
181

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Incorporating Design Knowledge into the Software Development Process
using Normalized Systems Theory

Peter De Bruyn, Philip Huysmans, Gilles Oorts,
Dieter Van Nuffel, Herwig Mannaert and Jan Verelst

Normalized Systems Institute (NSI)
University of Antwerp

Antwerp, Belgium
{peter.debruyn,philip.huysmans,gilles.oorts,dieter.vannuffel,

herwig.mannaert,jan.verelst}@ua.ac.be

Arco Oost
Normalized Systems eXpanders factory (NSX)

Antwerp, Belgium
{arco.oost}@nsx.normalizedsystems.org

Abstract—The knowledge residing inside a firm is considered
to be one of its most important internal assets in obtain-
ing a sustainable competitive advantage. Also in software
engineering, a substantial amount of technical know-how is
required in order to successfully deploy the organizational
adoption of a technology or application. In this paper, we
show how knowledge on the development of evolvable soft-
ware can be managed and incorporated into a knowledge
base, to enable the more productive construction of evolvable
systems. The Normalized Systems (NS) theory offers well-
founded knowledge on the development of highly evolvable
software architectures. This knowledge is captured in the form
of Normalized Systems elements, which can be regarded as
design patterns. In this paper, it is discussed how Normalized
Systems elements facilitate the management of state-of-the-
art knowledge in four processes: (1) knowledge creation, (2)
knowledge storage/retrieval, (3) knowledge application, and
(4) knowledge transfer. Based on this discussion, it is shown
how lessons can be drawn from the NS approach for the
management of software engineering knowledge.

Keywords-Normalized Systems; Design Patterns; Knowledge
Management.

I. INTRODUCTION

As we highlighted in our previous work on which this
paper further elaborates [1], an important movement within
the strategic management literature, the resource-based view
of the firm (RBV) states that internal resources (e.g., money,
patents, buildings, geographical location,etc.) are the key
elements for organizations in order to obtain a sustainable
competitive advantage [2]. More specifically, the knowledge
residing inside a firm is frequently considered to be its most
important internal asset [3]. Further, focusing on the case
of software adoption and development within organizations,
the prevalence of the available knowledge becomes even
clearer and knowledge management practices have in this re-
spect been acknowledged frequently [4]. Indeed, information
technology in general can be considered as a knowledge-
intensive or complex technology innovation, requiring a
substantial amount of know-how and technical knowledge
by the adopting firm [5]. As a result, the degree of expertise

or advanced knowledge of best-practices regarding a certain
software technology becomes a decisive factor in the possi-
bility for an organization to successfully deploy and manage
it. Consequently, a firm should either already (i.e., prior to
the adoption) possess the advanced knowledge required to
operate the software technology or engage in organizational
learning during exploitation.

Organizational learning is generally regarded as the re-
sult of individual learning experiences of members of an
organization, which become incorporated into the behavior,
routines and practices of the organization the individuals
belong to [5]. According to Levitt and March [6], such an
organizational learning can occur in two general ways: (1)
“learning by doing”, which involves a learning process by
self-experienced trial-and-error and (2) learning from the
direct experiences of other people. While the first type of
learning is typically a very profound and thorough way of
knowledge gathering, it can be time-consuming, expensive
and error-prone in the earliest stages. At this point, know-
how, experiences and best-practices formulated by other
users (i.e., the second type of organizational learning) come
into play. Inside organizations, such knowledge transfers in
software development can occur in many different ways,
including, for example, explicit knowledge bases or experi-
ence repositories [7], “yellow pages” enabling search actions
for accessible knowledgeable people [8] and mentoring
programs [9]. At the inter-organizational or industrial level,
the gathered knowledge can benefit from experience based
on many different development projects.

In this paper, we explore how knowledge is managed
within Normalized Systems (NS) theory (outlined in Sec-
tion III). Furthermore we will indicate how this approach is
deemed to offer additional benefits in terms of knowledge
management compared to other software engineering ap-
proaches. In order to do so, the widely accepted framework
of Alavi and Leidner [10] (summarized in Section II) will be
used to base this claim and position how NS supports knowl-
edge management in the development process of evolvable



182

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

software. Specifically, the role of knowledge in NS will be
demonstrated according to four knowledge processes [10]:

• Knowledge Creation
• Knowledge Storage/Retrieval
• Knowledge Application
• and Knowledge Transfer.

This analysis will be presented in Section IV, after which
an overview and a discussion regarding some significant
differences between NS patterns and more commonly known
design patterns, will be offered in Section V. Finally, we
conclude the the paper in Section VI.

This paper is an extension of our previous work [1], as it
offers a more in-depth analysis of knowledge management
practices regarding NS and includes additional illustrating
examples, guided by the widely accepted work of Alavi and
Leidner [10].

II. KNOWLEDGE MANAGEMENT AND INFORMATION
TECHNOLOGY

Over the last decades, knowledge and knowledge manage-
ment (KM) have been the subject of research within several
disciplines, such as knowledge engineering, artificial intel-
ligence, social science, management science, information
science, etc. [11]. Due to this multidisciplinary character of
the research topic, knowledge and knowledge management
have been defined in numerous ways. In spite of this variety
of definitions, the goal of knowledge management can most
ordinarily be defined as to facilitate the flow of knowledge.
To define what knowledge management covers, Tuzhilin
identified some common aspects among the variety of KM
definitions [12]. In its essence, the management of knowl-
edge should include the acquisition, conversion, structuring
and organizing and sharing of knowledge. These essential
and agreed upon components of knowledge management
are very similar to the framework formulated by Alavi and
Leidner [10], of which the core aspects will be summarized
below. Given the fact that Alavi and Leidner [10] have per-
formed an in-depth, overarching and widely cited overview
and analysis of knowledge management aspects present dur-
ing the use of information systems, we choose to discuss and
employ this framework in the current paper. Hence, in this
section, we highlight this particular framework to analyze
and discuss how information technology and IT artifacts
in general can be used to engage in knowledge manage-
ment. Alavi and Leidner distinguish four main processes of
knowledge management facilitated by information systems:
(1) knowledge creation, (2) knowledge storage/retrieval, (3)
knowledge application and (4) knowledge transfer. We will
highlight each of these processes briefly in the following
sub-sections. The concepts of this framework are represented
in Figure 1. During our discussion, we will systematically
relate each of the processes to the this figure. Also, we will
illustrate the application of this framework in previous work
by showing how other authors have used this framework to

analyze their knowledge management efforts by using infor-
mation systems [13]. Later on, we will use this framework
as our starting point for analyzing how NS theory enables
an efficient way of knowledge management.

A. Knowledge Creation

Before one can only begin to point out the importance
of knowledge management, knowledge needs to be created.
Such knowledge creation can both entail the development
of new content or the replacement or improvement of al-
ready existing knowledge within the organization. Although
this creation process always fundamentally starts from an
individual, interactions between individuals are an equally
important factor in the knowledge creation process [14].
These interactions are represented by the conversion types
of knowledge presented by Nonaka, which are based on the
differentiation of explicit and tacit knowledge [14]. Based
on the conversion of knowledge between these two types,
he distinguishes four possible modes of knowledge creation
(although they are mentioned to be often interdependent and
intertwined in reality) [10]: (1) socialization (the transfer of
one’s personal tacit knowledge to new tacit knowledge of
another person), (2) externalization (the conversion of tacit
knowledge to new explicit knowledge, such as formulated
in best practices), (3) internalization (the conversion of
explicit knowledge to one’s tactic knowledge, such as truly
understanding some read findings) and (4) combination
(“the creation of new explicit knowledge by merging, cat-
egorizing, reclassifying, and synthesizing existing explicit
knowledge”).

Each of these knowledge creation modes are also visu-
ally represented in Figure 1. More specifically, arrow E
represents socialization, arrows C represent externalization,
arrows D represent internalization and arrow F represents
combination. For each of the discussed knowledge cre-
ation modes, facilitating conditions or environments can
be considered. Also, for these processes, the interaction
with information systems and technology is twofold. On
the one hand, the knowledge creation modes facilitate the
amassment of knowledge on technologies and information
systems used within an organization. On the other hand,
information systems can be used to facilitate each of these
knowledge creation modes in several ways (e.g., by the use
of information systems for collaboration support).

As an example of academic efforts to identify knowl-
edge creation, one can cite the work Lee et al. [13], who
studied the knowledge management of a Korean automobile
company. More specifically, they reviewed the process of
making engineering changes to the finished design of auto-
mobiles from a knowledge-management perspective. They
however found that little attention is payed to the knowledge
creation within the knowledge-intensive process of making
engineering changes. The knowledge that is amassed from a
design change is documented in separate documents, without



183

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

����������	
��	����	��������� ����������	���	����	���������
����������	���	��������	�������������������	
��	��������	��������� ���������	
�������������������	
���������� �

�
�

���
� � ���

� � �����	��!�����	!�!� "� �����	��������	!�!� "
� � ��

��� � � �

��������� ���� ����#������� ���� ����#�����	� �������#�����
� ��!$��������� �%�	� ���&� 	�&	����������	��������	'��������	��	� ���	��!�����	!�!� "	���	����	�� ���� �%�	��� ����	�� ����	& �!	��	����������	��	����"���	'��������	�%��	$���!��	�� �	�&	�%�	� �����	��������	!�!� "
� ��	���������	� �����	����	� ���	!�!� "	���	����"���	�%�	'��������	��	�	����������� �%�	� �����	�&	��� ������ �%�	� �����	�&	������������� �%�	� ���&� 	�&	����������	�����	'��������	��	� ���	��������	!�!� "	���	����	�� ��� �����	����	���%��	()	'��������	!�����!���� �����	������ ��	$"	()	'��������	!�����!���

Figure 1. Visual representation of different knowledge management processes, adapted from Alavi and Leidner [10].

being captured in a knowledge base or incorporated into
(other) workflows. Lee et al. therefore argue that due to
the importance of the knowledge creation process, it should
be supported better by proper knowledge management and
a more elaborate Knowledge Management System (KMS)
[13].

B. Knowledge Storage/Retrieval

To fully leverage its value, knowledge needs to be dif-
fused across individuals within a company, research area,etc.
once it has been created. Otherwise, companies lose the
knowledge by simply forgetting the newly created knowl-
edge or by forgetting it exists [15], [16]. However, this
can be prevented by what literature identifies as individual
and organizational memories, which are used within the
knowledge storage and retrieval process [10]. Whereas the
individual memory is simply referring to the knowledge
of a single person, organizational memory is defined as

“the means by which knowledge from the past, experi-
ence, and events influence present organizational activities”
[17]. Such organizational memory can be facilitated by
several means, including written documentation, databases
with structured information, etc. Also, to a certain extent,
organizational memory may extend traditional individual
memories by including components such as organizational
culture, structure, information archives, and so on. It may
be subdivided in semantic memory (i.e., general, explicit
and articulated memory) and episodic memory (i.e., context-
specific and situated knowledge) [18]. Organizational me-
mory is claimed to have both possible positive effects (e.g.,
by being able to reuse good solutions in the form of
standards and procedures and by avoiding to make mistakes
again) and negative effects (e.g., decision-making biases or
status quo tending behavior). The authors of [10] mention
database management techniques, document management



184

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and groupware applications as typical IT means to develop
and maintain (i.e., store) the “memory” of an organization.
Additionally, IT artifacts in terms of design patterns have
been claimed to provide useful means to store and retrieve
organizational knowledge and best-practices. This is obvious
within the domain of software engineering, as for instance
initiated by the work of Gamma et al. [19]. The use
of design patterns facilitates the translation of individual
knowledge to organizational knowledge and the opposite
translation (see the bidirectional arrow G in Figure 1) by
offering a central organizational knowledge base (i.e., the
design patterns). The design patterns within this knowledge
repository can be accessed by all programmers for both
storage and retrieval of the latest iteration of the design
patterns. In this way, the central knowledge base acts as the
organizational memory and thereby “helps in storing and
reapplying workable solutions in the form of standards and
procedures, which in turn avoid the waste of organizational
resources in replicating previous work” [10]. In Section V,
we will further elaborate on this specific way of enabling
knowledge storage and retrieval by means of design patterns
and how these more traditional design pattern approaches
differ from the Normalized Systems theory patterns on
which we focus in the remainder of the paper.

In Figure 1, the various kinds of knowledge reposito-
ries are represented by the ovals, as they represent both
knowledge repositories or memories at the organizational
and individual level. Obviously, as the aim in organiza-
tional knowledge management is to leverage the storage
and retrieval of the organizational memory, the main focus
should be placed on the ovals labeled as containing group
memory. The processes of knowledge storage and retrieval,
are represented by the bidirectional arrow G.

In the previously discussed research of Lee et al. [13],
knowledge is stored in an intranet system. All engineering
change requests (ECRs) and engineering change orders
(ECOs) are automatically stored in a repository. The problem
with this repository is however that it does not provide the
functionality to navigate for relevant knowledge. Another
important aspect that the repository lacks is the possibility of
linking specific engineering changes with related problems,
solutions,etc. These shortcomings clearly show the different
levels and possible implementations of knowledge storage
management [13].

C. Knowledge Application

The only way an organization can valorize the knowl-
edge stored in its organizational memory, is by eventually
applying the knowledge. Such applications might be realized
by practices ranging between a continuum from directives
(i.e., a set of specific rules, standard and procedures to make
the tacit knowledge of specialists explicit for efficient com-
munication, including non-specialists) to self-contained task
mechanisms (i.e., a group of individuals with prerequisite

knowledge in several domains which becomes combined in
the considered team without explicitly formulated routines
or procedures).

As typical examples of the usage of IT systems, corporate
intranets are mentioned as useful means to access and
maintain directives. Similarly, workflow automation systems
and rule-based expert systems are suggested as interesting
IT artifacts to enable the efficient automation of captured
organizational knowledge and procedures.

Also, a large amount of codified best-practice might
generate a new problem as the organizational members need
to become competent in choosing the adequate best-practices
to be employed.

The extent to which practitioners depend on the ap-
plication of centrally available knowledge is demonstrated
by Lee et al. [13]. When valuable knowledge about the
incorporation of design changes is not readily available,
engineers have to solely rely on their own tacit knowl-
edge and off-line communication with colleagues to deal
with challenging engineering changes. This shows that the
application of knowledge highly depends on the available
knowledge stored in a repository or transferred between
agents.

D. Knowledge Transfer

The fourth knowledge management process discussed
by Alavi and Leidner is the transfer of knowledge [10].
This process is considered to be an important process in
knowledge management, as it provides the transfer of knowl-
edge between individuals, groups, organizations and other
sources. In spite of the acknowledgment of its importance,
the dissociation of knowledge transfer from knowledge
sharing is still unclear and both terms are often used inter-
changeably in academic literature [20]. Transfer and sharing
can however be differentiated based on some parameters.
While knowledge transfer is considered to be focused and
direct communication to a receiver, sharing is far more a
way of diffusing knowledge widespread (i.e., to multiple
people via for example a repository). These two definitions
are however just two extremes of an hypothetical continuum
in which characteristics of both terms can be combined [21].
Others authors also point out that knowledge sharing is about
exchanging tacit knowledge [22], while knowledge transfer
exchanges more explicit knowledge [23], [24].

Within the case study of Lee et al. [13], one out of three
problems related to a change in the final design of a car
where not new. Because of significant differences between
car models, knowledge on a specific problem (requiring a
design change) on one component or car model cannot be
easily transferred to another component or car model. The
knowledge in this case can therefore be classified as very
context-specific, consistent with the definition of episodic
knowledge by El Sawy et al. [13], [18]. This example



185

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

therefore shows how the type of knowledge also impacts
the transfer of knowledge.

III. NORMALIZED SYSTEMS

The Normalized Systems (NS) theory starts from the
postulate that software architectures should exhibit evolv-
ability due to ever changing business requirements, while
many indications are present that most current software
implementations do not conform with this evolvability req-
uisite. Evolvability in this theory is operationalized as being
the absence of so-called combinatorial effects: changes to
the system of which the impact is related to the size of
the system, not only to the kind of the change which is
performed. As the assumption is made that software systems
are subject to unlimited evolution (i.e., both additional
and changing requirements), such combinatorial effects are
obviously highly undesirable. In the event that changes are
dependent on the size of the system and the system itself
keeps on growing, changes proportional to the systems size
become ever more difficult to cope with (i.e., requiring
more efforts) and hence hampering evolvability. Normalized
Systems theory further captures its software engineering
knowledge by offering a set of four theorems and five
elements, and enables the application of this knowledge
through pattern expansion of the elements. The theorems
consist of a set of formally proven principles which offer a
set of necessary conditions which should be strictly adhered
to, in order to obtain an evolvable software architecture
(i.e., in absence of combinatorial effects). The elements
offer a set of predefined higher-level structures, primitives
or “building blocks” offering an unambiguous blueprint for
the implementation of the core functionalities of realistic
information systems, adhering to the four stated principles
[25].

A. Theorems

Normalized Systems theory proposes four theorems,
which have been proven to be necessary conditions to obtain
software architectures in absence of combinatorial effects
[26] :

• Separation of Concerns, requiring that every change
driver (concern) is separated from other concerns by
separating it in its own construct;

• Data Version Transparency, requiring that data entities
can be updated without impacting the entities using it
as an input or producing it as an output;

• Action Version Transparency, requiring that an action
entity can be upgraded without impacting its calling
components;

• Separation of States, requiring that each step in a work-
flow is separated from the others in time by keeping
state after every step.

In terms of knowledge management, as mentioned ex-
plicitly in [27], it must clearly be noted that the design

theorems proposed are not new themselves; in fact, they
relate to well-known (but often tacit or implicit) heuristic
design knowledge of experienced software developers. For
instance, well-known concepts such as an integration bus, a
separated external workflow or the use of multiple tiers can
all be seen as manifestations of the Separation of Concerns
theorem [27]. Consequently, the added value of the theorems
should then rather be situated in the fact that they (1)
make certain aspects of that heuristic design knowledge
explicit, (2) offer this knowledge in an unambiguous way
(i.e., violations against the theorems can be proven), (3)
are unified based on one single postulate (i.e., the need
for evolvable software architectures having no combinatorial
effects) and (4) have all been proven in a formal way in [26].

B. Normalized Systems Elements as Patterns

The theorems stated above illustrate that traditional soft-
ware primitives do not offer explicit mechanisms to incorpo-
rate the principles. As (1) each violation of the NS theorems
during any stage of the development process results in
a combinatorial effect, and (2) the systematic application
of these theorems results in very fine-grained structures,
it becomes extremely challenging for a human developer
to consistently obtain such modular structures. Indeed, the
fine-grained modular structure might become a complexity-
issue on its own when performed “from scratch”. Therefore,
NS theory proposes a set of five elements as encapsulated
higher-level patterns complying with the four theorems:

• data elements, being the structured encapsulation of a
data construct into a data element (having get- and set-
methods, exhibiting version transparency,etc.);

• action elements, being the structured encapsulation of
an action construct into an action element;

• workflow elements, being the structured encapsulation
of software constructs into a workflow element describ-
ing the sequence in which a set of action elements
should be performed in order to fulfill a flow;

• connector elements, being the structured encapsulation
of software constructs into a connector element allow-
ing external systems to interact with the NS system
without calling components in a stateless way;

• trigger elements, being the structured encapsulation of
software constructs into a trigger element controlling
the states of the system and checking whether any
action element should be triggered accordingly.

More extensive descriptions of these elements have been
included in other papers (e.g., [25]–[27]). As these elab-
orated descriptions would offer little to no value to this
paper, they were not included here. Each of the elements
is a pattern as it represents a recurring set of constructs:
besides the intended, encapsulated core construct, also a set
of relevant cross-cutting concerns (such as remote access,
logging, access control, etc.) is incorporated in each of these
elements. For each of the patterns, it is further described



186

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in [27] how they facilitate a set of anticipated changes in a
stable way. In essence, these elements offer a set of building
blocks, offering the core functionalities for contemporary
information systems. In this sense, the NS patterns might
offer the necessary simplification by offering pre-constructed
structures that can be parametrized during implementation
efforts. This way the NS patterns dictate the source code for
implementing the pattern.

Regarding these patterns, it can be noted that their def-
inition and identification are based on the implications of
the set of theorems. For instance, the theorems Separation
of Concerns (SoC) and Separation of States (SoS) indicate
the need to formulate a workflow element. Contrary (and
in addition) to an action element, such a workflow ele-
ment allows the stateful invocation of action elements in a
(workflow) construct. The SoS principle indeed requires this
kind of stateful invocation and the SoC principle demands
that the concern of invocation is handled by a separate
construct. Next, each of the five patterns themselves contain
knowledge concerning all the implications of the theorems
referred to in Section III-A. Finally, each of these patterns
has been described in a very detailed way. Consider for
instance a data element in a Java Enterprise Edition (JEE)
implementation (a widely used platform for the development
of distributed systems) [28]. In [27] it is discussed how a
data element Obj is associated with a bean class ObjBean,
interfaces ObjLocal and ObjRemote, home interfaces
ObjHomeLocal and ObjHomeRemote, transport classes
ObjDetails and ObjInfo, deployment descriptors and
EJB-QL for finder methods. Additionally, methods to ma-
nipulate a data element’s bean class (create, delete, etc.)
and to retrieve the two serializable transport classes are
incorporated. Finally, to provide remote access, an agent
class ObjAgent with several lifecycle manipulation and
details retrieval methods is included. It can be argued that
these elements incorporate the main concerns which are
relevant for their function.

Moreover, the complete set of elements covers the core
functionality of an information system. Consequently, as
such detailed description is provided for each of the
five elements, an NS application can be considered as
an aggregation of a set of instantiations of the ele-
ments. Consider for example the implementation of an
observer design pattern [19]. In order to implement this
pattern in NS, three data elements (i.e., Subscriber,
Subscription and Notification) are required. A
Notifier connector element will observe the subject,
and create instances of the Notification data element.
These Notification data elements will be sent to ev-
ery Subscriber that has a Subscription through a
Publisher connector element. The sending is triggered by
a PublishEngine trigger element which will periodically
activate a PublishFlow workflow element. Consider that
each NS element consists of around ten classes [25]. The

seven identified elements therefore result in around seventy
classes used to implement the design pattern, whereas the
original implementation of the design pattern consists of two
classes and two interfaces. Consequently, it is clear that, in
order to prevent combinatorial effects, a very fine-grained
modular structure needs to be adhered to.

C. Pattern Expansion

As stated before, in practice, the very fine-grained mod-
ular structure implied by the NS principles seems very
unlikely to arrive at without the use of higher-level primitives
or patterns. The process of defining these patterns and
transforming them into code is shown in Figure 2. As NS
proposes a set of five elements which serve for this purpose,
this figure shows how the actual software architecture of NS
conform software applications can be generated relatively
straightforward. First the requirements of the application
are translated in instantiations of the five NS elements. To
achieve generated software code, these instantiations need
to be created. Therefore, the instantiations are coded into
so-called descriptor files, which are text- or XML-based
files describing the inputs for the expanders. For example,
in case of the data element pattern, the pattern expansion
mechanism needs a set of parameters including the basic
name of the data element (e.g., Invoice), context infor-
mation (e.g., component and package name) and data field
information (e.g., data type). The expanders then generate
skeleton source code for all these instantiations, together
with all deployment and configuration files required to
construct a working application on one of several technology
stacks, such as Java Enterprise Edition. For the invoice
example, this would be the set of classes and data fields:
the bean class InvoiceBean, interfaces InvoiceLocal
and InvoiceRemote,etc. As the code generation process
is typically very fast, this allows for interactive sessions
to use the generated application to validate the correctness
of the descriptor files. Next, extensions can be added to
the generated code, but only in very specific pre-defined
locations in the generated code to ensure that the extension
do not compromise the control of combinatorial effects.
Extensions can be inserted typically in the implementation
class of an action element, or more generally in pre-specified
anchors in the code. Next, these extensions are harvested
by automated tools and stored separately from the skeleton
code. When a new version of the expanders is built, for
example with new frameworks in the web tier or in the
persistence tier, or with minor upgrades, the application is
re-generated by first expanding the skeleton code and then
injecting the extensions.

In terms of knowledge management, it should be noted
that the patterns and the expansion mechanism should not be
considered as separate knowledge reuse mechanisms: rather,
the pattern expansion facilitates the re-use of knowledge
embedded in the patterns, as each expansion of the patterns



187

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

���������	
���������
��������
��
����
��
��
�������
������������	�	
�	�����
����
�

��������	��������������������

����	����

����������������������

�����	
��
���������
�����
����
����
���������
��
�������
������
����

����� 
�����	������
���
���������
������

���������������������

������	�����

!������
��
����������������������������

"��	�
��
����������
��
����#����
����	
�����������	����	����	����

�
�
�
�
�
�
��
�	



�
��

����
���

��
�	�����


�
���

�
��


�
�
��
�
��


�
�

Figure 2. Visual representation of the Normalized Systems development
process.

results in a new application of the knowledge encapsulated in
the pattern. Through this, pattern expansion facilitates both
types of learning discussed earlier (i.e., “learning by doing”
and learning from experience of other people) by utilizing
the knowledge contained in the patterns.

Also, the information codified in a pattern may not be
sufficient to adequately transfer the intended knowledge.
This is even the case when using the design patterns
proposed by Gamma et al. [19]. For example, it has been
claimed that the Dependency Inversion Principle helps to
gain a better understanding of the Abstract Factory pattern
[29]. Similarly, the structure of the NS patterns can only be
understood when the NS theorems are taken into account.

IV. NORMALIZED SYSTEMS PATTERNS AS KNOWLEDGE
MANAGEMENT

In the previous sections, we explained four processes
that are widely regarded to be the essential processes of
knowledge management. We also outlined how Normalized
Systems theory employs a set of NS patterns to represent a
fine-grained modular structure which can be systematically

expanded to provide an evolvable software architecture. In
this section, we discuss how the use of NS patterns seems to
facilitate each of the four essential processes of knowledge
management as identified by Alavi and Leidner [10].

A. Knowledge Creation

As discussed in section III-B, Normalized Systems theory
relies on the use of patterns to capture design knowledge.
One of the main purposes of the use of patterns and
the associated pattern expansion mechanism, is to easily
incorporate new knowledge into the patterns themselves, and
the expanded NS applications in a second stage. Therefore,
Normalized Systems theory can be considered to easily
facilitate knowledge creation using IT artifacts (i.e., elements
as design patterns). This opportunity for knowledge creation
can be interpreted from two distinct perspectives.

First, improvements (i.e., new content) or changes (i.e.,
replacement of already existing knowledge such as typical
bug fixing or a new kind of algorithm) regarding the actual
functional parts of the system (i.e., the so-called ‘tasks’) are
easily incorporated in the whole system (i.e., transformed
from tacit into explicit knowledge). This because functional
parts that are different change drivers are separated accord-
ing to NS principles, meaning a single functional part is
the only place where any modifications have to be made
and the remainder of the system can easily interact with
the new task (and hence, use this knowledge). In NS terms,
we could call this kind of changes and expertise inclusions,
knowledge dispersion at the “sub-modular level” as only
changes and new knowledge are incorporated at the sub-
modular level of the tasks (and not in the modular structure
of the elements). In order to illustrate this first kind of
knowledge creation in NS, consider the developments on
the connector element. A user connector element allows
a user to interact with the application, for example by
offering create, read, update, delete and search (CRUDS)
functionality on a data element. Such connector elements
are expanded based on the parametrization of the data
elements, resulting in separate CRUDS screens for every
data element. In certain applications, the end users requested
that CRUDS functionality for different data elements is com-
bined within one page. This could be achieved, but only by
adding extensions to the expanded code from the connector
element. These extensions were performed by the same
team of programmers over and over again. After several
iterations, different ways of integrating CRUDS functionality
emerged, which were referred to by the programmers of
these extensions using specific names. For example, a screen
where a linked data element is added below another data
element is referred to as a “waterfall screen”. For such a
waterfall screen, a reoccurring extension needs to be made
every time. Once the specific code for creating this screen
is separated from other concerns, it can be added to the
connector element. Therefore, the user connector element



188

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

will be updated to provide the expansion such waterfall
screen without needing any extension. According to the
programmers, this can only be achieved because all other
concerns are removed from within the functional class of
the connector element, allowing them to focus solely on the
organization of the user interface components.

Second, knowledge can be incorporated at the “modular
level” as well. This kind of knowledge inclusion would
include change (e.g., an extra separated class in the pattern)
and modifications (e.g., improved persistence mechanism)
regarding the internal structure of an element (the pattern).
Indeed, once the basic structure or cross-cutting concern im-
plementation of an element is changed due to a certain iden-
tified need or improvement, the new best-practice knowledge
can be expanded throughout the whole (existing) modular
structure and used for new (i.e., additional) instantiations
of the elements. In order to further illustrate this second
kind of knowledge creation based on NS patterns, consider
the following example, based on real-life experience from
developers using NS.

For instance, one way to adopt a model-view-controller
(MVC) architecture in a JEE distributed programming envi-
ronment is by adopting (amongst others) the Struts frame-
work. In such MVC architecture, a separate controller is
responsible for handling an incoming request from the
client (e.g., a user via a web interface) and will invoke
(based on this request) the appropriate model (i.e., business
logic) and view (i.e., presentation format), after which the
result will eventually be returned to the client. Struts is
a framework providing the controller (ActionServlet) and
enabling the creation of templates for the presentation layer.
Obviously, security issues need to be handled properly in
such architecture as well. Applied to our example, these
security issues in Struts were handled in the implementation
of the Struts Action itself in a previous implementation
of our elements. In other words, the implementation class
itself was responsible for determining whether or not a
particular operation was allowed to be executed (based on
information such as the user’s access rights, the screen
in which the action was called, etc.). As a result, this
“security function” became present in all instantiations of
an action element type (i.e., each session). Moreover, this
resulted in a combinatorial effect as the impact of a change
such as switching towards an equivalent framework (i.e.,
handling similar functions as Struts), would entail a set
of changes dependent on the number of instantiated action
elements (and hence, on the size of the system). In order
to solve the identified combinatorial effect, the Separation
of Concern theorem has to be applied: separating the part
of the implementation class responsible for the discussed
security issues (i.e., a separate change driver) in its own
module within the action element. In our example, a separate
interceptor module was implemented, next to the already
existing implementation class. This way, not only the com-

binatorial effect was excluded, but the new knowledge in
terms of a separate interceptor class was applied to all action
elements after isolating the relevant implementation class
parts and executing the pattern expansion. Additionally, all
new applications will use the new action element.

Considering the underlying idea of design patterns and
the NS element, namely to transform tacit knowledge into
explicit knowledge, one can readily understand why theories
using design patterns (such as NS) mostly rely on “exter-
nalization” and “combination” regarding the relevant knowl-
edge management aspects. Thereby, both these knowledge
creation processes refer to the definition of new explicit
knowledge, be it from existing tacit knowledge (i.e. exter-
nalization) or existing explicit knowledge (i.e. combination).
First, the use of externalization is demonstrated by the fact
a lot of good programming practices (i.e., best-practices)
are incorporated in the structure of the elements themselves.
Indeed, while the NS theorems prescribe a set of necessary
conditions in order to attain evolvable and easily adaptable
software architectures, the elements provide a constructive
proof and explicit way of working regarding how to achieve
this in reality, which is generally conceived to be only
attainable by very highly experienced and skilled program-
mers. For instance, designing software architectures in such
a way that the cross-cutting concerns are integrated in a fine-
grained modular way is considered to be rather challenging.
The formulation of the elements in combination with the
expansion mechanism allow a way to externalize this ex-
perience and apply it at large scale. Second, one example
of the use of combination to formulate new explicit design
knowledge within NS, is the elimination of combinatorial
effects within a software application. Whenever violations of
the four NS principles are discovered within new software,
programmers report the violations and their effects to their
colleagues and supervisors. This way, a solution can be
found for eliminating the violations (using both tacit and
explicit knowledge).

B. Knowledge Storage/retrieval

Knowledge storage and retrieval should ensure that a cer-
tain expertise within companies is retained and placed easily
at the disposal of the relevant people within the organization,
in order to be applied at a later stage. In the Normalized
Systems approach, a major part of the knowledge is stored
within the NS elements. These elements offer a standard-
ized way to create (i.e., generate) software applications by
prescribing a set of predefined and systematically re-used
modules. Consequently, the use of design patterns (i.e.,
the NS elements) facilitates the translation of individual
knowledge to organizational knowledge by offering a central
organizational knowledge base (i.e., the design patterns).
The design patterns within this knowledge repository can be
accessed by all programmers for both storage and retrieval
of the latest iteration of the design pattern, and can hence



189

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be considered to be a part of the organizational memory.
With Normalized Systems, this advantage of re-using the
“standard” design patterns is in fact exceeded by the benefit
of using a solution that —from an evolvability viewpoint—
is proven to be optimal.

To further position knowledge used within Normalized
Systems, we can refer once more to the classification of
El Sawy et al. [18], which breaks down organizational
memory into semantic memory and episodic memory. As
the design patterns formulate a sound software structure that
is generally applicable to every software application, this
knowledge should be classified as semantic knowledge. The
opposite of this general and explicit semantic knowledge
is the so-called episodic knowledge, which is defined as
context-specific knowledge. As Normalized Systems formu-
lates general software architecture principles for software,
this type of organizational knowledge is not part of the
general Normalized Systems patterns. This context-specific
knowledge in incorporated in so-called extensions that are
added to the software after the expansion based on the five
recurrent elementary structures. Because the patterns are
detailed enough to be instantiated, no manual implemen-
tation of the patterns (as is the case with the design patterns
proposed by Gamma et al. [19]) is required. Consequently,
an identical code structure reoccurs in every application
which is created using the expansion of NS elements. The
commonality of the structure of the patterns makes that
once one understands the patterns, one understands all its
instantiations as well. In this way, it could be argued that
—at least partially— the pattern structure becomes the docu-
mentation. Therefore, no source code level documentation is
required and all knowledge is stored in the NS patterns. Such
advantages can only be achieved for semantic knowledge,
since episodic knowledge is different is various contexts.

C. Knowledge Application

In the Normalized Systems theory rationale, the knowl-
edge present in the NS elements is applied by employing
the elements as a design template for evolvable software.
Each NS compliant software application is an aggregation
of a set of instantiation of one of the five NS elements.
Therefore, the knowledge of NS contained in the NS el-
ements and their accompanying expansion mechanism can
be considered to be prescriptions or directives as defined
by Grant [3] (i.e., a set of rather unambiguous and specific
standards or rules used to guide the actions of persons).
When writing a software application, a programmer retrieves
the latest version of the software design patterns from the
knowledge repository. Afterwards, the element instances
are parametrized and configured in descriptors files (e.g.,
the relevant fields, relationships,etc. for a data element are
specified). Hence, by combining their tacit knowledge with
the described structure of the NS elements, the programmers
build evolvable software.

The use of the NS elements and theorems indeed results
in evolvable and easily adaptable software architectures. For
instance, an important characteristic of these structures is
that they separate technology-dependent aspects from the
actual implementation, resulting in the fact that one can
easily switch the underlying technology stack of the soft-
ware. One transition that has been performed, is changing the
underlying implementation architecture from Enterprise Java
Beans (EJB) version 2 to EJB version 3. Because these stan-
dards encapsulate the business logic of an application, they
use a different way of communicating between agents and
beans. Therefore, this transition normally is a labor-intensive
and difficult task. Using the architecture described in this
paper, this transition can however be achieved rather easily
by using the pattern expansion mechanism. This is because
the expanders that perform the expansion are very similar
for different technologies. This is done by clearly separating
functional requirements of the system (i.e., input variables,
transfer functions and output variables) from constructional
aspects of the system (i.e., composition of the system).
Whereas all constructional aspects are described in patterns,
functional aspects are separately included in descriptor files
(such as data elements, action elements,etc.). As each pattern
can be conceived a recurring structure of programming
constructs in a particular programming environment (e.g.,
classes), one can conclude that the functional/constructional
transformation then becomes located at one abstraction level
higher than before.

An important result from the application of knowledge
is that it is often combined with a learning process. By
building software using the expansion of NS elements, the
programmers improve both their tacit knowledge on building
(evolvable) software and explicit knowledge that will be
incorporated in the design pattern (i.e., NS elements). This
increased tacit knowledge (“experience”) will over time also
contribute to the definition of changes to the design patterns.
The inherent way of working implied by the NS expansion
mechanism (i.e., expanding software architectures by sys-
tematically instantiating the NS elements, and incorporating
new bits knowledge again into this core of patterns) also
efficiently copes with the issue articulated in Section II-C,
namely that the automated ways of working should be
continually kept up-to-date.

D. Knowledge Transfer

Within a knowledge system, knowledge is transferred
from where it is available (i.e., a repository) to where it is
needed. For Normalized Systems, the knowledge repository
of the NS design patterns (NS elements) needs consistent
updating to reflect the most recent software architecture
for evolvable software. This is done by transferring the
new explicit design knowledge created by individuals to the
group semantic knowledge repository of NS elements. The
use of this repository can be characterized as impersonal



190

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and formal, which promotes a faster and further distribution
and is a good way to transfer knowledge that can be
readily generalized to other contexts (which is the case for
NS) [10]. Analogously to the discussion in Section II, the
exchange of explicit knowledge (i.e., NS elements) in NS
theory can be classified most appropriately as knowledge
transfer. The use of a NS repository however bears closer
resemblance to knowledge sharing process. This shows that
the exchange of NS knowledge should be placed on the
previously discussed continuum between knowledge transfer
and knowledge sharing.

V. DISCUSSION

In this section, in order to provide a summarizing
overview of our analysis presented above, we will first dis-
cuss to which extent the knowledge management practices
within Normalized Systems cover all aspects as identified
by Alavi and Leidner [10], based on Figure 1. Next, we
will present some reflections with respect to design patterns
in general and how the use of elements within Normalized
Systems seems to enhance the existing practices of design
patterns regarding knowledge management on several do-
mains.

A. Overview of knowledge management aspects of Normal-
ized Systems

To recapitulate the NS knowledge management processes,
we will discuss these processes according to the represen-
tation introduced by Alavi and Leidner [10], as shown in
Figure 1. This figure has been adapted to represent whether
or not the defined knowledge processes are used within
Normalized Systems theory. This is done by indicating those
processes which are not covered by the Normalized Systems
theory by dotted lines. Consequently, full lines indicate the
knowledge processes that are used within NS knowledge
management.

Regarding the knowledge management creation processes
(i.e., arrows C, D, E, and F), we can notice that the Nor-
malized Systems theory primarily enables the externalization
and combination processes (i.e., the processes indicated by
the arrows C and F respectively). These processes aim to
make implicit knowledge and best practices explicit (as is
done by the formulation of the NS theorems and elements)
and to combine already existing explicit knowledge among
several members of the group (e.g., discussing additional
concerns which need to be separated or improvements of
the current elements). While the processes of socialization
(i.e., arrow E) and internalization (i.e., arrow D) might oc-
casionally occur in the NS community, those aspects are not
explicitly managed within the Normalized Systems rationale.
Indeed, the aim of the Normalized Systems approach is to
design evolvable software architectures based on formally
proven and tested (and hence, explicit) principles and their
implications.

The bidirectional interaction between an individual’s ex-
plicit knowledge repository and the group’s memory is visu-
alized trough arrow G. In NS reasoning, such explicit knowl-
edge (e.g., the formally known need to separate a certain
external technology in a distinct module) becomes embedded
in the group’s memory by incorporating it in the general
structure of the NS elements and might subsequently offer
new insights regarding the explicit knowledge of another
person as well. Also arrows K and J are relevant in a NS
context. The first represents the application of a developer’s
new tacit insights (i.e., new possible improvements of the
elements) into a trial-version of the elements, while the latter
may occur in the situation where the real-life implementation
of software in an organizational setting may point out that
a certain part of of a ‘task’ implemented in an action
element evolves independently in a realistic setting, thus
constitutes a separate change driver and should consequently
be separated.

The transfer of individual tacit knowledge to group’s
episodic memory (i.e., arrows L), is a type of knowledge
transfer that is not used in NS knowledge management.
This simply because the knowledge repository does not
include any type of episodic memory, rendering the transfer
of knowledge non-existent. Arguably the most important
transfer of knowledge within NS theory is the expansion
of NS elements into evolvable software. This transfer is
shown by arrows I, which represent the repeated use of
design patterns (i.e., the NS elements) for building agile
software. In the opposite direction, directly learning from
the application of the NS elements is not supported in the
knowledge management for NS theory (i.e., arrows H). As
the Normalized Systems rationale stipulates a deterministic
and proven way of constructing evolvable software based
on the NS design theory, it does not allow new knowledge
to be formulated directly from the application of the NS
elements. Instead, new knowledge should always be rigor-
ously verified by traditional knowledge creation processes of
externalization and combination before being added to the
existing knowledge base of NS elements.

Finally, the extension of the NS knowledge management
to multiple groups will add an extra layer of complexity
to the management of knowledge. However, the centrality
of the current knowledge base and the limited size of
developers working on the development of the NS elements
are the reasons these challenges are not the main point of
interest at this moment.

B. Knowledge Management using Design Patterns

As discussed in the introduction, knowledge management
also plays an important parts in software engineering. The
specific use of design patterns in object-orientation during
the 90’s, exemplified by the seminal work of Gamma et al.
[19], was incited by the fact that modern computer literature
regularly failed to make tacit (success determining) knowl-



191

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

edge regarding low-level principles of good software design
explicit [30]. Patterns provide high-level solution templates
for often-occurring problems. The patterns proposed by
Gamma et al. [19] were conceived as the bundling of a set of
generally accepted high-quality and best-practice solutions
to frequently occurring problems in object-orientation pro-
gramming environments. For instance, in order to create an
one-to-many dependency between objects so that when the
state of one object changes, all its dependents are notified
and automatically updated, the observer pattern (i.e., an over-
all structure of classes giving a description or template of
how to solve the concerned problem) was proposed [19]. As
a consequence, the use of these patterns can be considered
as specifically aimed at facilitating (inter-)organizational
learning by learning from direct experiences of other people
— in this case experienced software engineers —, and being
one specific way of knowledge transfer.

According to Schmidt [31], design patterns have been so
successful because they explicitly capture knowledge that
experienced developers already understand implicitly. The
captured knowledge is called implicit because it is often
not captured adequately with design methods and notations.
Instead, it has been accumulated through timely processes of
trial and error. Capturing this expertise allows other devel-
opers to avoid spending time rediscovering these solutions.
Moreover, the captured knowledge has been claimed to
provide benefits in several areas [32]. Such benefits include
(a) documentation of software code, (b) knowledge reuse
when building new applications, and (c) incorporation of
new knowledge in existing software applications. In this
section, we focus on these benefits, and discuss how NS
elements can be considered to be an improvement on this
way of working.

1) Documentation: Patterns provide developers with a
vocabulary which can be used to document a design in a
more concise way [19], [32], [33]. For example, pattern-
based communication can be used to preserve design de-
cisions without elaborate descriptions. By delineating and
naming groups of classes which belong to the same pattern,
the descriptive complexity of the design documentation (e.g.,
a UML class diagram) can be reduced [33]. Consequently,
the vocabulary offered by patterns allows a shift in the
abstraction level of the discussions. This usage of design
patterns is mostly applied at the conceptual level, and ne-
glects the source code documentation. However, the abstract
nature of patterns, i.e., as a solution template, means that
it is possible to implement a certain design pattern using
different alternatives. Therefore, it has been argued that the
addition of source-code level documentation of the pattern
usage is required to perform coding and maintenance tasks
faster and with fewer errors [34].

In NS, the structure of the five software patterns could
be described in a similar way. The focus would then be on
the different concerns which need to be separated in each

element. As discussed in Section III, each concern needs
to be encapsulated in a separate module (e.g., a class in
the object-oriented paradigm). Consequently, the different
concerns dictate the modular structure of the element. As
a result, this documentation could provide similar insights
as obtained by traditional design patterns. However, the
NS elements are described in such detail that they can be
expanded, resulting in working code. In Section IV-B, we
discussed how the reoccurring code structure in itself be-
comes the documentation for expanded software: because a
certain piece of code is identical in every expanded instance,
a programmer only needs to inspect this piece of code once
in order to understand how that particular piece works. This
eliminates the need for including documentation in every
instance of source code. In conclusion, the pattern expansion
allows documentation at the pattern level to be sufficient,
eliminating the need for code-level documentation.

2) Using knowledge to build new applications: Several
authors propose the usage of design patterns to create new
software applications (e.g., [35]). Earlier we discussed how
patterns provide high-level solution templates, and conse-
quently, do not dictate the actual source code. As a result,
knowledge concerning the implementation platform remains
important. A correct and efficient implementation of a design
pattern requires a careful selection of language features [31].
Clearly, design patterns alone are not sufficient to build
software. As a result, the implementation of a design pattern
during a software development process remains essentially
a complex activity [31]. Developing software for a con-
crete application then requires the concrete experience of
a domain and the specifics of the programming language,
as well as the ability to abstract away from details and
adhere to the structure prescribed by the design pattern.
Nevertheless, certain companies and researchers attempt to
integrate the knowledge available in design patterns in other
approaches, in order to create automated code generation.
For example, so-called software factories attempt to create
software similar to automated manufacturing plants [36].
This should drastically improve software development pro-
ductivity. However, such approaches have not yet reached
widespread adoption.

The code expansion which occurs when using NS ele-
ments needs to be distinguished from this approach. Con-
sider for example the action element. The functional class
of such an element still needs to be programmed manually.
However, the code for reoccurring concerns, such as remote
access, can be expanded since this code is identical for
different action element instantiations. Similarly, an instan-
tiation of a data element needs to be functionally defined
(i.e., through descriptor files which contain data field defi-
nitions). However, the concerns which reoccur in every data
element instantiation are expanded. In Section IV-C, these
are referred to as constructional elements. Consequently,
the building of new applications applies code reuse to an



192

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

extent as large as possible: the common source code, which
is similar for all element instantiations, is expanded, while
functional requirements need to be provided by the program-
mer. As a result, an optimal way of using knowledge to build
applications is applied, without restricting the programmer
in addressing functional requirements.

3) Incorporating new knowledge in existing applications:
Because of the increasing change in the organizational envi-
ronment in which software applications are used, adaptabil-
ity is considered to be an important characteristic. However,
adapting software remains a complex task. Various studies
have shown that the main part of the software development
cost is spent after the initial deployment [37], [38]. Several
design patterns focus on incorporating adaptability into their
solution template. Empirical observations have been reported
which confirm the increased adaptability when using de-
sign patterns [39]. Adaptations could be made easier in
comparison with an alternative that was programmed using
no design patterns, and achieved adaptability was retained
more successfully because of the prescribed structure. Nev-
ertheless, some researchers also report negative effects on
adaptability, caused by the added complexity of the design
patterns. By prescribing additional classes in comparison to
simpler solutions, more errors have been introduced in some
cases [39].

Both observations are consistent with the experiences ob-
tained by developing NS. By separating all concerns within
the elements, combinatorial effects are prevented, which
allows improved adaptability. Since this is similar to how
design patterns work, it shows how NS incorporates existing
design knowledge. However, NS prescribes to separate more
concerns than traditional patterns or methods. This leads to
a very fine-grained, but complex structure. As described by
Prechelt et al., such complexity reduces adaptability [39].
Therefore, the pattern expansion mechanism is a crucial
component of NS, as discussed in Section III-C. We dis-
cussed how code expansion seems to be indispensable for
knowledge reuse to separate concerns and prevent combina-
torial effects. Moreover, the expansion mechanism also al-
lows to make adaptations in a structured way. When changes
or updates are applied to the elements, the expanded code
can be updated by either re-expanding, or by using marginal
expansion. Marginal expansion updates only parts of already
expanded code, without replacing the expanded element as a
whole. Consequently, newly generated knowledge (such as,
e.g., a newly identified combinatorial effect) can be applied
in existing applications as well.

C. Positioning NS as knowledge management

The approach of capturing knowledge using NS as de-
scribed in this paper clearly deviates from the body of
thought of other knowledge management approaches. For
example, in the article by Tuzilin [12], the evolution of
knowledge management systems from content management

systems is discussed, and it is highlighted how the process
of making tacit knowledge explicit was initially regarded
to be optimal for capturing knowledge. However, as this
proved to be an insurmountable challenge, future devel-
opments of knowledge management are expected to focus
on the indexation of tacit knowledge. Consequently, when
knowledge is needed, the responsible knowledge source can
be identified, and can be shared without needing to make
all tacit knowledge explicit. NS theory opposes this idea.
The rate of reuse of the evolvable modular structure of
software elements is too high to be supported by such
communication-based approaches. Therefore, the knowledge
captured in NS (i.e., being the modular structure of evolvable
software patterns) is made explicit. Consider for example
the implications of the Separation of Concerns theorem, as
discussed in Section III-A. It implies that each concern needs
to be separated in a separate module. Compare this to a non-
normalized system, where multiple concerns are mixed in a
module. These concerns are on a sub-modular level, and are
not explicitly identified as different concerns. Nevertheless,
knowledge of these concerns is vital, since they introduce
combinatorial effects, and hence limit evolvability. The
knowledge related to which concerns need to be separated
is made explicit in NS through the modular structure, as
available in the expanders.

Our discussed way of knowledge capture in NS is feasible
since a specific kind of knowledge is focused on: the modu-
lar structure of software. For organizational knowledge, such
a modular structure may not be well-suited, and different
systems may be needed here (cf. infra). Nevertheless, many
organizational issues are being studied as being modular
structures. For example, coordination issues in supply chains
have been claimed to be modularity issues [40]–[42]. Conse-
quently, making knowledge concerning such issues explicit
in a modular structure could be explored as well.

D. Contributions and Future Work

This paper could be claimed to have several contri-
butions, while indicating several opportunities of future
work. Regarding contributions, first, this paper might help
in clarifying the particular way of how software applica-
tions are built according to the Normalized Systems way
of thinking and —more specifically— how this enables
the creation, storage/retrieval, application and transfer of
knowledge. Our aim was to provide a practical overview,
including examples, of how NS might enhance knowledge
management in practice, based on a theoretically founded
framework and its concepts. Second, this paper illustrates
the possibility of readily applying the published frame-
work of Alavi and Leidner [10] to analyze the knowledge
management processes regarding a software development
approach. To the authors’ knowledge, no other researchers
have described their software development approach based
on this framework in such an extensive way. Therefore, this



193

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

paper illustrates the benefits researchers might realize by
presenting their software development approach according
to this framework for clarifying any related knowledge
management benefits or issues, as well as the relevance
of the considered framework for this purpose. Third, our
analysis clearly highlighted how NS differentiates from the
direction which is taken in other knowledge management
approaches. In NS, knowledge is made explicit by capturing
it into modular structures of evolvable software patterns,
instead of pure textual descriptions. While we are not
the first to argue that more efficient ways of knowledge
management can be attained by the use of design patterns,
we argued that the NS patterns could be hypothesized to be a
sort of “enhanced design patterns” regarding documentation
(i.e., only requiring documentation at the pattern level),
knowledge usage (i.e., maximal code expansion) and new
knowledge incorporation (i.e., including new knowledge by
simple re-expansion or marginal expansions).

Regarding future work, we could first notice that, although
the discussion in this paper is limited to Normalized Systems
theory for software, the theory has recently been applied
to both Business Process Management [43] and Enterprise
Architecture [44] domains. As part of future research, the
possible formulation and investigation of patterns on the
level of business processes and enterprise architecture (and
their knowledge management implications) can be studied.
However, we already mentioned in Section V-C that the
concerns (and hence modular structures) identified at these
levels are of a different kind. Therefore, the knowledge
management issues regarding the identification, storage and
“deployment” of such modular structures at the organiza-
tional level should be investigated in the future as well.

Another area of future research concerns a more elab-
orated and detailed way of describing how the discussed
knowledge management processes in NS relate to similar
software development approaches. The Normalized Systems
approach was shown to include and support the four widely
adopted types of knowledge management processes. The
question however remains how the support of these knowl-
edge management processes by NS precisely relates to other
software development paradigms and approaches. Such a
comparison calls for rather extensive research efforts and
is therefore suggested as part of future research.

VI. CONCLUSION

Creating, managing and applying knowledge is a crucial
competence for organizations today. Therefore, knowledge
management is a widely investigated and popular research
topic. In this paper, we explored how Normalized Sys-
tems theory, and its use of elements and their expansion
mechanisms in particular, support knowledge management
in the development process of evolvable software. For this
purpose, we employed the framework of Alavi and Leidner
[10] to analyze how the four essential processes within

knowledge management are facilitated in the Normalized
Systems reasoning: (1) knowledge creation, (2) knowledge
storage/retrieval, (3) knowledge application and (4) knowl-
edge transfer. Our analysis shows that design patterns as
a central knowledge repository facilitate the transfer of
knowledge from an individual to others in an explicit and
efficient way. All processes of Alavi and Leidner [10] seem
to be supported by Normalized Systems reasoning. Some
transformations are considered to be essential (e.g., new
knowledge can be absorbed by arrow J in Figure 1 going
from “knowledge application” to an individual tacit knowl-
edge), while others are not directly (but rather indirectly)
included in the NS rationale (e.g., not directly incorporating
knowledge from applications into the group’s memory, but
through the knowledge creation processes of externalization
and combination).

Further, we showed in this paper that the NS elements
can be considered to be enhanced patterns for software de-
velopment with benefits on three dimensions (i.e., less need
for explicit documentation, more deterministic development
of new applications and more convenient incorporation of
new knowledge into existing applications). From interviews
with developers, these benefits have shown to enhance the
transfer of knowledge, success rate and the overall quality
of NS developments.

ACKNOWLEDGMENT

P.D.B. is supported by a Research Grant of the Agency for
Innovation by Science and Technology in Flanders (IWT).

REFERENCES

[1] P. De Bruyn, P. Huysmans, G. Oorts, D. Van Nuffel, H. Man-
naert, J. Verelst, and A. Oorst, “Using normalized systems
patterns as knowledge management,” in Proceedings of the
Seventh International Conference of Software Engineering
Advances (ICSEA), Lisbon, Portugal, 2012, pp. 28–33.

[2] B. Wernerfelt, “A resource-based view of the firm,” Strategic
Management Journal, vol. 5, no. 2, pp. 171–180, 1984.

[3] R. M. Grant, “Toward a knowledge-based theory of the firm,”
Strategic Management Journal, vol. 17, pp. 109–122, 1996.

[4] F. Bjrnson and T. Dingsyr, “Knowledge management in
software engineering: A systematic review of studied con-
cepts, findings and research methods used,” Information and
Software Technology, vol. 50, no. 11, pp. 1055–1068, 2008.

[5] P. Attewell, “Technology diffusion and organizational learn-
ing: The case of business computing,” Organization Science,
vol. 3, no. 1, pp. 1–19, 1992.

[6] B. Levitt and J. G. March, “Organizational learning,” Annual
Review of Sociology, vol. 14, pp. 319–340, 1988.

[7] C. Chewar and D. McCrickaerd, “Links for a human-centered
science of design: integrated design knowledge environments
for a software development process,” in Proceedings of the
Hawaii International Conference on System Sciences, 2005,
p. 256.3.



194

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] T. Dings yr, H. K. Djarraya, and E. Røyrvik, “Practical
knowledge management tool use in a software consulting
company,” Communications of the ACM, vol. 48, no. 12, pp.
96–100, 2005.

[9] F. Bjrnson and T. Dingsyr, “A study of a mentoring program
for knowledge transfer in a small software consultancy com-
pany,” in Product Focused Software Process Improvement,
ser. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2005, vol. 3547, pp. 245–256.

[10] M. Alavi and D. E. Leidner, “Review: Knowledge man-
agement and knowledge management systems: Conceptual
foundations and research issues,” MIS Quarterly, vol. 25,
no. 1, pp. 107–136, 2001.

[11] N. K. Kakabadse, A. Kakabadse, and A. Kouzmin, “Re-
viewing the knowledge management literature: towards a
taxonomy,” Journal of Knowledge Management, vol. 7, no. 4,
pp. 75–91, 2003.

[12] A. Tuzhilin, “Knowledge management revisited: Old dogs,
new tricks,” ACM Trans. Manage. Inf. Syst., vol. 2, no. 3, pp.
13:1–13:11, 2011.

[13] H. Lee, H. Ahn, J. Kim, and S. Park, “Capturing and reusing
knowledge in engineering change management: A case of au-
tomobile development,” Information Systems Frontiers, vol. 8,
pp. 375–394, 2006.

[14] I. Nonaka, “A dynamic theory of organizational knowledge
creation.” Organization Science, vol. 5, no. 1, pp. 14–37,
1994.

[15] L. Argote, S. L. Beckman, and D. Epple, “The persistence
and transfer of learning in industrial settings,” Manage. Sci.,
vol. 36, no. 2, pp. 140–154, 1990.

[16] E. D. Darr, L. Argote, and D. Epple, “The acquisition, trans-
fer, and depreciation of knowledge in service organizations:
productivity in franchises,” Manage. Sci., vol. 41, no. 11, pp.
1750–1762, 1995.

[17] E. W. Stein and V. Zwass, “Actualizing organizational me-
mory with information systems,” Information Systems Re-
search, vol. 6, no. 2, pp. 85–117, 1995.

[18] O. A. El Sawy, G. M. Gomes, and M. V. Gonzalez, “Pre-
serving institutional memory: The management of history as
an organizational resource.” Academy of Management Best
Papers Proceedings, vol. 1, pp. 118–122, 1986.

[19] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley Professional, 1994.

[20] J. A. Kumar and L. Ganesh, “Research on knowledge trans-
fer in organizations: a morphology,” Journal of Knowledge
Management, vol. 13, pp. 161–174, 2009.

[21] W. R. King, T. R. Chung, and M. H. Haney, “Knowledge
management and organizational learning,” Omega, vol. 36,
no. 2, pp. 167–172, 2008.

[22] M. Polanyi, The Tacit Dimension. Routledge, London, 1967.

[23] M. Hansen, N. Nohria, and T. Tierney, “Whats your strategy
for managing knowledge?” Harvard Business Review, vol. 77,
no. 2, pp. 106–116, 1999.

[24] I. Pinho, A. Rego, and M. Pina e Cunha, “Improving knowl-
edge management processes: a hybrid positive approach,”
Journal of Knowledge Management, vol. 16, no. 2, pp. 215–
242, 2012.

[25] H. Mannaert and J. Verelst, Normalized systems: re-creating
information technology based on laws for software evolvabil-
ity. Koppa, 2009.

[26] H. Mannaert, J. Verelst, and K. Ven, “The transformation of
requirements into software primitives: Studying evolvability
based on systems theoretic stability,” Science of Computer
Programming, vol. 76, no. 12, pp. 1210–1222, 2011.

[27] ——, “Towards evolvable software architectures based on
systems theoretic stability,” Software: Practice and Experi-
ence, vol. 42, pp. 89–116, 2012.

[28] Oracle. Java platform, enterprise edition. Last access
date: 04.01.2013. [Online]. Available: http://www.oracle.
com/technetwork/java/javaee/overview/index.html

[29] L. Welicki, J. Manuel, C. Lovelle, and L. J. Aguilar, “Patterns
meta-specification and cataloging: towards knowledge man-
agement in software engineering,” in Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, 2006, pp. 679–680.

[30] J. Coplien, “The culture of patterns,” Computer Science and
Information Systems, vol. 1, no. 2, pp. 1–26, 2004.

[31] D. C. Schmidt, “Using design patterns to develop reusable
object-oriented communication software,” Commun. ACM,
vol. 38, no. 10, pp. 65–74, 1995.

[32] D. Riehle, “Lessons learned from using design patterns in
industry projects,” in Transactions on pattern languages of
programming II, J. Noble and R. Johnson, Eds. Berlin,
Heidelberg: Springer-Verlag, 2011, ch. Lessons learned from
using design patterns in industry projects, pp. 1–15.

[33] G. Odenthal and K. Quibeldey-Cirkel, “Using patterns for
design and documentation,” in ECOOP, 1997, pp. 511–529.

[34] L. Prechelt, B. Unger-Lamprecht, M. Philippsen, and W. F.
Tichy, “Two controlled experiments assessing the usefulness
of design pattern documentation in program maintenance,”
IEEE Trans. Softw. Eng., vol. 28, no. 6, pp. 595–606, 2002.

[35] C. Larman, Applying UML and Patterns. Prentice Hall, 1997.

[36] J. Greenfield and K. Short, “Software factories: assembling
applications with patterns, models, frameworks and tools,” in
Companion of the 18th annual ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and
applications, 2003, pp. 16–27.

[37] D. Coleman, D. Ash, B. Lowther, and P. Oman, “Using met-
rics to evaluate software system maintainability,” Computer,
vol. 27, no. 8, pp. 44–49, 1994.



195

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[38] R. L. Glass, “Maintenance: Less is not more,” IEEE Software,
vol. 15, no. 4, pp. 67–68, 1998.

[39] L. Prechelt, B. Unger, W. Tichy, P. Brossler, and L. Votta,
“A controlled experiment in maintenance: comparing design
patterns to simpler solutions,” Software Engineering, IEEE
Transactions on, vol. 27, no. 12, pp. 1134–1144, 2001.

[40] S. K. Ethiraj and D. Levinthal, “Bounded rationality and the
search for organizational architecture: An evolutionary per-
spective on the design of organizations and their evolvability.”
Administrative Science Quarterly, vol. 49, no. 3, pp. 404–437,
2004.

[41] C. Y. Baldwin and K. B. Clark, Design Rules, Volume 1: The
Power of Modularity, ser. MIT Press Books. The MIT Press,
January 2000.

[42] Y. K. Ro, J. K. Liker, and S. K. Fixson, “Modularity as a
strategy for supply chain coordination: The case of u.s. auto,”
Engineering Management, IEEE Transactions on, vol. 54,
no. 1, pp. 172 –189, feb. 2007.

[43] D. Van Nuffel, “Towards designing modular and evolv-
able business processes,” Ph.D. dissertation, University of
Antwerp, 2011.

[44] P. Huysmans, “On the feasibility of normalized enterprises:
Applying normalized systems theory to the high-level design
of enterprises,” Ph.D. dissertation, University of Antwerp,
2011.


