
131

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Towards the Standardization of Industrial Scientific and Engineering

Workflows with QVT Transformations

Corina Abdelahad, Daniel Riesco

Departamento de Informática

Universidad Nacional de San Luis

San Luis, Argentina

{cabdelah, driesco}@unsl.edu.ar

Alessandro Carrara, Carlo Comin, Carlos Kavka

Research and Development Department

ESTECO SpA

Trieste, Italy

{carrara, comin, kavka}@esteco.com

Abstract— Nowadays, design activities in engineering and

many other applied science fields require the execution of

computational models in order to simulate experiments. This

step is usually automated through the execution of the so-called

scientific workflows. A large number of different graphic and

execution formats are currently in use today, with no clear

signs of convergence into a standard format. Things are

different in the area of business processes, where many

standards have been defined for both the graphical and the

execution representation of business process workflows.

Significant efforts are currently being carried out to apply

business workflow technology into engineering fields.

Nevertheless, one of the main obstacles for the industrial

adoption of standards is the large base of existing workflows

used currently by industry, which cannot be just thrown away.

This paper presents a model-to-model transformation using

QVT between a widely used industrial metamodel and the

BPMN 2.0 standard metamodel. Legacy workflow support is

an essential first step to allow the introduction of the use of a

business process standard in scientific and engineering

industrial applications.

Keywords – BPMN 2.0; business workflow; industrial

workflow; transformation; QVT.

I. INTRODUCTION

Scientific and industrial design activities depend more
and more on the execution of computational models in order
to run in-silico experiments. These applications are
characterized of being computationally intensive and
strongly data-driven. Heavy requirements are imposed, not
only on the bare computing technology, but also on the high
level execution mechanisms [1][2]. The most widely
accepted and effective formalism used to represent these
computational processes is in terms of scientific and
engineering workflows, which provide a declarative way of
stating the required high level specifications. In general
terms, a scientific or engineering workflow is an automated
business process used to execute complex computational
processing tasks [3] in scientific or engineering application
areas respectively. These kinds of workflows are widely used
in natural science, computational simulations, chemistry,
medicine, environmental sciences, engineering, geology,

astronomy, automotive industry, aerospace, and other
industrial fields. Its use has been extended also to
optimization tasks, where the development of complex
industrial products is modeled as an optimization cycle
which includes an engineering process defined in terms of
the collaboration of various engineering services with
usually large exchange of information between them [4][5].

It is expected that the success of business process
technology in business scenarios can contribute to introduce
this already mature technology into the field of scientific and
engineering workflows. However, it is not yet the case, even
if some interesting contributions are indisputable. The main
reason is that scientific and engineering workflows require
many features that most business process models do not
currently support [6][3]. For example, business workflows
usually deal with discrete transactions, but engineering and
scientific workflows in most cases deal with many
interconnected software tools, large quantities of data with
multiple data sources and in multiple formats [7]. Also,
engineering services usually have a very long execution
duration and depend on the execution environment.

Even if scientific and engineering workflows have been
used successfully since many years, most of the tools used to
define and execute them are not based on standard
technologies. The situation is completely different in the area
of business processes, where many well-defined standards
have been proposed and are widely used. Some attempts to
use a business process standard in the domain of scientific
and engineering workflows have been performed, though till
now, a single standard cannot be used to represent both the
abstract view (used by the engineer to represent the process
at the scientific domain) and the workflow representation
used for execution (at workflow engine level). However, the
last definition of the BPMN standard (the release 2.0) from
the Object Management Group (OMG) has been developed
with broader objectives, overcoming in fact the limitations
that prevented the use of previous versions in scientific and
engineering applications [8][9]. From now on, all references
with the acronym BPMN are intended as references to
version 2.0 of the standard. BPMN defines a formal notation
for developing platform-independent business processes,
contrasting with specific definitions of business processes
such as BPEL4WS (Business Process Execution Language

132

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

for Web Services) [10]. BPMN defines an abstract
representation for the specification of executable business
processes within a company, which can include human
intervention, or not. BPMN also allows collaboration
between business processes of different organizations. The
definition of this new standard allows, for the very first time,
to extend the use of workflows from the field of business
process to the field of science and engineering.

With BPMN, many companies will be tempted to support
a standard workflow for scientific and engineering
applications. However, it must be considered that there exists
a large base of engineering workflows already designed and
used currently by industry, which cannot be just thrown
away. In order to provide legacy workflow support, we
propose a methodology for the transformation of legacy
proprietary workflows into BPMN standard workflows. This
approach will provide an extra incentive for companies to
abandon proprietary workflows and move to standard
technologies coming from the field of business processes.
However, the transformation is not without pain. The extra
data and process requirements in engineering workflows
need to be handled properly. Fortunately, BPMN has been
defined with an extension facility which allows to add
required constructions without breaking standard
compliance.

As a part of the methodology, this paper presents a
transformation for selected constructions of a widely used
industrial engineering workflow to BPMN, in order to
present a valid path to perform legacy workflow conversion
to a well-defined standard. It is an extension of the work
presented in [1], where the basic methodology was
presented. In this present paper, transformations of more
complex elements based in BPMN extensions are also
considered, providing insights on a not-so-easy to handle
BPMN construction, which is essential for the support of
scientific and engineering workflows. Also, an extended
example is presented, together with a more deep explanation
of the legacy workflow model and the results of the
transformation in terms of XML elements. New sections
were added to present the motivations and a discussion on
the proposed approach.

The transformation is defined in QVT, a standard relation
language for model transformation defined by the OMG with
a specification based on MOF and OCL [11]. The language
consents to express a declarative specification of the
relationships between MOF models and metamodels
supporting complex object pattern matching. A QVT
transformation defines the rules by which a set of models can
be transformed into a different set [12]. Furthermore, it
specifies a set of relations that the elements of the implicated
models in the transformation must fulfill. The model types
are represented by their corresponding metamodels. A
relation in QVT specification consists in a set of
transformation rules where a rule contains a source domain
and a target domain [13]. A domain is a set of variables to be
matched in a typed model, with each domain defining a
candidate model and also having its own set of patterns [12].
For more details on QVT, the reader is invited to visit the
OMG links [11].

The paper is structured in sections. Section II presents
related works. The industrial metamodel used as the source
model for transformations is described in Section III. Section
IV presents an example of the transformation from the point
of view of the workflow designer, while Sections V and VI
describe the transformation architecture and the
transformation between models, respectively. The paper ends
with an example in Section VII, and discussions and
conclusions in Sections VIII and IX, respectively.

II. RELATED WORK

The use of scientific and engineering workflows for
process automation has been widely analyzed in literature
[3]. Many commercial and open source implementations do
exist. The most widely used by the open source community
are Kepler [14], Triana [15], Taverna [16], Pegasus [17] and
KNime [18], with many new frameworks appearing
continuously. However, all these scientific and/or
engineering workflow frameworks are based in proprietary
non-standard formats. In the area of commercial tools, there
exists many options like for example modeFRONTIER [4]
widely used in CAD/CAE engineering optimization.
However, again, all of them are based in proprietary formats.

In [1], the authors present a model-to-model
transformation using QVT between a widely used
engineering workflow and BPMN 2.0, converting
successfully data inputs, input sets and input output
specifications into the target format. The approach was
validated experimentally in the engineering environment
supported by a company in the field of multi-objective
optimization. This current paper is an extension of [1].

The use of standards like BPMN 1.0 for the abstract
representation of scientific workflows, and BPEL or Pegasus
for execution were proposed in the past, but never went too
far in industry due to the need to support two different
standards for the same workflow [17].

Several works in the field of software engineering are
related to the concept of transformation between models, and
many of them use BPMN to model business process.

Marcel van Amstel et al. [19] investigate the factors that
have an impact on the execution performance of model
transformation. This research estimates the performance of a
transformation and allows to choose among alternative
implementations to obtain the best performance. The results
of this study can be used by implementers of transformation
engines in order to improve the set of currently available
tools.

In this same line, a model-to-model transformation
between PICTURE and BPMN 1.0 is presented in [20].
PICTURE is a domain-specific process modeling language
for the public administration sector. The transformation
allows to model administrative processes in PICTURE and
to get BPMN models for these processes automatically,
helping electronic government by making possible the
implementation of supporting processes. In addition, this
research contributes to simplify the development process,
improves its flexibility and allows meeting organizational

133

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

challenges arising in the development of systems that
support electronic government.

In [21], three sets of QVT relations are presented as a
mean of implementing transformations in a model-driven
method for web development. One of them transforms a
high-level input model to an abstract web-specific model.
The other two transform the abstract web model to specific
web platform models.

In [22], the generation of components of the Java EE 6
business platform from technical business processes modeled
with BPMN 1.0 was presented. The generation was obtained
by performing three transformations in the context of Model-
Driven Architecture, performed with QVT Relations and a
MOFScript. This research contributed improving the
development productivity and reducing design errors.

A solution for the modeling of Clinical Pathways (CP)
processes in terms of standard business process models is
presented in [23]. To represent a CP as a process workflow, a
high-level semantic mapping between the CP ontology and
the BPMN ontology was developed. This research shows
how a clinical specific process defined in the CP ontology is
mapped to a standard BPMN workflow element. This
mapping allows healthcare professionals to model a CP by
using familiar modeling constructs. Once ready, they can
transform this CP to a business process model and thus
leveraging the standard definitions of processes to represent
and optimize clinical environments by incorporating process
optimization tools.

An example application is presented in [24] to
demonstrate an automated transformation of a business
process model into a parameterized performance model, thus
obtaining significant advantages in terms of easy
customization and improved automation.

However, to the best of our knowledge, no other research
work has considered BPMN as the target model for
transformation in the context of industrial scientific or
engineering workflows.

III. ESTECO METAMODEL

The metamodel selected as an example is the workflow
model used for modeling simulation workflows by ESTECO,
a company specialized in industrial multi-objective
optimization[4]. The simulated process is represented with a
formalism which provides both a representation for the
abstract view (used by the engineer to represent the process)
and the associated execution model (used for the real
simulation). The abstract view is a human-understandable
graphic representation, while the execution model is
represented with XML. This last model is used by a

workflow engine in order to execute the workflow and
perform the simulation.

This workflow, which is typical in this kind of
environments, includes one task node for each activity and
data nodes used to represent input, output and temporary data
objects. Data objects can represent simple data like integer,
doubles, vectors, matrices or more complex data like files or
databases. Activities correspond to the execution of
simulators, scripts and other applications in local or remote
locations. Usually, each activity is defined through a set of
configuration files, which can be large (many gigabytes
being common), and a set of inputs and outputs (which can
also be very large files or databases). Distributed execution is
required, meaning that the activities specified in the
workflow can be executed in different nodes (on the grid or
the cloud system[25]), requiring data to be passed between
them. More information about the ESTECO metamodel can
be found in the documentation provided in the web site [4].

The next sections provide a description of the
framework used for the transformation by applying it to a
small subset of ESTECO’s workflow.

IV. TRANSFORMATION EXAMPLE

As it was mentioned before, the ESTECO and the BPMN
notations have both a graphical and an XML representation.
Usually, the simulation engineer designs the workflow by
using a graphical editor, not being at all interested in the
associated XML representation, which is used behind the
scenes by the editor and the execution engine as the storage
and execution format respectively.

This section presents an example of a transformation
from the point of view of the designer, who expects to get a
BPMN workflow to be obtained from a previously defined
ESTECO workflow as a result of the transformation process.
Please note that the example presented in this section is
intended to present only data handling aspects, and does not
include other components, which also need to be considered
when performing a full transformation process.

Figure 1 shows an example of a workflow specified in
terms of the ESTECO model. It consists of a sequence of
two activities, which performs some computation tasks.
Execution starts with the node labeled START, which just
transfer the execution flow to the first activity (labeled
SUM). This first activity receives two inputs and produces a
single output as a result of a computational activity. The
second activity (labeled MEAN) takes two inputs, one of
them being the output of the previous activity, and produces
a single output as a result. The workflow terminates
successfully when both tasks are executed properly, reaching
the node labeled EXIT, or it can generate an exception
reaching the node labeled ERROR.

134

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2 shows the equivalent BPMN process. Note that
the overall graphical structure is not too different between
the two workflows. In both of them there is a start node, an
end node and an exception event node. There is, however,
one extra data object used to transfer intermediate data
between the two activities, something that is not required by
the ESTECO workflow presented before, which allows
direct communication between activities. Note that different
kind of arrows and lines are required to indicate the data
flow and process flow in BPMN, something that is not so
nicely differentiated in the original ESTECO workflow.

An important point to note is that, even if the overall
graphical structure is very similar in both workflows, the
XML representation is definitely very different. And of
course, the transformation process does not take place at the
graphical level, but at the XML representation level. This
transformation is made possible since both workflow models
are defined formally with an XML schema, which provides
the basis for a formal transformation process. This
transformation process, including selected transformation
code in QVT and some examples, is presented in next
sections.

V. TRANSFORMATION ARCHITECTURE

Our proposal aims to apply the most recent concepts of
business processes to the field of engineering workflows in
industrial fields. The use of standards in industry is important
since it guarantees portability between tools that support
BPMN.

The industrial legacy workflow selected has an XML
representation, allowing the use of tools like Medini QVT
for transformation [26]. There is no one-to-one
correspondence between the different components of
ESTECO’s workflow and BPMN constructions, since
control nodes and data nodes are very differently handled in
both models. Also, files and database handling put extra
requirements which can only be handled properly with
BPMN extensions.

The QVT transformations describe relations between the
source metamodel and the target metamodel, both specified
in MOF. The transformation defined is then applied to a
source model, which is an instance of the ESTECO source
metamodel, to obtain a target model, which is an instance of
the BPMN target metamodel, as can be seen in Figure 3. The
metamodels used in the definition of the transformation are
shown at the top level. The specific models to which the
transformation defined in the metamodel level is applied in
order to obtain BPMN models is shown at the middle level.
The lower level represents the instances of the models which
can be executed in the corresponding workflow engines.

As mentioned before, activities and processes need data
in order to be executed, and in addition, they can produce
data during or as a result of their execution. In BPMN, data
requirements are captured as DataInputs and InputSets. The
produced data is captured using DataOutputs and
OutputSets. These elements are aggregated in an
InputOutputSpecification class [2], as can be seen from the
UML class diagram presented in Figure 4. The DataInputs
and DataOutputs are additional attributes of the
InputOutputSpecification element; these elements are
optional references to the DataInputs and DataOutputs
respectively. A DataInput is a declaration that a particular

Figure 1. Example of an ESTECO workflow.

Figure 2. Example of the equivalent BPMN 2.0 workflow.

Figure 3. Transformation architecture.

ESTECO
meta-model

ESTECO
model

ESTECO
instance

BPMN2
meta-model

BPMN2
model

BPMN2
instance

Definition of transformation
using QVT

Application of the
transformation

135

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

kind of data will be used as input of the
InputOutputSpecification. A DataOutput is a declaration that
a particular kind of data can be produced as output of the
InputOutputSpecification. DataInputs and DataOutputs are
ItemAware elements. If the InputOutputSpecification defines
no DataInput, it means no data is required to start an
Activity. If the InputOutputSpecification defines no
DataOutput, it means no data is required to finish an Activity
[8].

The BPMN specification provides an extension
mechanism for both the process model and the graphic
representation that allows the extension of standard BPMN
elements with additional attributes. This mechanism can be
used by modelers and modeling tools to add non-standard
elements or artifacts to satisfy a specific need. The only
requirement is that these extension attributes must not
contradict the semantics of any BPMN element [8]. The
ExtensionAttributeValue class has a relationship with
BaseElement class, defining a list of attributes or elements

that can be attached to any standard BPMN element, as can
be seen in Figure 4. As mentioned before, a DataInput is an
ItemAwareElement. All item aware elements inherit the
attributes and model associations of BaseElement. Therefore,
a DataInput element inherits the attributes and model
associations of BaseElement, allowing the extension
mechanism to be used by a DataInput [8].

A partial view of the ESTECO metamodel with the
metaclasses involved in the relations described in this work
is shown in the UML class diagram presented in Figure 5.
The TInputDataNode and TOutputDataNode elements
inherit the attributes and model associations of TDataNode,
which in turn, inherits from TNode. The TGeometry class is
the outermost object for all ESTECO elements, i.e., all these
elements are contained in a TGeometry. The
TInputDataNode element is a particular kind of TDataNode
that will be used as input of TGeometry to a Task. The
TOutputDataNode element is a particular kind of TDataNode
which can be produced as output of a Task contained in

Figure 4. Partial view of the BPMN2 metamodel (from [8]).

136

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TGeometry. A TTaskNode class represents the task that is
performed within an industrial workflow.

VI. TRANSFORMATION BETWEEN MODELS

A transformation specifies a group of relations that the
elements of the involved models must fulfill. A
transformation may have any number of input or output
parameters known as domains. For each output parameter, a
new model instance is created according to the metamodel of
the output metamodel (in this case, the metamodel BPMN).

Each domain identifies a corresponding set of elements

defined by means of patterns. A domain pattern can be

considered an object template. A relation in QVT defines

the transformation rules. A relation implies the existence of

classes for each one of its domains. In a relation, a domain

is a type that may be the root of a template pattern. A

domain implies the existence of a property of the same type

in a class. A pattern can be viewed as a set of variables and

a set of constraints that model elements must satisfy. A

template pattern is a combination of a literal that can match

against instances of a class and values for its properties. A

domain can be marked as checkonly or enforced. A

checkonly domain simply verifies if the model contains a

valid correspondence that satisfies the relation. When a

domain is enforced, if checking fails, the elements of target

model can be created, deleted or modified so as to satisfy

the relationship.
A relation can contain two sets of predicates identified by

a when or a where clause. The when clause specifies the
condition that must be satisfied to execute the
transformation. The where clause specifies the condition that
must be satisfied by all model elements involved in the
relation, and it may contain any variable involved in the
relation and its domains [5]. In the context of transformation,
a model type represents the type of the model. A model type
is defined by a metamodel and an optional set of constraint
expressions. Please note that the definition of these terms can
be found in the QVT specification, where the interested
reader is referred to [5].

The transformation between ESTECO metamodel and
BPMN metamodel is defined as follows:

transformation ESTECOToBPMN2(source : esteco_m,
 target : bpmn2)

Figure 5. Partial view of ESTECO metamodel (from [4]).

137

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Note that this transformation takes as input an ESTECO

model, which is an instance of the ESTECO metamodel, and
produces a BPMN model, that will be an instance of the
BPMN metamodel.

Below, the relations which define the mapping between
ESTECO metamodel classes and BPMN metamodel classes
are presented. This correspondence is not straightforward. As
we mentioned in the previous section, the DataInputs are
captured in InputSets and both are added into an
InputOutputSpecification. The same happens with the
DataOutputs. So, in the transformation it is necessary to
generate an IoSpecification object to aggregate DataInputs,
DataOutputs, InputSets and OutputSets.

The relation used to create an IoSpecification object is
shown below:

The relations that are referenced in the previous code,

which are used to create InputSets and OutputSets, are the
following:

Note that an InputSet is a collection of DataInput

elements that together define a valid set of data inputs
associated to an InputOutputSpecification. An
InputOutputSpecification must define at least one InputSet
element. An OutputSet is a collection of DataOutputs
elements that together can be produced as output from an
Activity. An InputOutputSpecification element must have at
least OutputSet element [3].

The relation used to obtain the DataInputs of the
ESTECO model and the generation of DataInputs in BPMN
is the following:

relation createIOSpecificationTask {
 checkonly domain source g:esteco_m::TGeometry { };
 enforce domain target t:bpmn2::Task {
 ioSpecification= ioSpecif :
 bpmn2::InputOutputSpecification {}
 };
 primitive domain id_task:String;
 where {
 getDataInputTask(g,ioSpecif, id_task);
 createInputSetsTask(ioSpecif,ioSpecif);
 getDataOutputTask(g, ioSpecif, id_task);
 createOutputSetsTask(ioSpecif, ioSpecif);
 }
}

relation createInputSetsTask {
 checkonly domain target ioSpecif:
 bpmn2::InputOutputSpecification {
 };
 enforce domain target ioSpecif :
 bpmn2::InputOutputSpecification {
 inputSets = input_set :bpmn2::InputSet{
 dataInputRefs= ioSpecif.dataInputs
 }
 };
}

...

...

relation createOutputSetsTask {
 checkonly domain target ioSpecif:
 bpmn2::InputOutputSpecification{
 };
 enforce domain target ioSpecif :
 bpmn2::InputOutputSpecification{
 outputSets = output_set :bpmn2::OutputSet{
 dataOutputRefs= ioSpecif.dataOutputs
 }
 };

relation getDataInputTask{
 id_input, name_input : String;
 value_input : Real;
 checkonly domain source g:esteco_m::TGeometry{
 taskNode = t:esteco_m::TTaskNode{
 bufferInputDataConnector = buffer_input :
 esteco_m::TBufferInputDataConnector {}
 },
 inputDataNode = input : esteco_m::TInputDataNode {
 id = id_input,
 name = name_input,
 value = value_input,
 outputDataConnector = output_data :
 esteco_m::TOutputDataConnector {}
 },
 dataEdge = data_edge : esteco_m::TDataEdge {}
 };

...

138

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Each data input of ESTECO must be transformed into a

data input of BPMN. This transformation is straightforward;
the QVT code presented before shows the procedure by
which the id, name, value and connectors are obtained. Note
that there is an extensionValues attribute referenced in the
previous code. This attribute belongs to the BaseElement
class (Figure 4), which is defined with type
ExtensionAttributeValue.

To understand the extensions processing during the
transformation process, it is necessary to refer to the
definition of types in the ESTECO metamodel. This
definition is presented in Figure 6: DocumentRoot element
inherits the attributes and model associations of
ExtensionAttributeValue, a class belonging to the BPMN
definition, as can be seen in Figure 4. It was necessary to
aggregate new attributes: the Value attribute, which is
contained within TSimpleValue and has default value of zero,
and the simpleValue attribute, which is contained within
TDefault.

The relation used to obtain the DataOutputs of ESTECO
model and the generation of DataOutputs in BPMN is shown
below.

VII. A TRANSFORMATION EXPERIMENT

This section presents an example of a transformation by

using the QVT code presented before. The QVT
transformations were defined by using Medini QVT, a tool
developed by IKV++ technologies with an Eclipse

…

 enforce domain target ioSpecif :
 bpmn2::InputOutputSpecification {
 dataInputs = data_input : bpmn2::DataInput {
 id= id_input + '_T',
 name = name_input,
 itemSubjectRef = item : bpmn2::ItemDefinition {
 id = 'DoubleItemDefinition'
 }, extensionValues = extension :
 esteco::DocumentRoot{
 default = default : esteco::TDefault {
 simpleValue = simple_value : esteco::TSimpleValue {
 value = '0'
 }
 }
 }
 }
 };

 primitive domain id_task:String;
 when {
 if (data_edge.from = output_data.id) and
 (data_edge.to = buffer_input.id) and
 (id_task=t.id) then true else false
 endif;
 }
}

relation getDataOutputTask{
 id_output, name_output : String;
 checkonly domain source g:esteco_m::TGeometry {
 taskNode = t:esteco_m::TTaskNode{
 bufferOutputDataConnector = buffer_output :
 esteco_m::TBufferOutputDataConnector {}
 },
 outputDataNode = output :
 esteco_m::TOutputDataNode {
 id = id_output, name = name_output,
 inputDataConnector = input_data :
 esteco_m::TInputDataConnector {}
 },
 dataEdge = data_edge : esteco_m::TDataEdge {}
 };
 enforce domain target ioSpecif :
 bpmn2::InputOutputSpecification {
 dataOutputs = data_output : bpmn2::DataOutput {
 id= id_output + '_T',
 name = name_output,
 itemSubjectRef = item : bpmn2::ItemDefinition {
 id = 'DoubleItemDefinition' }
 }
 };
 primitive domain id_task:String;
 when {
 if (data_edge.from = buffer_output.id) and
 (data_edge.to = input_data.id) and
 (id_task=t.id) then true else false
 endif;
 }
}

Figure 6. Partial view of the ESTECO XSD definition.

139

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

integration [26]. Medini QVT allows both single direction
and bidirectional transformations. The core engine
implements the OMG’s QVT Relations standard, and is
licensed under EPL (Eclipse Public License). The Relations
language implicitly creates trace classes and objects to record
the events that occurred during a transformation execution.

The QVT Process package contains classes that are used
for modeling the flow of Activities, Events, and Gateways,
and their sequence within a Process. When a Process is
defined it is contained within Definitions [8]. A Process is
instantiated when one of its Start Events occurs. The End
Event indicates where a Process will end, finishing the flow
of the Process. Data requirements and Data Outputs are
contained within an ioSpecification object, which defines not
only the inputs and outputs, but also the InputSets and
OutputSets for the Process and the Activities [8].

Figure 7 presents the results of the execution of a
transformation when applied to one single activity node in
the workflow defined in Figure 1. Each box corresponds to
an XML element, and the hierarchy between the elements is
represented with the tree-like structure. Each task has its own
ioSpecification object, which contains its own data. Hence,
the transformation generates an ioSpecification object to
combine DataInputs, DataOutputs, InputSets and
OutputSets, as it was mentioned previously.

Each data input of the ESTECO workflow task is
captured as an inputDataNode object, which is transformed
into a dataInput of BPMN. To satisfy specific needs of
ESTECO, it has become necessary to use the extension
mechanism of BPMN for DataInput handling. As it was
shown in the previous section, the QVT code for the
getDataInputTask relation presents the procedure by which
the id, name, value and connectors are obtained and the

extensionValues element is generated. The two new elements
contained in the extensionValues element are default and
simpleValue.

Each data output of the activity node is captured as an
outputDataNode object, which is in turn transformed into a
dataOutput of BPMN. This transformation has been
presented in the definition of the relation getDataOutputTask
introduced before. Note that an InputOutputSpecification
must define at least one InputSet element and at least one
OutputSet element. Once the data input and output have been
generated, the inputSet and outputSet are in turn generated.
The corresponding QVT generation code can be found in the
relations createInputSetsTask and createOutputSetsTask
respectively.

VIII. DISCUSSION

The paper has proposed the use of a standard model-to-
model transformation technology in order to convert
scientific and engineering workflows into a business process
standard format. The main contributions of the proposal are
the following:

• Technical feasibility: the paper has shown that QVT
provides an effective and standard method to
transform scientific and engineering workflows into
a standard business process format. It has shown that
concepts coming from model driven architecture
(MDA) can be applied in the domain of science and
engineering design. Being QVT part of the OMG
standards, these concepts can be useful as the basis
for the development of domain-specific Model
Driven Engineering tools [27].

• Incentive to support standards in scientific and
engineering community: companies that use a
proprietary workflow format that is properly defined
with a model schema, can use a similar
transformation process to export their workflows
into a standard format. There are no restrictions on
the use of QVT for this purpose, since it is an open
standard defined by the OMG with many alternative
implementations available.

• Transformation example with a real workflow
format widely used in industry: the legacy
workflow model is a widely used format in
engineering all around the world, definitely not a
model defined just for this paper evaluation.
ESTECO is a world-wide leader in the domain of
multi-objective optimization applied to engineering
design, which is currently pursuing strong efforts to
increase support for standards in the multi-objective
optimization domain in the context of engineering
processes, as it can be seen in [5].

Note that the example presented in this paper is
intentionally small, in order to effectively demonstrate the
approach, without introducing the reader into extra
complexity generated by a larger example. Due to this
successful results, the company plan to extended it to support
the full specifications of the original legacy workflows,

process

ioSpecification

startEvent

Task

ioSpecification

dataInput

extensionValues

simpleValue

default

dataOutput

inputSet

outputSet

endEvent

sequenceFlow

TGeometry

startNode

endConnector

taskNode

startConnector

bufferInputDataConnector

inputDataNode

outputDataNode

outputDataConnector

inputDataConnector

outputDataConnector

dataEdge

endConnector

bufferOutputDataConnector

dataInput

dataOutput

inputSet

outputSet

exitNode

startConnector

definitions

Figure 7. Correspondence between the XML elements during a
transformation by considering a single activity from the

workflows defined in Figures 1 and 2.

140

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

becoming a part of the tool sets provided in a new BPMN
compatible workflow environment.

IX. CONCLUSION

The paper has proposed the use of QVT-based

transformation technology in order to transform engineering
workflows defined in a legacy proprietary format to a well-
defined business process standard. An example involving
only data related components has been presented. The
approach has been validated experimentally in an
engineering environment supported by a company
specialized in multi-objective optimization. It is important to
stress that this transformation allows the conversion of most
ESTECO industrial workflows to BPMN, consenting their
execution in BPMN workflow engines with adequate
extensions support.

The objective of this work has been to apply important
concepts of business processes to the industrial field.
Furthermore, it intended to show the importance of the use of
standards in industrial fields in order to guarantee portability
between tools that support BPMN. As a more general
objective, it is expected that the use of a standard for
scientific and engineering workflows will facilitate the
collaboration between scientists and industrial designers,
enhance the interaction between different engineering and
scientific fields, providing also a common vocabulary in
scientific and engineering publications [5].

ACKNOWLEDGMENT

 The authors thank the reviewers of the ICSEA’12

conference and the IARIA Journal for the very useful
comments that have contributed to enhance both the original
and the extended versions of the paper.

REFERENCES

[1] Corina Abdelahad, Daniel Riesco, Carlo Comin, Alessandro

Carrara, and Carlos Kavka, “Data Transformations using
QVT between Industrial Workflows and Business Models in
BPMN”, Proceedings of the Seventh International Conference
on Software Engineering Advances ICSEA, 2012, IARIA.

[2] Yolanda Gil, Ewa Deelman, Mark Ellisman, Thomas
Fahringer, Geoffrey Fox et al., “Examining the challenges of
scientific workflows”, IEEE Computer vol. 40, no. 12, 2007,
pp. 24-32.

[3] Cui Lin, Shiyong Lu, Xubo Fei, Artem Chebotko, Darshan
Pai et al., “A reference architecture for scientific workflow
management systems and the VIEW SOA solution”, IEEE
Transactions on Service Computing, vol. 2, no. 1, 2009, pp.
79-92.

[4] ESTECO S.p.A., “modeFRONTIER applications across
industrial sectors involving advanced CAD/CAE packages”,
http://www.esteco.com/home/mode_frontier/by_industry, [re-
trieved: March, 2013]

[5] Carlo Comin, Luka Onesti, and Carlos Kavka, “Towards a
Standard Approach for Optimization in Science and

Engineering”, Proceedings of the 8th International
Conference on Software Engineering and Applications
ICSOFT-EA, 2013, SciTePress.

[6] Li Hongbiao, Li Feng, and Yu Wanjun, “The research of
scientific workflow engine”, Proceedings of the IEEE
International Conference on Software Engineering and
Service Sciences (ICSESS), 2010, pp. 412-414.

[7] Shown Bowers. “Scientific Workflow, Provenance and Data
Modeling Challenges and Approaches”, Journal on Data
Semantics, vol. 1, pp. 19-30, 2012, Springer.

[8] Object Management Group (OMG), “Business process model
and notation”, http://www.omg.org/spec/BPMN/2.0
[retrieved: March, 2013]

[9] The Business Process Management Initiative (BPMI.org),
http://www.bpmi.org/ [retrieved: October, 2012]

[10] Oasis, “Web services business process execution language
version 2.0”, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.html, [retrieved: March, 2013]

[11] Object Management Group (OMG), “Modeling and metadata
specifications”, http://www.omg.org/spec, [retrieved: October
2012]

[12] Object Management Group (OMG), “Meta object facility
(MOF) 2.0 query/view/transformation, V1.1”,
http://www.omg.org/spec/QVT/1.1 [retrieved: October, 2012]

[13] Li Dan, “QVT based model transformation from sequence
diagram to CSP”, Proceedings of the 15th IEEE International
Conference on Engineering of Complex Computer Systems
(ICECCS), 2010, pp. 349-354.

[14] Bertram Ludascher, Ilkay Altintas, Shawn Bowers, Julian
Cummings, Terence Critchlow et al., “Scientific Process
Automation and Workflow Management”, in “Scientific Data
Management: Challenges, Technology, and Deployment”,
edited by A. Shoshan and D. Rotem, 2009, Chapman and
Hall/CDC.

[15] Ian Taylor, Matthew Shields, Ian Wang, and Andrew
Harrison, “The Triana workflow environment: architecture
and applications”, in “Workflows for e-Science: Scientific
Workflows for Grids”, I. Taylor et al., 2007, Springer.

[16] Pablo Missier, Stian Soiland-Reyes, Stuart Owen, Wei Tan,
Alexrandra Nenadic et al., “Taverna, Reloaded”, Lecture
Notes in Computer Science, vol. 6187, pp. 471-481, 2010,
Springer.

[17] Mirko Sonntag, Dimka Karastoyanova, and Ewa Deelman,
“Bridging The Gap Between Business And Scientific
Workflows”, Proceedings of the ESCIENCE 2010, 6th IEEE
International Conference on e-Science, 2010, IEEE Computer
Society.

[18] Michael Berthold, Nicolas Cebtron, Fabian Dill, Thomas R.
Gabriel, Tobias Kotter et al., “KNIME: The Konstanz
Information Miner”, in “Data Analysis, Machine Learning
and Applications”, ed. H. Bock, W. Gaul, M. Vichi, pp. 319-
326, 2008, Springer.

[19] Marcel van Amstel, Steven Bosems, Ivan Kurtev, and Luís
Ferreira Pires, “Performance in model transformations:
experiments with ATL and QVT”, Lecture Notes in Computer
Science, Volume 6707, Theory and Practice of Model
Transformations, Springer, 2011, pp. 198-212.

[20] Henning Heitkoetter, “Transforming PICTURE to BPMN 2.0
as part of the model-driven development of electronic
government systems”, Proceedings of the 44th Hawaii
International Conference on System Sciences (HICSS), 2011,
pp. 1-10.

[21] Ali Fatolahi, Stéphane Somé, and TimothyLethbridge,
“Automated generation of abstract web models using QVT
relations”, Technical Report TR-2010-06, School of
Information Technology and Engineering, University of
Ottawa, September 2010.

141

International Journal on Advances in Software, vol 6 no 1 & 2, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[22] Narayan Debnath, Carlos Alejandro Martinez, Fabio Zorzan,
Daniel Riesco, and German Montejano, “Transformation of
business process models BPMN 2.0 into components of the
Java business platform”, Proceedings of the Industrial
Informatics (INDIN), 10th IEEE International Conference on
Digital Objects, 2012, pp. 1035-1040, IEEE

[23] Nima Hashemian and Samina Sibte Raza Abidi, “Modeling
clinical workflows using business process modeling
notation”, Computer-Based Medical Systems (CBMS), 25th
International Symposium on Digital Object, 2012 , pp. 1-4,
IEEE

[24] Paolo Bocciarelli and Andrea D'Ambrogio, “A BPMN
extension for modeling non functional properties of business
processes”, Proceedings of the 2011 Symposium on Theory of
Modeling & Simulation: DEVS Integrative M&S
Symposium, Springer-Verlag, 2011, pp. 160-168.

[25] Gideon Juve and Ewa Deelman, “Scientific workflows and
clouds”, ACM Crossroads, vol. 16, no. 3, 2010, pp. 14-18.

[26] IKV, “The Medini QVT project”, http://projects.ikv.de/qvt,
[retrieved: March, 2013]

[27] D. Schmidt, “Guest Editor's Introduction: Model-Driven
Engineering”, Computer IEEE, vol. 39, pp. 25-31, 2006.

