
368

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Energy-aware MPSoC for Real-time Applications with Space-Sharing, Adaptive and
Selective Clocking and Software-first Design

Stefan Aust and Harald Richter
Dept. of Computer Science

Clausthal University of Technology
Clausthal-Zellerfeld, Germany

stefan.aust|harald.richter@tu-clausthal.de

Abstract—Energy-awareness is an important criterion for
many mobile appliances such as (smart)phones and handhelds.
It is also indispensable for electronic controller units in cars
for example. Unfortunately, low energy consumption and high-
computing power exclude each other. With the proposed
methods of space-sharing, adaptive and selective clocking and
software-first design, both goals can be reached simultaneously.
Space-sharing is an alternative to time-sharing for multi-task
controllers in real-time systems that significantly simplifies
task scheduling. With space-sharing, there is no need for
worst-case execution-time analysis. Furthermore, adaptive and
selective clocking, together with a software-first design reduce
the controller’s energy consumption to the absolute minimum.
The results described herein were achieved by a set of mea-
surements made at a single-chip multiprocessor system called
MPSoC1 that implements space-sharing on one FPGA and by
a second system in software-first design called MPSoC2 that
implements adaptive and selective clocking.

Keywords-real-time system; low power; multiprocessor system
on chip (MPSoC); worst-case execution time (WCET); space-
sharing; adaptive and selective clocking; software-first design.

I. INTRODUCTION

A MPSoC is a parallel computer on a single silicon
chip that may contain between two and several hundreds of
processing units. In the case of up to ten units, we may speak
of a multi-core processor, otherwise of a many-core CPU.
Typically, a multi-core processor employs an on-chip first-
level cache that is shared between all cores for interprocess
communication. If more cores than about 10 are present on
the same chip, shared-memory can not be used any more
because of the memories bandwidth saturation and other
communication means have to be used. Many-core CPU
have therefore an on-chip static or dynamic interconnection
network for interprocess communication that is normally not
real-time capable.

Furthermore, multi- and many-core CPUs are usually im-
plemented by a full-custom-design chip. But during the last
years, the capabilities of Field Programmable Gate Arrays
(FPGAs) have been increased so much that they are in many
cases an alternative to full-custom chips. Every state-of-
the-art FPGA can accommodate already now hundreds of
processing units, i.e., cores, together with a static or dynamic
interconnection network. However, the disadvantage of such

FPGA solutions is that each core is less powerful as in
the full-custom design due to low clockrates and that less
memory is available on chip. This can be overcome by a
higher number of cores and by software that is coded in the
parallel programming style, together with a proper intertask
synchronization.

In daily life, there are many mobile appliances that de-
mand high computing power, but have low energy resources
only. This creates a contradiction because high computing
power normally means high energy consumption as well.
Additionally, precious energy must be invested to cool-
down these devices. As a consequence, either the usability
or the operational time is short. An other fact is that
thermal dissipation limits the life expectancy of electronic
devices because of aging processes in the semiconductor
material. The pn-junctions in the transistors deteriorate with
increasing heat exposure. Finally, heat dissipation always
means low energy efficiency, which is the opposite of Green
IT. Because of these issues, energy-awareness is important
for mobile systems and for ECUs in cars as well.

The concept of space-sharing was introduced first by the
authors in [1]. Based on space-sharing we suggested in
[2] the usage of MPSoCs on a single FPGA to provide
high computing power for energy-limited real-time appli-
cations. Space-sharing instead of time-sharing eliminates
the problem of finding and guaranteeing a proper time
schedule for multiple tasks that are needed to meet the
prescribed functionality under a given set of time constraints.
Furthermore, it allows also a better energy efficiency in
embedded systems if combined with adaptive and selective
clocking and a so-called software-first design because this
will reduce dynamic power dissipation. As a result, space-
sharing is able to reduce energy consumption and to produce
high computing power.

The paper is organized as follows: In section II, an
overview of the state-of-the-art of time-sharing and space-
sharing is given. In section III, the architecture of the
MPSoC1 that implements space-sharing in one FPGA is
presented. In section IV, measurement results of the energy
consumption of MPSoC1 are given. In section V, MPSoC2
is presented, together with methods for lower energy con-

369

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

sumption. In section VI, MPSoC1 is compared to MPSoC2
with the same user application that illustrates the benefits of
the proposed methods. Section VII draws a conclusion of
the achieved results and gives an outlook to future work.

II. STATE-OF-THE-ART OF TIME-SHARING AND
SPACE-SHARING

Real-time applications demand the time-sliced execution
of a sequence of tasks on a single processing unit under the
boundary condition of given time limits or at given points
in time. A common method to evaluate the soft or hard real-
time character of an application is the so-called worst-case
execution-time (WCET) analysis. This analysis is made for
the processing unit that executes that tasks by calculating
how long each task will need to complete in the worst case
[3].

In embedded systems with time-sharing operation, delays
in task execution can occur that have several reasons, such
as 1.) matching the deadlines of all tasks by one processor,
which forces concurrency, i.e., competition between tasks,
2.) exchanging intermediate results between tasks because
of interprocess communication, and 3.) interruption of one
task by an other task of higher priority. In order to avoid
intolerable delays in task execution, a suitable scheduling
must be found that guarantees desired operation under all
circumstances. Several task scheduling strategies have been
created to solve this problem. These are mainly priority
scheduling, earliest deadline first or round robin [4]. Further-
more, WCET analysis grows exponentially with the number
of tasks because the amount of if- then-else branches span
up a tree of execution paths, which must be all traversed
to find the longest path. Because of the fact that WCET
is a NP-complete problem, many commercial and open-
source analysis-tools have been developed to ease WCET
analysis [5], [6]. With space-sharing, there is no need for
task scheduling and thus also not for WCET analysis.

In space-sharing, every task gets its own processing
element, which is a core or a whole CPU that is part
of an on-chip parallel computer [1]. Additionally, every
interrupt service routine and every device driver gets its own
processing element as well. Thus it does not happen that one
task is interrupted by an other. This means that the number
of processing elements must match the cumulative number
of all tasks (Fig. 1).

Figure 1. Time-sharing vs. space-sharing.

Furthermore, by this means every task gets its own local
memory where it resides with program and data. As a con-
sequence, tasks are never competing for the same resources.
However, in case of interprocess communication the execu-
tion of a task can still be delayed if the task must wait until
a corresponding task has calculated a required intermediate
result. This problem is known as task synchronization. It
can not be solved by WCET analysis but by proper parallel
programming.

The combination of storage and computing element is
called processor-memory-module (PMM). Several or many
PMMs are coupled by a static or dynamic interconnection
network that is on the same chip and real-time capable.
Finally, PMMs can be connected to peripheral devices such
as sensors, actuators, hard disk, network interface or external
memory by the chip’s IO pins.

Space-sharing requires that the FPGA has enough re-
sources to accommodate all needed components, and it
requires that practical methods exist for allocating tasks to
processors, as well as for automatic chip synthesis due to the
number and structure of PMMs. It requires also that simple
means exist to compile code and to debug it for every PMM,
and that intertask communication occurs in real-time.

III. ARCHITECTURE OF MPSOC1

Fig. 2 shows the architecture of MPSoC1 that we have im-
plemented on various FPGAs from Xilinx. MPSoC1 consists
of a configurable number of PMMs and memory sizes and a
multistage interconnection network that has switches of size
2×2. Each PMM can be directly coupled to an I/O pin or can
access peripheral resources via the interconnection network.
Because of the spatial isolation of PMMs, local program
code and data are protected from unintended overwriting by
other tasks. This means that interprocess communication is
either possible by passing messages through the network or
by shared variables that reside in a global (external) memory.
Furthermore, we managed to develop a VHDL program
that synthesizes a real-time capable interconnection network
of configurable size, together with an arbitrary number of
PMMs. Furthermore, there exist simple procedure calls for
intertask communication and for clock-rate setting.

The processing elements in our implementation are soft-
core processors. For these processors, compilers and debug-
gers exist, but for each PMM code must be compiled and
debugged separately. Open issues are therefore by which
software tools programming and debugging of the parallel
computer can be accomplished as a whole, how tasks are
allocated automatically by a middleware to PMMs, what
operating system can be run on the FPGA, and whether
the number of logic cells on the FPGA is sufficient to
accommodate all tasks. These problems are especially immi-
nent as soon as very complex real-time applications should
be solved by space-sharing or as soon as complex device
drivers are needed to access peripherals. For example, the

370

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. MPSoC architecture on a FPGA.

Figure 3. Evolution of Xilinx FPGAs within the last few years.

ECU software in modern cars comprises hundreds of tasks
and thousands of intertask communications between ECUs.
The questions arising from that issues will be discussed in
the next subchapters. It will be shown that space-sharing
is a usable alternative to time-sharing for many real-time
applications.

A. FPGA Evolution

As shown in Fig. 3, FPGAs have advanced significantly
with respect to the number of logic cells and internal
memory within the last few years, and this trend will
continue. For example, a Virtex-4 XC4VFX100 FPGA has
less than 5 percent of the capacity of the latest Virtex-7
XC7V2000T FPGA. The same holds for on-chip memory,
which has reached up to 70 Mbits per chip. In consequence,
a Virtex-7 FPGA from Xilinx for instance is able to host
hundreds of PMMs, albeit with a much lower processor
clock rate compared to full-custom designed processors and
with smaller local memories. However, a clock of 200 MHz
and a program and data store of several dozens of KByte is
feasible for a Virtex-7 FPGA for about 2-300 PMMs, which
is sufficient for many feed forward and feed back control
algorithms. Also single-chip controllers have no higher clock
frequencies. The reason for that is the necessity for GHz and
GBytes in embedded systems is low.

B. Soft-Core Processors

A soft-core processor exists as a set of FPGA logic cells
that are synthesized via a hardware description language

such as VHDL or Verilog. In our tests, we have used a
publicly available processor description from Xilinx called
MicroBlaze [7]. On a Virtex-5 PFGA, for example, each
single MicroBlaze consumes 2-3 % of the chip’s logic cells
and memory. A MicroBlaze implements an in-order, non-
superscalar, 32-bit RISC CPU with a clock rate of up to
200 MHz. Because of its simple RISC architecture, it is
possible to predict the CPU cycles needed for a given real-
time task more easily than in the case of a fully-featured
CPU. MicroBlazes can even be synthesized without caches
and branch prediction, which allows to calculate exactly the
execution time for every task. Application software can be
developed in C or C++ because compilers are existing in the
Xilinx EDK toolset, from other vendors and open sources
as well.

C. Interconnection Network

For interprocessor communication we used a multistage
interconnection on-chip network (MINoC), which is based
on the Beneš-network and which establishes real time com-
munication paths between PMMs. Messages are transferred
in a point-to-point manner or as multicast or broadcast. All
three communication types are realized by (2N · log2N −1)
2 × 2 switches that can transfer data either as a through
("=") or as a crossed ("x") connection or as broadcast from
one switch input to both outputs. Each input port to the
interconnection network is equipped with a message FIFO to
decouple message creation in a PMM from message transfer
and delivery in the network. The FIFOs store the messages
that are destined for a specific output port as long as that port
is occupied. The FIFO depth is small in order not to impair
real-time capability that would be caused by messages that
are waiting too long in a FIFO. Since the interconnection
network works in circuit switching mode, a direct path
through the network from sender to receiver is established
for every communication type as long as the communication
persists. The network can connect every input with every
output at any time, as long as no two inputs want to be
transferred simultaneously to the same output port. Such a
situation is considered as bad task synchronization.

The most important feature of the interconnection network
is its non-blocking character, which is a consequence of its
topology. This feature comes from the fact that alternative
paths can be switched through the network during run-time.
The network routing algorithm was developed by one of the
authors [8], [9] and [10]. Later the routing was improved by
the other author [11]. The improved routing algorithm is able
route N paths from inputs to outputs within one clock cycle
[12] by means of combinatorial logic that is implemented
in AND, OR and NOT gates. The non-blocking character
of the network is mandatory for real-time communication.
Otherwise connection requests would be delayed because of
network-internal conflicts, and no upper time limit could be
guaranteed for message latency.

371

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Design Methodology and Operating System

In controllers with time-sharing, tasks are sequenced by
a task scheduler that is part of a real-time operating system
(RTOS). The RTOS provides additionally for device drivers,
memory protection, interrupt handling and interprocess com-
munication. However, most of these RTOS functions are
obsolete in space-sharing. The only task per PMM can
be executed in stand-alone mode if some prerequisites are
fulfilled. These are: 1.) a communication library is pro-
vided that implements point-to-point, multicast and broad-
cast for message passing via the interconnection network, 2.)
semaphores for shared memory access via a global memory
are existing. 3.) Reading and writing sensors and actuators
by the PMM is performed via specific device driver tasks
in dedicated PMMs. The latter is possible as long as no
complex devices such as graphic, hard disk or network
controllers must be read and written. In that case, either
a RTOS kernel must be employed additionally that has
stripped-off all unnecessary features because of memory
limitations in the PMM, or external memory that is on the
FPGA board must be engaged.

The design methodology for application code in space-
sharing is similar to that of parallel programming: first the
application must be partitioned into several tasks. Then the
needed interprocess communication must be defined, and
code and communication libraries must be bounded together.
Finally, the parallel program must be tested. In contrast to
parallel programming, the number of PMMs, the structure
of every PMM and the interconnection network must by
synthesized for the target FPGA in space-sharing before
program test. Furthermore, space-sharing allows to resize
the local memory to the requirements of each task. Since
soft processors are used, the processor architecture can be
adapted to software requirements as well, for example by
an additional coprocessor as hardware accelerator. Xilinx
EDK allows to configure in detail every MicroBlaze as
needed. Because of that, computing hardware depends on
the application software, which we call software-first design.

E. Energy-awareness in Space-Sharing

According to [13], the total power consumption P of a
semiconductor chip consists of static power dissipation Pstat

and dynamic power dissipation Pdyn and it must hold:

P =
∑

Pstat +
∑

Pdyn (1)

In the following, it will be discussed how the dynamic
fraction of the FPGA power consumption can be reduced.
The static power cannot be altered by chip users because it is
caused by leakage currents inside of the semiconductor [14].
Dynamic power dissipation, however, arises from switching
activities of transistors. Equation 2 determines the dynamic
power dissipation as a function of supply voltage V , clock
frequency f and chip capacitance C [15].

Pdyn =
∑

C · V 2 · f (2)

According to Eq. 2, there are three options for reducing
dynamic power dissipation:

• lower switching capacitance C
• lower supply voltage V
• lower switching frequency f

The switching capacitance depends on the production
process of the chip and cannot be controlled by FPGA
users. The supply voltage can be controlled by an adaptive
power supply for the whole chip. However, the switching
frequency can be controlled by an adaptive clock for every
PMM. Such clocks can be implemented by a central clock
generator for the chip and by individual clock dividers at
every PMM. If the divided output clock can be disabled
then the PMM can also be stopped and restarted arbitrarily
because no DRAM cells are inside of a FPGA that must
be refreshed. Furthermore, only that area on the FPGA-chip
must be clocked at all that is needed for space-sharing. The
rest of the chip will dissipate only static power, which is
much less. Finally, because of the fact that every PMM
has its own clock the PMM’s dynamic power dissipation
can statically be reduced until the clock has reached the
lowest possible periodicity that the user application allows.
Additionally, dynamic power dissipation can be reduced
adaptively if the clock divider is controlled by the PMM’s
task. Phases with high computing requirements are clocked
faster by the task itself than phases with low requirements or
with slow reaction times. The task knows when these phases
occur because it is programmed be the user.

Finally, as long as the PMM waits for input from a periph-
eral device the clock can be switched off totally and restarted
again by that peripheral when data are delivered. Such power
saving potential is not available for embedded systems with
time-sharing because their clock rates do not depend on the
tasks. It would be too risky for high-speed tasks if the clock
rate would be decreased by time-shared low speed tasks.
Furthermore, if the clock is switched-off in time-sharing
systems all tasks must rest for ever because an individual
switch-off and easy hardware restart by a peripheral is not
possible. Thus power dissipation remains in general the
same in time-sharing systems unless the supply voltage is
reduced. The regulating of the supply voltage is practiced in
every laptop, for example. However, space-sharing can adopt
voltage regulation as well. In Fig. 4, individual clocking is
shown together with voltage regulation.

IV. MEASUREMENT RESULTS OF THE ENERGY
CONSUMPTION OF MPSOC1

A. Test Setup

During our tests, we used three commercial FPGA eval-
uation boards with Xilinx Spartan-3, Virtex-4 and Virtex-5
FPGAs, which are listed in Table I. All boards are equipped

372

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Motivational Example [16].

Table I
LIST OF TESTED FPGAS

FPGA
FPGA

Chip Board

Spartan-3 Xilinx XC3S1000 Digilent Starter-Kit

Virtex-4 Xilinx XC4VFX100 PLDA XpressFX

Virtex-5 Xilinx XC5VLX50T Xilinx ML505

with DIP switches that allow to control a clock divider
for the FPGA. This enabled us to measure at different
clock speeds without re-synthesizing the FPGA, which is
important because a new synthesis would influence the result
of the measurements as soon as components were placed
and routed differently (cf. IV-F). In addition to that, the
system clock had to be switched-off to measure static power
dissipation, which was also possible by these DIP switches.

All boards have an external power supply where we could
connect our test circuit as shown in Fig. 5. We used for all
measurements the same adjustable power supply to avoid
inaccuracies, together with two multimeters for voltage and
current measurements. Each time we measured with and
without clocking to separate dynamic from static power
dissipation (cf. Eq. 1) .

B. Static vs. Dynamic Power Dissipation

On a Virtex-4 XC4VFX100 FPGA we could accommo-
date between 1 and 34 PMMs, consisting of a standard soft
processors of type MicroBlaze and 16 KB memory each.
The chip is manufactured in 90 nm gate size. At first all

A

V
+

+

- -

FPGA-boardV0
IB VB

Figure 5. Test circuit for power measurements

Figure 6. Static vs. dynamic power consumption for various numbers of
soft processors, measured on Xilinx Virtex-4 FPGA.

processors were clocked with 100 MHz, while the total
power consumption of the FPGA was measured. After this,
the system clock was disconnected to measure the static
power consumption only. Dynamic power dissipation was
obtained as the difference of both measurements. The results
of up to 23 soft processors are shown in Fig. 6, where blue
columns indicate static power dissipation and red columns
indicate dynamic power dissipation.

C. Influence of the Number of PMMs

Fig. 6 shows that static power dissipation remains constant
while dynamic power dissipation increases linearly with the
number of PMMs. Deviations from a straight line are caused
by the place-and-route function of the synthesis tool, which
was Xilinx XST [17]. Fig. 6 indicates also that for more
than 12 PMMs dynamic power dissipation dominates. Other
FPGAs show the same principal behavior as it can be seen
from 7.

The absolute numbers we have measured in Fig. 7 are:
a Spartan-3 PMM consumes 268 mW of dynamic power,
a Virtex-4 PMM consumes 120 mW, and a Virtex-5 PMM
consumes 53 mW.

D. Influence of the Processor Clock Rate

Another measurement series was conducted to get the
dynamic power dissipation versus the processor clock rate.
Various processor clock rates were investigated by using a

373

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Dynamic power consumption for various numbers of soft
processors, measured on Xilinx Spartan-3, Virtex-4, and Virtex-5 FPGAs.

Figure 8. Dynamic power consumption vs. processor clock rate measured
on Spartan-3 FPGA. The number of processors is parameterized.

clock divider while the number of PMMs was kept constant.
In Fig. 8, the results of MPSoCs with 1 to 6 processors in a
Spartan-3 FPGA are shown. In Fig. 9, the results of MPSoCs
with 1 to 8 processors in a Virtex-5 FPGA are shown. All
results comply with Eq. 2. Both FPGAs show a linear curve
from which one can derive also the average dynamic power
dissipation in absolute numbers according to (Eq. 3 and Eq.
4).
as:
Spartan-3 FPGA:

Pdyn = 3.64
mW

MHz
(3)

Virtex-5 FPGA:

Pdyn = 0.48
mW

MHz
(4)

E. Influence of the Manufacturing Technology

In all measurements of Fig. 7, the same soft processor
architecture plus the same size of local memory were used.
Nevertheless, the dynamic power dissipation varies with

Figure 9. Dynamic power consumption vs. processor clock rate measured
on Virtex-5 FPGA. The number of processors is parameterized.

different FPGAs. As one can see, the decrease of dynamic
power consumption from one FPGA generation to the next
is caused by smaller transistor sizes (65 nm instead of 90
nm) and other technological improvements.

F. Influence of the Place-and-Route Tool

The place-and-route tool is responsible to find space on
the chip for all components and to connect them. The
length of FPGA-internal connections and their switching
capacitance vary from layout to layout. Thus place-and-route
tools influence the dynamic power dissipation of FPGA-
based systems. An analysis of this influence was made for
example by Coxon in [18]. He showed that the dynamic
power dissipation can be reduced up to 14% in Spartan-3,
up to 11% in Virtex-4 and up to 12% in Virtex-5 FPGAs by
optimizing the place-and-route process via user intervention
that was made by synthesis directives. In Fig. 9, it can be
seen that the distance between neighbor curves is not a
constant for all curves. For example, the MPSoC with 5
processors consumes a little bit more power than expected.
We explain this by the influence of the place-and-route tool.

G. Influence of the Processor Structure

We investigated the influence of the processor structure
on the dynamic power dissipation by means of a Spartan-3
FPGA that was operated a clock rate of 50 MHz. The inter-
nal structure of a MicroBlaze can be configured in the Xilinx
EDK toolset. The result is shown in Table II. A MicroBlaze
that has a simple structure with few internal components
only dissipates 182 mW dynamic power. Additionally 107
mW are used for a 5-stage pipeline and 119 mW for a
floating point unit, for example.

Fig. 10 shows the dynamic power dissipation of a fully-
equipped MicroBlaze. The percentage every component con-
tributes in that processor to the total power is listed in
Table II. From this table it can be seen that it pays out a
lot to remove unused processor components, what in space-
sharing depends of the application software. This result is

374

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table II
DYNAMIC POWER CONSUMPTION OF SOFT PROCESSOR COMPONENTS

MEASURED ON SPARTAN-3 FPGA

Processor Setup Dynamic Power Dissipation
basic 182 mW

+ 5-stage pipeline + 107 mW

+ barrel shifter + 13 mW

+ 32-bit multiplier + 11 mW

+ integer divider + 15 mW

+ floating point unit + 119 mW

Figure 10. Percentage of dynamic power consumption of processor
components in a fully equipped MicroBlaze soft processor as measured
on Spartan-3 FPGA.

fully compliant with the software-first design methodology
that was mentioned before.

H. Influence of the Local Memory

In order to investigate the influence of the local memory
on dynamic power dissipation we measured several MPSoCs
with different local memory sizes on a Virtex-4 FPGA at
a clock rate of 100 MHz. The number of processors was
parameterized. Each PMM executed the same test software
that accessed local memory so that it was used by switching
bits. Fig. 11 shows the result.

Figure 11. Dynamic power consumption vs. size of local memory
measured on Virtex-4 FPGA. The number of processors is parameterized.

Figure 12. Dynamic power consumption of the MPSoC interconnection
network vs. its clock rate measured on Virtex-4 FPGA.

One can also see in Fig. 11 by extrapolating the mea-
surement curve to zero is that a PMM that has no memory
consumes about 100 mW. Furthermore, the slope of the
curve is about 1 mW per KB of memory. By combining
the results from section IV-D with Fig. 11 we can establish
to following empiric equation for the Virtex-4 FPGA:

Pdyn = 1
mW

MHz
+ 0.01

mW

MHz ·KB
(5)

I. Influence of the Interconnection Network

In Fig. 12, the influence of the MPSoC network clock rate
on the dynamic power dissipation is presented for a Virtex-
4 FPGA. The diagram shows that the network’s dissipation
increases linearly with a slope of about 0.85 mW per MHz.
Furthermore, we found that most of the dynamic dissipation
mainly arises from the FIFO buffers that decouple processors
at the network interfaces for asynchronous interprocessor
communication. The network itself is very power efficient
because its principle of circuit switching, i.e., signal transfer
without buffering. In consequence, the less the FIFO buffer
depth is the less dynamic power is consumed. However,
the FIFO depth can not be chosen arbitrarily small because
it depends on the number of messages that have to be
temporarily stored, their size and how big the difference
between processor clock rate and network clock rate is. A
big speed difference requires a deep FIFO to balance-out
message sending and transferring, at least for a while.

J. Power Consumption Constants

Overall, from the accomplished measurements we got the
following numeric constants for dynamic power dissipation
of a MPSoC that was implemented on a Virtex-4:

Pprocessor ≈ 1
mW

MHz
(6)

Pmemory ≈ 0.01
mW

KB ·MHz
(7)

375

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 13. Dynamic power consumption of a MPSoC2 on Virtex-4 FPGA.

Figure 14. Set-up of the clock rate controller.

Pnetwork ≈ 0.85
mW

MHz
(8)

V. MPSOC2 WITH SELECTIVE AND ADAPTIVE
CLOCKING AND SOFTWARE-FIRST DESIGN

Space-sharing allows selective and adaptive clocking of
every PMM by means of a clock rate controller for every
PMM. Furthermore, the software-first design method pre-
scribes to configure each PMM such that it matches exactly
the requirements of the task it has to execute. To test the
influence of both methods, we defined MPSoC2, which has
eight PMMs that execute eight different example tasks in
their memories. Memory sizes and clock frequencies were
chosen as needed by the tasks. In Fig. 13, the resulting
MPSoC2 is depicted.

A. Clock Rate Controller

Fig. 14 shows the block diagram of the clock rate con-
trollers of MPSoC2. Every controller derives its input from
a system clock generator, which is global for the FPGA and
and generates its output by a clock divider. The divider can
be set either to a constant rate or, as depicted in Fig. 14, can
be controlled by the application software during program
execution. In second case the clock divider is coupled to the
soft processor via Xilinx FSL-bus. Thereby the clock rate
can be set just by sending the new value, which is done
within two clock cycles at least.

B. Task Segmentation

To benefit from individual clocking, the application pro-
grammer must set the clock frequency for every task ex-
plicitly. If the task has several phases with different time
constraints then he can set clock rates that are adapted to
each phase. To accomplish this, it is required to segment
the task into time intervals in which the same rate holds
as it is shown in Fig. 15. After that task segmentation, the
programmer can define the clock rates by two ways: either
he uses a procedure call, which is executed during runtime,
or he uses a compiler directive, which is evaluated during
compile time. Both methods augment the original code.
Other examples of code augmentation by time constraints
that can be found in literature are given in [13].

Figure 15. Clock rate adaptation by task segmenting.

Fig. 16 shows an example code where a library proce-
dure set_clock_rate is responsible for clock rate setting.
The application itself check_new_data periodically checks a
sensor for the arrival of new data. This may be accomplished
at a slow sampling rate of 2 MHz, for example. If new
data are present, the application calc_value is executed at
a higher rate of 40 MHz, for example, in order to process
the incoming data quickly. By this method, the processor
clock varies dynamically during program execution. Thus
the dynamic power dissipation rises and falls with the
computing requirements.

The disadvantage of this method is that the programmer
must identify clock change points in his code and must
specify their value manually. Moreover, the clock rates
depend on the used PMM because a superscalar processor,
which is more powerful would execute more instructions in
the same time. This means that clock rate settings have to
take into account the concrete PMM on which the task is
executed, what makes applications difficult to port between
PMMs.

C. Compiler directive for Clock Rate Adaptation

A better method for adaptive clocking is adding a time
ruler to the code according to Fig. 15. Each tick in the
time ruler Ti defines a point in time until a program phase

376

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

set_clock_rate(2);
while(new_data = 0){
 new_data = check_new_data(&data);
};
set_clock_rate(40);
value = calc_value(&data)
set_clock_rate(2);

=> clock rate = 40 MHz

=> clock rate = 2 MHz

=> clock rate = 2 MHz

Figure 16. System call for setting processor clock rate.

must be completed. The adding of time values as ticks is
accomplished manually by a compiler directive. The direc-
tives are formatted as a comment with a following $ symbol,
for example, to avoid confusion with language extensions
or with system calls but they are not treated as comments
or extensions. Instead, only a compiler pre-processor reads
all meaningful comments and evaluates them. Furthermore,
the compiler knows best the PMM type it has to generate
code for. This allows for an automatic calculation of the
desired clock rate for every program phase. The calculation
is performed by the pre-processor in accordance to the
respective execution speed of the PMM. The pre-processor
counts the number of clock cycles needed to execute every
phase due to the time ruler. With that information, the pre-
processor can then set the clock rate for every phase, and
the programmer does not have to care about the concrete
PMMs computation speed, as long as it is fast enough.

/*$ initiate */
while(new_data = 0){
 new_data = check_new_data(&data);
};
/*$ event ≤ initiate + 20 */
value = calc_value(&data)
/*$ terminate ≤ event + 30 */

=> 40 clock cycles / 20µs = 2 MHz

=> 1200 instructions / 30µs = 40 MHz

Figure 17. Compiler directive for setting processor clock rate.

Fig. 17 shows the example of Fig. 16 with the additional
time ruler.

VI. COMPARISON OF MPSOC1 WITH MPSOC2 UNDER
THE SAME USER APPLICATION

In the following, we compare the dynamic power con-
sumption of MPSoC1 with that of MPSoC2 in order to
explore the effect of adaptive and selective clocking, together
with the effect of the software-first design methodology. For
a fair comparison, MPSoC1 and MPSoC2 got the same eight
tasks to execute, and we measured the total dynamic power
dissipation during their execution. MPSoC1 is based on a
Virtex-4 FPGA with a fixed clock rate of 100 MHz for all
system components and a static memory size of 128 KB for
all eight PMMs. MPSoC2 is based on the same FPGA but
dependent of its task requirements with clock rates of 25,
100, 5, 5 and 10 MHz and with memory sizes of 16, 32, 8,
16, 16 KB. Our measurements at MPSoC1 showed that the
total dynamic power consumption is:

Pdyn ≈ 1909mW (9)

comprising of

Pprocessor ≈ 800mW (10)

Pmemory ≈ 1024mW (11)

Pnetwork ≈ 85mW (12)

This means that on average every PMM has a dynamic
power dissipation of 228 mW. In contrast to that is the
example of MPSoC2 (cf. Fig. 13) that produced the same
results within the same time limits as MPSoC1. However, it
consumed only a total of 184 mW, resulting in an average of
23 mW per PMM. Many other examples can be found that
show the same trend. According to that it can be stated that
adaptive and selective clocking together with software-first
design are efficient methods to reduce the system’s energy
consumption in space-sharing.

VII. CONCLUSION AND OUTLOOK TO FUTURE WORK

In this paper, the methods of space-sharing, adaptive and
selective clocking and software-first design were proposed
and demonstrated in two example multiprocessor systems
that resided on a single FPGA. The combination of these
methods into a methodology allows to get at the same time
high computing power and low electric power dissipation.
This new result is valid for the class of embedded real-
time systems because smaller tasks have to be executed
there. Nevertheless, complex feed forward and feed back
control systems can be established that way, comprising
hundreds of tasks with interprocess communication. All
tasks are executed in parallel on by processor-memory
modules (PMMs) that are connected via a special multistage
interconnection network that is real-time capable. Interpro-
cess communication is either possible by passing messages
through the network or by shared variables that reside in a
global (external) memory.

Space-sharing means that exactly so many PMMs are
synthesized on one FPGA as there are user tasks, including
all interrupt service routines and device drivers that are
needed by the user application. Adaptive and selective
clocking means that every PMM is clocked individually and
with a rate that matches the needs of the task it executes,
even if these needs vary from task phase to task phase.
Software-first design means that the PMM is configured in
its architecture and in its memory size such that it meets
exactly the task requirements, thus avoiding waste of chip
and energy resources.

As a result, space-sharing eliminates the need to find a
proper schedule for a set of tasks that must be executed
until a given time interval or at a given time point. It

377

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

also eliminates the analysis of worst-case execution time
(WCET) in embedded controllers, which can be very com-
plex. Additionally, space-sharing allows for a better electri-
cal power management and for memory protection because
of the spatial isolation of tasks. Finally, dynamic power
dissipation can be reduced in space-sharing by means of
adaptive and selective clocking and by a software-first design
to the absolute minimum. This is applicable, e.g., in car
electronics, where an increasing amount of real-time tasks
has to be proceed at a minimum of energy use.

Future work will create a tool set that automatically
synthesizes a FPGA-based MPSoC from a XML description
of tasks and from a second description of the tasks’ memory
and time constraints. The resulting embedded controller will
be easily synthesize-able because it consists only of small
and individual processor-memory-modules. It will though
exhibit high computing power and low energy dissipation
at the same time.

REFERENCES

[1] S. Aust and H. Richter, Space Division of Processing Power
For Feed Forward and Feed Back Control in Complex Pro-
duction and Packaging Machinery, Proc. World Automation
Congress (WAC 2010), Kobe, Japan, Sept. 2010, pp. 1-6.

[2] S. Aust and H. Richter, Energy-Aware MPSoC with Space-
Sharing for Real-Time Applications, The 5th International Con-
ference on Advanced Engineering Computing and Applications
in Sciences (ADVCOMP 2011), Lisbon, Portugal, Nov. 2011,
pp. 54-59.

[3] P. Marwedel, Embedded System Design, 2nd edition, Dor-
drecht; Heidelberg: Springer, 2011.

[4] G. C. Buttazzo, Hard Real-Time Computing Systems. Pre-
dictable Scheduling, Algorithms and Applications, Boston;
Dordrecht; London: Kluwer Academic Publishers, 1997.

[5] Rapita Systems Ltd., www.rapitasystems.com (last checked:
11-06-20).

[6] Symtavision GmbH, www.symtavision.com (last checked: 11-
06-20).

[7] Xilinx Inc., MicroBlaze Processor Reference Guide, October
2009.

[8] H. Richter, MULTITOP - Ein Multiprozessor mit dynamisch
variabler Topologie, Dissertation, Fakultaet fuer Elektrotechnik
und Informationstechnik der TU Muenchen, 1988, (in Ger-
man).

[9] H. Richter, MULTITOP - A multiprocessor with dynamic
variable topology (English Summary), IPP Technical Report
R/35, Max-Planck-Institut fuer Plasmaphysik, 1988.

[10] H. Richter, Interconnecting Network, US-Patent Nr.
5,175,539, 1992.

[11] S. Aust and H. Richter, Real-time Processor Interconnec-
tion Network for FPGA-based Multiprocessor System-on-Chip
(MPSoC), The 4th International Conference on Advanced
Engineering Computing and Applications in Sciences (ADV-
COMP 2010), Florence, Italy, Oct. 2010, pp. 47-52.

[12] S. Aust and H. Richter, Skalierbare Rechensysteme fuer
Echtzeitanwendungen, in: W. A. Halang (editor): Heraus-
forderungen durch Echtzeitbetrieb, Springer, 2011, pp. 111-
120, (in German).

[13] A. Leung, K. V. Palem, and A. Pnueli, TimeC: A Time Con-
straint Language for ILP Processor Compilation, Constraints,
vol. 7, no. 2, 2002, pp. 75-115, doi: 10.1023/a:1015131814255.

[14] N. S. Kim, T. Austin, D. Baauw, T. Mudge, K. Flautner,
K. S. Hu, M. J. Irwin, M. Kandemir, and V. Narayanan,
Leakage Current: Moore’s Law Meets Static Power, IEEE
Computer, vol. 36, issue 12, Dec 2003, pp. 68-75.

[15] L. Shang, A. S. Kaviani, and K. Bathala, Dynamic Power
Consumption in VirtexTM-II FPGA Family, Proc. of the 2002
ACM/SIGDA tenth international symposium on Field- pro-
grammable gate arrays (FPGA ’02), Monterey, CA, Feb. 2002,
pp. 157-164.

[16] H. Yasuura, T. Ishihara, and M. Muroyama, Energy Man-
agement Techniques for SoC Design, Essential Issues in SoC
Design, Springer, 2006, pp. 177-223.

[17] Xilinx Inc., XST User Guide for Virtex-4, Virtex-5, Spartan-
3, and Newer CPLD Devices, Xilinx document no.UG627,
December 2010.

[18] A. Coxon, FPGAs auf Low Power trimmen, elektronik indus-
trie, Huethig, issue 1/2, 2009, (in German).

