
196

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Enhancing the Performance of J2EE Applications through Entity Consolidation

Design Patterns

Reinhard Klemm

Collaborative Applications Research Department

Avaya Labs Research

Basking Ridge, New Jersey, U.S.A.

klemm@research.avayalabs.com

Abstract— J2EE is a specification of services and interfaces

that support the design and implementation of Java server

applications. Persistent and transacted entity Enterprise

JavaBean objects are important components in J2EE

applications. The persistence and transaction semantics of

entity Enterprise JavaBeans, however, lead to a sometimes

significantly decreased performance relative to traditional

Java objects. From an application performance point of view, a

J2EE-compliant object persistence and transaction mechanism

with a lower performance penalty would be highly desirable.

In this article, we present and evaluate two J2EE software

design patterns aimed at enhancing the performance of entity

Enterprise JavaBeans in J2EE applications with large

numbers of JavaBean instances. Both design patterns

consolidate multiple real-world entities of the same type, such

as users and communication sessions, into a single consolidated

entity Enterprise JavaBean. The entity consolidation results in

a smaller number of entity JavaBean instances in a given J2EE

application, thereby increasing JavaBean cache hit rates and

database search performance. We present detailed

experimental assessments of performance gains due to entity

consolidation and show that consolidated Enterprise

JavaBeans can accelerate common JavaBean operations in

large-data J2EE applications by factors of more than 2.

Keywords-Enterprise Java Beans; object caching; object

consolidation; software design patterns; software performance

I. INTRODUCTION

In this article, we extend our earlier work on
performance-enhancing J2EE software design patterns
published in [1]. To make the article self-contained and thus
easier to read, we include a comprehensive description of the
research presented in [1]. The focus of our work is entity
Enterprise JavaBeans (EJBs) [2]. Entity EJB objects take
advantage of a plethora of platform services from EJB
containers in J2EE application servers [3]. Examples of
platform services are data persistence, object caching and
pooling, object lifecycle management, database connection
pooling, transaction semantics and concurrency control,
entity relationship management, security, and clustering. EJB
containers obviate the need for redeveloping such generic
functionality for each application and thus allow developers
to more quickly build complex and robust server-side
applications.

A common and important component in J2EE application
servers is an in-memory EJB cache that speeds up access to
entity EJBs in an application’s working set [4]. Yet, common
entity EJB operations such as creating, accessing, modifying,

and removing entity EJBs tend to execute much more slowly
than analogous operations for traditional Java objects (J2SE
objects, also often referred to as Plain Old Java Objects or
simply POJOs) that do not implement the functional
equivalent of the J2EE platform services. The performance
of data-intensive J2EE applications, i. e., those with large
numbers of entity EJBs, can therefore be much slower than
desired.

Although not mandated by the EJB specification, entity
EJBs are typically stored as rows in relational database tables
and we will assume this type of storage in the remainder of
this article. Furthermore, we will concentrate on entity EJBs
with container-managed persistence (CMP) rather than bean-
managed persistence (BMP). CMP entity EJBs have the
advantage of receiving more platform assistance than BMP
entity EJBs and are thus usually preferable from a software
engineering point of view. They also tend to perform better
than BMP entity EJBs because of extensive application-
independent performance optimizations that EJB containers
incorporate for CMP EJBs [5]. For the sake of simplicity, we
will refer to CMP entity EJBs simply as “EJBs”.

Note that the mapping from EJBs to database tables and
the data transfer between cached EJBs and the database is the
responsibility of the proprietary J2EE platform and can
therefore be only minimally influenced by the EJB
developer. Hence, we cannot discuss the direct impact of the
design patterns presented in this article on structural or
operational details of the data persistence layer of the J2EE
platform. Instead, we will discuss how our technique
changes the characteristics of the EJB layer that is under the
control of the EJB developer and show how these changes
affect the overall performance of EJB operations.

In the past, much research into improving J2EE
application performance has focused on tuning the
configuration of EJBs and of the EJB operating environment
consisting of J2EE application servers, databases, Web
servers, and hardware. In addition, some software
engineering methods such as software design patterns and
coding guidelines have been developed to address
performance issues with J2EE applications. This article
presents two J2EE software design patterns for accelerating
J2EE applications. Both patterns result in specialized EJBs
that we call consolidated EJBs (CEJBs). By applying the
first pattern, we obtain fixed-size consolidated EJBs
(fCEJBs). Fixed-size CEJBs are the topic of our earlier work
published in [1]. The second, new pattern generates variable-
size consolidated EJBs (vCEJBs). Both CEJB patterns
attempt to optimize the caching and database storage of EJBs

197

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for enhanced execution speed of common EJB operations
(creating, accessing, modifying, and removing entities).

We devised these two software design patterns during a
multiyear research project at Avaya Labs Research where we
developed a J2EE-based context aware communications
middleware called Mercury. Mercury operates on a large
number of EJB instances that represent enterprise users and
communication sessions (hence our User and Session EJB
examples later in this article). Due to the large frequency of
retrieval, query, and update operations on these EJBs,
Mercury suffered from slow performance even after tuning
J2EE application server and database settings. Thus, we felt
compelled to investigate structural changes to Mercury’s
J2EE implementation as a remedy for the performance
problems and arrived at the CEJB design patterns. The
technical discussion in this article will show that our design
patterns are more generally applicable in a wide range of
J2EE applications.

The J2EE and entity Enterprise JavaBeans specifications
that we refer to in this article have meanwhile been
supplanted by updated standards and with a new
terminology: The J2EE 1.4 specification has been replaced
with Java EE 6 [6], and the entity EJBs in the Enterprise
JavaBeans specification 2.1 have been replaced with entities
according to the Java Persistence API 2.0 [7]. The software
design patterns in this article remain equally relevant in the
context of the new specifications and require mostly
syntactic changes.

The remainder of this article is organized as follows. In
Section II, we describe some of the related work. Section III
contains an overview of the key idea behind both CEJB
software design patterns. Section IV presents the fCEJB
pattern and its use in J2EE applications. We describe the
details of fCEJB allocation, the mapping of entities to
fCEJBs, the storage of entities within fCEJBs, and retrieval
of entities from fCEJBs. Similarly, Section V contains a
detailed explanation of the vCEJB pattern. We compare the
performance of fCEJBs, vCEJBs, and traditional EJBs in
Section VI. A summary and an outline of future work
conclude the article in Section VII.

II. RELATED WORK

The performance penalty of using EJBs in J2EE
applications has been well documented in the relevant
literature, some of which we review in this section. A
substantial number of articles present various remedies for
this performance penalty, ranging from performance-tuning
of application servers to alternative object persistence
mechanisms to performance-enhancing EJB software design
patterns. However, to our knowledge, our CEJBs are the first
application-level approach that yields verified, substantial
performance improvements in a wide range of J2EE
applications where alternatives to EJBs are not acceptable,
practical, or desirable. In our earlier research presented in [1]
we introduced fCEJBs as a performance-enhancing J2EE
software design pattern. However, in the presence of entities
that do not have the cluster property that we describe in
Section IV, fCEJBs perform no better than traditional EJBs.

Our new vCEJB design pattern aims at addressing this
shortcoming of fCEJBs.

Much research has been devoted to speeding up J2EE
applications by tuning EJBs and J2EE application server
parameters. Pugh and Spacco [8] and Raghavachari et al. [9]
discuss the potentially large performance impact and
difficulties of tuning J2EE application servers, connected
software systems such as databases, and the underlying
hardware. In contrast, CEJBs constitute an application-level
technique to attain additional J2EE application speed-ups.

The MTE project [10][11] offers more insight into the
relationship between J2EE application server parameters,
application structure, and application deployment parameters
on the one hand and performance on the other hand. The
MTE project underscores the sensitivity of J2EE application
performance to application server parameters as well as to
the application structure and deployment parameters.

Another large body of research into J2EE application
performance has investigated the relationship between J2EE
software design patterns and performance. Cecchet et al. [12]
study the impact of the internal structure of a J2EE
application on its performance. Many examples of J2EE
design patterns such as the session façade EJB pattern can be
found in [13] and [14], while Cecchet et al. [15] and Rudzki
[16] discuss performance implications of selected J2EE
design patterns. The CEJB design patterns improve
specifically the performance of EJB caches and database
searches for EJBs. The Aggregate Entity Bean Pattern [17]
consolidates logically dependent entities of different types
into the same EJB while CEJBs consolidate entities of the
same type into an EJB. Converting EJBs into CEJBs can
therefore be automated by a tool whereas the aggregation
pattern requires knowledge of the specific application and
the logical dependencies of its entities. Aggregation and
CEJBs can be synergistically used in the same application to
increase overall execution speed. No performance
measurements are reported in [17].

Leff and Rayfield [4] show the importance of an EJB
cache in a J2EE application server for improving application
performance. We can find an in-depth study of performance
issues with entity EJBs in [5]. The authors point out that
caching is one of the greatest benefits of using entity EJBs
provided that the EJB cache is properly configured and entity
EJB transaction settings are optimized.

Our CEJB design patterns comply with the EJB
specification and therefore can be applied to any J2EE
application on any J2EE application server. Several J2SE-
based technologies, from Java Data Objects (JDO) to Java
Object Serialization (JOS), sacrifice the benefit of J2EE
platform services in return for much higher performance than
would be possible on a J2EE platform. Jordan [18] provides
an extensive comparison of EJB data persistence and several
J2SE-based data persistence mechanisms and their relative
performance. The comparison includes EJB, JDO, Java
Database Connectivity (JDBC), Orthogonal Persistence
(OPJ), JavaBeans Persistence (JBP), and Java Object
Serialization (JOS). Interestingly, the comparison revealed
that EJBs had the worst performance among the compared
persistence mechanisms, while JDOs had the best

198

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance. The author states that “acceptable EJB
performance seems unattainable at present unless dramatic
changes are made to the application object model to avoid
fine-grain objects when mapped to EJB”. The fCEJB and
vCEJB design patterns are an application-level approach to
avoiding the mapping of fine-grained objects to EJBs and
thus the performance penalty associated with using EJB-
based persistence in J2EE applications. Not included in the
study in [18] is another popular J2SE persistence
mechanism, Hibernate. The performance of Hibernate – in
comparison to the object database db4o, but not in
comparison to EJBs – is discussed in [19].

Trofin and Murphy [20] present the idea of collecting
runtime information in J2EE application servers and to
modify EJB containers accordingly to improve performance.
CEJBs, on the other hand, execute in unmodified EJB
containers and improve performance by multiplexing
multiple logical entities into one entity as seen by the EJB
container.

III. CEJB GOALS AND CONCEPT

The intention of both of our CEJB software design
patterns is to narrow the performance gap between EJBs and
POJOs in J2EE applications with large numbers of EJBs. A
look at common operations during the life span of an EJB
explains some of the performance differences between EJBs
and POJOs:

 Creating EJBs entails the addition of rows in a table
in the underlying relational database at transaction
commit time, whereas POJOs exist only in memory.

 Accessing EJBs requires the execution of finder
methods to locate the EJBs in the EJB cache of the
J2EE application server or in the database, whereas
access to POJOs is accomplished by simply
following object references.

 Depending on the selected transaction commit
options (pessimistic or optimistic), the execution of
business methods on EJBs is either serialized or
requires synchronization with the underlying
database. Calling POJO methods, on the other hand,
simply means accessing objects in the Java heap in
memory, possibly with application-specific
concurrency control in place.

 Deleting EJBs implies the removal of the EJB
objects from the EJB cache, if they are stored there,
and the deletion of the corresponding database table
rows at commit time. Deleting POJOs affects only
the Java heap in memory.

The preceding list identifies the interaction between EJBs
and the persistence mechanism (EJB cache plus database) as
a performance bottleneck for EJBs that POJOs do not suffer
from. One way of decreasing the performance gap between
EJBs and POJOs, therefore, is to increase the EJB cache hit
rate, thereby reducing the database access frequency. In case
of EJB cache misses and when synchronizing the state of
EJBs with the database, we would like to speed up the search
for the database table rows that represent EJBs. CEJBs are
intended to significantly decrease the number of EJBs in a

J2EE application. A smaller number of EJBs translates into
higher EJB cache hit rates and faster EJB access in the
database due to a smaller search space in database tables for
EJB finder operations. In other words, CEJBs reduce the
number and execution times of database accesses by
increasing the rate of in-memory search operations.

CEJBs are based on a simple idea. Traditionally, when
developing EJBs we map each real-world entity in the
application domain to a separate EJB. Examples of such
entities are users and communication sessions, to stay with
the example of the Mercury system in Section I. This
approach can result in a large number of EJB instances in the
application. With CEJBs, on the other hand, we consolidate
multiple entities of the same type into a single “special” EJB.
The difference between fCEJBs and vCEJBs is in the way
the entities are organized within each CEJB and the resulting
impact on the overall pool of CEJBs. In the remainder of this
article, when we speak of “entities”, we implicitly assume
“entities of the same type” unless otherwise noted.

IV. FIXED-SIZE CONSOLIDATED EJBS

In this section, we present the key idea, design
methodology, and some practical aspects of developing
fCEJBs.

A. Concept of the fCEJB Pattern

In the case of fCEJBs, we store up to N POJO entities in
the same EJB (the fCEJB), where N is a constant that is
determined at application design time. We store the entities
in arrays of size N inside the fCEJB. Hence, locating an
entity within an fCEJB can be accomplished through simple
array indexing operations requiring only constant time. The
challenge for developing fCEJBs is devising an appropriate
mapping function

 ,

where KE is the primary key space of the real-world entities
and KC is the primary key space of the fCEJBs. Function m
maps a given entity primary key k, for example a
communication session ID, to a tuple (k1, k2) where

 k1 is an artificial primary key for an fCEJB that will
store the entity,

 k2 is the index of the array elements inside the fCEJB
that store the POJO with primary key k.

The mapping function m has to ensure that no more than
N entities are mapped to the same fCEJB. On the other hand,
m also has to attempt to map as many entities to the same
fCEJB as possible. Otherwise, fCEJBs would perform little
or no better than EJBs. Moreover, the computation of m for a
given entity primary key has to be fast.

B. Developing an fCEJB

Consider a simple communication session entity
represented as an EJB Session with the J2EE-mandated local
interface, local home interface, and bean implementation:

 The local home interface is responsible for creating

new Sessions through a method create(String

sessionID, long startTime) and finding existing ones

199

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

through method findByPrimaryKey(String

sessionID).

 The local interface allows a client to call getter and
setter methods for the sessionID and startTime
properties of Sessions. It also contains a method
businessMethod(long newStartTime) that changes
the value of the startTime of the EJB.

 The bean implementation is the canonical bean
implementation of the methods in the local and local
home interfaces. For the sake of brevity, we omit
details of the (quite trivial) bean implementation
here.

In Figures 1-3, we present an fCEJB CSession that we
derive from the Session EJB. To arrive at CSession, we first
map the persistent (CMP) fields in Session to

 a transient String array sessionIDs,

 a transient long array startTimes,

 a persistent String field encodedSessionIDs,

 and a persistent String field encodedStartTimes,
as shown in lines 2-9 in Figure 3. Note that we do not
implement sessionIDs and startTimes as persistent array
fields. Instead, we encode sessionIDs and startTimes as
persistent Strings encodedSessionIDs and
encodedStartTimes, respectively, during J2EE ejbStore
operations (Figure 3, lines 32-45). To do so, ejbStore creates
a #-separated concatenation of all elements of sessionIDs and
one of all elements of startTimes where # is a special symbol
that does not appear in sessionIDs or startTimes. This
technique allows us to store the sessionIDs and start times as
VARCHARs in the underlying database and avoid the much
less time-efficient storage as VARCHAR for bit data that
persistent array fields require. During J2EE ejbLoad
operations (Figure 3, lines 18-30), the encodedSessionIDs
and encodedStartTimes are being demultiplexed into the
transient arrays sessionIDs and startTimes, respectively. The
CSessionBean then uses the state of the latter two arrays until
the next ejbLoad operation refreshes the state of the two
arrays from the underlying database.

The ejbCreate method in Figure 3, lines 11-16, assigns
an objectID to the persistent objectID field. We will discuss
the choice of the objectID later. The method also allocates
and initializes the transient sessionIDs and startTimes arrays.
The size of the arrays is determined by the formal parameter
N.

In the CSessionLocal interface in Figure 2, we add an
index parameter to all getter and setter methods and to the
businessMethod. We also add the lifecycle methods
createSession and removeSession. The getter and setter
methods in CSessionLocal with the index parameter have to
be implemented by CSessionBean because they are different
from the abstract getter and setter methods in CSessionBean
that are applied to the persistent encodedSessionIDs and
encodedStartTimes fields. The new getter and setter methods
access the indexed slot in the array fields sessionIDs and
startTimes. An example of a setter method is shown in lines
62-64 in Figure 3. Similarly, we have to change the
businessMethod, which now accesses the indexed slot in the
transient sessionIDs and startTimes arrays rather than

operating on persistent entity fields (lines 58-60 in Figure 3).
The createSession method in lines 47-51 in Figure 3 first
ensures that the indexed slots in the sessionIDs and
startTimes are empty. If not, this session has been added
before and a DuplicateKeyException is raised. If the slots are
empty, createSession will assign the state of the new
communication session to the indexed slots in the arrays.
The removeSession method in lines 53-56 in Figure 3
ensures that the indexed sessionIDs and startTimes slots are
not empty, i. e., the referenced session is indeed stored in this
CSession. If so, removeSession deletes the state of this
communication session by setting the indexed slot in the
sessionIDs to null.

Figure 4 shows a class ObjectIDMapping that
encapsulates an exemplary mapping function m from Session
primary keys (Strings) to CSession primary keys (objectIDs).
We will discuss m in conjunction with the code example
given in Figure 5 that retrieves a CSession through an
ObjectIDMapping and executes the businessMethod on the
retrieved CSession. The argument for the constructor of an
ObjectIDMapping is N, the maximum number of entities
consolidated in a CSession, as shown in line 6 in Figure 4.
The mapping function m is computed by a call to the
setObjectID method in line 2 in Figure 5. This method maps
a Session primary key, objectIDArg, to the tuple (objectID,
index). In Figure 5, the Session primary key is voiceCall-05-
12-2012a. The objectID is derived from objectIDArg by
replacing objectIDArg’s last character c with an underscore
followed by c – index, where we interpret c as the ordinal
value of the character in the ASCII character table (lines 14
and 16 in Figure 4). In line 15 in Figure 4, the value of
index is computed as the result of the operation

 ,

i. e.,

 ,

where

and q is the integer quotient of c and N. In our example,
c is the ordinal value of a, the last character of voiceCall-05-
12-2012a, so c = 97. If we assume N = 20, then index = 17,
and c – index = 80. Therefore, objectID = voiceCall-05-12-
2012_80. While getObjectID() (line 3, Figure 5) identifies
the CSession in which we store an entity with objectIDArg as
its primary key, getIndex() (line 4, Figure 5) identifies the
slots in the CMP array fields in the CSession that store the
given entity. In the example, the real-world entity with
primary key voiceCall-05-12-2012a is thus stored in slot 17
in the CSession with primary key voiceCall-05-12-2012_80.
Figure 6 depicts the mapping from the Session primary key
voiceCall-05-12-2012a to CSession primary key voiceCall-
05-12-2012_80 and slot 17 in the CSession.

Although our definition of m is somewhat complex, its
computation is fast and it maps at most N entities to each

200

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CSession, which is a key requirement for m. If the Session
primary keys had numerical suffixes such as 100, 101, 102
instead of alphabetical suffixes a, b, c, and so forth, we could
modify the setObjectID method in Figure 4 such that c is the
value of the integer following the year (2012) in the suffix. If
our Session sample EJBs had entirely numeric primary keys
k, the mapping function m could have been conveniently
defined as

 .

Many EJBs have numeric primary keys, especially if the

developer delegates the assignment of primary keys to the
application server, in which case the server can use
consecutive integers as EJB primary keys. This is very
helpful in situations where the real-world entities that the
EJBs represent have no “natural” unique primary key. An
example would be a product or an order for a product. We
chose a string primary key for our Session example to
demonstrate that the fCEJB pattern does not rely on a
numeric primary key.

C. Design Considerations for fCEJBs

By creating a simple façade session bean we can
completely hide CSessions from the rest of the application
and expose only POJOs to clients. With a façade session
bean, the two-step process of first building an idMapping
and then retrieving the desired CSession as shown in Figure
5 can be collapsed into one step. The façade bean is quite
straightforward and obvious to program and therefore we do
not show it here. For more complicated entities than our
Sessions, consolidation through fCEJBs requires more effort
but is straightforward and could be supported by a tool.
Ideally, such a tool would be offered as part of a J2EE
development environment and convert EJBs into fCEJBs at
the request and under the directions of the developer. The
tool would also need to support the following scenarios:

 If Session implements customized ejbLoad, ejbStore,
ejbActivate, or ejbPassivate methods, these need to
be adapted in CSessionBean to reflect the fact that
the state of a Session is stored across different arrays
in the CSessionBean.

 Finder and select queries for Session must be re-
implemented for the fCEJB, and with less J2EE
platform support, because they need to access both a
CSession and the arrays within a CSession.

 If Session has customized ejbHome methods, we
need to add functionally equivalent ejbHome
methods to CSession. Changes to the original
Session ejbHome methods are only necessary if these
methods access the state of a specific Session EJB
after a prior select method. In this case, the CSession
ejbHome methods need to retrieve POJO instead of
Sessions.

 If Session is part of a container-managed relationship
(CMR), consolidation through fCEJBs requires
removal of the CMRs and re-implementation of the
CMRs without direct J2EE support.

The mapping function m has a strong impact on the
performance of fCEJBs and therefore needs to be defined
carefully for the given application. The mapping function
delivers its best performance if primary keys that occur in the
application are clustered. Clustering here means that for
every primary key k in the application there is a set of
roughly N primary keys for other entities in the application
that are similar enough to k to be mapped to the same
objectID by m. The challenge is therefore to analyze the
actual primary key space of the entities that are to be
consolidated in a given application and to then define an
efficient and effective mapping function based on this
analysis. The primary key space of our sample Session
entities fulfills the cluster property because our Sessions have
largely lexicographically consecutive sessionIDs such as
voiceCall-05-12-2012a, voiceCall-05-12-2012b, voiceCall-
05-12-2012c, and so on.

Figure 1. Local home interface for CSession.

Figure 2. Local interface for CSession.

201

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Portion of the CSessionBean relevant to the fCEJB discussion.

202

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. A class for mapping Session primary keys to CSession primary keys and array index slots.

Figure 5. Accessing a CSession EJB.

Figure 6. Mapping a Session primary key to a tuple (objectID, index): objectID is the primary key of a CSession, index is the slot in the CSession that stores
the original Session entity.

203

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. VARIABLE-SIZE CEJBS

In this section, we describe the key idea behind vCEJBs,
the design methodology, and practical aspects of developing
vCEJBs.

A. Concept of the vCEJB Pattern

The fCEJBs pattern stores a fixed number of entities in
each fCEJB, while the size of the pool of all fCEJBs varies
with the total number of entities. In contrast, the vCEJB
pattern creates a fixed-size pool of vCEJBs but each vCEJB
stores a variable number of entities. Variable-size CEJBs
constitute a distributed EJB equivalent of hashtables. A
hashtable contains a fixed number of slots, each of which can
hold a variable number of entities that are mapped to the
slots based on a mapping (hash) function. A direct
implementation of a hashtable as a single EJB could lead to a
prohibitively slow performance for a large number of
hashtable entries because

 the time for synchronizing the EJB state with the
underlying database at the beginning and/or end of a
transaction would be very long,

 the amount of parallelism in accessing the hashtable
would be severely limited.

Therefore, we distribute the content of the hashtable
across several EJBs, one EJB for each hashtable slot. The
resulting EJBs are our vCEJBs. Unlike an fCEJB, a vCEJB
imposes no predefined limit on the number of entities stored
in the vCEJB.

The primary keys of the vCEJBs are integers ranging
from 0 to N - 1 for a chosen value of N that we will discuss
later. We define a mapping function from the entities’
primary keys to the interval that determines
which vCEJB stores which entity. The entities are
represented as POJOs and are stored in a Java hashtable (a
java.util.HashMap) in the vCEJBs. To store all entities of a
given type in an application, N vCEJBs are allocated in a
fixed-size pool at application startup time.

To demonstrate the fCEJB pattern, we chose the example
of a Session entity because its primary key space has the
desired cluster property that makes it amenable to the fCEJB
pattern. In contrast, we will illustrate the vCEJB pattern with
the example of a User EJB whose primary keys do not
exhibit the cluster property. We assume that the primary key
of our User entity is a unique userID such as a first
name/middle name/last name combination, passport number,
social security ID, employee number, telephone number, or
similar. The uneven distribution of these identifiers makes it
extremely difficult to define a mapping function m that
would evenly map User entities to fCEJBs. As we will see,
the performance of vCEJBs does not depend on the cluster
property, and therefore vCEJBs are the preferable choice for
User entities.

In the following explanations, we assume that User has
two fields firstName and lastName in addition to the userID,
Furthermore, User is implemented with the canonical
getter/setter interfaces and local and local home interfaces.
We omit additional implementation details because they are
irrelevant to our vCEJB discussion.

B. Developing a vCEJB

We derive a vCEJB CUser from User in two steps. In the
first step, we create a POJO equivalent of User, which we
call POJOUser (omitted from the figures for the sake of
brevity). POJOUser contains three private instance variables
userID, firstName, and lastName, and the canonical getter
and setter methods for the three variables. In the second step,
we create CUser as an entity EJB as depicted in Figures 8-
10. CUser has three CMP fields, objectID of type Integer, N
of type int, and users of type java.util.HashMap (lines 2-7 in
Figure 10). The methods in CUserBean pertinent to our
discussion are ejbCreate, createUser, getUser, setUser,
changeUser, and removeUser.

A CUser acts as a container for POJOUsers in a way that
is similar to EJB containers managing EJBs. Unlike EJB
containers, on the other hand, a CUser cannot hold objects of
different classes. The lifecycle methods for a POJOUser
(createUser, removeUser) can be found in the local interface
for CUser (Figure 9), whereas the lifecycle methods for a
User reside in the local home interface for the User EJB
(Figure 8). EJB containers are automatically instantiated by
the application server, whereas CUsers have to be created by
the J2EE application. This also implies that the number of
vCEJBs depends on the application rather than the
application server.

To consolidate Users into CUsers in a given J2EE
application, the application first creates a pool of N CUsers
with objectIDs ranging from 0 to N - 1 in increments of 1.
Subsequently, the application can create, find, modify,
execute business methods on, and remove POJOUsers inside
CUsers. To do so, the application first executes
findByPrimaryKey on the CUserLocalHome interface (see
Figure 8) with the argument

new Integer(Integer.abs(userID.hashCode()) % N),

where userID is the return value of the getUserID method
for the POJOUser in question and % denotes an integer
division. In other words, the application maps hash values of
the POJOUser identities to CUser identities in an attempt to
evenly distribute POJOUsers across CUsers. Notice that due
to integer arithmetic and the definition of the hashCode
method for Java strings, the result of the hashCode method
can be negative and therefore we apply the Integer.abs
method to guarantee values in the range . The
return value of the findByPrimaryKey method is the CUser
vCEJB that already contains or will contain the POJOUser
that we are interested in. Figure 7 illustrates the mapping of
User primary keys to CUser primary keys.

To store a new POJOUser in the CUser vCEJB, the
application executes the createUser method on the CUser as
shown in lines 16-24 in Figure 10. First, this method ensures
that the POJOUser indeed belongs in this CUser based on
the mapping of POJOUsers’ userIDs to CUser object
identities, as described in the previous paragraph. Then, the
method checks whether there is already a POJOUser with
the same identity stored in this CUser. This is the equivalent
of the EJB container checking for duplicate object identities

204

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

when creating an entity EJB. Finally, the method stores the
mapping from the userID to the POJOUser in the vCEJB’s
internal HashMap.

The equivalent of an EJB finder method for POJOUsers
is the getUser method in the CUserLocal interface (Figure 9,
line 3). After a prior call to the findByPrimaryKey method on
the CUserLocalHome interface to obtain the appropriate
CUser, the application calls the getUser method on the local
interface of that CUser to obtain the desired POJOUser. The
application can now execute business methods on the
returned POJOUser. The users field (a HashMap) in CUser
is a so-called dependent value object in the J2EE world. By
extension, the same applies to POJOUsers inside the users
HashMap. Hence, the EJB container returns a copy of a
POJOUser whenever the getUser method is invoked, as
prescribed by the Enterprise JavaBeans specification. To
reflect changes to the state of a POJOUser due to business
method calls, the application has to store the POJOUser
back to users. The setUser and changeUser methods in
Figure 10 in lines 33-38 and 40-49, respectively, serve this
purpose. The changeUser method is useful in situations
where we want to change the state of a POJOUser without a
need to know the previous state of this POJOUser. Rather
than calling getUser followed by setUser, one call to
changeUser will suffice in that situation, hence reducing the
number of accesses to the users HashMap and consequently
the number of HashMap copy operations from two to one.

To delete a POJOUser, the application calls the
removeUser method on the CUser (lines 51-56 in Figure 10).
Like the setUser, getUser, and changeUser methods,
removeUser first checks that the referenced POJOUser
indeed exists in this CUser vCEJB. Then, removeUser
deletes the POJOUser from the users HashMap.

C. Design Considerations for vCEJBs

By creating a simple façade session bean we can
completely hide CUsers from the rest of the application and
expose only POJOUsers to clients. With a façade session
bean, the two-step process of first retrieving a CUser and
subsequently accessing a POJOUser turns into one step for
clients. The façade bean is straightforward and we will
therefore not show it here.

Our sample User EJB is very simple. For more
complicated entities, consolidation through vCEJBs requires
more effort but, as with fCEJBs, is straightforward and could
be automated by a tool as part of a J2EE development
environment. The following is a list of considerations during
vCEJB creation in the context of the User EJB that Section
V.B did not address.

1. If the original User EJB implements the ejbLoad,
ejbStore, ejbActivate, or ejbPassivate methods, the
CUser methods getUser, setUser, and changeUser
need to be modified. For example, the content of a
User ejbLoad method needs to be moved into the
getUser and changeUser methods after some
modifications. The modifications reflect the fact that
the state of a User is stored in a POJOUser and
needs to be retrieved from a HashMap rather than
from the CMP fields of a User.

2. Finder and select queries for User must be re-
implemented for the vCEJB because they need to
access the users HashMap. Notice that the getUser
method in our example is derived from the
findByPrimaryKey method for the User EJB. More
complicated finder methods in User would require
more complicated getUser methods in CUser.

3. If User has ejbHome methods, we need to add
functionally equivalent ejbHome methods to CUser.
Changes to the original User ejbHome methods will
only be necessary if these methods access the state
of a specific User EJB after a prior select method. In
this case, the CUser ejbHome methods need to
retrieve POJOUsers instead of Users.

4. If User is part of a container-managed relationship
(CMR), consolidation through vCEJBs requires
removal of the CMRs and re-implementation of the
CMRs without direct J2EE support.

5. Variable-size CEJBs aggravate the existing problem
of variable-size data structures in EJBs. EJBs with
variable-size data structures as CMP fields and
databases as persistent storage require a design-time
decision for the maximum length of each database
column that stores a variable-size CMP field. If such
a maximum size is exceeded a runtime error will
occur during EJB storage in the database. CUser
contains a variable-size CMP field (users) even
though User does not. To safely use vCEJBs, we
require knowledge of the maximum number of EJBs
that are stored in each CEJB and have to
appropriately size the database column that stores
the users HashMap.

D. Configuring the vCEJB Pool Size N

By consolidating a large number of EJBs into a small
number of vCEJBs, the number of rows in a relational
database required to store entity EJB state can be
substantially reduced. At the same time, the degree of
locality in EJB operations increases, which has a positive
effect on the efficacy of the EJB cache in a J2EE application
server. In our example, we can reduce the number of
database rows and EJB cache entries for storing n user
entities from n to N.

With CUsers, the time for retrieving a user entity is
divided into time for searching cached or uncached CUsers
and time for an in-memory search within a HashMap. In the
extreme case of N = 1, there is only one CUser and it is
likely to be present in the EJB cache of the application
server. In this case, the vCEJB is essentially a persistent and
transacted HashMap. Even if the CUser is not cached, it can
be located very quickly in the database. Most of the search
time is spent in memory within the HashMap of the CUser.
However, this HashMap grows potentially very large (to n
entries) and can itself turn into a performance bottleneck.
Moreover, the time for synchronizing the in-memory
representation of CUser with the database at transaction
commit time could be very long. The same applies to loading
the CUser from the database at the beginning of a transaction
with J2EE commit options B and C [2]. Note that for a

205

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

clustered J2EE application server commit options B and C
are mandatory. Lastly, like fCEJBs, vCEJBs can restrict the
degree of parallelism in the J2EE application. If two
transactions attempt to access two POJOs that happen to be
in the same vCEJB, one of the transactions may lock out the
other transaction. The likelihood of this situation increases
with decreasing values for N.

The other extreme is N = nmax, where nmax denotes the
maximum number of concurrently existing user entities
throughout the lifetime of the application, provided such a
maximum exists. With N = nmax, we arrive at the same
situation as with EJBs except that with vCEJBs every access
to an embedded POJO requires an additional step relative to
EJBs. In other words, with N = nmax we can expect a
performance penalty relative to using EJBs.

The ideal value for N therefore lies between these
extremes. Clearly, this value depends on the size and
structure of the EJB cache in the J2EE application server, the
implementation of the EJB container, the database specifics,
and the hardware on which the application server and the
database run. Since we typically have no insight into the
inner workings of a J2EE application server or the database,
there is no general way of determining the best choice for N.

In addition, the value of nmax may not be known and nmax may
not even exist, which complicates the configuration of N.

One of our future research directions is therefore a self-
adjusting vCEJB technique, where a session façade bean for
vCEJBs would create vCEJBs dynamically as needed. The
session façade bean would monitor the vCEJB performance
and dynamically shrink or enlarge the size of the vCEJB
pool accordingly, similar to automatic hashtable resizing
techniques. After creation or destruction of vCEJBs, the
façade bean would reallocate the existing POJOs across the
modified set of vCEJBs. By appropriately sizing the vCEJB
pool, the façade bean would also ensure that the size of the
HashMap in each vCEJB does not exceed the limit imposed
by the maximum size of the corresponding database column
(see bullet item 5 in Section V.C). We believe that such a
self-adjusting vCEJB technique may be beneficial in
applications with slowly changing sets of real-world entities
where dynamic reallocations would take place rarely and
thus the performance cost of the reallocation itself would be
limited.

Figure 7. Mapping of a User primary key uid to a CUser primary key, where h is the absolute value of the hashcode for uid.

Figure 8. Local home interface for the vCEJB CUser.

206

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Local interface for the vCEJB CUser.

Figure 10. Portion of the CUserBean implementation relevant to the vCEJB discussion.

207

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. PERFORMANCE EVALUATION

This section contains an assessment of the comparative
performance of fCEJBs, vCEJBs, and traditional EJBs in a
test environment that simulates different usage profiles.

A. Methodology

We compared the performance of “traditional” EJBs with
one real-world entity per EJB, fCEJBs, and vCEJBs in a
J2EE test application. The entities that the test application
creates have lexicographically consecutive strings as primary
keys (as shown in our Session example in Section IV). For
fCEJBs, the application uses the mapping function m in
Figure 4. The test application executes a sequence of
operations either on traditional EJBs (EJB mode), fCEJBs
(fCEJB mode), or vCEJBs (vCEJB mode). In EJB mode, the
application executes the following sequence of steps:

1. Create n EJBs. We call each entity creation a
creation operation.

2. Find EJB with randomly selected primary key and
read its state through getter operations. Repeat n
times. We call each such operation a find and read
operation.

3. Find EJB with randomly selected primary key and
execute a business method on it. The business
method changes the state of the EJB, and thus
requires synchronization with the underlying
database at transaction commit time. Repeat n
times. We call each such operation a find and
change operation.

4. Delete all EJBs through EJB remove operations.
Between any two consecutive steps, the test application

creates 20000 unrelated EJBs in order to introduce as much
disturbance as possible in the application server EJB cache
and in the connection to the underlying database. During our
performance testing, however, it turned out that these cache
disturbance operations had a negligible effect on the
performance differences between the CEJB and EJB modes.

In fCEJB mode, the application performs the same steps
on fCEJBs instead of EJBs. Also, in step 4 in fCEJB mode,
the application sequentially deletes all entities in each fCEJB
but not the fCEJB itself. We varied the maximum number N
of entities per fCEJB, from 2 to 250 in consecutive runs of
the test application. The performance of the test application
peaked around N = 20. We therefore present only the
performance results for N = 20.

In vCEJB mode, the application first creates N vCEJBs,
followed by the same steps as the test application in fCEJB
mode but with vCEJBs instead. We varied N in consecutive
runs of the test application in vCEJB mode and determined
that the performance of the test application peaked roughly at
N ≈ n/10, i. e., when approximately 10 entities are stored in
each variable-size vCEJB on average. We will only present
the performance results for N = n/10.

We configured the test application with two different
transaction settings in two different experiments: in long
transaction mode, each of the four steps of the test
application is executed in one long-lived transaction. In short
transaction mode, the application commits every data change
as soon as it occurs, i. e., after each entity creation, change,

or removal. Here, the application performs a large number of
short-lived transactions. In successive runs of the test
application, n iterated over the set {1000, 10000, 50000}.
After each run, we restarted the database server and the
application server and deleted all database rows created by
the application.

We deployed the test application on an IBM WebSphere
5.1.1.6 J2EE application server with default EJB cache and
performance settings. The hardware is a dual Xeon 2.4 GHz
server running Microsoft Windows 2000 Server. An IBM
DB2 8.1.9 database provides the data storage. All EJBs use
the WebSphere default commit option C.

B. Performance Analysis

Figures 11-16 display the results of our performance
testing with the test application in long and short transaction
modes for the three different values of n. Each figure shows
the time that each entity creation, entity find/read, entity
find/change, and entity removal operation takes in
milliseconds when using traditional EJBs, fCEJBs, and
vCEJBs, respectively. In each figure, for each of the four
types of entity operations, there is one bar indicating the
speed of the operation when using EJBs, fCEJBs, and
vCEJBs, respectively. In addition, we show the speedup for
the operation when using fCEJBs instead of EJBs and the
speedup when using vCEJBs instead of EJBs. The speedup
in the figures is defined as the time for an EJB operation
divided by the time for the equivalent f/vCEJB operation.
Speedup values greater than 1 indicate results where
f/vCEJBs outperform EJBs, values of less than 1 indicate
EJBs performing better than f/vCEJBs. For the vCEJB
performance tests, our figures do not show the time for
creating the N vCEJBs because we consider this fixed
overhead at application startup time.

In long transaction mode, fCEJBs significantly
outperformed EJBs. For n = 50000 (Figure 13), for example,
creating entities through fCEJBs was more than twice as fast
as with EJBs, finding and reading entities was more than 5
times faster, finding and changing entities was more than 7
times faster, and deleting entities with CEJBs was more than
14 times faster. Our performance tests also show that fCEJBs
are consistently faster than vCEJBs.

Because in fCEJB mode the mapping function m in our
test application clusters the primary keys of the entities, the
fCEJBs consolidate almost the maximum possible number of
entities (20 per our definition of N). Hence, the number of
fCEJBs necessary to store all entities in the test application is
about 1/20

th
 that of the number of EJBs in EJB mode, which

translates into much improved application server caching
behavior and accelerated database search times. Once an
fCEJB has been retrieved, extracting the desired entity from
the fCEJB is a simple and fast array indexing operation. It is
only insignificantly slower than retrieving the state of a
traditional EJB from the EJB fields and faster than retrieving
an entity from the internal HashMap in a vCEJB. Writing the
state of an fCEJB back to the underlying database is much
faster than the analogous operation for a vCEJB with its
large internal data structure, which explains why fCEJBs
perform reading and changing operations much faster than

208

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

vCEJBs. It also explains why the latter are only about 23%
faster than EJBs for this type of operation (see find and read
operations in Figure 13). However, if the chosen mapping
function m for fCEJBs in a given application does not yield
the desirable cluster property, vCEJBs may outperform
fCEJBs, which is why we developed the vCEJB pattern as an
alternative to the fCEJB pattern.

Although fCEJBs perform better than vCEJBs in our
tests due to the distribution of the primary keys and the
selection of the fCEJB mapping function m, there is still a
significant speed-up when using vCEJBs as opposed to
EJBs, with the exception of creation operations. For n =
50000 (Figure 13), finding and reading entities is more than
twice as fast in vCEJB mode than in EJB mode, finding and
changing entities is about 23% faster, and removal is more
than three times faster in vCEJB mode than in EJB mode.
Variable-size CEJBs are only at a performance disadvantage
over EJBs in the case of creating entities. Here, retrieving an
entry in the potentially large CEJB-internal HashMap for the
purpose of checking for DuplicateKeyExceptions, the
subsequent storage of a new entity in this HashMap, and the
occasional re-sizing of the HashMap costs more time than
the consolidation of entities saves.

Unlike in EJB mode, entity deletion in either CEJB mode
does not force the deletion of EJBs in the application server
or the database. Instead, entity deletion in CEJBs is
accomplished through the removal of entities inside EJBs.
Not surprisingly therefore, deleting entities in both CEJBs
modes is much faster than in EJB mode.

In short transaction mode, our performance testing shows
a very different outcome (Figures 14-16). For example,
Figure 16 (n = 50000) shows that both types of CEJBs only
offer performance advantages over EJBs for finding and
reading operations. Fixed-size CEJBs are about as fast as
EJBs for finding and changing operations and for entity
removal but much slower in creating entities. Variable-size
CEJBs are consistently slower than EJBs except for finding
and reading entities. In short transaction mode, transaction
commits after EJB state changes dominate the execution
time of the test application and void many performance
advantages due to consolidation. J2EE applications that
eagerly commit every EJB state change will still experience
a significant speed-up as a result of consolidation but only if
EJB read operations outnumber EJB write operations by a
significant margin.

In conclusion, fCEJBs provide strong performance
advantages over EJBs if (1) the application contains a large
number of EJBs, (2) it accesses EJBs either in long-lived
transactions or in short-lived transaction with a large EJB
read to write ratio, and (3) if a mapping function m can be
found for the EJB primary key space that exhibits the cluster
property. If no such function can be found but (1) and (2) are
true, vCEJBs can be used to considerably increase
application performance.

Our test application is designed to execute a large
number of common EJB operations in a repeatable fashion.
As such, the test application is somewhat artificial. It does
not involve human interactions and arbitrary timing delays
due to human input. The pattern of EJB operations is highly

regular and maximizes the number of EJB accesses, whereas
other J2EE applications may have irregular EJB accesses and
also contain computationally or I/O-intensive tasks. Our
Session and User EJBs are simple while EJBs in common
J2EE applications can be more complex and may also be
linked to each other. However, we believe that our test
application realistically captures the performance differences
between EJBs and f/vCEJBs in a large class of J2EE
applications that are characterized by high numbers of
entities, a high frequency of EJB accesses with a large
degree of regularity (e. g., certain data mining applications
such as our Mercury system), and a predictable and regular
primary key space for the entities.

VII. CONCLUSION AND FUTURE WORK

We presented two J2EE software design patterns that
consolidate multiple entities in J2EE applications into
special-purpose entity EJBs that we call consolidated EJBs
(CEJBs). Our first design pattern maps entities to fixed-size
CEJBs (fCEJBs), whereas our second pattern constructs
variable-size CEJBs (vCEJBs). Consolidation increases the
locality of data access in J2EE applications, thus making
EJB caching in the application server more effective and
decreasing search times for entity EJBs in the underlying
database. In J2EE applications with large numbers of EJBs,
CEJBs can therefore greatly increase the overall application
performance. Using a test application, we showed that
especially fCEJBs can outperform traditional EJBs by a wide
margin for common EJB operations. For example, the fCEJB
equivalent of an EJB findByPrimaryKey operation is more
than five times faster in one of our experiments, and the
execution of a data-modifying business method on an EJB is
more than seven times faster in fCEJBs. In applications that
do not lend themselves to the fCEJB design pattern, the
second design pattern, vCEJBs, can enhance the application
performance, albeit by smaller factors. In our experiments,
we measured a speed-up of entity finder and access
operations by a factor of more than two for vCEJBs versus
traditional EJBs. Both types of CEJBs conform to the EJB
specification and can therefore be used in any J2EE
application on any J2EE application server.

We have several future research goals for CEJBs. First,
we would like to modify CEJBs in such a way that
applications with short-lived transactions and a small ratio of
EJB read to EJB write operations perform better than our
current patterns. Secondly, we intend to investigate mapping
functions for fCEJBs that (1) perform well if the primary key
space for EJBs is irregular or unpredictable (such as user
names, phone numbers, or national IDs), and (2) that can be
automatically defined without requiring complex developer
decisions. Thirdly, we would like to address a currently open
question for our f/vCEJB design patterns: how can we
modify the f/vCEJB patterns so that they are beneficial in
most J2EE applications and thus could ultimately become a
standard way of implementing entities in J2EE applications?
Lastly, a tool that would assist the developer in converting
traditional EJBs into CEJBs would be highly desirable.

209

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Test application performance in long transaction mode, n = 1000.

.

Figure 12. Test application performance in long transaction mode, n = 10000.

Create Find and read Find and change Remove

EJBs 0.55 2.25 3.38 3.88

fCEJBs 0.30 0.23 0.28 0.20

vCEJBs 1.77 0.81 1.48 1.14

Speedup fCEJBs->EJBs 1.84 9.62 12.01 19.00

Speedup vCEJBs->EJBs 0.31 2.78 2.28 3.40

E
J

B
s

E
J

B
s

E
J

B
s

E
J

B
s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

0.00

1.00

2.00

3.00

4.00

5.00
T

im
e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Create Find and read Find and change Remove

EJBs 0.50 1.67 1.56 3.79

fCEJBs 0.16 0.27 0.27 0.32

vCEJBs 0.95 0.61 1.14 0.82

Speedup fCEJBs->EJBs 3.02 6.14 5.72 11.84

Speedup vCEJBs->EJBs 0.52 2.74 1.37 4.62

E
J

B
s

E
J

B
s

E
J

B
s

E
J

B
s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

0.00

1.00

2.00

3.00

4.00

5.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

210

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Test application performance in long transaction mode, n = 50000.

Figure 14. Test application performance in short transaction mode, n = 1000.

Create Find and read Find and change Remove

EJBs 0.39 1.38 1.48 3.21

fCEJBs 0.17 0.24 0.20 0.23

vCEJBs 0.93 0.58 1.20 0.87

Speedup fCEJBs->EJBs 2.24 5.75 7.58 14.28

Speedup vCEJBs->EJBs 0.42 2.37 1.23 3.69

E
J

B
s

E
J

B
s

E
J

B
s

E
J

B
s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

0.00

1.00

2.00

3.00

4.00

5.00
T

im
e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Create Find and read Find and change Remove

EJBs 7.41 2.31 12.05 5.81

fCEJBs 10.34 0.36 12.41 5.08

vCEJBs 11.47 0.83 14.42 6.98

Speedup fCEJBs->EJBs 0.72 6.44 0.97 1.14

Speedup vCEJBs->EJBs 0.65 2.79 0.84 0.83

E
J

B
s

E
J

B
s

E
J

B
s

E
J

B
s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

211

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. Test application performance in short transaction mode, n = 10000.

Figure 16. Test application performance in short transaction mode, n = 50000.

VIII. ACKNOWLEDGMENTS

We wish to thank the anonymous reviewers of this article
for the numerous and detailed suggestions for improvements
to the manuscript. The clarity and quality of the article has
greatly benefited from the reviewers’ suggestions.

REFERENCES

[1] R. Klemm, “The Consolidated Enterprise Java Beans Design
Pattern for Accelerating Large-Data J2EE Applications”, The
Seventh International Conference on Software Engineering
Advances (ICSEA), Nov. 2012, retrieved February 1, 2013,
from http://bit.ly/VgMuXs.

[2] Oracle Inc., “Enterprise JavaBeans Specification 2.1,”
retrieved September 28, 2012, from http://bit.ly/Ovip59.

Create Find and read Find and change Remove

EJBs 7.41 2.31 12.05 5.81

fCEJBs 10.34 0.36 12.41 5.08

vCEJBs 11.47 0.83 14.42 6.98

Speedup fCEJBs->EJBs 0.72 6.44 0.97 1.14

Speedup vCEJBs->EJBs 0.65 2.79 0.84 0.83

E
J

B
s

E
J

B
s

E
J

B
s

E
J

B
s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00
T

im
e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

Create Find and read Find and change Remove

EJBs 3.08 1.34 4.69 5.01

fCEJBs 5.35 0.18 4.75 4.96

vCEJBs 6.72 0.58 7.03 7.07

Speedup fCEJBs->EJBs 0.58 7.34 0.99 1.01

Speedup vCEJBs->EJBs 0.46 2.32 0.67 0.71

E
J

B
s

E
J

B
s

E
J

B
s

E
J

B
s

fC
E

J
B

s fC
E

J
B

s

fC
E

J
B

s

fC
E

J
B

s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

v
C

E
J

B
s

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

T
im

e
 p

e
r
 o

p
e
r
a

ti
o

n
 i
n

 m
s

212

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] Oracle Inc., “J2EE v1.4 Documentation”, retrieved February
1, 2013, from http://bit.ly/Ys0j2B.

[4] A. Leff and J. T. Rayfield, “Improving Application
Throughput with Enterprise JavaBeans Caching,” Proc. 23rd
International Conference on Distributed Computing Systems
(ICDCS), May 2003, pp. 244-251.

[5] S. Kounev and A. Buchmann, “Improving Data Access of
J2EE Applications by Exploiting Asynchronous Messaging
and Caching Services,” Proc. 28th International Conference on
Very Large Databases (VLDB), Aug. 2002, retrieved
September 28, 2012, from http://bit.ly/QgduUf.

[6] Java Community Process, “JSR 316: Java Platform,
Enterprise Edition 6 (Java EE 6) Specification”, retrieved
February 1, 2013, from http://bit.ly/YsbKYb.

[7] Java Community Process, “JSR 317: Java Persistence 2.0”,
retrieved February 1, 2013, from http://bit.ly/XCa6WN.

[8] S. Pugh and J. Spacco, “RUBiS Revisited: Why J2EE
Benchmarking is Hard,” Companion to the 19th Annual ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), Oct. 2004,
pp. 204-205.

[9] M. Raghavachari, D. Reiner, and R. Johnson, “The
Deployer’s Problem: Configuring Application Servers for
Performance and Reliability,” Proc. 25th International
Conference on Software Engineering ICSE ’03, May 2003,
pp. 484-489.

[10] S. Ran, P. Brebner, and I. Gorton, “The Rigorous Evaluation
of Enterprise Java Bean Technology,” Proc. 15th International
Conference on Information Networking (ICOIN), IEEE
Computer Society, Jan. 2001, pp. 93-100.

[11] S. Ran, D. Palmer, P. Brebner, S. Chen, I. Gorton, J. Gosper,
L. Hu, A. Liu, and P. Tran, “J2EE Technology Performance
Evaluation Methodology,” Proc. International Conference on
the Move to Meaningful Internet Systems 2002, pp. 13-16.

[12] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and W,
Zwaenepoel, “Performance Comparison of Middleware

Architectures for Generating Dynamic Web Content,” Lecture
Notes in Computer Science, Vol. 2672, Jan. 2003, pp. 242-
261.

[13] D. Alur, J. Crupi, and D. Malks, “Core J2EE Patterns,”
Prentice Hall/Sun Microsystems Press, Jun. 2001.

[14] F. Marinescu, “EJB Design Patterns: Advanced Patterns,
Processes, and Idioms,” John Wiley & Sons Inc., Mar. 2002.

[15] E. Cecchet, J. Marguerite, and W. Zwaenepoel, “Performance
and Scalability of EJB Applications,” Proc. 17th ACM
SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Application (OOPSLA), Nov. 2002,
retrieved May 25, 2013, from http://bit.ly/18fl5w9.

[16] J. Rudzki, “How Design Patterns Affect Application
Performance – A Case of a Multi-Tier J2EE Application,”
Lecture Notes in Computer Science, No. 3409, Springer-
Verlag, 2005, pp. 12-23.

[17] C. Larman, “The Aggregate Entity Bean Pattern,” Software
Development Magazine, Apr. 2000, retrieved September 28,
2012, from http://bit.ly/PgBoxe.

[18] M. Jordan, “A Comparative Study of Persistence Mechanisms
for the Java Platform,” Sun Microsystems Technical Report
TR-2004-136, Sep. 2004, retrieved May 25, 2013, from
http://bit.ly/ZkxPhT.

[19] P. Van Zyl,, D. G. Kourie, and A. Boake, “Comparing the
Performance of Object Databases and ORM Tools,”
Proceedings of the 2006 Annual Research Conference of the
South African Institute of Computer Scientists and
Information Technologists on IT Research in Developing
Countries (SAICSIT ‘06), 2006, retrieved May 25, 2013, from
http://bit.ly/1135N9a.

[20] J. Trofin and J. Murphy, “A Self-Optimizing Container
Design for Enterprise Java Beans Applications,” 8th
International Workshop on Component Oriented
Programming (WCOP), Jul. 2003, retrieved September 28,
2012, from http://bit.ly/O4biAD.

