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Abstract—With the growth of complexity in modern auto-
motive infotainment systems, graphical user interfaces become
more and more sophisticated, and this leads to various chal-
lenges in software testing. Due to the enormous amount of
possible interactions, test engineers have to decide, which test
aspects to focus on. In this paper, we examine what types of
failures can be found in graphical user interfaces of automotive
infotainment systems, and how frequently they occur. In total,
we have analyzed more than 3,000 failures, found and fixed
during the development of automotive infotainment systems
at Audi, Bosch, and Mercedes-Benz. We applied the Orthog-
onal Defect Classification for categorizing these failures. The
difficulties we faced when applying this classification led us
to formulating requirements for an own classification scheme.
On this basis, we have developed a hierarchical classification
scheme for failures grounded on common concepts in software
engineering, such as Model-View-Controller and Screens. The
results of the application of our classification show that 62%
of the reports describe failures related to behavior, 25% of the
reports describe failures related to contents, 6% of the reports
describe failures related to design, and 7% of the reports
describe failures to be categorized. An outlined capability of
the results is the support for fault seeding approaches which
leads to the challenge of tracing the found failures to the
correspondent faults.

Keywords-domain specific failures; GUI based software; in-
vehicle infotainment system; failure classification; fault seeding.

I. INTRODUCTION

This article focuses on classifying failures found and
fixed during the development of automotive infotainment
systems. As the research was conducted as part of a funded
research project, we had the unique chance to analyze failure
data collected by both car manufacturers and suppliers. The
developed classification was awarded as best paper on the
Fourth International Conference on Advances in System
Testing and Validation Lifecycle [1] and invited for an
additional journal publication.

In modern automotive infotainment systems (“Infotain-
ment” is a combination of “information” and “entertain-
ment”), the graphical user interface (GUI) is an essential
part of the software. The so-called human machine inter-
faces (HMI) enable the user to interact with the system
functionality, such as the radio system, the navigation, or

the tire pressure monitoring system. According to Robinson
and Brooks [2], a GUI “is essential to customers, who must
use it whenever they need to interact with the system”.
Additionally, they “found that the majority of customer-
reported GUI defects had a major impact on day-to-day
operations, but were not fixed until the next major release”
[2].

GUI-based software, especially in the automotive domain,
is becoming more and more complex [3] - often, documents
with more than 2,000 pages are written to describe all the
functionality [4]. The reasons are (a) the growing number of
functions, which form more and more complex systems, as
well as (b) increasing variability due to more adaptive and
customizable interaction behavior.

When testing GUIs, sequences of system interactions
are performed and the system reaction is compared to the
specified reaction in each step. It is obvious that not all
possible combinations of user inputs can be tested. Thus,
it is necessary to focus testing activities on certain failure
types. To be able to (a) choose strategies accordingly, (b)
adjust test case development or (c) guide failure recognition,
the following questions need to be answered: What types of
failures are to be expected in GUI based software today?
Is it possible to build a classification of these types? What

Figure 1. Example of a graphical user interface of the Mercedes-Benz
infotainment system COMAND.
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Figure 2. Example of a graphical user interface of the AUDI infotainment
system MMI [6].

are frequent failures in current GUI software? Which are
common, which are rare?

Our context is the quality assurance of GUIs for automo-
tive infotainment systems. As these are built into a car, the
situation is different from that of desktop software. There is
no convenient possibility to upgrade the system or to buy a
new release, which means that manufacturers need to assure
quality in the first release. Additionally, when the system
does not work correctly, drivers may get distracted from
driving. Therefore, special attention has to be paid to find
and fix defects during development. The interaction with the
system is different from that of desktop GUIs [5]. A common
interaction device is the central control element (CCE).

Based on typical examples, the structure and the in-
teraction concept of automotive infotainment systems are
described in the following. In the Mercedes-Benz COMAND
system shown in Figure 1, the GUI consists of a menu
at the top of the screen, where all available applications,
e.g., navigation or audio, can be accessed. Each application
consists of an application area in the middle of the screen,
where the actual content is displayed (here: information
about the radio station and the song being played) and a
sub-menu for content-specific options at the bottom (here:
“Radio”, “Presets”, “Info”, etc.). The GUI is operated via the
CCE, allowing the user to set the selection focus by rotating
or pushing the CCE in one direction, and to activate options
by pressing it.

Another well-known in-vehicle infotainment system is the
“MMI” (Multi Media Interface) developed by Audi. Figure
2 shows a GUI of the MMI with an example of a navigation
program. In contrast to COMAND, the main menu options
of the Audi infotainment system are located in the four
corners of the screen. In the middle area of the screen, the
information and the menu options of the navigation program
are displayed. To operate the GUI, a physical interactive
component called MMI-Terminal is used, which consists of
a central button allowing rotary and push operations, as well
as four push buttons around the central button. Analogous

Figure 3. Example of a graphical user interface of the Bosch Multimedia
Reference System (MRS).

to COMAND, the MMI enables the focus selection and the
operation confirmation of the GUI.

Besides the above described ones, Bosch has introduced
another in-vehicle infotainment system called “Multimedia
Reference System” (MRS), which is based on an open
source platform. Compared with infotainment systems of
Mercedes-Benz and Audi, the MRS focuses on a full touch
solution. Figure 3 exemplifies the MRS with a view of the
main menu and with a view of the albums. The top of
the screen is the area displaying the status of applications,
such as E-mail, phone and weather report. The left border
and right border are used for hot keys related to several
frequently used functionality.

This article is structured as follows. In Section II, we
discuss related work and stress the need to create a new
classification scheme. In Section III, we describe how we
applied the scheme that has been identified as most appro-
priate in an empirical study. In Section IV, we present our
approach to develop the classification. The scheme itself is
detailed in Section V. Section VI discusses the results based
on the defined requirements. Section VII presents concluding
remarks and future research directions.

II. RELATED WORK

In the literature, various types of defect classifications can
be found. However, many of them lack practical usage and
empirical data in the form of distributions of defects into
the scheme, and thus it is hard to tell whether they are a
valuable addition. Other schemes for classification are used
frequently, or at least once. For our study, we concentrate on
those latter ones, and discuss why they are not fully suited
for our means. As described above, our context is black-box
testing of a GUI for automotive infotainment systems.

A. Definitions

First, we have to clarify the distinction between different
terms for “defects”. The IEEE [7] released a standard
for defect classification, which also includes a scheme for
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Figure 4. Example of the distinction of a fault, an error and a failure.

distinguishing between defects and failures. A defect is “an
imperfection or deficiency in a work product that does not
meet its requirements or specifications”, while a failure is
“an event, in which a system or system component does
not perform a required function within specified limits”
[7]. Therefore, when a defect is present, and we perform
GUI testing, we can observe failures. They are caused by
defects in the code, but since we test by using the GUI, and
not the code (i.e., black-box), what we can observe is the
behavior. This is why we do not create a defect but a failure
classification scheme. The missing consistency of precise
terms within the related work is complicating its conflation.
According to [7], e.g., the terms anomaly, error, fault, failure,
incident, flaw, problem, gripe, glitch, defect, and bug are
often used synonymously. There is no need for our work to
define all related terms. Here, “defect” is used as a collective
noun. In accordance with IEEE [7], the usage of the terms
fault, error and failure is based on Jean-Claude Laprie [8]:
“A system failure occurs when the delivered service deviates
from fulfilling the system function, the latter being what
the system is aimed at. An error is that part of the system
state, which is liable to lead to subsequent failure: an error
affecting the service is an indication that a failure occurs
or has occurred. The adjudged or hypothesized cause of an
error is a fault.” Figure 4 shows a concise example in the
HMI context for clarifying the distinction between the terms.

According to [9], faults cause errors and errors cause
failures. However, not every fault is the reason for an error

and not every error is the reason for a failure. Hence black-
box testing can lead to a sophisticated task because some
faults cause failures only in very particular situations. In
addition, failures that are caused by faults and lead to errors
can cause other faults – resulting in a propagation of faults.
Additionally, no one-to-one correspondence of failure and
faults can be assumed. One failure can be symptom for more
than one fault, one fault can cause more than one failure.
The analyzed reports are based on the results of black-box
testing. Thus, only failures were detected and documented
within these reports. They contain no information about the
faults – the root of the failures.

B. Defect Classification Schemes

IBM created the so-called Orthogonal Defect Classifica-
tion (ODC) [10] in the early nineties. Since then, many
companies have applied this approach. It consists of several
attributes, such as triggers, defect types, impact, and others.
A GUI section is included in the ODC extension V5.11 [10].
It contains triggers, such as design conformance, navigation,
and widget / GUI behavior.

Another scheme, which contains several categories for
GUI-related issues, was proposed by Li et al. [11]. It consists
of 300 categories and is based on the ODC, but adapted
for black-box testing. It contains, e.g., categories for a
GUI in general, and for GUI control [11]. However, this
scheme contains many categories that refer to highly specific
GUI elements and therefore lacks in abstraction levels. For
example, there are categories for a Textbox, Dropdown list,
or a Title bar that are not applicable to systems that do
not contain those. The scheme also contains categories for
interaction of various menus or display styles [11]. There is
no further differentiation, e.g., there may be an unexpected
reaction of the system, or there may be no reaction when
using a menu. This scheme is created for regular desktop
software, as it also classifies keyboard- or mouse-related
faults. In order to adapt this schema, a large number of
categories would have to be exchanged. As there are no
further abstraction levels, only few common aspects remain
which limits the potential of general conclusions.

Børretzen and Dyre-Hansen [12] created a scheme that
is also based on the ODC. They target industrial projects.
A single GUI fault category is included, but not further
segmented. The rationale for this is that, although “function
and GUI faults are the most common fault types”, they are
most often not severe, and thus, not as critical as other
categories [12]. This seems to be a contradiction to what
was stated in the introduction, but the criticalities of certain
types of defects are subject to the application domain. In the
beginning, in our application domain they are very critical,
and therefore, we focus on them to assure software quality.

Hewlett-Packard created a scheme based on three cat-
egories: origin, type, and mode [13]. Origin refers to
where the defect was introduced; the type can, e.g., be
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logic, computation, or user interface. The mode refers to
why something has been entered: missing, unclear, wrong,
changed, or better way. This last category, mode, is an
interesting detail for classifications, as it not only allows a
deeper hierarchical structure, but also allows distinguishing
different kinds of defects of one type. However, the scheme
created by Hewlett-Packard does not distinguish the various
types of GUI-related failures, and, thus, does not enable us
to categorize our defects.

Another well-known scheme was developed by Beizer
[14]. The main categories are “requirements, features and
functionality, structure, data, implementation and coding,
integration, system and software architecture, and testing”
([14], p. 33), each having three levels of subcategories.
The scheme is very detailed, but does not contain GUI-
related categories. An adaptation of this scheme for GUI
contexts was created by Brooks, Robinson and Memon
[15]. The authors emphasize that “defining a GUI-fault
classification scheme remains an open area for research”
[15]. They simplified Beizer’s scheme to create a two-
level classification and added a subcategory for GUI-related
issues, “to categorize defects that exist either in the graphical
elements of the GUI or in the interaction between the GUI
and the underlying application” [15]. However, since there
is only one category specifically for GUIs and since we
focus on GUIs, it is not possible to use this scheme for
our purposes. Adapting it would result in the same effort as
creating a separate one.

There also exists a fault classification scheme for auto-
motive infotainment systems [16]; however, this scheme is
based on network communication and can thus not be used
for classifying software based GUI failures. This scheme
differentiates between hardware and software, but does not
differentiate further. It also has many categories not usable
in our context, and does not include different GUI-related
categories. Ploski et al. [17] studied several schemes for clas-
sification, including approaches not presented here. Since
there were no matching schemes, we do not present them
here.

Another approach was created by the IEEE [7]. However,
this approach lists a number of attributes to be filled out for
each defect and is not expedient for reaching our goals. This
is due to the purpose of the standard to “define a common
vocabulary with which different people and organizations
can communicate [...] and to establish a common set of
attributes that support industry techniques for analyzing
software defect and failure data” [7]. This is much broader
than what we want to achieve. However, the examples of
defect attribute values in the standard contain a mode section
with the values wrong, missing, and extra [7]. We adapted
this mode section, and expanded it where necessary. The
results will be presented in Section V.

The classification schemes available do not meet our
requirements. Since we employ black-box testing of GUIs,

we cannot use any code-related categories or schemes. We
focus only on GUI-related failures. The schemes presented
in [13][14] and [16] do not have GUI-related categories and
because of this, they cannot be used by us. Others ([12][15])
have GUI-related categories, but still do not match very well
to our purposes. The scheme presented in [11] has many
GUI-related categories, but for desktop software. Due to the
differences between desktop and automotive infotainment
GUIs, we did not adapt it because we would then have had
to either delete or change most of the categories.

As the trigger aspect listed in the ODC ([10]) was
identified as the most appropriate existing scheme we found,
an experimental application of the ODC was conducted, and
the results are presented in Section III. For now, we just
state that the ODC in the current state cannot be employed
for our purposes perfectly. Since using or adapting other
schemes does not lead to savings in effort (no differentiated
GUI categories to use, most categories not applicable), we
created our own failure classification scheme. After describ-
ing the approach we used, the categories of our scheme are
explained in Section V.

III. EMPIRICAL PRE-STUDY

As stated in Section II, the ODC [18] [10] seems to be
the most appropriate scheme to classify failures in GUIs
for automotive infotainment systems. It provides eight at-
tributes, such as triggers, defect types, impact, and others,
describing pieces of information concerning a defect from
different points of view. The ODC is intended to facilitate
the entire bug tracking process including reproducibility
(opener section) and fixing (closer section). The information
of the ODC describing how the defect has been produced
can be specified in the opener section using so called
“trigger” categories. According to [18], a trigger is “the
environment or condition that had to exist for the defect
to surface”. As this paper focuses on classifying failure
types, this trigger section is most relevant for our purposes.
Originally, the ODC included not primarily GUI related
categories, such as “Logic/Flow” or “Concurrency”. With
the extension v5.11, these have been extended for graphical
user interfaces introducing the values design conformance,
widget / icon appearance, screen text / characters, input
devices, navigation, and widget / GUI behavior [18]. See
Table I below for an explanation for the trigger values.

A. Design

For this research, we analyzed databases of existing failure
reports. The data was collected during the development of
state-of-the-art automotive infotainment systems. The testers
executed the System Under Test (SUT) manually, based on
specification documents, and used failure reporting tools
to keep records of anomalies. The reports were handed
over to the developers, who then rechecked and fixed the
software. In this context, failures are defined as mismatch
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between the SUT and an explicit GUI specification, which
can be observed while operating the system. Any implicit
requirements, such as general standards or guidelines, are
not subject of the study. Only reports that were accepted
as failures by both testers and developers were considered.
Failures not referring to the GUI were sorted out. Examples
for such failures are hardware errors or display flickering.

As a threat to the validity of this application of the ODC
has to be mentioned, that we want to use the classification for
dynamic testing purposes. However, in this section, we also
selected entries for the design conformance value. One can
argue that reviewing the design documents is not a dynamic
testing activity. However, the ODC is not meant solely for
testing, and a real application has to be done for the whole
life cycle. When we simulate the usage of the ODC, we have
to account for this, even when we do this in the aftermath
of quality assurance activities. Additionally, a deviation
between the design documents and the realization in a
system cannot be found until the application is implemented
and the implemented design can be reviewed and compared
to the design documents.

B. Execution

For this study, Audi, Bosch, and Mercedes-Benz provided
failure data. Hence, the analyzed reports represent a broad
variety of contexts, as they stand for different infotainment
systems (Audi MMI, Mercedes-Benz COMAND, and sev-
eral projects developed at Bosch), different steps in the
development process involved (e.g., module, system, and
acceptance test), as well as different test strategies, test
personnel, and test environments. As preparation to the
analysis, the reports were exported to an Excel document.
Testers sometimes recognize several anomalies at once but
register those only in a single report. Therefore, reports that
describe more than one failure have been split up in one line
for each failure. Redundant reports that describe exactly the
same failure as already considered ones were removed. After
that, more than 3,000 reports remained to be analyzed. One

Table I
TRIGGER VALUES OF THE ODC EXTENSIONS V5.11.

Value for the attribute
“trigger”

Description

Widget / GUI Behavior Concerned with the system reaction re-
lated to widget / GUI elements.

Navigation Concerned with the system reaction re-
lated to navigating between screens.

Widget / Icon Appearance Concerned with the layout / design of
widget or icon elements.

Design Conformance Concerned with the conformance of
the design of the developed application
with the design documents.

Screen Text / Characters Concerned with the correctness of la-
bels or other text elements.

Input Devices Concerned with the system reaction re-
lated to using various input devices.

Table II
EXAMPLES OF THE ANALYZED FAILURE REPORTS.

ID Title Problem description
4711 Inserted music CDs Setup: Any state

are not played auto- Actions: Insert music CD
matically Observed result: Nothing happens

Expected result: System should display
CD play screen
Reference: R0026679
Workaround: Navigate to CD play
screen manually

4712 Cell phone icon on Setup: Connect cell phone
call screen obsolete Actions: Navigate to Call screen

Observed result: Placeholder icon for
cell phones is displayed
Expected result: Correct icon is dis-
played
Reference: R0026672
Workaround: —

third of the reports were used as training data to construct
the failure classification, which was then fine-tuned using the
remaining reports as test data. The following information per
report was relevant for the analysis:

A Report ID provides unique identification for each
report. In the Title, the testers describe the essence of the
report. The Problem description is a detailed statement about
(a) the required setup of the system under test, (b) the actions
that lead to the failure, (c) the behavior or result that has
been observed, (d) a description of what should have been
displayed instead, and (e) how this failure could be bypassed.
If failures were ambiguous or hard to describe, screen shots
were added. Table II shows simple examples of reports.

C. Results & Discussion

In Table III, the percentages of the pre-study results are
presented. As shown, of the more than 3,000 failure reports,
we could classify more than 90% into the values suggested
by the ODC extension. However, as we focus exclusively
on HMI software testing, it was not possible to classify any
reports to the input devices value. Input device reliability
had been ensured in previous testing phases. We examined
the failure reports manually to categorize them according to
the trigger values mentioned above. During this process, we
had the impression that the values in the ODC are not as
disjunctive as expected: [18] states that an example of widget
/ GUI behavior is “help button doesn’t work”. However,
when this button is pressed, one could argue that an attempt
to navigate has been made. Thus, such a failure could also
be categorized with the navigation value for the trigger.
To be able to categorize such failures, we decided to use
screens as a criterion; if the screen does change although it
should not, or if the wrong screen is presented, or no new
screen appears although it should, then we classified this as
navigation, otherwise as widget / GUI behavior. More than
50% of all reports fall into these two values: we classified
18% as navigation failures, and 38% as wrong widget / GUI
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Table III
RESULTS OF THE ODC APPLICATION.

Value for the attribute “trigger” Distribution
Widget / GUI Behavior 38.0%
Navigation 18.0%
Widget / Icon Appearance 17.0%
Design Conformance 9.6%
Screen Text / Characters 9.2%
Input Devices 0%
— —
Remaining reports not classified 8.2%

behavior.
We could classify 9.6% as design conformance and 9.2%

as screen text / characters. Differentiation between these
two values was not clear either. In this case, we had to use
an additional criterion for separation: If a text is “wrong”
and the text itself is known only at run time, then it is a
screen text / characters failure. If a text is “wrong” and
is known already at design time, then it can be found in
design documents, and thus it is categorized under design
conformance. This separation does not comply with the
examples given in [18]. However, we did not consider the
examples given for these values sufficient, as the example for
screen text / characters is limited to the description “button
mislabeled”. Such a label is known at design time, and
thus, the label has to be defined in the design documents.
If the label is correct in the documents and wrong in the
implemented system, the application does not conform to
its design. This is a problem with design conformance, but
it is listed under screen text / characters. Now, we could also
differentiate whether the label is already wrong in the design
documents or not and then had the possibility to categorize
it. Nevertheless, this discussion shows that the values are
not detailed enough as necessary for our purposes.

The last remaining value in the trigger section, widget
/ icon appearance, was used to classify about 17% of all
reports. One additional problem we faced was that we also
had to classify failures in relation to animations. Here,
we decided to use the same criterion as with the design
conformance and the screen text / characters values: Is the
problem already known at design time or only at run time?
The former are categorized as being a problem with design
conformance, the latter were tagged with the widget / icon
appearance value.

In summary, we state that the categorization following
the ODC extension v5.11 was not satisfactory. Besides the
difficulties with the values not being disjunctive enough
for our purposes, which led to the usage of additional
criteria, the distribution across the trigger values is rather
imbalanced. Not a single entry could be categorized into
input devices, because this is not in the focus of the testing
activities we examined, so this cannot be counted as a
weakness in the ODC. But for the remaining values, we
have two categories with more than 9%, two categories with

nearly 18%, and one category with more than 38%.

IV. APPROACH

The experiences described in Section II led us to the
conclusion that it is more appropriate to create our own
classification scheme, which would be more suitable for
our needs. Following the lessons we had learned, we tried
to include the additional categories we invented for using
the ODC, and we posed requirements, for example to
prevent categories growing as large as the widget / GUI
behavior value. It should also be possible to use the ODC
in combination with our taxonomy.

Therefore, a classification is needed that both gives a
good overview and allows extension for comprehensiveness.
Guidance is necessary to avoid universal categories with
little information. In order to achieve those objectives, a hier-
archical structure seems adequate: the lowest levels represent
the actual failure class. Higher levels should summarize
similar categories on the following level. By doing so, the
impact of adding additional classes in the future should be
mitigated, and different versions of the classification should
be comparable at least at higher abstraction levels, such as
“logic” or “design”. Developing failure classes on lower
levels has to be conducted thoroughly: On the one hand,
classes have to be sufficiently abstract to satisfy the various
analyzed contexts; on the other hand, they still have to
be meaningful. As an indication of how many hierarchy
levels have to be applied and whether one category could be
subdivided reasonably or whether several categories should
be combined, we defined the following requirements for the
failure classes:

• To scale the scope of each classification level, an initial
analysis of the data indicates the necessity to limit
the percentage of the lowest level to 10% of the total
numbers of failures.

• To develop a clear and easy-to-use structure, the num-
ber of categories on every level has to be a minimum
of 2 and a maximum of 5.

• To ensure reproducibility, the assignment of failure
reports should allow no ambiguity. Each failure class on
the lowest level has to be disjunctive and well-defined.

The development of the classification was influenced by
the Bug Tracking Systems (BTS) in use, as they already
allow to roughly categorize reports. However, as this classi-
fication is intended (a) to focus on GUI-related failures and
(b) to be applicable not only to one system, we combined
several report databases that use different failure categories
with varying levels of abstraction. During the development
stage analyzing one third of the reports, the classification
had to be conducted manually. Once the basic structures
had been established, the newly developed categories could
be compared and systematically reviewed to match the ex-
isting ones. Unclear reports were reviewed and information
required for classification was added. In the future, BTS
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Figure 5. Screen example: Telephone application.

might be able to provide these more detailed classes to
make the classification during the GUI testing process more
meaningful. Manual categorization would then no longer be
necessary.

To determine the similarity of failures, the classification is
based on concepts and patterns used in software engineering.
For example, the top-level failure classes are behavior, con-
tents, and design, according to the well-established Model-
View-Controller [19] design pattern. The structure of the
classification and the related separation criteria are presented
in Section V.

V. FAILURE CLASSIFICATION

In this section, the GUI failure report classification is
described. Table IV gives an overview of the entire clas-
sification, including the failure distribution. In Figure 7, the
distribution of the most frequent classes is illustrated. As
mentioned above, the top level follows the Model-View-
Controller concept [19], proved to be an adequate abstraction
for GUI-based software. This choice was made due to
the authors’ background as software developers. Controllers
(here: behavior) abstract the observable behavior, indicating
how input is processed. Models (here: contents) define all
contents that are displayed by the system. Views (here:
design) describe the layout and appearance of the contents
to be displayed. As the SUT was tested as a blackbox, the
MVC pattern is not intended to represent the actual software
structure or to relate any failures to implemented software
modules.

In order to avoid enforced classifications of reports to
existing classes, a category “to be categorized” (TBC) was
created. As for other categories, on the lowest level the
TBC failure class is limited to 10% of the total number
of failures. Classifying more failures than that limit as TBC
would indicate that the definition of an additional failure
class is necessary.

A. Behavior
The top-level failure class behavior contains all failure

reports describing that stimuli to the SUT do not result in

Figure 6. Screen example: Overlaying submenu.

the specified output. In order to subdivide this failure class,
common abstractions in GUI development were applied:

Screens [20][21] represent the current state of the GUI
displayed. This state defines the options available to the
user. Figure 1 shows the radio screen, where the current
radio station and the song playing are displayed. The options
provided allow users to change the waveband (FM option)
or adjust the sound setting (Sound option).

The scope of screens is often a matter of system design.
For example, in the COMAND infotainment system, similar
to desktop applications, some of the options shown in the
first place are general topics. Upon activation, a submenu is
displayed on top of the remaining screen content (Figure 6).
As the context of use remains unchanged, those menus are
considered as part of the original screen, although they are
not displayed all the time.

Screens are structured based on elementary GUI elements,
so-called widgets. Widgets are either primitive (label, rectan-
gle, etc.) or complex, meaning that they are compositions of
primitive or again complex widgets. An example of widgets
in Figure 5 would be the horizontal list in the top part. This
list contains button widgets for all available applications,
such as “Navi”, “Audio”, or “Tel” (i.e., phone). In terms
of interaction logic, lists primarily manage the focus. Lists
determine how their content can be iterated and what option
is focused on (re)entering. If many options are available,
e.g., when entering alphanumeric characters, the middle of
the available options has to be focused on start. In cases
of touch screens as input modality, lists would calculate
the touch points of their containing entries depending on
their visibility. Buttons consist of labels and/or symbols
representing their function to the user. Additionally, buttons
might define what actions have to be executed on pressing
them and provide their visibility status on demand.

In this classification, the concepts of screens and widgets
are used to differentiate micro behavior, which affects single
elements on the display (e.g., iterating list entries), and
macro behavior, which changes the entire context of use.
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Figure 7. Failure distribution overview.

1) Widget Failures: The GUIs of the automotive infotain-
ment systems analyzed mainly use various types of lists to
present options to the user. To activate an option, those lists
set a focus by having the user turn or push the CCE and
press it once the desired option is focused. Potential failures
might be that the wrong option is focused on start or that
the focus does not change as specified. An example would
be that every time the main menu is entered, the element in
the middle should be focused automatically. A failure would
exist if the first element would be focused instead. Those
failures are considered as deficient widgets focus logic. The
subcategories are:

• initial: the wrong option is focused when a list is (re-)
entered.

• implicit: the focus has to be reset due to changing
system conditions.

• explicit: the user resets the focus by turning or pushing
the CCE.

For widgets, additional behavior is often specified. One
example might be alphabetic scrolling to allow the user
to jump to a subgroup of list entries starting with one
specific letter. Those failures are considered as deficient
widget behavior. Subcategories are:

• missing: specified behavior is not implemented.
• wrong: instead of the specified behavior, not specified

behavior is implemented.
• extra: behavior is implemented but is not specified.
2) Screen Structure Failures: In this failure class, reports

are clustered describing the logic for determining the widget
objects the screens contain and what data they hold. In
automotive infotainment systems, the availability of options

Table IV
THE DISTRIBUTION OF FAILURES.

1. level 2. level 3. level 4. level distr.
TBC - - - 7.6 %

Behavior

Screen missing - 5.8 %
Transition extra - 2.9 %

(Σ: 17.9%) wrong - 9.2 %
Pop-up missing - 3.6 %

Behavior extra - 3.2 %
(Σ: 11.7%) priority - 0.5 %

wrong - 4.4 %
screen missing 2.4 %

composition extra 0.9 %
(Σ: 5.4%) wrong 2.1 %

options missing 2.2 %
Screen offer extra 1.3 %

(Σ: 61.5%) Structure (Σ: 5.4%) wrong 1.0 %
(Σ: 13.8%) order 0.9 %

option missing 1.6 %
gray-out extra 1.0 %

(Σ: 3.0%) wrong 0.4 %
Behavior missing 5.1 %

(Σ: 14.7%) extra 0.9 %
Widget wrong 8.7 %

(Σ: 18.1%) focus initial 0.9 %
(Σ: 3.4%) implicit 1.5 %

explicit 1.0 %

Contents

missing 1.2 %
design time incomplete 0.3 %
(Σ: 5.9%) extra 0.5 %

Text wrong 3.9 %
(Σ: 15.1%) missing 2.2 %

run time incomplete 1.1 %
(Σ: 9.2%) extra 1.0 %

wrong 4.9 %
missing 0.4 %

design time extra 0.1 %
(Σ: 0.8%) wrong 0.2 %

Animation others 0.1 %
(Σ: 25.1%) (Σ: 1.8%) missing 0.4 %

run time extra 0.1 %
(Σ: 1.0%) wrong 0.3 %

others 0.1 %
design time missing 1.5 %

Symbols (Σ: 2.9%) extra 0.2 %
& Icons wrong 1.2 %

(Σ: 8.2%) run time missing 2.2 %
(Σ: 5.3%) extra 1.0 %

wrong 2.1 %

Design

color - - 1.0 %
font - - 0.4 %

dimension - - 0.7 %
(Σ: 5.8%) shape - - 0.4 %

position - - 2.7 %
other - - 0.6 %

depends on numerous conditions, such as available devices
(e.g., radio tuner available, connected mobile phones, etc.),
the current environmental conditions (e.g., car is moving
faster than 6 km/h), or even previous interactions (e.g.,
activating route guidance). These conditions affect whether
options are displayed but cannot be selected (gray-out mech-
anism) or whether options are even listed at all. Therefore,
two subcategories refer to option provision behavior. The
first subclass is option offer which summarizes failures that
refer to occurrence or order of options. The class is further
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differentiated as follows:
• missing: an option that should be displayed is not

visible.
• wrong: an option A is displayed instead of option B.
• extra: an option is displayed but should not be visible.
• order: an option B is listed before option A but should

be listed after.
The second option specific failure class contains failures

that refer to their gray-out behavior, which again is further
detailed as follows:

• missing: an option should be grayed-out but is available.
• wrong: instead of an option A an option B is grayed-

out.
• extra: an option A is grayed-out but should be available.
The subclass screen composition clusters failures related

to deficient setup of widgets on screen. Subclasses of this
category are:

• missing: widgets that are specified are absent.
• wrong: the wrong widget is displayed.
• extra: an unspecified widget is displayed.
Screen structure failures are distinguished from the widget

behavior category as follows: the former represents erro-
neous selection of widgets such as horizontal or vertical lists,
whereas the latter clusters failures of widget behavior itself,
such as the scrolling logic or widget state change.

3) Screen Transition Failures: As described above,
screens represent one special usage context. The failure
class screen transition clusters failures occurring when those
usage contexts change, such as radio, players, or system
setup. One indication of a screen transition is that the widget
composition and the displayed options are replaced. With
Figure 1 and Figure 5, a screen transition is demonstrated:
First, the Radio screen is shown; by activating the option
“Tel”, the context changes to the telephone screen of the
infotainment system. Subclasses of this category are

• missing: a screen transition that is specified does not
take place.

• wrong: instead of screen A, screen B is displayed.
• extra: a screen transition that is not specified takes

place.
4) Pop-up Behavior Failures: In automotive infotainment

systems, messages are often overlaid over the regular screen
(Pop-up mechanism). Those messages inform users about
relevant events or changes of conditions. For example,
those messages might state that the car has reached the
destination of an active route guidance or that hardware has
heated up critically. These messages might be confused with
overlaying submenus described above as part of screens. The
difference is that pop-up messages do not depend on the
current system state and may occur any time, triggered by
system conditions or events. Overlaying submenus are only
displayed on particular screens and are triggered explicitly
by user input. Pop-up behavior subcategories are

• missing: the pop-up is not displayed although the re-
spective conditions are active.

• wrong: instead of pop-up A, pop-up B is displayed.
• extra: pop-up appears although the respective condi-

tions are not active.
Additionally, with the pop-up mechanism the priority

system is important: A pop-up with higher priority always
has to be displayed on top of pop-ups with lower priority.
Those failures are clustered in the subclass priority.

B. Contents Failures

The next top-level category is related to contents. The
separation criterion is the type of the content: symbols &
icons, animations, or text. In Figure 1, a text failure would
be if the button for the “Audio” application was labeled
incorrectly with “Adio”. If the globe symbol in the upper
right corner of the screen were a simple square as place-
holder, this would be considered a symbol failure. Examples
of erroneous animations might be if the focus highlight
transition is faster than specified (wrong) or if the overlay
menus are not faded in (missing). In this classification, we
additionally distinguish content that is known at design time
(e.g., the labels of available applications) and content that
cannot be defined until runtime (e.g., displaying the names
of available Bluetooth devices). Design time does include
localization failures. Although this content depends on the
language setting, the particular data is already defined and
stored in a database. Characteristic for failures at runtime
are patterns that define what data is needed for the content
(e.g., title and artist of music on connected media) and
how it is displayed (e.g., order, format, etc.). This explicitly
includes how content might have to be shortened or reduced.
Therefore, content runtime failures are close to the behavior
category. As they are strongly related to the respective data
to be displayed, we considered this a content category. For
each of those content types, the following subclasses are
defined:

• missing: Content that is specified is not displayed.
• wrong: Instead of the content that is specified other

content is displayed.
• extra: Content that is not specified is displayed.
This category might be confused with the screen structure

failure class in the behavior sub-tree. For example, a failure
report describing that the second button in the main menu
is “Blind Text” instead of “Audio” could be categorized as
either a contents or an option provision failure. If pressing
the button still leads to a screen transition to the Audio
context, the report is considered as deficient contents. If
another context is displayed, for example the Telephone
screen, it would be a deficient option provision.

C. Design Failures

The last top-level category clusters reports that describe
design failures. This includes
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• color: e.g., focus color is red instead of orange.
• font: e.g., text font is Courier instead of Arial.
• dimension: e.g., a button is higher or broader than

specified.
• shape: e.g., a button should be displayed with rounded

instead of sharp edges.
• position: e.g., a label of a button is centered instead of

left-aligned.

As design failures were often described vaguely, a subcat-
egory for other design failures was defined. Ambiguous
descriptions were, for example, that wrong arrows, wrong
Cyrillic letters, or a wrong clock were observed. As it
became obvious early that a low percentage of reports were
categorized as design failures, no additional work was done
to clarify this category.

VI. DISCUSSION

The requirements defined in Section IV were fulfilled for
most failure classes. We intended to cover at least 90% of all
defect reports analyzed. Only 7.6% of the reported failures
had to be classified as “to be categorized”. Furthermore, we
intended to limit the percentage of the classes on the lowest
level of the hierarchy to 10%. This could be achieved as
well: with 9.2%, the largest category was behavior - screen
transition - wrong. We intended to allow only 2-5 categories
on each hierarchy level. This could not be realized for the
design category (6 sub classes). However, due to a very small
number of failures classified as design-related (5.8%), we did
not consider it necessary to restructure this category.

The requirements further stated that the failure classes
have to be disjunctive. Most of the distinction was clear
during the classification process. In the available reports,
there was no interference between logic and design failures.
However, failures regarding design, which is determined by
algorithms were not analyzed. For those cases, a new class
within the logic sub-tree has to be defined. No ambiguity
was noticed in terms of differences between content and
design failures.

Most challenges were experienced in differentiating con-
tent and logic failures, especially in cases where several
failures occurred at once. This was due to the fact that
the systems had to be tested as a black-box and only the
information displayed on the screen could be accessed. The
following scenario exemplifies the key issues: let us assume
all 5 buttons in the main menu line illustrated in Figure
1 are labeled as “Blind Text”. This is definitely a content
text failure. However, it has to be checked whether there are
additional failure symptoms such as wrong, missing, or extra
options provided, or a failure regarding the order of menu
entries. Those additional failures have to be revealed by
analyzing other button properties. In this case, it would have
been checked which screen transition they trigger. However,
several alternatives have to be considered:

• If pressing the second button in the menu line – which
should be the Audio button – triggers the transition
to the Audio context, no additional failure has to be
reported.

• If pressing not the second but the third button triggers
the transition to the Audio screen, an additional option
provision (order or extra) failure has been revealed.

• If pressing a button labeled Telephone triggers the
Audio screen, this could be a screen transition failure
or a content text failure.

In the analyzed reports, this distinction was possible due
to the given descriptions. However, problems might occur
when applying the classification in the future. This is not
only an issue with failure classifications, but an issue with
reporting failures in general. We recommend bearing the
ambiguity of symptoms in mind while testing and reporting.
It is essential to provide the information that is needed
to differentiate failure symptoms. A detailed classification,
such as the one presented in this paper, might help to clarify
the exact circumstances even in early phases.

Further, we answered the question raised in this paper
what types of failures are frequent in current information
systems. The results show that the majority (61.5%) are
failures related to behavior. This demonstrates the complex
macro and micro behavior in modern infotainment systems.
Most of the failure reports are related to missing or wrong
individual widget behavior (13.8%) as well as missing or
wrong screen transitions (15.0%). The content category
is the second largest top-level failure class (25.1%), with
erroneous text being the biggest subcategory (15.1%). The
majority (9.2%) is not known until runtime. Explanations
are (a) that in most infotainment systems, information is
mainly displayed textually and (b) that testing texts is easier
for human testers than comparing symbols or animations
in detail. Very few failures (5.8%) describe erroneous de-
sign. One explanation might be that design is hard to test
manually. For example, it is a problem to differentiate
shades of colors visually. In addition, most design errors
are less critical and even might not be recognized by users.
Therefore, testing design might not be of high priority to test
planners. Hence, this data cannot be seen as definite evidence
showing that design failures are indeed this rare. However,
we addressed this limitation by analyzing failure reports
representing a broad variety of contexts such as testing goals,
test personnel, or test environments.

VII. CONCLUSION AND FUTURE WORK

In this paper, we answered the question of what types of
failures can be found in GUI-based software in the auto-
motive domain today. A failure classification was developed
and applied to more than 3,000 failure reports. Ultimately,
each related fault concerning the reported failures was fixed
during the development process. The reports were created
during the development of modern automotive infotainment
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systems at AUDI, Bosch, and Mercedes-Benz. 61.5% of
the reports describe failures related to high- and low-level
behavior, 25.1% of the reports describe failures related to
contents, and 5.8% of the reports describe failures related to
design. We support not only the testers in creating detailed
and clear reports, but also the entire GUI development
process by pointing out pitfalls leading to gaps between
the specification and the implementation. The classification
indicates, which aspects need special attention in specifi-
cation documents and might need to be described more
explicitly than is common today. For roles responsible for
the implementation of GUI concepts, this work points out
aspects that might be ambiguous and require clarification.

Requirements were defined in order to guide the classifi-
cation process and to avoid categories that are too general or
too specific. These requirements proved to be effective for
guiding the classes development process. General sections
such as those suggested by the ODC extension v5.11 [18]
could be avoided. However, as there are classes with less
than 1%, the presented classification seems to be over de-
tailed. In most cases, classes follow the missing/extra/wrong
pattern suggested by the IEEE classification [7], which was
applied with ease. In future applications, those minor classes
might be ignored.

In future research, the suggested classification might be
scaled by reducing the maximum percentages of lowest-level
categories. Thus, some categories have to be differentiated
further and additional failure classes have to be defined.
Moreover, additional parameters such as “failure criticality”,
“predicted number of affected users”, or “costs for testing”
could be added to the classification. Those aspects are
not in focus at the current stage and might influence the
choice of test strategies significantly. Future failure reports
should include information about those aspects. Extension
of the failure reports would require intensive collaboration
between testers, programmers, requirement engineers, and
other participants in the development process. Extended
reports together with the failure distribution might enable
the derivation of prioritization factors. The usage of ex-
isting prioritization approaches, such as the techniques for
selecting cost-effective test cases shown by Elbaum [22], is
conceivable. One could then focus or prioritize testing on
those types of failures that are most critical based on their
frequency and these additional parameters. For this purpose,
coverage criteria and prioritization techniques are currently
being examined to check which of them, if any, can be
used for our purposes. This classification could be applied to
future automotive infotainment systems to analyze changes
of the failure focus.

Another part of future work will be to analyze whether our
defined classification scheme and the ascertained distribution
of failures could be combined with fault seeding approaches,
which are used to measure and predict reliability. One of the
most popular fault seeding models is the hypergeometric

model by Harlan D. Mills [23]. According to [24] and
[25], fault seeding is based on seeding a known number of
faults in a software program whose total number of faults
is unknown. After testing the software, the comparison of
the number of “found seeded faults” and “found indigenous
faults” allows estimating the number of remaining faults.
In the case of [23], estimation is realized by using the
hypergeometric distribution. Related work like [26], [27]
and [28] focus on the described principle “with the purpose
of simulating the occurrence of real software faults” [29].
Andrews [30] shows that generated mutants are similar to
real faults and consequently claims that mutation operators
yield trustworthy results. Based on Andrews, the work of
[31] is about adding numerous faults for each module by
selecting mutation operators simultaneously applied to the
source code. This results in a single high-order mutant that
represents the faulty version of the system. The approach
performs a “1/10 sampling” to limit the number of seeded
faults. This means that 10% of the maximum number of the
calculated faults – e.g., faults regarding the logical operators
or any constants – are seeded into the system.

The knowledge of the classified distribution of faults
could improve fault seeding approaches by considering the
known fault rates during the seeding process. However, the
analyzed reports in our work contain the description of
failures and not faults. Due to the fact that the origin of
a failure is always a fault and that fault seeding is based
on faults and not failures, traceability between faults and
failures (through errors) is necessary to obtain the benefits
of a known classified distribution of failures. An enabler for
these benefits could be failure proximity approaches, which
identify failing traces and group traces to the same fault
together. [32] regards “two failing traces as similar if they
suggest roughly the same fault location” and assumes that
collecting failing traces can support developers, respectively
testers, in prioritizing and diagnosing faults. In conclusion,
our classified distribution of failures could support the
effectiveness of fault seeding approaches. Applications will
follow.
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