantly increasing CPU-memory gap, cache-conscious pro-
gramming is indispensable. For this reason, the implementation
was made in C/C++. All time-critical parts were implemented
in pure C using pointer arithmetics. The uncritical parts
were implemented using C++ classes. The ColumnBlock was
established as a basic component of the implementation. It is
the basic unit for data storage. Its size is defined at creation
time and it contains the actual data as well as information on
its structure and the number of datasets. The structurization
options correspond to those of the (Multi)ColumnArray. The
ColumnBlock also handles all queries by predicates and/or
PositionLists. A (Multi)ColumnArray consists of n Column-
Block instances. All operations on a (Multi)ColumnArray are
transferred to the underlying ColumnBlocks.

PositionLists play a central role in column store applica-
tions. One important point is the size of a PositionList. If the
PositionLists are short (i.e., if they contain a few TIDs only),
representation as ColumnArray is ideal. Four bytes are required
per selected entry. If the lists are very large, however, memory
of 400 MB is required for ten million entries, for instance.
In this case, a bit vector is recommended for representation.
This bit vector uses for each dataset a bit at a fixed position
to indicate whether a dataset belongs to the set of results or
not. If, for example, 10 million data sets exist for a table,
only 1.25 MB are required to represent the PositionList for

certain selectivities. Moreover, the two important operations
and and or can be mapped on the respective primitive proces-
sor commands, which makes the operations extremely fast. If
PositionLists are sparse, bit vectors can be compressed very
well using run-length encoding (RLE) (e.g., to a few KB
in case of 0.1% selectivity). The necessary operations can
be performed very efficiently on the compressed lists, which
further increases the performance. An implementation based
on the word-aligned hybrid algorithm [18] with satisfactory
compression for medium-sparse representations was developed
within the framework of the activities reported here [19], [20].

Figure 7 gives an overview of the memory consumption for
different implementations of a PositionList. Here, we compare
the behavior of a dynamic array containing 4-byte TIDs with
a plain uncompressed bitvector and different implementa-
tions (32, 64 bit) of the Word Aligned Hybrid (WAH) algo-
rithm [18], both compressed and uncompressed. As we can see
in the figure, the behavior of the dynamic array implementation
is quite good for very small selectivities, but changes for the
worse for medium and high densities. Uncompressed bitmaps
(plain bitvector or WAH uncompressed) behave independently
for all densities. Their size is determined by the number
of tuples in a table only. Compressed bitmaps show a very
good behavior for all densities. If selectivities become low,
they behave like uncompressed bitmaps (compared to a pure
uncompressed implementation of a bitvector, there will be a
slight overhead of 1/32. resp. 1/64.). From a selectivity of
about 3%, the array has a higher memory consumption than
the uncompressed bitvector. Beside the memory consumption,
also the runtime behavior of the different implementation
variants plays a very important role. In [21], an elaborate
analysis of the memory consumption and runtime behavior of
different implementation variants (array, bitvector, compressed
bitvector) for positionlists can be found. The bottom line of
this paper is that the choice of the right implementation variant
is not a trivial task and depends heavily on the selectivity of
the predicates. The differences in the runtime behavior are over
two orders of magnitude for typical PositionList operations.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 0.5

m
em

or
y

(b
yt

es
)

density (selectivity)

Plain Bitvector, 64 bit
WAH-Bitvector, compressed, 32 bit

WAH-Bitvector, uncompressed, 32-bit
WAH-Bitvector, compressed, 64 bit

WAH-Bitvector, uncompressed, 64-bit
dynamic array

Fig. 7. Comparison of the memory consumption for different implementation
variants of PositionLists

MultiColumnArrays may exist in two different physical
layouts. In the first version, the n values are written in a
physically successive manner and correspond to the classical
n-ary storage model (NSM). This type of representation is

20

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

particularly suited, if further queries are to be performed
on this MultiColumnArray with predicates on the respective
attributes. The individual values of a dataset are stored together
in the cache and all attribute values are checked simultaneously
rather than successively with the help of additional Position-
Lists (see Figure 8, left). The second type of representation
corresponds to the PAX format [22]. Here, every column is
stored in a separate ColumnArray. In addition, a PositionList
is stored, which identifies the datasets (see Figure 8, right).
This type of representation is recommended, for instance, for
collecting values for subsequent aggregation functions. Several
(Multi)ColumnArrays may share a single PositionList.

11

21

45

51

89

93

name sex

...

StartPos:1024
EndPos :2047
Entries: 351

StartPos:1024
EndPos :2047

13

17

18

28

33

41

...

67

43

Entries: 351
PositionList:
Column[name]:
Column[sex]:
...

Fig. 8. Comparison of storage formats for ColumnArrays

VII. USE CASES

In this section, we want to deal with the usage of the
CSTK-components. We will present the general mechanism for
building complex queries from the components, demonstrate
the suitability of our components for scientific questions in the
field of column store research and present an execution plan
and the runtime behavior for a typical data warehouse query
from the TPC-H [23] benchmark. The aim of this experiment is
to gain further insight into the costs of the different operations
and to derive rules for a query optimizer for column stores [24].

A. Usability of the Components

1) Materialization: In [6], Abadi et al. propose different
strategies to construct the final result sets from the interme-
diate PositionLists. This step is called “materialization”. One
strategy is to keep the PositionList values as long as possible
and to only materialize the attribute values in a very last
step. This is called “late materialization”. On the other hand,
“early materialization” means that the values should already
be extracted in every selection step. The quintessence of the
paper is that the superiority of any strategy depends on the
characteristic of the query.

In the paper, Abadi et al. identified four different datasource
operators (DS1, .., DS4) from which data could be read from
disk or main memory. Additionally, they identified the AND
operator for PositionLists and two more tuple construction
operators, MERGE and SPC (Scan, Predicate, and Construct)
for the construction of result tuples.

Based on these operators, they formed different query plans
to implement early and late materialization strategies. Figure 9
shows the different execution plans for the following query,
implementing an early materialization strategy (a, b) or a late
materialization strategy (c, d).

SELECT l_shipdate, l_linenum
FROM lineitem

WHERE l_shipdate < C1
AND l_linenum < C2

DS 2

DS 4

Shipdate

Linenum

Predicate

Predicate

{(Val1, Val2)}

{(Pos, Val2)}

{Val2}

{Val1}

Shipdate Linenum

{Val2}{Val1}

SPC

Predicate

{(Val1, Val2)}

DS 1 DS 1

PredicatePredicate

Shipdate

{Val1}

Linenum

{Val2}

AND

{Pos}

DS 3 DS 3

MERGE

{(Val1, Val2)}

Shipdate

{Val1}

Linenum

{Val2}

DS 1

DS 3

DS 1

DS 3 DS 3

MERGE

{(Val1, Val2)}

{Pos}

{Val1} {Val2}

{Pos}

{Val2}

{Pos}

{Val1} {Val2}

(a) (b)

(c) (d)

Predicate

Predicate

Fig. 9. Different query-plans from [6]

Using the components from the CSTK, these query plans
can easily be rebuilt, using the operations from Tables I, II,
and III. This is shown in Figure 10. In contrast to the original
execution plans, which do not distinguish between file and
main memory representation in each case, this is done with
the execution plans built with the CSTK.

2) Complex Queries: In the following, a step-by-step
explanation of a join operation is performed based on an
example. The underlying dataset is from TPC-H benchmark
(lineitem and partkey table).

The SQL query is the following:

SELECT p_name, l_quantity
FROM part
JOIN lineitem

ON p_partkey = l_partkey
WHERE l_orderkey = 34

Figure 11 shows the corresponding operations on the
required columns. First, the WHERE-clause on the l_orderkey
column is executed (1) to get the corresponding TIDs (l_TID)
from the lineitem table. The extracted TIDs (5,6,7) are then
used to read the corresponding values (883, 894, 169) from
the l_partkey column of the lineitem table (2). Next, the
(l_TID, l_partkey tuples are sorted based on their l_partkey

21

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

lineitem_

lineitem_

Predicate:

Predicate:

lineitem_
lineitem_

Predicate:

Predicate:

merge

lineitem_ lineitem_

Predicate:

Predicate:

AND

lineitem_

lineitem_

Predicate:

Predicate:

MERGE

(a)

(b)

(c)

(d)

l_linenum < C2

l_shipdate < C1

l_linenum < C2

l_shipdate < C1

l_linenum < C2

l_shipdate < C1

l_linenum < C2

l_shipdate < C1

linenum_file

shipdate_file

shipdate_file
linenum_file

shipdate_file linenum_file

shipdate_file

linenum_file

Fig. 10. Different materialization strategies from [6] using the CSTK
components

values (3). The resorted tuples can then be merged with the
sorted p_partkey column of the partkey table (5), which has
to be sorted priorly (4) and enriched with the p_TID column,
which was implicitly given by the position of the values in the
unsorted p_partkey column.

The result of the merge operation are tuples of the form
(l_TID, p_TID). They represent the result of the join operation

predicate

sort

sort

1 2

4

6

5

3

Fig. 11. Join-Operation with the Column-Store-Tool-Kit

between the lineitem and partkey table on the partkey column.
In the last step, the materialization (6) takes place. The l_TID
and p_TID values are replaced by their corresponding values
from the p_name and p_quantity columns.

After demonstration of a CSTK-Join on a concrete ex-
ample, the principle data flows, based on the operations on
Tables I, II, and III are shown. Figure 12 shows an execution
plan performing the following SQL query:

SELECT *
FROM orders o
JOIN lineitem l

ON l_orderkey=o_orderkey

In the current execution plan, a sort-merge join is per-
formed. As a first step, the entries in the two column files
orders_orderkey_file and lineitem_orderkey_file must be sorted
(remember: in the files, the TIDs are implicit given by the

22

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

position of the values in the file). This is done with the
mapSort-operation. The mapSort operation sorts the column
values and provides an additional data structure pl_o and pl_l,
which contains the TIDs for each sorted value. The structure
is similar to a PositionList, but the TIDs are no longer sorted.

After the preparatory sorting step, the values in the columns
are compared position by position (operation cmp). For each
matching value from the two columns, the corresponding
entries in the previously generated PositionList pl_o and pl_l
are taken and written into the joined PositionList (pl_o’,pl_l’).
In a final step (not shown in Figure 12), the joined PositionList
is materialized.

orders_orderkey_file

mapSort

lineitem_orderkey_file

mapSort

cmp

Column Files
(implicit position ID)

resort order

sorted column

joined position list

pl_o pl_l

(pl_o’, pl_l’)

Fig. 12. Join-Operation with the Column-Store-Tool-Kit

An additional WHERE clause (see below) leads to the
execution plan in Figure 13.

SELECT *
FROM orders o
JOIN lineitem l

ON l_orderkey=o_orderkey
WHERE o_orderdate= ’1992-01-13’

The evaluation of the condition on the or-
ders_orderdate_file generates a PositionList (pl_o), which
acts as a filter criterion for the orders_orderkey_file. After
filtering, the PositionList also represents the TIDs for the
orders_orderkey column. In the subsequent mapSort operation,
the orders_orderkey column is resorted along its values and
the corresponding TIDs in the PositionList pl_o get resorted,
respectively (pl_o’). The rest of the join operation is similar
to that already described in Figure 12.

B. Performance Tests

To complete our case study concerning our toolkit, we
present a more complex query from the TPC-H repository
(Query 3). We model an execution plan using our components
and run some performance tests, which we compare with
MySQL and Infobright.

The SQL query we use is the following:

orders_orderdate_file

mapSort

lineitem_orderkey_file

mapSort

cmp

(o_orderdate =’1992-01-13’)

(pl_o’’, pl_l’)

pl_l

pl_o

pl_o’

orders_orderkey_file

Fig. 13. Join-Operation with the Column-Store-Tool-Kit

select l_orderkey,
sum(l_extendedprice*(1-l_discount))

as revenue,
o_orderdate,
o_shippriority

from customer,
orders,
lineitem

where c_mktsegment = ’BUILDING’
and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < date ’1995-03-15’
and l_shipdate > date ’1995-03-15’

group by l_orderkey,
o_orderdate,
o_shippriority

order by revenue desc,
o_orderdate

A possible corresponding execution plan for this query
using late materialization is shown in Figure 14. Beside the
used operations and the intermediate results. shown. The input
consists of about 6 million lineitem tuples, 727 thousand orders
and over 30 thousand customers from the TPC-H benchmark
dataset. The machine settings are the following: Intel R⃝ CoreTM

i7-3520M CPU, 2.9 GHz processor with 2 physical cores,
8 GB main memory, running Windows 7 Enterprise, 64 bit.
The cache sizes are: First level cache: 128KB, second-level
cache: 512KB, third-level cache: 4MB.

The operation mainly consists of a join over the three tables
and a subsequent grouping according to three columns. The
overall execution time is about 1.107 sec. About 20% of the
overall time is spent reading the needed columns from file and
performing the selections based on predicates or PositionLists.
The most expensive operations are the mapSort-operations,
which take about 25% of the execution time. The subsequent
sorting of the corresponding PositionLists takes another 15%.

23

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

materialize

o_shippriority_file

l_extendeprice_file

o_orderdate_file

l_discount_file

l_orderkey_file

1

1

1

2

2

group

o_orderdate_file

o_custkey_file

o_custkey_col

o_custkey_col’

mapSort

pl_o

sortMap

cmp

sort

o_orderkey_file

o_orderkey_col

mapSort

sort

l_shipdate_file

l_orderkey_file

l_orderkey_col

pl_l

l_corderkey_col’

mapSort

sort

cmp

c_mktsegment_file

c_custkey_file

c_custkey_col

mapSort

pl_c

sort

sortMap

sort

Fig. 14. TPC-H Query 3, execution plan and time behavior with CSTK
components

Currently, we use a standard quicksort implementation without
any optimizations. By exchanging the sorting algorithm with a
more sophisticated version, we expect a further improvement
of the runtime behavior. After sorting of the columns, we
can use a merge-join implementation, which performs its task
in about 0.03 seconds for an input cardinality of over 3.2
million tuples (lineitem datasets) and 727 thousand tuples
(order datasets).

About one third of the complete execution time is spent
accessing files on disk. Using a main-memory implementation
could further reduce the overall execution time significantly.
In comparison, the execution time of the same query using
MySQL (with indexes on all foreign keys as well as on the
columns which are predicated) takes about 116 seconds (cold
start) with empty cache and about 13 seconds for repeated
executions. Infobright [25], a column store-based version of
MySQL, takes about 3 seconds to execute the query.

VIII. CONCLUSION

This paper presented a collection of basic components to
build column store applications. The components are semanti-

cally located below those of the existing column store database
implementations and are suited for building experimental (dis-
tributed) systems in the field of column store databases.

As a proof of concept, we used these components to
retrace the materialization experiments carried out by Abadi
et al. [6]. Additionally, we show that typical operations like
joining tables and grouping results can be carried out. Finally,
we construct an execution plan from the TPC-H benchmark
and point out that the performance is quite good, compared
to existing column store databases. It is planned to use these
components to obtain further scientific findings in the area of
column stores and to develop data-intensive applications.

IX. FUTURE WORK

A first version of the column store tool kit is available
without support for compression. The next steps planned are
the integration of compression and the use in concrete areas,
such as text retrieval systems. A future activity will be the
implementation of a scripting language interface for the com-
ponents. With the help of this interface, it will be possible to
assemble the developed components more easily without losing
the performance of the underlying C/C++ implementation.
In this case, the scripting language act as glue between the
components, allowing the developer to build up complex high
performance applications with very little effort [26]. As an al-
ternative, a custom domain-specific language (DSL) [27] may
be used for building column store applications. A bachelor’s
thesis [28] focused on the extent to which various degrees of
flexibility regarding the structure of MultiColumnArrays and
expression of the predicates affect the performance. According
to the thesis, the structural definition at compilation time is
of significant advantage compared to the structural definition
at runtime. If the implemented flexibility of the SimpleStruct
is not required at runtime, an alternative implementation may
be used. It may be realized by defining a language extension
for C/C++, for example. Thus, the respective structures and
operations can be defined using a simple syntax. With a
number of macros of the C++ preprocessor or a separate inline
code expander [29], these could then be transformed into valid
C/C++ code.

REFERENCES

[1] A. Schmidt and D. Kimmig, “Basic components for building column
store-based applications,” in DBKDA’12: Procceedings of the The Forth
International Conference on Advances in Databases, Knowledge, and
Data Applications. iaria, 2012, pp. 140–146.

[2] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing database ar-
chitecture for the new bottleneck: memory access,” The VLDB Journal,
vol. 9, no. 3, pp. 231–246, 2000.

[3] T. M. Chilimbi, B. Davidson, and J. R. Larus, “Cache-conscious
structure definition,” in PLDI ’99: Proceedings of the ACM SIGPLAN
1999 conference on Programming language design and implementation.
New York, NY, USA: ACM, 1999, pp. 13–24.

[4] P. A. Boncz, M. L. Kersten, and S. Manegold, “Breaking the memory
wall in monetdb,” Commun. ACM, vol. 51, no. 12, pp. 77–85, 2008.

[5] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack,
M. Ferreira, E. Lau, A. Lin, S. Madden, E. O’Neil, P. O’Neil, A. Rasin,
N. Tran, and S. Zdonik, “C-store: a column-oriented dbms,” in VLDB
’05: Proceedings of the 31st international conference on Very large
data bases. VLDB Endowment, 2005, pp. 553–564.

[6] D. J. Abadi, D. S. Myers, D. J. Dewitt, and S. R. Madden, “Materi-
alization strategies in a column-oriented dbms,” in In Proc. of ICDE,
2007.

24

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] D. J. Abadi, S. R. Madden, and M. Ferreira, “Integrating compression
and execution in column-oriented database systems,” in SIGMOD,
Chicago, IL, USA, 2006, pp. 671–682.

[8] D. J. Abadi, S. R. Madden, and N. Hachem, “Column-stores vs. row-
stores: How different are they really,” in In SIGMOD, 2008.

[9] L. Gan, R. Li, Y. Jia, and X. Jin, “Join directly on heavy-weight
compressed data in column-oriented database,” in WAIM, 2010, pp.
357–362.

[10] K. Wu, “Fastbit reference manual,” Scientific Data Management
Lawrence Berkeley National Lab, Tech. Rep. LBNL/PUB-3192, august
2007. [Online]. Available: http://lbl.gov/%7Ekwu/ps/PUB-3192.pdf

[11] A. Schmidt and D. Kimmig, “Considerations about implementation
variants for position lists,” in DBKDA’13: Procceedings of the The Fifth
International Conference on Advances in Databases, Knowledge, and
Data Applications. iaria, 2013, pp. 108–115.

[12] G. Graefe and W. J. McKenna, “The volcano optimizer generator:
Extensibility and efficient search,” in Proceedings of the Ninth Inter-
national Conference on Data Engineering, April 19-23, 1993, Vienna,
Austria. IEEE Computer Society, 1993, pp. 209–218.

[13] G. Graefe, “The cascades framework for query optimization,” IEEE
Data Eng. Bull., vol. 18, no. 3, pp. 19–29, 1995.

[14] B. Nevarez, Inside the SQL Server Query Optimizer. United Kingdom:
Red gate books, 2011.

[15] P. A. Boncz, M. Zukowski, and N. Nes, “Monetdb/x100: Hyper-
pipelining query execution,” in CIDR, 2005, pp. 225–237.

[16] C. Binnig, S. Hildenbrand, and F. Färber, “Dictionary-based order-
preserving string compression for main memory column stores,” in SIG-
MOD ’09: Proceedings of the 35th SIGMOD international conference
on Management of data. New York, NY, USA: ACM, 2009, pp. 283–
296.

[17] S. Smith, The scientist and engineer&s guide to digital signal process-
ing. California Technical Publishing, 1997.

[18] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap indices with
efficient compression,” ACM Trans. Database Syst., vol. 31, no. 1, pp.
1–38, 2006.

[19] A. Schmidt and M. Beine, “A concept for a compression scheme of
medium-sparse bitmaps,” in DBKDA’11: Procceedings of the The Third
International Conference on Advances in Databases, Knowledge, and
Data Applications. iaria, 2011, pp. 192–195.

[20] M. Beine, “Implementation and Evaluation of an Efficient Compression
Method for Medium-Sparse Bitmap Indexes,” Bachelor Thesis, De-
partment of Informatics and Business Information Systems, Karlsruhe
University of Applied Sciences, Karlsruhe, Germany, 2011.

[21] A. Schmidt and D. Kimmig, “Considerations about implementation
variants for position-lists,” in DBKDA’13: Proceedings of the Fifth
International Conference on Advances in Databases, Knowledge, and
Data Applications, 2013.

[22] A. Ailamaki, D. J. DeWitt, and M. D. Hill, “Data page layouts for
relational databases on deep memory hierarchies,” The VLDB Journal,
vol. 11, no. 3, pp. 198–215, 2002.

[23] “TPC Benchmark H Standard Specification, Revision 2.1.0,” Transac-
tion Processing Performance Council, Tech. Rep., 2002.

[24] A. Schmidt, D. Kimmig, and R. Hofmann, “A first step towards a
query optimizer for column-stores,” Poster presentation at the Forth
International Conference on Advances in Databases, Knowledge, and
Data Applications, DBKDA’12, Saint Gilles, Reunion, 2012.

[25] D. Ślezak and V. Eastwood, “Data warehouse technology by infobright,”
in Proceedings of the 2009 ACM SIGMOD International Conference on
Management of data, ser. SIGMOD ’09. New York, NY, USA: ACM,
2009, pp. 841–846.

[26] J. K. Ousterhout, “Scripting: Higher-Level Programming for the 21st
Century,” IEEE Computer, vol. 31, no. 3, pp. 23–30, 1998.

[27] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, pp.
316–344, 2005.

[28] M. Herda, “Entwicklung eines Baukastens zur Erstellung von Column-
Store basierten Anwendungen Bachelor’s thesis, Department of Infor-
matics, Heilbronn University of Applied Sciences, Germany,” Jun. 2011.

[29] J. Herrington, Code Generation in Action. Greenwich, CT, USA:
Manning Publications Co., 2003.

