
401

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Analyzing 3D Complex Urban Environments

Using a Unified Visibility Algorithm

Oren Gal

Mapping and Geo-information Engineering

Technion - Israel Institute of Technology

Haifa, Israel

e-mail: orengal@technion.ac.il

Yerach Doytsher

Mapping and Geo-information Engineering

Technion - Israel Institute of Technology
Haifa, Israel

e-mail: doytsher@technion.ac.il

Abstract - This paper presents a unique solution for the

visibility problem in 3D urban environments. We shall

introduce a visibility algorithm for a 3D urban environment,

based on an analytic solution for basic building structures. A

building structure is presented as a continuous

parameterization approximating of the building’s corners. The

algorithm quickly generates the visible surfaces' boundary of a

single building. Using simple geometric operations of

projections and intersections between visible pyramid volumes,

hidden surfaces between buildings are rapidly computed.

Furthermore, extended visibility analysis for complex urban

environments, consisting of mass modeling shapes, is

presented. Mass modeling consists of basic shape vocabulary

with a box as the basic structure. Using boxes as simple mass

model shapes, one can generate complex urban building blocks

such as L, H, U, and T shapes. The visibility analysis is based

on concatenating the analytic solution for the basic single box

building structure. The algorithm, demonstrated with a

schematic structure of an urban environment and compared to

the Line of Sight (LOS) method, demonstrates the computation

time efficiency. Real urban environment approximated to the

3D basic shape vocabulary model demonstrates our approach.

Keywords - Visibility; 3D; Urban environment; Spatial analysis;

Mass modeling

I. INTRODUCTION

In the past few years, the 3D GIS domain has developed
rapidly, and has become increasingly accessible to different
disciplines. Spatial analysis in a 3D environment appears to
be one of the most challenging topics in the communities
currently dealing with spatial data. One of the most basic
problems in spatial analysis is related to visibility
computation in such an environment. Visibility calculation
methods aim to identify the parts visible from a single point,
or multiple points, of objects in the environment.

The visibility problem has been extensively studied over
the past twenty years, due to the importance of visibility in
GIS, computer graphics, computer vision and robotics. Most
previous works approximate the visible parts to find a fast
solution in open terrains, and do not challenge or suggest
solutions for a dense urban environment. The exact visibility
methods are highly complex, and cannot be used for fast

applications due to the long computation time. Gal and
Doytsher [1] recently presented a fast and exact solution for
the 3D visibility problem in urban environments based on an
analytic solution. Other fast algorithms are based on the
conservative Potentially Visible Set (PVS) [2]. These
methods are not always completely accurate, as they may
include hidden objects' parts as visible due to various
simplifications and heuristics.

In this paper, we introduce a new, fast and exact solution
for the 3D visibility problem from a viewpoint in an urban
environment, which does not suffer from approximations.
We consider a 3D urban environment building modeled as a
cube (3D box) and present an analytic solution for the
visibility problem. The algorithm computes the exact visible
and hidden parts from a viewpoint in an urban environment,
using an analytic solution, without the expensive
computational process of scanning all objects' points. The
algorithm is demonstrated by a schematic structure of an
urban environment, which can also be modified for other
complicated urban environments, with simple topological
geometric operators. In such cases, computation time grows
almost linearly.

Our method uses simple geometric relations between the
objects and the lines connecting the viewpoint, and the
objects' boundaries by extending the visibility boundary
calculation from 2D to a 3D environment, using
approximated singular points [3]. The spatial relationship
between the different objects is computed by using fast
visible pyramid volumes from the viewpoint, projected to the
occluded buildings.

Based on our visibility solution [1], we extend our
research and introduce a fast and exact solution to the 3D
visibility problem in complex urban environments, generated
by mass modeling shapes and a procedural modeling
method. Our solution can be carried out in a near Real Time
performance. We consider a 3D urban environment, which
can be generated by grammar rules. The basic entities are
basic vocabulary mass modeling, such as L, H, T profile
shapes that can be separated into simple boxes. Based on our
visibility method, we analyze the spatial relations for each
profile and compute the visible and the hidden parts. Each
box is a basic building modeled as 3D cubic
parameterization, which enables us to implement an analytic

402

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

solution for the visibility problem, without the expensive
computational process of scanning all the objects' points.

The algorithm is demonstrated by a collection of basic
mass modeling shapes of an urban environment, where each
shape can be sub-divided into a number of boxes. Using an
extension of our analytic solution for the visibility problem
of a single box from a viewpoint, an efficient solution for a
complex environment is demonstrated. We also compared
computation time between the presented method and the
traditional "Line of Sight" (LOS) method.

II. RELATEDWORK

Accurate visibility computation in 3D environments is a
very complicated task demanding a high computational
effort, which could hardly have been performed in a very
short time using traditional well-known visibility methods
[4], [5]. Previous research in visibility computation has been
devoted to open environments using DEM models,
representing raster data in 2.5D (Polyhedral model). Most of
these works have focused on approximate visibility
computation, enabling fast results using interpolations of
visibility values between points, calculating point visibility
with the LOS method [6], [7].

A vast number of algorithms have been suggested for
speeding up the process and reducing the computation time
[8]. Franklin [9] evaluates and approximates visibility for
each cell in a DEM model based on greedy algorithms. An
application for sitting multiple observers on terrain for
optimal visibility cover was introduced in [10]. Wang et al.
[11], introduced a Grid-based DEM method using viewshed
horizon, saving computation time based on relations between
surfaces and Line Of Sight (LOS), using a similar concept of
Dead-Zones visibility [12]. Later on, an extended method for
viewshed computation was presented, using reference planes
rather than sightlines [13].

One of the most efficient methods for DEM visibility
computation is based on shadow-casting routine. The routine
cast shadowed volumes in the DEM, like a light bubble [14].
Other methods related to urban design environment and open
space impact treat abstract visibility analysis in urban
environments using DEM, focusing on local areas and
approximate openness [15], [16]. Extensive research treated
Digital Terrain Models (DTM) in open terrains, mainly
Triangulated Irregular Network (TIN) and Regular Square
Grid (RSG) structures. Visibility analysis on terrain was
classified into point, line and region visibility, and several
algorithms were introduced based on horizon computation
describing visibility boundary [17], [18].

Only a few works have treated visibility analysis in urban
environments. A mathematical model of an urban scene,
calculating probabilistic visibility for a given object from a
specific viewcell in the scene, has been presented by [19].
This is a very interesting concept, which extends the
traditional deterministic visibility concept. Nevertheless, the
buildings are modeled as circles, and the main challenges of
spatial analysis and building model were not tackled.

Other methods were developed, subject to computer
graphics and vision fields, dealing with exact visibility in 3D
scenes, without considering environmental constraints.

 Plantinga and Dyer [5] used the aspect graph – a graph
with all the different views of an object. Shadow boundaries
computation is a very popular method, studied by [2],[20],
[21]. All of these works are not applicable to a large scene,
due to computational complexity.

As mentioned, online visibility analysis is a very
complicated task. Recently, off-line visibility analysis, based
on preprocessing, was introduced. Cohen-Or et al. [22] used
a ray-shooting sample to identify occluded parts. Schaufler et
al. [23] use blocker extensions to handle occlusion.

Shape grammars, which are an inherent part of the
procedural modeling method, have been used for several
applications over the past years. The first and original
formulation of shape grammar deals with arrangement and
location of points and labeled lines. Therefore, this method
was used for architecture applications, for construction and
analysis of architectural design [24].

Modeling a 3D urban environment can be done by
dividing and simplifying the environment using a set of
grammar rules consisting of basic shape vocabulary of mass
modeling [25]. By that, one can simply create and analyze
3D complex urban environments using computer
implementation.

Automatic generation or modeling of complex 3D
environments, such as the urban case, can be a very
complicated task dealing with fast computations analysis. In
our case, visibility computation in 3D environments is a very
complicated task, which can hardly be performed in a very
short time using traditional well-known visibility methods,
due to the environment's complexity, modeled with or
without a procedural modeling method.

III. URBAN ENVIRONMENT MODELING

A. Procedural Modeling

Procedural modeling consists of production rules that
iteratively create more and more details. In the context of
urban environments, grammar rules first generate crude
volumetric models of buildings, named as mass modeling,
which will be introduced in the next sub-section. Iterative
rules can also be applied to facade windows and doors.
Modeling processes of the environment also specify the
hierarchical structure.

Shape grammar, which is also called Computer
Generated Architecture (CGA) shape, produces buildings'
shells in urban environments with high geometric details. A
basic set of grammar rules was introduced by Wonka et al.
[25].

Procedural modeling enables us to create fast and
different three-dimensional urban models using a
combination of random numbers and stochastic rule selection
with different heights and widths. An example model using
these four rules is depicted in Figure 1.

B. Mass Modeling

Modeling urban environments can be a very complicated
task. The simplest constructions use boxes as a basic
structure. By using boxes as simple mass models, one can

403

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

generate basic buildings blocks such as L, H, U, and T
shapes, demonstrated in Figure 2.

Figure 1. Generating Urban Environment Using CGA Shape Based on

Mass Modeling (source: [26])

An extended mass modeling of roofs and facades for

building models was introduced by Muller et al. [26]. In this
paper, we introduce visibility analysis of the basic shape
vocabulary of mass modeling using a box’s basic structure,
described as visibility computation of a basic shape
vocabulary.

Figure 2. Basic Shape Vocabulary for Mass Modeling (source: [27])

IV. PROBLEM STATEMENT

We consider the basic visibility problem in a 3D urban
environment, consisting of 3D buildings modeled as 3D

cubic parameterization

 , and viewpoint

Given:

 A viewpoint in 3D coordinates

 Parameterizations of N objects

 ,
describing a 3D urban environment model

Computes:

 Set of all visible points in

 from

This problem would appear to be solved by conventional

geometric methods, but as mentioned before, this demands a
long computation time. We introduce a fast and efficient
computation solution for a schematic structure of an urban
environment that demonstrates our method.

V. ANALYTIC VISIBILITY COMPUTATION

A. Analytic Solution for a Single Object

In this section, we first introduce the visibility solution
from a single point to a single 3D object. This solution is
based on an analytic expression, which significantly
improves time computation by generating the visibility
boundary of the object without the need to scan the entire
object’s points.

Our analytic solution for a 3D building model is an
extension of the visibility chart in 2D introduced by Elber et
al. [3] for continuous curves. For such a curve, the silhouette
points, i.e. the visibility boundary of the object, can be seen
in Figure 3:

Figure 3.Visible Silhouette Points SCV from viewpoint V to curve C(t)

(source: [3])

The visibility chart solution was originally developed for

dealing with the Art Gallery Problem for infinite viewpoint;
it is limited to 2D continuous curves using multivariate
solver [3], and cannot be used for on-line application in a 3D
environment.

Based on this concept, we define the visibility problem in
a 3D environment for more complex objects as:

co s co s 0 0 0'(,) ((,) (, ,)) 0
n t n tz zC x y C x y V x y z

(1)

Where 3D model parameterization is , and the

viewpoint is given as . Solutions to equation (1)

generate a visibility boundary from the viewpoint to an
object, based on basic relations between viewing directions

from to using cross-product characters.
A three-dimensional urban environment consists mainly

of rectangular buildings, which can hardly be modeled as
continuous curves. Moreover, an analytic solution for a
single 3D model becomes more complicated due to the
higher dimension of the problem, and is not always possible.
Object parameterization is therefore a critical issue, allowing
us to find an analytic solution and, using that, to generate the
visibility boundary very quickly.

1) 3D Building Model: Most of the common 3D City

Models are based on object-oriented topologies, such as 3D

Formal Data Structure (3D FDS), Simplified Spatial Model

(SSS) and Urban Data Model (UDM) [28]. These models are

very efficient for web-oriented applications. However, the

fact that a building consists of several different basic features

makes it almost impossible to generate analytic

representation. A three-dimensional building model should

be, on the one hand, simple, enabling analytic solution, and

404

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on the other hand, as accurate as possible. We examined

several building object parameterizations, and the preferred

candidate was an extended n order sphere coordinates

parameterization, even though such a model is a very

complex one, and will necessitate a special analytic solution.

We introduce a model that can be used for analytic solution

of the current problem. The basic building model can be

described as:

1
, ,

1

1 1, 350, 1

n

n

x
x t y z c

x

t n c c

 (2)

This mathematical model approximates building corners,

not as singular points, but as continuous curves. This

building model is described by equation (2), with the lower

order badly approximating the buildings' corners, as depicted

in Figure 4. Corner approximation becomes more accurate

using n=350 or higher. This approximation enables us to

define an analytic solution to the problem.

(a)

(b)

 (c)

Figure 4. Topside view of the building model using equation (2) -

(a) n=50; (b) n=200; (c) n=350

We introduce the basic building structure that can be

rotated and extracted using simple matrix operators (Figure

5). Using a rotation matrix does not affect our visibility

algorithm, and for a simple demonstration of our method we

present samples of parallel buildings.

Figure 5. 3D Analytic Building Model with Equation (2), where

2) Analytic Solution for a Single Building: In this part

we demonstrate the analytic solution for a single 3D building

model. As mentioned above, we should integrate building

model parameterization to the visibility statement. After

integrating eq. (1) and (2):

co s co s

0 0

0 0

0 0 0

1

1

'(,) ((,) (, ,)) 0

() 1 0

() 1 0

350, 1 1

n t n tz z

n n

y x

n n

y x

C x y C x y V x y z

x V n x x V

x V n x x V

n x

(3)

Where the visibility boundary is the solution for these
coupled equations. As can be noted, these equations are not
related to Z axis, and the visibility boundary points are the
same ones for each x-y surface due to the model's
characteristics. Later on, we address the relations between a
building's roof and visibility height in our visibility
algorithm, as part of the visibility computation.

The visibility statement leads to two polynomial N order
equations, which appear to be a complex computational task.
The real roots of these polynomial equations are the solution
to the visibility boundary. These equations can be solved
efficiently by finding where the polynomial equation
changes its sign and cross zero value; generating the real
roots in a very short time computation (these functions are
available in Matlab, Maple and other mathematical programs
languages). Based on the polynomial cross zero solution, we
can compute a fast and exact analytic solution for the
visibility problem from a viewpoint to a 3D building model.
This solution allows us to easily define the Visible Boundary
Points.

Visible Boundary Points (VBP) - we define VBP of the
object i as a set of boundary points j=1..Nbound of the visible

surfaces of the object, from viewpoint .

1 1 1

2 2 21..

1 0 0 0

, ,

, ,
(, ,)

..

, ,

bound

bound bound bound

j N

i

N N N

x y z

x y z
VBP x y z

x y z

 (4)

Roof Visibility – The analytic solution in equation (3)
does not treat the roof visibility of a building. We simply

check if viewpoint height is lower or higher than the

building height
and use this to decide if the roof is

visible or not:

0 maxCi
zV Z h (5)

If the roof is visible, roof surface boundary points are
added to VBP. Roof visibility is an integral part of VBP
computation for each building. Currently, we assume flat
roof surfaces that will be extended to more complex roof
models in our future work.

Two simple cases using the analytic solution from a
visibility point to a building, including visible roofs, can be
seen in Figure 6. The visibility point is marked in black, the
visible parts colored in red, and the invisible parts colored in
blue. The visible volumes are computed immediately with a

405

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

very low computation effort, without scanning all the
model’s points, as is necessary in LOS-based methods for
such a case.

(a) (b)

Figure 6. Visibility Volume computed with the Analytic Solution.

Viewpoint is marked in black, visible parts colored in red and invisible

parts in blue. VBP marked with yellow circles - (a) single building; (b) two

non-overlapping buildings

B. Visibility Computation in Urban Environments

In the previous sections, we treated a single building
case, without considering hidden surfaces between buildings,
i.e. building surface occluded by other buildings, which
directly affect the visibility volumes solution. In this section,
we introduce our concept for dealing with these spatial
relations between buildings, based on our ability to rapidly
compute visibility volume for a single building generating
VBP set.

Hidden surfaces between buildings are simply computed
based on intersections of the visible volumes for each object.
The visible volumes are easily defined using VBP, and are
defined, in our case, as Visible Pyramids. The invisible
components of the far building are computed by intersecting
the projection of the closer buildings' VP base to the far
building's VP base.

1) The Visible Pyramid (VP):we define VPi
j=1..Nsurf(x0, y0,

z0) of the object i as a 3D pyramid generated by connecting

VBP of specific surface j to a viewpoint V(x0, y0, z0).

Maximum number of Nsurf for a single object is three. VP

boundary, colored with green arrows, can be seen in Figure

7. The intersection of VPs allows us to efficiently compute

the hidden surfaces in urban environments, as seen in the

next sub-section.

2) Hidden Surfaces between Buildings:As we mentioned

earlier, invisible parts of the far buildings are computed by

intersecting the projection of the closer buildings' VP to the

farther buildings' VP base.

Let
 ,

be visible pyramid from a viewpoint

 , The Projected Surface

from the closer

buildings'
 to the farther buildings'

 base plane

consists of projection of
 points:

2

1

1 1 1

2 2 2

, ,

, ,

..

, ,

..

, ,

j

i

bound bound bound

p p p

p p p

VP

VP
pi pi pi

pN pN pN

x y z

x y z

PS
x y z

x y z

 (6)

Where the normal of

 base plane is (a,b,c) and the

plane can be written as . The projected

point

 described in equation (6) is:

1 1 1

1

1 1 1

1

1 1 1

1

2 2 2

2 2 2

2 2 2

i i i

i

i i i

i

i i i

i

VBP VBP VBP

pi VBP

VBP VBP VBP

pi VBP

VBP VBP VBP

pi VBP

ax by cz d
x x a

a b c

ax by cz d
y y b

a b c

ax by cz d
z z c

a b c

 (7)

The Intersected Surface

, between

 and

 base

plane can generally describe as polygons intersection:

2 2 2

1 1 1
2 2

j j j

i i i

VP VP VPJ J

VP VP VP
IS PS VP PS VP (8)

The Intersected Surface

 is also the invisible one

from a viewpoint , as can be seen in Figure 9.

Figure 7. A Visible Pyramid from a viewpoint (marked as a black dot) to

VBP of a specific surface

For simplicity, we demonstrate the method with two

buildings from a viewpoint one (denoted as the

first one) of which hides, fully or partially, the other (the
second one).

406

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a) (b)

(c)

Figure 8. Generating VP - (a) VP1
1
 boundary colored in green lines; (b)

VP2
1
 boundary colored in purple lines; (c) the two buildings - VP1

1
 in green

and VP2
1
 in purple, and intersected surface in white

As seen in Figure 8, in this case, we first compute VBP

for each building separately, VBP1
1..4, VBP2

1..4; based on
these VBPs, we generate VPs for each building, VP1

1, VP2
1.

After that, we project VP1
1 base to VP2

1 base plane, as seen
in Figure 9, if existing. At this point, we intersect the

projected surface in VP2
1 base plane,

, and update

VBP2
1..4 and VP2

1 (removing the intersected part). The
intersected part is the invisible part of the second building
from viewpoint V(x0, y0, z0) which is hidden by the first

building

 (marked in white in Figure 9).

Figure 9. Projection of VP1

1 to VP2
1
 base plane (projected surface) marked

by dotted lines

Figure 10. Computing Hidden Surfaces between Buildings by using the

Intersected surface on VP2
1
 base Plane.

In a case of a third building, in addition to the buildings

presented in Figure 10, the projected VP will only be the
visible ones, and the VBP and VP of the second building will
be updated accordingly (as described in the next sub-
section). In cases of several buildings, the VP base would not
necessarily be rectangular, due to the intersected surface
profile of previous projections. We demonstrated a simple
case of an occluded building. A general algorithm for a more
complex scenario, which contains the same actions between
all the combinations of VP between the objects, is detailed in
the next sub-section. Projection and intersection of 3D
pyramids can be done with simple computational geometry
elements, which demand a very low computation effort.

C. Visibility Analysis for a Basic Shape Vocabulary

In this section, we present an analysis of visibility aspects
of a basic shape vocabulary, as part of the mass modeling of
urban environments. Mass modeling shapes consist of boxes
as a basic structure, in different shapes such as L, T, U, and
H. Based on visibility analysis for a single box, and the
hidden surfaces removal between overlapping boxes
introduced above, we demonstrate an accurate and fast
visibility solution for mass modeling buildings profiles.

1) L Shape Vsibility: We demonstrate visibility analysis

for an L shape, which can be split into two separate boxes.

The profile shape consists of boxes which overlap the

visible surfaces, in some cases of the viewpoint location.

Let the L shape be separated into two boxes A (Figure

11(a)) and B (Figure 11(b)), visible parts are colored in

green, and invisible parts are colored in purple. We compute

the VBP of each box - . In the next phase, a

visible pyramid is computed for each box -

Projection of

 to
 base plane and intersection

between pyramids are colored in black in these figures. The

final visible part of L shape can be seen in Figure 11(c). A

similar case, with a different viewpoint regarding the L

shape, can be seen in Figure 12.

407

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a)

(b)

(c)

Figure 11.L Shape Visibility Analysis - (a) Box A and Viewpoint; (b) Box B
and Viewpoint where the Hidden Surface Removal is colored in black; (c) L

Shape with the visible and invisible parts

(a)

(b)

(c)

Figure 12.L Shape Visibility Analysis - (a) Box A and Viewpoint; (b) Box B
and Viewpoint; (c) L Shape with the aggregated visible and invisible parts

2) T Shape Visibility: In this case, we demonstrate

visibility analysis for a T shape, which can be split into two

separate boxes (similar to the L shape case) – A (Figure

13(a)) and B (Figure 13(b)), the visible parts are colored in

green and invisible parts in purple; and the viewpoint V

colored by a black dot. We compute the VBP of each box -

 . In the next phase, a visible pyramid is

computed for each box -

 Projection of

 to

 base plane and intersection between pyramids

(colored with black) can be seen in Figure 13(c). The final

visible part of the T shape can be seen in Figure 13(d).

(a) (b)

(c) (d)

Figure 13.T Shape Visibility Analysis - (a) Box A and Viewpoint;

(b) Box B and Viewpoint; (c) Hidden Surface Removal colored in black

and visible surface colored in green; (d) T Shape with the visible and

invisible parts

3) U Shape Visibility: In this case, we demonstrate the

visibility analysis for a U shape, separated into three

different boxes - A (Figure 14(a)), B (Figure 14(b)) and C

(Figure 14(c)), visible parts are colored in green and

invisible parts in purple; and the viewpoint V colored by a

black dot. We compute the VBP of each box. In the next

phase, a visible pyramid is computed for each box. The

outcome of the projection and intersection between visible

pyramids can be seen in Figure 14(d) and 14(e), colored

with black. The final visible parts of the U shape can be

seen in Figure 14(f).

4) H Shape Visibility: In this case, we demonstrate

visibility analysis for an H shape, separated into three

different boxes – A (Figure 15(a)), B (Figure 15(b)) and C

(Figure 15(c)), visible parts are colored in green and

invisible parts in purple; and the viewpoint V colored by a

black dot. We compute the VBP of each box. In the next

phase, a visible pyramid is computed for each box. The

outcome of the projection and intersection between visible

pyramids are colored in black. The final visible part of the H

shape can be seen in Figure 15(d) and 15(e) from two

different views.

(a) (b)

408

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14.U Shape Visibility Analysis - (a) Box A and Viewpoint with

visible part colored in green; (b) Box B and Viewpoint with visible part

colored in green; (c) Box C and Viewpoint with visible part colored in

green; (d) – (e) Hidden Surface Removal colored in black and visible

surface colored in green; (f) U Shape with the visible and invisible parts

Figure 15.H Shape Visibility Analysis - (a) Box A and Viewpoint with

visible part colored in green; (b) Box B with visible part colored in green;

(c) Box C with visible part colored in green and Hidden Surface Removal

colored in black ; (d)-(e) H Shape with the visible and invisible parts

D. Visibility Algorithm Pseudo - Code

1. Given viewpoint V(x0, y0, z0)
2. For i=1:1:Nmodels building model

 2.1. Calculate Azimuth
i and Distance

iD from

 viewpoint to object

2.2. Set and Sort Buildings Azimuth Array []i

2.3. IF Azimuth Objects (i, 1..i-1) Intersect

 2.3.1. Sort Intersected Objects j=1:1:Ninsect

 By Distance
 2.3.2. Compute VBP for each intersected

 building,
int sec

1..

1..
boundN

j NVBP
.

 2.3.3. Generate VP for each intersected

 building,
int sec

1..

1..
surfN

j NVP

 2.3.4. For j=1:1:Ninsect-1

 2.3.4.1. Project 1.. surfN

jVP base to

1..

1
surfN

jVP
base plane, if exist.

 2.3.4.2. Intersect projected surfaces in

1..

1
surfN

jVP
base plane.

 2.3.4.3. Update 1..

1
boundN

jVBP
and

1..

1
surfN

jVP

 End
 Else
 Locate Building in Urban Environment
 End
 End

E. Visibility Algorithm – Complexity Analysis

We analyze our algorithm complexity based on the
pseudo code presented in the previous section, where n
represents the number of buildings. In the worst case, n
buildings hide each other. Visibility complexity consists of
generating VBP and VP for n buildings, complexity.
Projection and intersection are also complexity.

The complexity of our algorithm, without considering
data structure managing for urban environments, is .

1. O(1)
2. O(n)
2.1. O(1)
2.2. O(1) – Data structure operator
2.3. O(1) – Data structure operator
 2.3.1. O(1) – Data structure operator
 2.3.2. (1)n O

 2.3.3. (1)n O

 2.3.4. O(1) – Data structure operator
 2.3.4.1. (1)n O

 2.3.4.2. (1)n O

 2.3.4.3. (1)n O

We analyze the visibility algorithm complexity of the
LOS methods, where n represents the number of buildings
and k represents the resolution of the object. The exact
visibility computation requires scanning each object and
each object’s points, O(nk) where usually k>>n.

VI. RESULTS

We have implemented the presented algorithm and
tested some urban environments on a 1.8GHz Intel Core
CPU with Matlab. First, we analyze the versatility of our
algorithm on four different test scenes with different

(c) (d)

(e) (f)

(a) (b)

(c) (d)

(e)

409

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

occluded elements. These test scenes can be seen in Figures
(17)-(20).

After that, we compare our algorithm to the basic LOS
visibility computation, to prove accuracy and computational
efficiency.

Urban environments modeled with mass modeling of a
built-up environment consisting of basic shape vocabulary
were also tested. First, we analyzed the versatility of our
algorithm on a synthetic test scene with different occluded
elements (Figure 19) and then on real data -Gibson House
Museum Region, Beacon St, MA, USA (Figure 20).

A. Computation Time and Comparison to LOS

The main contribution of this research focuses on a fast
and accurate visibility computation in urban environments.
We compare our algorithm time computation with the
common LOS visibility computation demonstrating our
algorithm's computational efficiency.

1) Visibility Computation Using LOS: The common

LOS visibility methods require scanning all of the object’s

points. For each point, we check if there is a line connecting

the viewpoint to that point which does not cross other

objects. We used the LOS2 Matlab function, which

computes the mutual visibility between two points on a

Digital Elevation Model (DEM) model. We converted our

last test scene (Figure 20) with one to 58 buildings to DEM,

operated LOS2 function, and measured CPU time after
model conversion. Each building with DEM was modeled

homogonously by 50 points. The visible parts using the

LOS method were the exact parts computed by our

algorithm. The computation time of the LOS method was

about 10,130 times longer than that of our analytic

solutionalgorithm in this scene (4,257 sec vs. 0.42 sec). The

CPU times of our analytic solution and the LOS method are

depicted in Figure 16.

Figure 16.CPU Computation Times of the LOS and our algorithm. CPU

was measured with an increasing number of buildings from one to 58.

LOS method took 10,130 times longer than our algorithm

In case of mass modeling (Figure 19), computation time

of the LOS method was about 6,600 times longer than that

of our analytic solution (1,650 sec vs. 0.25 sec).
Over the last years, efficient LOS-based visibility

methods for DEM models, such as Xdraw, have been

introduced in order to generate approximate solutions [7].
However, the computation time of these methods is at least
O(n(n-1)), and, above all, the solution is only an
approximate one.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an efficient algorithm for visibility
computation in an urban environment, modeling basic
building structure with mathematical approximating for
presentation of buildings’ corners. Our algorithm is based
on a fast visibility boundary computation for a single object,
and on computing the hidden surfaces between buildings by
using projected surfaces and intersections of the visible
pyramids.

We have presented an extension from a basic box to a
complex urban environment model using the basic shapes
vocabulary of mass modeling. Each shape of this modeling
can be sub-divided into several boxes, which stand for a
basic building structure.

The main contribution of the method presented in this
paper is that it does not require special hardware, and is
suitable for on-line computations based on the algorithms'
performances, as presented above. The method generates an
exact and quick solution to the visibility problem in
relatively complex urban environments, modeled or
generated by using procedural modeling consisting of basic
shape vocabulary, which can be used for real urban
environments, as seen in Scene no. 3. Using these basic
shapes, one can create buildings having different shapes
(including, for example, balconies).

Complexity analysis of our algorithm has been
presented, as well as the computational running time
compared to the LOS visibility computation showing
significant improvement of time performance.

Further research will focus on facing multi-viewpoints
for optimalvisibility computation in such environments,
generalizing the presented building model such as cylinders
and cones taking into account Level of Details (LOD) and
roof modeling.

REFERENCES

[1] O. Gal and Y. Doytsher, "Fast and Accurate Visibility
Computation in a 3DUrban Environment", in Proc. of the
Fourth International Conference on Advanced Geographic
Information Systems, Applications, and Services, Valencia,
2012, pp: 105-110.

[2] G. Drettakis and E. Fiume, "A Fast Shadow Algorithm for
Area Light Sources Using Backprojection," In Computer
Graphics (Proceedings of SIGGRAPH ’94), 1994, pages 223–
230.

[3] G. Elber, R. Sayegh, G. Barequet, and R. Martin, "Two-
Dimensional Visibility Charts for Continuous Curves," Shape
Modeling International 05, MIT, Boston, USA, 2005, pp. 206-
215.

[4] Y. Chrysanthou, "Shadow Computation for 3D Interactive
and Animation," Ph.D. Dissertation, Department of Computer
Science, College University of London, UK, 1996.

[5] H. Plantinga and R. Dyer, "Visibility, Occlusion, and Aspect
Graph," The International Journal of Computer Vision, vol.
5(2), pp.137-160, 1990.

410

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[6] Y. Doytsher and B. Shmutter, "Digital Elevation Model of
Dead Ground," Symposium on Mapping and Geographic
Information Systems (Commission IV of the International
Society for Photogrammetry and Remote Sensing), Athens,
Georgia, USA, 1994.

[7] W.R. Franklin and C. Ray, " Higher isn’t Necessarily Better:
Visibility Algorithms and Experiments," In T. C. Waugh & R.
G. Healey (Eds.), Advances in GIS Research: Sixth
International Symposium on Spatial Data Handling, 1994, pp.
751–770. Taylor & Francis, Edinburgh.

[8] G. Nagy, "Terrain Visibility," Technical report,
Computational Geometry Lab, ECSE Dept., Rensselaer
Polytechnic Institute, 1994

[9] W.R. Franklin, "Siting Observers on Terrain," in D.
Richardson and P. van Oosterom, eds, Advances in Spatial
Data Handling: 10th International Symposium on Spatial Data
Handling. Springer-Verlag, 2002, pp. 109–120

[10] W.R. Franklin and C. Vogt, "Multiple Observer Siting on
Terrain with Intervisibility or Lores Data," in XXth Congress,
International Society for Photogrammetry and Remote
Sensing. Istanbul, 2004.

[11] J. Wang, G.J. Robinson, and K. White, "A Fast Solution to
Local Viewshed Computation Using Grid-based Digital
Elevation Models," Photogrammetric Engineering & Remote
Sensing, vol. 62, pp.1157-1164, 1996.

[12] D. Cohen-Or and A. Shaked, "Visibility and Dead- Zones in
Digital Terrain Maps," Eurographics, vol. 14(3), pp. 171- 180,
1995.

[13] J. Wang, G.J. Robinson, and K. White, "Generating
Viewsheds without Using Sightlines," Photogrammetric
Engineering & Remote Sensing, vol. 66, pp. 87-90, 2000.

[14] C. Ratti, "The Lineage of Line: Space Syntax Parameters
from the Analysis of Urban DEMs'," Environment and
Planning B: Planning and Design, vol. 32, pp. 547-566, 2005.

[15] D. Fisher-Gewirtzman and I.A. Wagner, "Spatial Openness
as a Practical Metric for Evaluating Built-up Environments,"
Environment and Planning B: Planning and Design vol. 30(1),
pp. 37-49, 2003.

[16] P.P.J. Yang, S.Y. Putra, and W. Li, "Viewsphere: a GIS-based
3D Visibility Analysis for Urban Design Evaluation,"
Environment and Planning B: Planning and Design, vol. 43,
pp.971-992, 2007.

[17] L. De Floriani and P. Magillo, "Visibility Algorithms on
Triangulated Terrain Models," International Journal of
Geographic Information Systems, vol. 8(1), pp. 13-41, 1994.

[18] L. De Floriani and P. Magillo, "Intervisibility on Terrains," In
P.A. Longley, M.F. Goodchild, D.J. Maguire & D.W. Rhind
(Eds.), Geographic Information Systems: Principles,
Techniques, Management and Applications,1999, pp. 543-
556. John Wiley & Sons.

[19] B. Nadler, G. Fibich, S. Lev-Yehudi, and D. Cohen-Or,"A
Qualitative and Quantitative Visibility Analysis in Urban
Scenes," Computers & Graphics, 1999, pp. 655-666.

[20] S. J. Teller, "Computing the Antipenumbra of an Area Light
Source," Computer Graphics, vol. 26(2), pp.139-148, 1992.

[21] J. Stewart and S. Ghali, "Fast Computation of Shadow
Boundaries Using Spatial Coherence and Backprojections," In
Computer Graphics, Proceedings of SIGGRAPH 1994, pp.
231-238.

[22] D. Cohen-Or, G. Fibich, D. Halperin, and E. Zadicario,
"Conservative Visibility and Strong Occlusion for Viewspace
Partitioning of Densely Occluded Scenes," In
EUROGRAPHICS’98, 1998.

[23] G. Schaufler, J. Dorsey, X. Decoret, and F.X. Sillion,
"Conservative Volumetric Visibility with Occluder Fusion,"
In Computer Graphics, Proceedings of SIGGRAPH 2000, pp.
229-238.

[24] F. Dowing and U. Flemming, "The bungalows of buffalo"
Environment and Planning B 8, 1981, 269–293.

[25] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky, “Instant
architecture”. ACM Transactions on Graphics 22, 3, 2003,
669–677.

[26] P. Muller, P. Wonka, S. Hawgler, A. Ulmer, and L.C. Gool,
“Procedural Modeling of Buildings” In Proceedings of ACM,
SIGGRAPH 2006, pp. 614-623.

[27] G. Schmitt, Architectura et machina. 1993, Vieweg&Sohn.

[28] S. Zlatanova, A. Rahman, and S. Wenzhong, "Topology for
3D Spatial Objects," International Symposium and Exhibition
on Geoinformation, 2002, pp. 22-24.

411

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 (a) (b)

 (c) (d)

Figure 17.Scene number 1 - Eight buildings in an Urban Environment, V(x0, y0, z0)= (0,15,10) - (a) Topside view; (b)-(d) Different views demonstrating the

visibility computation using our algorithm. CPU time was 0.15 sec

Figure 18.Scene number 2 - Six Buildings in an Urban Environment, where viewpoint is higher than the projected building, V(x0, y0, z0)= (0,15,10) - (a)

Topside view; (b)-(c) Different views demonstrating visibility computation using our algorithm. CPU time was 0.14 sec

(a) (b)

(c)

412

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

12

Figure 19.Scene number 3 - Nine basic shape structures of buildings in an Urban Environment, V(x0, y0, z0)= (3,-5,2) - (a) Topside view; (b)-(d) Different

views demonstrating the visibility computation using our algorithm. CPU time was 0.25 sec

(a)
(b)

(c)
(d)

413

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

13

(a)

 (b) (c)

 (d)

Figure 20. (a) Scene number 4 - Real Data of Urban Environments. (a) Gibson House Museum Region, Beacon St, MA, USA (Google Maps); Visible parts

colored in red and invisible parts with green (b) Topview Modeling; (c)-(d) Sideviews. V(x0, y0, z0) = (80,20,20). CPU time was 0.42 sec

