
252

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Soft Constraints in Feature Models: An Experimental Assessment 

 

Jorge Barreiros
1,2

 
1
Instituto Superior de Engenharia de Coimbra 

Instituto Politécnico de Coimbra, 

Coimbra, Portugal 

jmsousa@isec.pt 

Ana Moreira
2
 

2
Dept. de Engenharia Informática 

Universidade Nova de Lisboa 

Caparica, Portugal 

amm@fct.unl.pt

 

 
Abstract—Feature Models specify admissible configurations 

of products in Software Product Lines. Constraints are used 

to represent domain specific knowledge, such as requiring or 

excluding a feature in the presence of another. 

Configurations failing to conform to these constraints are 

deemed invalid. However, in many cases useful domain 

information cannot be expressed comfortably with such 

forceful, hard constraints. To overcome this problem, softer 

constraints, of less forcing nature, can be used. We describe 

a framework for including soft constraints in feature models 

based on propositional logic. Analysis procedures for 

detecting inconsistencies and conflicts in this framework are 

also described. Test sets are built by injecting soft 

constraints into publicly available feature models, recreating 

typical patterns of use. These features are then subjected to 

automated analysis to assess the prevalence of soft constraint 

related conflicts and interactions. 
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I. INTRODUCTION  

Soft constraints, described in [1], can be used to 
represent uncertain configuration information into feature 
models [2]. Feature models are frequently used in 
Software Product Line (SPL) development [3] for 
specifying valid product configurations, that is, 
configurations corresponding to a variant that can be 
created by an application engineer using the SPL. Product 
variants belonging to the same family are created by 
specifying a feature configuration, which is then realized 
by the composition of corresponding artifacts from a 
common pool of assets (such as requirements documents, 
design models, code, etc.).  

Feature models identify valid configurations by using a 
feature tree annotated with additional domain constraints. 
These can be represented graphically (e.g., linking 
dependent features with a dependency arrow) or textually, 
by means of arbitrary cross-tree expressions (Boolean 
expressions depending on the configuration variables). 
Over-constraining may result in an inconsistent feature 
model, that is, one where no configuration exists, where all 
the constraints can be satisfied simultaneously.   

 Feature models can be represented using logic 
expressions according to well-known transformations 

described in [4], [5]. A feature model expression is 
obtained by conjoining the feature tree expression with the 
domain constraints.  

An example of a feature model can be found in Fig. 1, 
where Sound, Keyboard, and Screen are mandatory 
subfeatures of the root feature node Phone, while 
MP3Player and Camera are optional subfeatures. 
Polyphonic and Monophonic are mandatory and 
alternative subfeatures of the Sound feature, and 
Monochromatic and Color are alternative subfeatures of 
the Screen feature. One domain constraint is represented: 
the requires arrow describes that selection of the Camera 
feature implies the selection of the Color feature. 

Links such as the one connecting Camera and Color in 
Fig. 1 describe hard constraints. Any configuration that 
does not respect this constraint is invalid. It can be the 
case, however, that domain information is not comfortably 
representable using such strict constructs. For example, a 
situation can be considered where the overwhelming 
majority of configurations do indeed respect a certain 
restriction, but a few exceptions may exist. In this case, 
restrictions on admissible configurations cannot be as 
strict. A simple example will be the case of a default 
selection for a group of alternative selections: if the parent 
feature of such group is selected, then the preferred 
alternative configurations may be suggested.  

In [1], the use of soft constraints is proposed, similar to 
hard constraints but of less forcing nature, in these 
situations. The concept of soft constraint has been 
described earlier in the context of probabilistic feature 
models

 
[6]. Probabilistic feature models extend standard 

feature models by the addition of “soft” constraints that are 
associated with a degree of probability. These are often 
obtained as the result of a feature mining processes. We 
consider the use of a similar concept in standard, 
deterministic feature models, avoiding the need to resort to 
mechanisms such as data mining or Baysesian networks to 
fully specify the required feature joint-probability 
distributions. The use of soft constraints allows richer 
semantics to be represented in feature models, with 
advantages such as enhanced analysis and improved 
configuration support. An example of such a constraint in 
Fig. 1 would be “Sound suggests Polyphonic”, expressing 
domain knowledge that indicates the more common sound 
configuration option. Naturally, soft constraints do not 
need to be restricted to parent-child features as described: 
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other relations such as “Monophonic suggests 
Monochromatic” can be represented. This type of 
constraints can be useful for efficiently capturing useful 
domain information that might be lost otherwise, as it is 
usually absent in standard feature models. It can be used to 
good effect for multiple purposes, depending on the 
specific semantics that are adopted as described later, such 
as allowing interactive configuration tools to suggest 
configuration choices to the user.  

Using soft constraints also allows some semantic 
consistency analysis that would otherwise be impossible, 
e.g., if a suggested dependency can never be realized in a 
feature model, then probably something is not right. 
Suggestions may also be unsatisfiable for a certain valid 
partial configuration (e.g., suggestions cannot be satisfied 
simultaneously if one feature is selected), highlighting that 
a trade-off analysis may be in order.  

We extend the work presented in [1] by: 

• Describing structural patterns of application of soft 
constraints. 

• Describing a process for injecting soft constraints 
into a feature model for the purpose of automated 
testing. 

• Presenting an enhanced discussion of the impact 
of soft constraints in feature configuration and 
corresponding analysis technique. 

• Using a prototype tool to collect and analyze 
experimental results using data from publicly 
available feature model repositories. 

 
In Section II, we present motivating examples for our 

work. In Section III, we provide a detailed discussion of 
soft constraints, discussing benefits of their use, proposing 
a categorization of the different types of soft constraints, 
and discussing automated analysis procedures. Section IV 
presents some typical patterns of use of soft constraints, 
while in Section V the soft constraint injection algorithm is 
presented. The tool and experimental results are presented 
in Section VI, followed by a presentation of related work 
in Section VII and conclusions in Section VIII. 

  

Keyboard Screen

Phone

Camera

Monochromatic Color

Sound

Polyphonic Monophonic

MP3 Player

requires  
Figure 1.  Mobile phone feature model. 

II. MOTIVATION  

Consider the example in Fig. 2, adapted from [6], 
where a feature model is used to describe configuration 
variability for an automobile vehicle. In this case, hard 
domain restrictions are used to enforce the selection of 
manual transmission in sports vehicles and to make sure 
that emission control techniques are always used in 
products destined for markets with stricter environmental 
legislations. While observance of such constraints is 
always found in valid products, soft constraints are used to 
represent relevant relations between features that, while 
not as critical or universally applicable as the hard 
constraints, are also important. In this case, it is well 
known that the USA market tends to favor vehicles with 
automatic transmission over those with manual 
transmission, while the converse is true for the European 
market. Using soft constraints, such information can be 
readily represented in the feature diagram, bringing in 
additional semantics that can be used to good effect.  

Another example of the use of soft constraints can be 
found in Fig. 3. In this case, the feature model is used to 
represent dynamic variability of the runtime behavior of a 
real-time system. The system should adapt its behavior to 
conform to variations in its environment. The state of the 
operation environment is assessed by appropriate sensors 
and the corresponding features are (de)selected 
accordingly, with corresponding impact on the runtime 
behavior as dictated by the constraints. A base control task 
is to be active at all times, while fan control is only 
suggested if the temperature is medium, but mandatory if it 
reaches a high level. A filtering task is suggested if electric 
noise is detected.  

The need to use soft constraints to describe the 
variability in this scenario is supported by the fact that the 
suggested (non mandatory) features may not always be 
selected because of limited resources (e.g., available CPU 
load). This means that a feature such as Fan Control may 
in fact remain unselected in the presence of its suggestor 
(i.e., the Noisy feature), which cannot be comfortably 
expressed using only hard constraints. 

These examples suggest that soft constraints can be 
used to good effect in feature models, by allowing the 
inclusion of important domain information of non-forcing 
nature. 

III. SOFT CONSTRAINTS 

In this section, we discuss the benefits gained by using 
soft constraints in feature models and present a 
categorization of alternative semantics. We then discuss 
automated analysis procedures for identifying 
inconsistencies and other relevant information, such as 
features that cannot be selected if satisfaction of a soft 
constraint is sought. 
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Figure 2.  Feature model for car configuration
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Figure 3.  Engine control system 

A. Benefits of soft constraints 

Benefits of using soft constraints in feature models 
include: 

 

• Improved configuration support: Interactive 
configuration and completion techniques can assist 
the configuration of feature models by assessing the 
liveliness of features after each configuration step. 
Starting from an empty configuration where all 
features are considered to be unspecified (neither 
selected or deselected), after a feature is selected or 
deselected by the user, the liveliness of all features is 
re-evaluated with respect to the partial configuration 
already defined. Features that are found to be dead 
(always unselected) in that partial configuration can 
be safely deselected automatically. Conversely, 
features that are common to all configurations that 
include the partial configuration so far specified can 
be automatically selected. For example, if the 
developer specifies feature C in Fig. 4 to be selected, 
then features D and E can be automatically 
deselected by the configuration tool, as no valid 
configuration including feature C will contain either 
(i.e., both are dead in all configurations where C is 
selected). Similarly, A and root are common to all 
such configurations, so they can be selected 
automatically, leaving only feature B unspecified. 
Interactive configuration and completion tools can 

use soft constraint information to make 
configuration suggestions to the user. For example, 
if “A suggests B”, the configuration tool can propose 
the selection of B by default whenever A is selected 
and B is unspecified. Also, if a valid configuration 
fails to conform to a large percentage of soft 
constraints, it can be flagged to the developer as 
suspicious. Feature configuration support for feature 
models with soft constraints is described in [7]. 

• Improved semantic-oriented consistency checks: 
Standard consistency analysis of feature models is 
concerned with ensuring that valid configurations do 
exist. If soft constraints are present, it is possible to 
make sure that configurations are available that 
verify the suggested dependencies. If that is not the 
case, this may be a sign that an analysis or modeling 
error has occurred. For example, if it were actually 
impossible to configure a car for the European 
market with manual transmission despite such 
association being suggested (e.g., because of the 
unintended collateral side effect of some hard 
constraints), this would be highly suspicious and 
should be reported to the developer for additional 
consideration. This could be the case if hard domain 
restrictions would make it impossible to select a 
configuration where both such features are selected. 

 

• Controlled generalization of feature models: A 
generalization of a feature model is a transformation 
that increases the number of admissible 
configurations, making sure that previously valid 
configurations remain valid. In some cases, soft 
constraints can be used as a mechanism for 
controlled generalization of feature models. For 
example, if it was found, after creating the feature 
model in Fig. 2, that it should actually be possible, 
under certain circumstances, to produce vehicles 
without emission control for the USA market, the 
hard restriction that forbids such products from 
being created could be transformed into an 
equivalent soft constraint. This would have the 
benefit of preserving important domain information 
while accommodating the need to allow for spurious 
“rogue” configurations. 
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B. Semantics and Categorization 

Soft constraints can be interpreted according to different 
semantics, from configuration suggestions (e.g., describing a 
predominant configuration options such as described in [6]) 
to stricter impositions that must be enforced if possible (i.e., 
a feature must be selected if possible). According to the 
adopted interpretation, different types of analysis and 
interpretations may be possible. Therefore, we must consider 
the possible semantics. These can be broadly categorized in 
two different categories: 

 

• Annotational: A soft constraint with an annotational 
semantics does not impose any additional restriction 
when added to a feature model. Its main purpose is 
to embed domain information in the feature model to 
assist the configuration automation and semantic 
consistency checking. The validity of any specific 
product configuration is never influenced by the 
presence of an annotational soft constraint.  

 

• Normative: A normative soft constraint must be 
considered when assessing the validity of a product 
configuration. These constraints represent 
configuration information that may potentially 
condition the validity of some configurations. A 
normative soft constraint must be satisfied if 
possible, but can be ignored otherwise. The concept 
of “possible satisfaction” is, generally, always 
dependent on the characteristics of the feature model 
and is also potentially dependent on domain-specific 
information (external to what is represented on the 
feature model: see below). A normative soft 
constraint may change the validity of a configuration 
(with respect to the unconstrained feature model), 
but it may never cause a feature model to become 
inconsistent. Normative constraints can be 
interpreted informally as meaning “requires-if-
possible”, “may-require”, “require-if-does-not-
make-configuration-invalid” or some other similar 
designation. Applying normative constraints entails 
the need to assess the “possibility” of selecting a 
specific feature. The topology of the feature model 
and cross-tree-constraints is always a decisive factor 
in making that assessment (i.e., it cannot be 
reasonably considered “possible” to select a feature 
when doing so would generate an invalid 
configuration). However, it may be the case that the 
feature model information is not sufficient to assess 
the possibility of selecting a feature: in this case, 
external factors, not represented in the feature model 
would come into play. This suggests the following 
additional characterization of normative constraints: 

 
 

root

A
B

C D

excludes

E

requires

 
Figure 4.  Iterative configuration example 

 

• Internal: The feature model holds all the 
information required to assess selection possibility. 

 

• External: The information in the feature model 
alone is not sufficient for assessing possibility of 
selection. External factors come into play. 

  
In the example of Fig. 2, if the soft constraints are 

interpreted under annotational semantics, then any 
configuration that upholds the hard constraints is considered 
valid, regardless of complying or not with the soft 
constraints. On the other hand, if an (internal) normative 
semantic is considered, the following interpretation holds: “If 
the USA feature is selected, then the Automatic feature must 
be selected, unless doing so would generate an invalid 
configuration”. That is, a normative soft constraint should be 
interpreted as a hard constraint, unless doing so would turn 
an otherwise valid configuration into invalid. In Fig. 3, a 
potential example of external normative soft constraints is 
represented: in this case, the Fan Control feature should 
always be selected if the Moderate heat feature is selected, 
unless that is not possible, according to domain information 
that is not necessarily integrated in the feature model. For 
example, knowing that the implementations of the Base 
Control, Fan Control, and Filtering features compete for a 
limited resource (CPU load), assessing of the possibility of 
including the Fan Control feature must be conducted with 
respect to external information. It is out of the scope of this 
work to discuss how such external information would be 
obtained or retrieved – as examples, an oracle could be used 
to provide the required information or a domain specific 
ontology could be queried. External normative constraints 
require considering information beyond the one available on 
the feature model and will not be discussed further in this 
work. Therefore, in the remainder, when referring to 
normative soft constraints, internal semantics are assumed. 

 Table I presents a description of soft constraints and 
their intended meaning. Table II presents a summary 
overview of hard and soft constraint categorization and their 
effects on feature model consistency and configuration 
validity.  
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TABLE I.  SOFT CONSTRAINT DESCRIPTION 

 
Soft Constraint Interpretation 

A suggests B A⇒ B 

A discourages B A ⇒ ¬B 

A absence-suggests B ¬A ⇒ B 

A absence-discourages B ¬A ⇒ ¬B 

 

TABLE II.  CONSTRAINT CATEGORIZATION SUMMARY 

 
Nature Subtype Affects FM 

consistency? 

Affects config  

Validity? 

Hard  Yes Yes 

Soft Normative No Yes 

 Annotational No No 

C. Normative Soft Constraint Analysis 

Normative soft constraints may change the assessment of 
the validity of configurations with respect to the 
unconstrained feature model. This results in a change of the 
model expression when a new soft constraint is introduced in 
an existing feature model. The effect of inserting an internal 
normative soft constraint (A suggests B) into a feature model 
with feature expression F(A,B,…) can be obtained by 
considering that: 

 

• Any configuration valid in the constrained model 
will also be valid in the unconstrained model. That 
is, F(A,B,…) should hold. 

• The soft constraint should be upheld (A ⇒ B), but 
not at the cost of invalidating the configuration. 
Knowing that the soft constraint fails to hold when A 
is selected and B is not, this will only be acceptable 
if switching the value of B, in this scenario, would 
not be allowed according to the unconstrained 

model
1
, that is, ,...),( BAF ¬¬ . 

 
These considerations lead to the following formulation: 
 

,...)),()((,...),(,...),( BAFBABAFBAFS ¬¬∨⇒∧=    (1) 

 
where FS is the resulting feature model expression.  

Standard feature model techniques can be applied to 
analyze the resulting feature expression, e.g., satisfiability-
based techniques are commonly applied to the analysis of 
feature model expressions [8], for tasks such as finding dead 
features. This can be also done in a feature model annotated 
with soft constraints by considering the relevant FS.  

                                                           
1
 Strictly speaking, it would also be possible to satisfy the constraint by 

deselecting A rather than selecting B, but we find that solution to be 
counter-intuitive, with respect to the compositional approach inherent in 

the feature selection process. In other words, a constraint may force the 

selection of a feature the user has not selected, but will not force the 
deselection of a previously selected feature. 

Equation (1) can be applied iteratively with respect to all 
soft constraints, in some priority order, to obtain the feature 
expression corresponding to a feature model with multiple 
soft constraints. Nevertheless, one difficulty must be pointed 
out. If F is in clause normal form (CNF), the standard input 
format for most SAT solvers, then the number of clauses will 
increase exponentially as additional normative soft 
constraints are composed. This makes it much more 
challenging to analyze normative soft constraints rather than 
their annotational counterparts. Fortunately, annotational soft 
constraints include valuable information that can be more 
efficiently subjected to automated analysis.  

D. Soft Constraint Analysis 

The inclusion of soft constraints in a feature model brings 
additional semantics that allow improved consistency and 
sanity checks to be performed. Annotational soft constraints 
do not alter in any way the space of admissible 
configurations. Nevertheless, the question of whether or not 
the soft constraints themselves can be upheld is relevant. In 
the remaining text, we assume an annotational interpretation 
of soft constraints.  

When introducing a soft constraint into a feature model, 
all configurations previously valid will remain so. However, 
if the soft constraint impacts the feature model meaningfully, 
at least some of those configurations will fail to hold all the 
soft constraints (or else the soft constraint will be 
reproducing information already present in the feature 
model: an example would be a suggestion of inclusion of a 
parent feature). If no configuration exists where all the soft 
constraints are upheld, the soft constraints are inconsistent, in 
the sense that their simultaneous satisfaction is impossible 
(this is not the same as feature model inconsistency, as 
defined in the introduction).  

An analysis procedure may be used to identify such 
situations. We begin by defining a constraint as active if its 

implicant (e.g: A in A⇒B) is true according to the 
expressions defined in Table II. It may be impossible to 
simultaneously activate all constraints according to the 
feature model. In this case, the constraint set is orthogonal. 
In this case, the constraints may not be satisfied 
simultaneously, because its implicants cannot be verified 
simultaneously. A more interesting situation occurs when all 
constraints can be active simultaneously, but satisfaction of 
the soft constraints is not possible. In this case, the soft 
constraints are said properly inconsistent.  

Inconsistencies and orthogonally can be analyzed by 
verifying the satisfiability of Boolean propositions composed 
from the feature expression and soft constraint expressions. 
Although verifying the satisfiability of a proposition is an 
NP-Complete problem, SAT solvers have proven to be 
efficient tools for the majority of expression of practical 
interest for feature modeling [8]. Let F be the feature 
expression, E the conjunction of the soft constraint 
expressions and P the conjunction of the soft constraint 
implicants according to the expressions found in Table I: 
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1. Check for satisfiability of the conjunction F P. If it is 

unsatisfiable, then the soft constraints are 
inconsistent due to orthogonality. 

 
2. A proper inconsistency in a non-orthogonal set of 

constraints can be identified by assessing the 
satisfiability of F P E. If that expression is found to 
be unsatisfiable, then an inconsistency is detected. 

 
Inconsistencies are not the only interesting interaction 

between soft constraints and feature models. In fact, any 
constraint of the format presented in Table II may be 
satisfied by falsifying the implicant. It may be the case where 
a soft constraint may only be satisfied by this recourse. In 
this case, we say the implicant is hidden by the soft 
constraint, in the sense that it may never be made true if the 
soft constraint is to be upheld. This is relevant, as it makes it 
possible to identify specific configuration profiles that must 
be upheld for satisfaction of the soft constraint to be 
possible. In the sequel, we will refer to hidden implicants as 
hidden features, although strictly speaking the implicant may 
not correspond to the selection of a single feature. 

Hidden features can be identified in the following way. 
Let F be the feature expression, E the conjunction of the soft 
constraint expressions, and Ic the implicant of soft constraint 
c. Then: 

1. If F E is satisfiable, then at least one 
configuration exists that satisfies the feature 
model and soft constraints, and proceed to step 
2.   

2. For all Ic: If F E Ic is not satisfiable, then no 
configuration exists that satisfies the feature 
model and soft constraints with Ic being true. Ic 
is therefore hidden by c. 

 

IV. PATTERNS OF SOFT CONSTRAINT USE 

In this section, we propose some typical patterns for the 
use of soft constraint annotations in feature models, with 
respect to the topological structure of the annotated feature 
model. We strived for identifying such patterns for multiple 
reasons: 

 

• Identifying typical patterns of use improves 
understanding of the subject matter and provides 
insight into potential applications of soft constraints. 
 

• If typical patterns of application are identified, with 
respect to the topological structure of the feature 
model, it becomes possible to automatically annotate 
feature models with such constraints for the purposes 
of generating test cases for experimenting and 
validating the automated analysis techniques we 
describe. 

 
In this way, we have identified three patterns that describe 
specific cases of application of soft constraints. Naturally, 
this list cannot be considered exhaustive in any way, but it is 
sufficient for the purposes of providing a basic understanding 
of soft constraint use and allowing the automated creation of 
test cases. The description of these three patterns follows: 

A. Soft Constraint Pattern: Reversed Constraint 

Suggestion 

The pattern Reversed Constraint Suggestion (RCS) 
describes a situation where a feature model includes a hard 
constraint C, specifying a requires or excludes relation 
between two features (or their absence). The RCS of 
constraint C is a soft constraint that specifies that the 

reversed relation should also hold, that is, RCS(A⇒B) = B 
suggests A. 

Examples of RCS can be found in Fig. 5 and Fig. 6. The 
feature model in Fig. 6 is an adaptation of a simple 
automobile product line described in [9]. A hard constraint 
determines that the presence of the “Lateral Parking” feature 
requires selection of the “Lateral Range Finder” feature. The 
RCS of this hard constraint can be found in the feature 
model: using the lateral range finder feature suggests the use 
of lateral parking. In Fig. 5, the “Basic absence-suggests 
GPS” soft constraint is the RCS of the “GPS excludes 
Basic”. 

The conceptual interpretation of the RCS pattern is based 
on the intuitive notion that, in some cases, if all the 
requirements for a certain feature (as specified by hard 
constraints) are met, then it may be sensible to 
opportunistically select it. For example, in Fig. 6 example, 
the suggestion of selecting “Lateral Parking” in the presence 

Figure 5. Feature model annotated with soft constraints (source: adapted from www.splot-research.org) 
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of the “Lateral Range Finder” sensor can be interpreted as a 
suggestion to take maximum advantage of all the potential 
capabilities provided by the installed hardware in the vehicle. 
A similar perspective is that the “Lateral Range Finder” 
sensor can be considered of reduced utility if the “Lateral 
Parking” feature is not selected. 
 

B. Soft Constraint Pattern: Group Selection Suggestion 

The pattern Group Selection Suggestion (GSS) is related 
to the preferential configuration options of grouped features.  
Given a feature group G with subfeatures G1, G2,…, a GSS is 
a soft constraint that describes preferred group 

configurations (e.g.: GSS(G) ={G⇒Gx}). An example can 
be found in Fig. 7. The GSS represents the notion of 
preferred configuration options for feature groups.  

C. Soft Constraint Pattern: Optional Selection Suggestion 

The pattern Optional Selection Suggestion (OSS) 
encompasses a broad range of situations where domain-
specific interdependencies affect the configuration of 
optional features. An OSS represents one such situation, by 
interlinking the configuration of two optional features via a 
soft constraint. 

One such situation is represented in Fig. 5, where 
selection of the optional “Media” feature discourages 
selection of the optional “GPS” feature. This soft constraint 
could be understood to represent domain-specific constraints 
being embedded in the feature model: in this specific case, 
this soft constraint could be in place because of hardware 
performance limitations that could entail a non-negligible 
degradation of performance if both features are selected. 

The OSS pattern represents domain-specific 
dependencies between optional features and as such has very 
generic scope. Specializations of this pattern may be devised 
if such domain-specific knowledge is considered. However, 
for the purposes of understanding typical structural patterns, 
it is sufficient. 

V. AUTOMATED TEST CASE GENERATION 

Although a large number of feature models can be 
obtained from online repositories [10], successfully applying 
these to the validation of the techniques proposed in this 
work entails the need to individually annotate the models 
with soft constraints. These models, however, are concerned 
with a large diversity of domains of application, making it 
extremely difficult to seek the help of independent domain 
experts for all are relevant areas of expertise. Consequently, 
manual annotation may be feasible for only a relatively small 
number of models in specific areas of expertise. However, it 
is still a significantly time consuming task, where arbitrary 
decisions, that may put into question the credibility of the 
results, are unavoidable. Also, only a fraction of all available 
models may be considered, wasting a significant portion of 
potentially available resources and putting into question the 
representativity of any results that are obtained. 

To address these difficulties, we have chosen to annotate 
all the feature models by automatically injecting soft 
constraints according to the usage patterns (RCS, GSS, and 

OSS) described in Section VI. This approach has significant 
benefits: 

• It allows any models in repository to be used for 
validation and test purposes. 

• It speeds up test case generation significantly, and 
multiple configurations of soft constraint annotations 
for each model can be generated, allowing for a large 
test set to be created with the corresponding 
emergence of observable statistical properties and 
trends. 

A. Test Case Generation 

The following strategy was used to annotate a given base 
feature model with soft constraints according to the RCS, 
GSS, and OSS patterns.  

Given the number of constraints Nc, number of groups 
NG, the number of optional features NO of the base feature 
model, and the configurable density parameters DRCS, DGSS, 
and DOSS,  

1.  Randomly select a constraint in the base feature 
model, generate the corresponding soft constraint 
according to RCS and insert it into the model. Do this 
Nc *DRCS times. 

2.  Randomly select one group in the base feature model 
and one subfeature belonging to that group. Generate 
the corresponding soft constraint according to GSS 
and insert it into the model. Do this NG *DGSS times. 

3.  Randomly select two optional features in the base 
feature model, generate the corresponding soft 
constraint according to OSS and insert it into the 
model. Do this NO *DOSS times. 
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Figure 6.  Example of a Reverse Constraint Suggestion, based on a feature 

model of a simple automobile product line. 
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Figure 7.  Example of  Group Selection Suggestions 
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The density parameters control the number of soft 
constraints introduced. Nevertheless, fluctuations may occur 
because degenerate or nonsensical soft constraints (such as a 
feature suggesting one of its (grand-) parents) are ignored so 
they do not pollute or bias the results. Duplicate soft 
constraints may also be generated, so the actual number of 
soft constraints injected into the feature model may be less 
than Nc *DRCS + NG *DGSS + NO *DOSS. This approach is 
effective and simpler than trying to always generate valid, 
distinct soft constraints in sufficient number (which may 
very well be impossible, depending on the chosen density 
parameters and structural properties of the base feature 
model).  

VI. EXPERIMENTAL RESULTS 

A. Tool description 

We developed a Java based tool that processes and 
analyses feature models annotated with soft constraints. The 
SAT4J package was used for resolving satisfiability 
problems. The SXFM (Simple XML Feature Model) file 
format [10], used for storing feature model descriptions, was 
extended to include soft constraint information.  The partial 
contents of a SXFM file containing soft constraint 
information can be observed in Fig. 8. Our tool is also 
capable of injecting soft constraints into feature models and 
conducting the analysis described in Section IV. 

B. Test and Validation 

For test and validation purposes, we have selected to use 
all the feature models with more than 40 features currently 
available in the SPLOT feature model repository [10]. These 
were provided by the site users and include models from 
both academic and industrial origin. This provided us with a 
large set of feature models with diverse characteristics and 
relevant dimension to validate our work. 

Table III presents the relevant characteristics of the 
feature models. The descriptions were taken verbatim from 
their entries in the online feature repository.  

 

 
Figure 8.  Extract of SXFM file extended with soft constraint information. 

The purpose of the experiments is to observe to what 
extent the extent inclusion of soft constraints in feature 
models may lead to hidden features and inconsistencies as 
described in Section V, as well as assessing the effectiveness 
of the analysis algorithm. To this effect, soft constraints were 
injected in these models and the analysis algorithm was run 
to identify inconsistencies and hidden features. Although 
weak real world representativity is always a risk when using 
automated test case generation, this concern is mitigated by 
employing typical patterns of usage to guide soft constraint 
injection.  

Different test sets were created by injecting soft 
constraints with increasing density parameters DRCS, DGSS, 
and DOSS. All density parameters were set to the same value 
in each test set, and four different test sets were created, with 
density values of 0.125, 0.25, 0.5, and 0.75.  

The results in Fig. 9 represent the aggregate results of 
running soft constraint injection and analysis for the models 
in Table III, while Table IV presents the results for each 
individual model. Because feature injection is a stochastic 
process, experiments were run 5 times for each feature 
model for each different setting of the density parameters, for 
a total of 20 runs per feature model. 

The injection algorithm fails to inject any soft constraint 
into three feature models (Thread, Datbase Tool, and DS 
Sample) at the lowest density setting, because of their 
specific topological properties. For preserving homogeneity, 
results for these three models are not represented in Table 
IV, since only higher density results are available; 
comparison with other results would not be meaningful. 

Results in Fig. 9 illustrate that, as can be expected, 
inconsistencies noticeably increase with higher densities of 
soft constraints. The number of inconsistencies seems to 
increase linearly with the number of soft constraints, while 
the number of orthogonal constraint sets increases more 
rapidly and appears to converge to a value in the vicinity of 
80%. The number of unaffected feature models decreases 
correspondingly, until it drops bellow the number of 
inconsistencies at densities of approximately 65%. An 
important observation is that a significant number 
(approximately 20%) of inconsistent soft constraints is found 
even for low densities of soft constraints. This highlights the 
usefulness of automated analysis procedures for validating 
feature models annotated with soft constraints. 

Results in Table IV show that adding soft constraints to 
two specific feature models (PFTeste1 and DELL 
Laptop/Notebook Computers) systematically resulted in the 
appearance of an inconsistent set of soft constraints set. 
Analyzing the characteristics of these two models, it is easily 
observed that one common distinguishing feature is the very 
high number of hard constrains in each (even after 
normalizing according to the number of features). It can be 
concluded that constraint density, and not feature model 
dimension or other factors, is the main contributing factor for 
the appearance of inconsistent soft constraint suggestions. 

Hidden features were also identified. Table V presents 
the percentage of soft constraints hiding a feature as a 
percentage of the total number of soft constraints. For most 
feature models, the percentage of hidden features increases 
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with the density of soft constraints. The average results 
displayed in the last row of Table IV confirm this tendency. 
No hidden features were identified in PFTeste1 or DELL 
Laptop/Notebook Computers, for the simple reason that 
those feature models systematically generated 
inconsistencies precluding satisfaction of constraints. The 
presence of hidden implicants is found to be prevalent 
enough in most models so that automatic detection and 
report can be considered useful. 

The analysis algorithm was found to be very efficient. 
Experiments were conducted in a netbook with 1 Gb of 
RAM memory, taking approximately 5-10s for loading, 
injecting soft constraints and analyzing once every one of the 
feature models considered in this test (between 0.15 and 0.3 s 
per feature model). 

VII. RELATED WORK 

In [6], probabilistic feature models are described that use 
soft constraints as descriptions of features that have high 
probabilities of being concurrently selected in the same 
configuration. Probabilistic feature models and 
corresponding samples spaces are suited to represent feature 
models obtained through feature mining processes, because 
complete feature joint probability distributions must be 
obtained. Incomplete specifications must be handled by 
complementary mechanisms such as Bayesian networks. In 
our work, the use of standard Boolean propositional logic 
capitalizes on established tool support and improves 
accessibility to the developer. This allows soft constraints to 
be more readily used to represent important domain 
knowledge in feature models.  

“Encourages” and “discourages” constraints have been 
proposed for feature models in [11]. However, no precise 
semantics have been provided, precluding automated 
analysis and reasoning as described in our work. 

In [12], fuzzy logic is applied to relate feature 
configurations to costumer profiles. Although it is a 
significant departure from standard feature modeling 
approaches familiar to developers, Fuzzy logic is a powerful 
alternative tool for handling uncertainty.  

While we focus this work on detection of inconsistencies 
and semantical analysis (e.g: detection of hidden features) of 
feature models annotated with Boolean soft constraints, in 
[7] improved configuration support is described. 

Soft constraint frameworks have been studied in the 
context of constraint programming. These approaches focus 
on the search of a optimal variable assignment with respect 
to a set of quantified soft constraint expressions, as opposed 
to semantical and consistency analysis [13]. 

VIII. CONCLUSIONS 

We have experimentally demonstrated the usefulness and 
viability of automated analysis of soft constraints in feature 
models. Typical patterns of soft constraint use were 
described. These were injected in publicly available feature 
models. In this process, inconsistencies and hidden features 
were introduced. These situations can correspond to potential 
semantic errors and should be reported back to the user for 
further inspection. Our tool was applied and was effective in 

identifying these potential problems. This demonstrates that 
a framework for handling soft constraints in feature models 
using propositional logic can be a valuable tool for feature 
modeling. Future work will be conducting in identifying 
additional patterns of soft constraint use. The role of soft 
constraint usage in typical development tasks such as 
refactoring or domain modeling will also be investigated. 

TABLE III.  FEATURE MODELS 
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AndroidSPL 45 8 9 5 

Arcade Game PL 61 4 9 34 

bCMS system 66 6 8 2 

Billing 88 45 2 59 

Car Selection 72 10 19 21 

Consolas de Videojuegos 41 11 2 5 

Database Tool 40 7 7 0 

DATABASE_TOOLS 70 20 7 2 

DELL Laptop/Notebook 

Computers 

46 1 8 110 

Documentation_Generation 44 3 9 8 

DS Sample 41 0 6 0 

Electronic Drum 52 1 11 0 

E-science application 61 7 16 2 

HIS 67 10 6 4 

Hotel Product Line 55 31 7 0 

J2EE web architecture 77 26 11 0 

Letovanje 43 3 13 2 

Linea de Experimentos 52 11 4 4 

Meshing Tool Generator 40 8 11 17 

Model_Transformation 88 11 25 0 

OW2-FraSCAti-1.4 63 39 2 46 

PFTest1 56 5 8 90 

Plone Meeting 57 13 9 0 

Printers 172 1 28 0 

Reuso – UFRJ – Eclipse1 72 40 7 1 

Smart Home 56 36 4 0 

Smart Home v2.2 60 30 6 2 

SmartHome_vConejero 59 33 0 3 

SPL SimulES, PnP 59 8 14 0 

Thread 44 0 7 0 

Video Player 53 17 9 2 

Video Player 71 12 5 0 

Web_Portal 43 17 6 6 

Xtext 137 95 0 1 
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TABLE IV.  INCONSISTENCY RESULTS PER FEATURE MODEL 
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Model_Transformation 50% 50% 0% 

OW2-FraSCAti-1.4 25% 75% 0% 

Documentation_Generation 65% 35% 0% 

SPL SimulES, PnP 45% 55% 0% 

PFTest1 0% 0% 100% 

DELL Laptop/Notebook Computers 0% 0% 100% 

Linea de Experimentos 50% 50% 0% 

Letovanje 50% 45% 5% 

Xtext 0% 100% 0% 

Smart Home v2.2 30% 60% 10% 

SmartHome_vConejero 20% 80% 0% 

bCMS system 60% 40% 0% 

E-science application 50% 50% 0% 

DATABASE_TOOLS 40% 60% 0% 

Reuso - UFRJ - Eclipse1 55% 45% 0% 

Hotel Product Line 20% 75% 5% 

Electronic Drum 30% 70% 0% 

Video Player 55% 45% 0% 

Billing 40% 60% 0% 

Smart Home 40% 60% 0% 

Plone Meeting 25% 75% 0% 

Meshing Tool Generator 15% 85% 0% 

AndroidSPL 40% 60% 0% 

Arcade Game PL Feature Model 40% 40% 20% 

Web_Portal 35% 60% 5% 

Consolas de Videojuegos 95% 5% 0% 

Car Selection 40% 60% 0% 

Printers 50% 35% 15% 

HIS 30% 10% 60% 

J2EE web architecture 30% 70% 0% 

 

 
Figure 9.  Aggregate results: unaffected, orthogonal and inconsistent 

feature models. 

 
 

TABLE V.  HIDDEN FEATURE RESULTS PER FEATURE MODEL 

 
Percentage of constraints hiding 

features 
Description 

density 

0,125 

density 

0,25 

density 

0,5 

density 

0,75 

Model_Transformation 0% 0% 0% 79% 

OW2-FraSCAti-1.4 4% 56% 98% 91% 

Documentation_Generation 0% 0% 11% 10% 

SPL SimulES, PnP 0% 33% 67% 69% 

PFTest1 0% 0% 0% 0% 

DELL Laptop/Notebook 

Computers 0% 0% 0% 0% 

Linea de Experimentos 0% 0% 0% 20% 

Letovanje 0% 11% 29% 36% 

Xtext 3% 6% 10% 21% 

Smart Home v2.2 0% 0% 32% 33% 

SmartHome_vConejero 0% 0% 30% 32% 

bCMS system 0% 33% 13% 0% 

E-science application 0% 0% 21% 63% 

DATABASE_TOOLS 0% 0% 8% 49% 

Thread - 0% 22% 47% 

Reuso - UFRJ - Eclipse1 0% 6% 30% 28% 

Hotel Product Line 0% 0% 17% 11% 

Database Tool - 0% 6% 43% 

Electronic Drum 0% 0% 67% 100% 

Video Player 0% 0% 0% 6% 

Billing 45% 41% 100% 100% 

Smart Home 0% 0% 8% 9% 

Plone Meeting 0% 7% 10% 33% 

Meshing Tool Generator 0% 21% 0% 14% 

AndroidSPL 0% 13% 58% 88% 

Arcade Game PL Feature 
Model 0% 0% 0% 2% 

Web_Portal 0% 11% 27% 32% 

Consolas de Videojuegos 0% 22% 21% 25% 

Car Selection 0% 0% 15% 0% 

Printers 0% 0% 43% 41% 

DS Sample - 0% 0% 67% 

HIS 0% 8% 27% 12% 

J2EE web architecture 0% 8% 6% 20% 

AVERAGE 2% 8% 23% 36% 
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