
308

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

An Agile Driven Architecture Modernization to a Model-Driven Development

Solution
An industrial experience report

Mina Boström Nakićenović

SunGard Front Arena
Stockholm, Sweden

email: mina.bostrom@sungard.com

Abstract–This paper concerns model-driven development

(MDD) used in time critical development. We present an agile

MDD process developed in consideration of lean and agile

development principles and we show its application to the

evolutionary development of a real world application supplied

to the banking sector. Our approach involves a novel use of

concurrent reverse and forward engineering and through our

industrial report we are able to provide strong support in favor

of the claim that MDD and agile practices can be used
together, preserving the benefits of each.

Keywords-agile; lean; MDD; TDD; reengineering; finance

I. INTRODUCTION

In the world of rapid software development, commercial
software companies have to respond quickly to the
challenges of volatile business environments in order to
achieve a fast time-to-market delivery, necessary for
surviving on a tough business market [2]. The incoming
requirement changes can concern business functionality or
technology or both aspects, demanding adjustments and
improvements in the existing systems. Adaptations to the
frequent business requirements changes can be fulfilled
either through the evolution of existing software systems or
through the development of new software systems. The
direction and quality of the system evolution is steered by
three main drivers: system architecture, organizational
structure and development process. System evolution often
requires adjustments in all mentioned areas. Therefore, the
software systems architecture together with the company’s
organizational structure and the established development
process should constantly be adjusted.

Agile software development techniques have been
established in order to help organizations both to evolve and
to develop software systems, accelerating delivery time
while still maintaining, or even improving, product quality
[3]. Many companies have started using the agile techniques
to a less or larger extent. Important questions that are
constantly rising are: how to combine agile techniques with
some other, already existing techniques and methodologies?
Agile principles present general ideas and recommendations,
but they have not been elaborated enough to be specific on

how to work in a particular environment. With the
acceptance of agile techniques, the agile principles are also
adapting to the different organizations, working
environments and methodologies [4]. There are a lot of
empirical studies on the agile principles applied on different
methodologies, but there is still a need for more empirical
results within certain areas. One such area is the application
of agile techniques in a Model-Driven Development (MDD)
environment. The agile methods and the MDD have
appeared separately and evolved on distinct paths, although
they address, to a certain extent, the same goals: making
systems less sensitive to frequent changes and an
accelerated development. Generally speaking, the agile
techniques mostly address methodological aspects while the
MDD approach is more concerned with architectural issues
[5]. Therefore, it became interesting to combine these two
approaches in order to get a rapid acceleration of the system
development.

This paper, being an extended version of [1], is an
industrial experience report that describes an architectural
modernization process of an existing system. Despite the fact
that the system’s architecture is going to be radically
improved in the future, there was a need to find an
intermediate solution, within a short time-frame, which
would both eliminate the existing architectural errors, such
as data duplication and system inconsistency, and reshape
the system to be less vulnerable to the modifications.
Therefore, the existing system was supposed to be transited
to MDD, but within a short implementation timeframe as a
main requirement. Hence, the main aim of the paper is to
answer the following questions:

• How agile and lean principles can help the decision
making process when producing a MDD solution
within a short time frame?

• How the reengineering process to the MDD solution
can be accelerated, fitting the given time frame?

The paper is organized as follows: after the introduction,
an overview of the agile and lean techniques is presented in
Section II. Section III introduces the Model-Driven
Development concept discussing its pros and cons. Section
IV describes the problem in details. Section V explains the

309

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

architectures of both the present and the long-term solution
as well as it introduces reasons for having an intermediate
solution, which is separately presented in Section VI. The
produced intermediate solution, an Agile MDD approach, is
presented in Section VII, while the development process is
explained in Section VIII. In Section IX are discussed all
benefits of applying agile and lean principles on the MDD.
Section X presents the related work. Finally we conclude the
paper in Section XI.

II. AGILE AND LEAN TECHNIQUES

Methods of agile software development constitute a set of
practices for software development that have been created by
experienced practitioners [6]. The main aim of the agile
methodologies is to develop qualitative and no cost- effective
solutions and deliver them quickly. The core of the agile
philosophy is expressed in the agile manifesto, consisting of
basic agile principles [3]. The manifesto states that the
software development should focus on the following:

• Responding on change over following plan
• Working software over comprehensive

documentation
• Individuals and interactions over processes and tools
• Customer collaboration over contract negotiation
If the software development is presupposed on the listed

postulates, it can result in fast and inexpensive software that
satisfies the customer’s needs. Agile practices and
recommendations give us answers how to apply the
mentioned core values on the development process. The
suggested development cycles should be iterative and based
on building small parts of the systems, which are tested and
integrated constantly. Continuous integration, verification
and validation are some of the agile practices that help the
organization to check that they are building product in a right
way and that the right product is built. The organization
should also be arranged to support an efficient, agile
development. Agile organizational patterns help in creating a
highly effective organization [7]. They concern both the
organization of different teams (company management,
product management, architects, developers, and test) and
the way how people should work within these teams. Some
of the most frequently applied organizational agile practices
are:

• “Self-selecting teams”: The best architectures,
requirements and designs emerge from self-selecting
teams.

• “Conway’s Law“: An organization should be
compatible with the product architecture and the
development should follow the organizational
structure.

After one decade of the agile methodologies adoption,
empirical studies showed that the best effect is achieved
when the agile methodologies are applied on the smaller
organizations and projects [6], [8], [9]. Extreme
programming (XP), as one of the agile methodologies, is
most suitable for single projects, developed and maintained

by a single team [10]. For the larger projects and bigger
organizations some other methodologies are more suitable.

A lean software development is an adaptation of
principles from lean production and, in particular, the Toyota
production system to software development. It is based on
the seven principles: eliminate waste, amplify learning,
decide as late as possible, deliver as fast as possible,
empower the team, build integrity and see the whole. The
management decisions should be based on a long-term
philosophy, even at the expense of short-term financial goals
[11]. The decisions should be made slowly, but implemented
rapidly. Work load should be limited and systems should be
pulled to avoid overproduction. The lean philosophy is more
suitable for bigger organizations and larger projects.

Nowadays practice shows that the best effect is achieved
when lean and agile practices are combined together.
Although it can seem that some of the agile and lean
practices are in contradiction, they are not. At the first sight
the agile philosophy could be interpreted as a short-term
approach, since it says “do not build for tomorrow”, while
lean is more a long-term approach. But these two approaches
are not contradictory; on the contrary, they are
complementing each other. One of the main lean postulates
is “decide as late as possible”, which is another way of
prevention for “building for tomorrow”. To conclude, both
agile and lean principles could be applied together, but to
which extent is decided by the type of organization and the
type of the project.

III. MODEL-DRIVEN DEVELOPMENT

Model-Driven Development provides an open, vendor-
neutral approach to the challenge of business and technology
change [12]. This approach makes, on the system
architecture level, a flexible system that can respond quickly
on frequent changes both in technology and in business
requirements. The main goals of the MDD concept are:

• Simplification and formalization of the various
activities and tasks that comprise the software
system life cycle, through the raised level of
abstraction at which the software is developed and
evolved.

• Accelerated development, which is achieved by the
centralized architecture and automatic generations.

• Separations of concerns both on technical and
business aspects, making the system architecture
flexible for the changes.

The MDD’s intent is to improve software quality, reduce
complexity and improve reuse through the work at the higher
levels of abstractions cleared from the unnecessary details.
Prominent among the MDD initiatives is OMG’s Model-
Driven Architecture (MDA) in which software development
consists of series of model transformation steps, which starts
with a high level specification using often a domain-specific
language (DSL), specific for the certain domain, and which
ends with a platform-specific models describing how the
system should be implemented on certain platforms [13].
MDA standard defines different model categories:

310

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Computation Independent Model (CIM),
representing the problem domain.

• Platform Independent Model (PIM), representing the
solution domain without platform specific details.

• Platform Specific Model (PSM), representing the
solution domain with platform specific details.

The division could be done even more granular so that
the PIM splits in Architecture Independent Model (AIM) and
Architecture Specific Model (ASM). Then the PSM is
derived from the ASM [14]. All mentioned divisions provide
a good separation of concerns. Working with different types
of models, representing different views and aspects of the
system, enables an easier understanding of complex systems.
MDD is intended for the realm of large, distributed industrial
software development and is one approach for solving the
software life-cycle development problem. On the other side,
the detailed separation of concerns can introduce some other
problems in the system. It can cause an additional
complexity, requiring the existence of several models
describing the same thing, just on the different abstraction
levels or from the different point of views. Therefore, it is
questionably if the MDD reduces the complexity or it just
moves the complexity elsewhere in the development process
[15].

Development processes based on the MDA are not
widely used today because they are considered as heavy-
weight processes, which cannot deliver small pieces of
software incrementally [16]. That is why there is a need to
rework a MDA to a lighter process, easier to the acceptance.
For example, this could be achieved by the introduction of
agility in the MDD philosophy.

A. Agilility in Model-Driven Development.

A common goal for the MDD and the agile
methodologies is to build systems, which can respond
quickly on the frequent changes. These two methodologies
have different approaches for resolving the mentioned
requirement: agile development concentrates on individual
software products, while MDD is concerned with product
lines, i.e., mass-produced software. Agility mostly addresses
methodological aspects while the MDD approach is more
concerned with architectural issues [5].

The MDD concept has some drawbacks, which do not
suit agile philosophy. Looking from the agile perspective,
systems should be built in an incremental way where the
small pieces of software are delivered constantly. In
contradiction to the MDA modeling’s starting curve, which
can take a long time before the deliverables are produced.
True domain-specific languages are not very agile because
they encode commonalities and variations in a narrow,
concrete expression of the business form [17]. DSL makes
the system being too specific decreasing a possibility to
respond to the business changes quickly. If the domain
evolves, then the language must evolve with it, otherwise the
previously written code becomes obsolete. MDA systems
usually become complex while agile claims that “simplicity
is essential”. People are not an explicit feature in MDD while

agile postulates that people and interactions should be over
process and tools.

[18] distinguished generative MDD and agile MDD.
Generative MDD, epitomized OMG’s MDA, is based on the
idea that people use very sophisticated modeling tools to
create a very sophisticated models that they can
automatically transform with those tools to reflect the
realities of various deployment platform. [19] proposes the
agile MDD, where the agile modeling is used. Agile
modeling is practices-based and consists of collection of
values, principles and practices. Agile models are models
that are barely good enough, where the fundamental
challenge with “just barely good enough” is that it is
situational and therefore, the most efficient.

 Figure 1 Agile modeling. Adapted from [19]

The main idea with the agile modeling is not to follow

strictly the MDA recommendations regarding tools and
development environment but to choose ones which fit best
the current project and the organizational structure.

IV. PROBLEM DESCRIPTION

A. Background

SunGard is a large, global financial services software
company. The company provides software and processing
solutions for financial services. It serves more than 25000
customers in more than 70 countries. SunGard Financial
Systems provides mission-critical software and IT services to
institutions in virtually every segment of the financial
services industry. We offer solutions for banks, capital
markets, corporations, trading, investment banking, etc. [20].
In several areas SunGard is one of the leading providers for
the financial solutions and products. Since the finance
industry is very though, staying on top of the competitive
financial market requires fast delivery, reduction of costs and
quick responding to the changes in dynamic market
conditions. In order to achieve this, our company has started

311

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

adopting agile methods and techniques. The management’s
decision was to introduce agile software development within
each team and on every project. Although many teams have
changed its way of working towards the agile development
practices, the company is still learning and finding out how
to apply the agile techniques on the existing projects and on
the existing methodologies.

A software product family, which is developed in the
company, is called a Front Arena system and it includes
functionality for order management and deal capture for
instruments traded on electronic exchanges i.e., markets.
Market access is based on a client-server architecture. The
clients for market access include the Front Arena
applications, while the market servers, called an Arena
Market Servers (AMS) provide services such as supplying
market trading information, entering or deleting orders and
reporting trades for a market.

Clients and AMS components communicate using an
internal financial message protocol for transaction handling,
called Transaction Network Protocol (TNP) and built on top
of TCP/IP. The TNP protocol uses its own messages, which
contain TNP message records with fields [21]. TNP
messages represent financial transactions like “enter order”,
“modify trade”, etc. The TNP messages have a hierarchical
structure. One example of the TNP message, used for
modifying order transaction, is presented on the Figure 2.

Figure 2 The TNP structure

Each field within one TNPMessage describes some

market or business property, such as: order price, trader,
order type, etc.

B. Market Server Capabilities

Many of the TNP client components query the Market
Server Capability (MSC), information about the trading
functionality that one electronic exchange (market) offers.
Client applications need such information in order to

permit/disable the access to the different markets. For
example, one market can allow entering orders and
modifying orders but does not support entering trades. The
other market supports entering trades with the restriction
that the shaping trade transaction is not allowed.

The MSC information is embedded and hard-coded into
each client application. New client application releases
needed to be done before the customers can start using the
new AMS. Depending on the current release plans of the
client applications this can take a long time. Having to wait
for the client application releases may delay the production
start of the AMS. Two main problems with the described
MSC information are:

• Hard-coded MSC definition. Consequently the client
applications have to be recompiled, released to
customers and upgraded on the customer’s site in
order to enable the support for the newly introduced
MSC. Such concept conflicts with the agile
principles “deliver working software frequently” and
“respond to changes quickly” [3].

• Duplication of the MSC definition. It introduced the
risk for data inconsistency.

These problems will be resolved in the future by
introduction of a Dynamic Market Capabilities (DMC), a
new functionality that will be used to retrieve the MSC
definition dynamically, in run-time, instead of having them
hard-coded. Unfortunately, it will take a long time, probably
years, until the DMC solution will be completely
implemented and in use (for all AMS and all client
components). Until then all components have to support the
hard-coded fashion. All new components, which will be
developed during this time, have to support the hard-coded
MSC way also. That is why there was a need to find an
intermediate solution which would remove the duplication
and which would be used under the transition phase. Since
such architecture would not be long lived company
management put some time and resource constraints on the
implementation. This paper shows how we created such
intermediate solution, taking all conditions and constraints
into account.

V. THE MARKET SERVER CAPABILITIES

ARCHITECTURE

A. Process flow

When a new market (AMS) is introduced, the
information about functionality that the new market offers
(which transactions are supported) should be added to each
client, as presented on Figure 3.

312

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Process flow

The MSCs describe market trading transactions (orders,

deals, etc.), the commands that are supported for them
(entering, modifying, etc.) and the attributes and the fields,
which could be accessed on the markets (quantity, broker,
etc.). Hence, specifying the MSC for a new AMS requires a
detailed description. All components, which use the MSC
functionality, must use the same MSC definition.
Unfortunately the same MSCs are defined in several
different files. Different components are developed in
different programming languages so they do not share the
same definition file. Because of historical reasons and the
fact that some client components were developed within
separate teams, even the components developed in the same
programming language do not share the same definition file.
Each client component has its own MSC definition file.
There is a lot of the duplication of information in these files.
Even worse they do not present exactly same data since the
different clients work within different business domains, so
their knowledge about the MSCs is on the different levels.
The described situation arouse from bad communication
between the teams. Without interacting with each other and
without having enough knowledge about the design and the
architecture applied on the different projects, it was easy to
end up with the described MSC architecture.

B. The present architecture analysis

The client components use the MSC definition from the
different sources, developed in different programming
languages (C++, C# and Java), where the majority of data is
duplicated. This situation, with the usage of the overlapping
MSC definitions, is presented on Figure 4.

Figure 4. The present architecture with distributed definitions

The present architecture of the MSC definition is not
centralized (no single definition of the model) and without
control for the consistency. The lack of centralization
enormously increases the risk for data inconsistency since
the consistency depended on the accuracy of the developers
who edits the MSC definition in a source code file. The
development of the MSC definition is a continuous process,
and new MSCs are defined each time when a new AMS is
developed (2-3 times per year) or when a new trading
transaction is introduced (once per month). The current
process flow is:

• A new AMS is developed or a new transaction is
introduced.

• A MSC is added to the MSC definition in each client
component. The same information must be added to
several different files.

• All client components should be recompiled in order
to get the definition of the new MSC.

After the presented files analysis we could state the
following facts about them:

• Similar structure: files are structured in the similar
way, containing a lot of switch/case statements.

• Data duplication: some data are duplicated
• Different business domains: different levels of the

describing aspects are used in the different files.
• Mainly syntax differences: the mainly difference

among the files lies in the syntax not in the data
structure.

C. Dynamic Market Capabilities architecture

We have already done design plans for the new DMC
architecture. In the DMC architecture each AMS will be
responsible to provide, to the client components, information
about the MSC that the AMS supports. The description of
the MSC that the AMS supports will be saved in one XML
file.

313

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On the AMS start up, AMS reads the MSC definition
from its XML file and sends them, in run time, to all client
components, which connect to the AMS. In such a way the
client components do not have to be recompiled if something
changes in the MSC definition. When a new AMS is
developed, a new XML file containing MSC definitions for
the AMS is created. On the AMS start up, all client
components connect to the AMS and dynamically retrieve
the MSC definition for that AMS. In the future, even in this
case there will be no need for the recompilation of the client
components.

D. Transition phase

The decision is that all AMS components and all client
components should be upgraded to the DMC architecture.
But this transition is a complicated job. There are over 30
AMS components and more than 5 client components that
are using MSC functionality today. There is different
prioritizing, from the management side, within the
components’ backlogs. We know, right now, that some of
these components will be upgraded to the DMC in one or
two years. This transition project is not marked as a critical
since there is already a working architecture, although not
the best one. As long as there is at least one component,
which has not been upgraded to the new DMC architecture,
the hard-coded MSC solution must still be supported. The
transition will occur gradually and the transition phase will
probably take several years. Under the transition phase some
new components are going to be developed; some new
components are already under the development. To develop
new client components according to the present architecture
will introduce even more duplication. Therefore, an
intermediate architecture, which will eliminate the
duplication, would be introduced. Such a solution should
have a short implementation phase, since it must be ready
before the new components are completely developed. The
solution should be designed so that it eventually leads
towards the new DMC architecture. It would be good if the
new DMC architecture could benefit from it.

VI. INTERMEDIATE SOLUTION

We work according the lean and agile software
development philosophy. One of the key principles of the
lean philosophy is to detect and eliminate wastes [22]. The
intermediate solution should eliminate, from the present
architecture, the three major points of waste.

• Duplication of the MSC information
• Amount of work done during the MSC definition

updates
• Amount of time used for communication among

groups, informing each other about the MSC
definition changes

A. Technical Aspects

The waste elimination adds an important business value,
according to the lean philosophy. Even if the transition of the
existing MSC architecture to the intermediate architecture

does not directly add a business value from the customer’s
perspective, the existing system’s wastes would be
eliminated by the reengineering process. In that way the
delivery of the new solutions, which are dependent on the
MSC architecture, would be accelerated. Hence, we get an
implicit business value, which would be produced by the
intermediate solution.

In order to eliminate the duplication of data we needed a
centralized MSC definition. In order to be able to provide
support for the MSC definition in different programming
languages we needed to generate code in different
programming languages, from the centralized MSC
definition. We need a programming language independent
architecture. Because of the lack of time, we decided to have
an agile approach on brainstorming meetings when we were
searching for the architecture of the intermediate solution.
We did not want to waste a time on investigating all possible
solutions, since the time was more precious for us than
perfection. We suggested and analyzed three different
approaches and chose one among them, which was the most
suitable. Although we did not analyze all possible solutions,
we got a methodology that was good enough. To use a good
enough solution for the current situation, within a short time
frame, suits the agile philosophy.

First we considered a solution, where all client
components would be refactored to reference the same
central definition file. This would require a lot of work. We
did not want to refactor client’s components too often, since
some of them will be refactored soon regarding the DMC
solution.

A generative programming concept [23], using a
parameterized C++ templates, was discussed as the second
solution. Such solution would consist of the generated
classes, representing the TNP objects (TNPMessages and
TNPRecords). The main intention of the generative
programming is to build reusable components. A cost of
building the reusable components should be paid off by
reusing them in many systems. When a goal is to build just
one system and when schedule, to deliver a system, is tight,
the introduction of the generative programming idea cannot
be the best solution. Additionally, the existence of C# MSC
definition file made the usage of the C++ templates
impossible.

Finally we analyzed the Model-Driven Architecture
(MDA) approach. With the MDA approach we mean the
general MDA concept: “A MDA defines an approach to
modeling that separates the specification of system
functionality from the implementation on a specific
technology platform”. The common denominator for all
MDA approaches is that there is always a model (or models),
as the central architectural input point, from which different
artifacts are generated and developed. Transformations,
mapping rules and code generators are called in common
“MDA tools” [24].

We believed that the Model-Driven Architecture (MDA)
approach would be the most suitable solution for the
intermediate architecture. The main idea was to have just one
source, a union of all present MSC definition that is

314

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

programming language independent. From such a source,
which would be a central MSC definition registry, the
present MSC definition source files are generated. All
present MSC definition files have a similar structure. The
main difference is the programming languages syntax.
Because of that the code generation should not be too
complicated. The way how the client components work
would not be changed, the MSC definition would still be
hard coded. Such a solution did not require the refactoring of
the client components. But the way how the developers work
would be improved. They will work just with the central
MSC definition registry and add/edit the MSC definition
only there. Then the MSC definition files, for each client
component, will be automatically generated from the central
registry. The client components will be automatically
recompiled. In that way all three mentioned wastes will be
eliminated.

Another key lean principle is to focus on long-term
results, which is the DMC architecture in our case. That is
why we must point out that one important part of the DMC
architecture is a MSC XML description file. If the MDA
approach is introduced for the MSC definition, the central
MSC definition registry would be easily divided into several
files (one per AMS), later on. It is clear that the DMC
architecture would benefit from having such a central MSC
registry. The creation of one central MSC definition registry,
with all MSC definitions for all markets, would be a good
step towards the future DMC architecture introduction.

B. Organizational Maturity and Limitations

Our company management is usually very careful with
introducing concepts not already used in the company, since
it often requires long implementation and learning time.
Additionally, an investment in an intermediate solution is not
always a very productive investment. On the other side, the
management was aware that the intermediate architecture
would increase productivity directly and make some new
solutions possible right away. That is why the management
listened carefully to our needs and made some general
decisions. The intermediate architecture can be introduced,
but the time-frame could be only several weeks. No new
tools or licenses should be bought. Only tools that are
already used within the company or some new, open-source
tools, can be used. No investment in change management.
Time for teaching/learning cannot be invested for the
intermediate solution. The concepts, which our developers
are already familiar with, should be used.

Considering these management decisions, we decided to
explore if the organization was mature enough to introduce
the MDA. Although the MDA approach has been around for
a long time, for many companies it is still a new approach.
That is why we performed a small survey, with questions
presented in Figure 5.

Figure 5. Survey Questions

We asked 60 developers, working in the 6 different
teams. 4 teams consisted of C++ developers, 1 team
consisted of Java developers and 1 team contained C#
developers. The survey showed that the MDA approach
hasn't been used within the company and that a majority
(80%) of the developers has never used this approach.
Consequently the UML modeling is not used in general.
Some teams were using MagicDraw, but just as a
documentation tool for the state-machines drawing. The
architects, who designed the state machines, answered that it
was faster to develop own generators, using the state
diagrams created in the MagicDraw than to investigate how
to use the UML tools and profiles and code generators.

Additionally, there was a previous attempt of introducing
the MDD in the enterprise architecture, which unfortunately
failed. The former MDD project consisted of a new modeling
framework, based on the Eclipse framework, particularly
designed for the drawing Front Arena state-machines. The
project has never been finished because it took a long time
without showing the results. Unfortunately it happened at a
bad point of time, when the financial market was extremely
poor and when the product delivery to the customer was a
matter of the utmost importance. Consequently the company
lost time and money by investing in this MDD framework.
The main problem was not the MDD concept by itself, but it
was difficult to see an explicit business value in it. A time-
consuming and cost-effective MDD introduction was in
contradiction with a fast and frequent delivery. Because of
all mentioned reasons the majority of the developers, as well
as the management, did not believe in a new attempt of
working with a MDD idea. The introduction of the full scale
MDA usually implies: a long starting curve, which we could
not afford having a short time-frame and the usage of the
MDA tools, which could not be used since developers did
not have enough knowledge about them and there was no
possibility to invest in learning. In the following section it
will be described how we managed to overcome these
problems and limitations.

VII. AGILE MDD APPROACH

Our goal was to find an intermediate solution with a
MDA philosophy, which satisfied the previously mentioned
requirements and fulfills the constraints. In order to achieve
this goal, we started from the basics of the MDA concept
(models, transformations and code generators), and
combined them with the following lean and agile principles
[3]:

315

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• "Think big, act small": Think about the DMC as a
final architecture but act stepwise, introduce the
intermediate solution first.

• “Refactoring”: A change made to the structure of
software to make it easier to understand and cheaper
to modify without changing its existing behavior
[25]”

• "Simplicity is essential": We have to find an
applicable solution that is simple, keeping in mind
that simple does not have to mean simplistic [17].

• “Individuals and interactions over processes and
tools”: It is important is to find a solution, which fits
the developers, as well as to establish such
development process, which will be effective in our
company.

We used the agile and lean ideas both in the decision
making and in the development process. In that way we got
our own Agile MDD approach, an applicable intermediate
solution.

It is important to emphasize that we had an existing
architecture, which should be transformed to the MDD
solution. The process of system transformation is called a
system reengineering. A system reengineering phenomena
has been present in the software development as long as the
software systems exist. With the high dynamic of business
requirement and technology changes, the systems have to be
modernized constantly. System modernization is a way of
system adaptation to the changes. Architecture-Driven
Modernization (ADM) is an OMG standard for the system
modernization [26] and can be briefly described by using the
ADM horseshoe model, presented on the Figure 6.

Figure 6. ADM horseshoe model. Adapted from [26].

According to the ADM standard, three areas could be

distinguished during the reengineering process; technical,
architectural and business area. Depending on the extent of
areas that are affected during the reengineering process, the
ADM journey can be longer or shorter. Consequently the
impact of system changes can be greater or lesser. The
duration of the reengineering process directly affects time-to-

market. This fact was important to bear in mind when
making the architectural decision within the chosen MDD
solution, as it is described in the following sections.

B. Agile modeling

We needed to model the MSC definition registry. This
modeling can be done on the different modeling levels and in
the different modeling languages. The UML is one the most
frequently used modeling language and it became a modeling
notations standard, according to the OMG’s
recommendations. The UML has been developed and
evolved to cover many different needs, becoming, at the
same time, huge and unwieldy. Although the UML profiles
have been introduced in order to help the developers to
exclude unneeded UML parts, there are still many cases
where the adoption of the MDD has been slowed because of
the UML’s complexity [15]. Additionally the UML lacks
sufficient precision to enable complete code generation [27].
The time frame for our project was short and the developers
were without enough UML experience, since the UML is not
used in general. According to the limitations, there was no
time for learning. Hence, the UML modeling could not be
accepted as a modeling solution in our project. Since the
XML format is a standard format and the developers are
familiar with it, we decided to use a XML description as a
"natural language" for the developers. XML was good
enough. We had to balance between the familiarity of the
XML and abstraction benefits of UML but also a complexity
of the related frameworks, keeping the project within the
time-frame. Also the XML usage would imply the shorter
journey for the reengineering process, compared to the long
journey required for the reengineering to the UML model.

The MDA defines different model categories, like a
Platform Independent Model (PIM) and a Platform Specific
Model (PSM) [24]. As discussed before, although the multi-
model concept provides a good separation of concerns, at the
same time it could introduce an unnecessary waste in the
system, which is in contradiction with a lean architecture.
Hence, the multi model concept should be used only if there
is a really need for that and when a separation of concerns is
required in order to be able to understand and work with a
system. The PIM and PSM concept becomes an important
issue if there are plenty of different platforms with
specifications that differ very much. In our case the different
PSMs did not differ too much from each other and, at the
same time, did not differ too much from the PIM either. In
order to keep it simple we made a pragmatic solution: to
have just one model, which contained all info for all
programming languages. The code generators had the
responsibility for creating the right MSC information to the
corresponding programming language.

316

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. XML Model

We have created two models. One was a logical model

that describes the entities in the MSC definition registry.
Another was the MSC definition registry by itself, expressed
in a XML dialect, which is presented on Figure 7.
Consequently the logical model was expressed as a XSD
schema and was used to validate the entries in the registry.

C. Code generators

We needed code generators for generating the different
types of files: C++, C#, Java. We decided to use XSL
transformations as the code generators. They satisfied our
needs and could be widely used, since the XSL is a common
standard for all developers, who program in the different
programming languages. In that way a "collective code
ownership" [3] is achieved for the code generators. The
maintainability is also better if all developers can
maintain/develop the transformations.

VIII. THE DEVELOPMENT PROCESS

Our company has introduced the agile software
development several years ago. Scrum is used as a process
tool. Each team runs its own sprints, typically lasting for 4-5
weeks. The sprints are synchronized, meaning that the start
and the end sprint date is the same for all sprints within the
company. Such synchronization makes the releases and the

delivery process of the dependent components easier.
Although we use Scrum, all teams do not strictly follow all
Scrum recommendations, it is more up to the team how the
Scrum is performed, dependent on the currently running
project.

The intermediate solution, as an internal project, was
supposed to be done in parallel with other running projects.
In order to fit in the company’s culture, we decided to run
our project according to Scrum, based on the sprints. In
general, working in Scrum sprints suited our project well.
When we worked on the common data, which were present
in several MSC definition files, it was easy to plan the
coming sprints, since we knew the next required steps. For
example, we knew that we should extract all capabilities per
market. Scrum suited well for the major parts of the project
as we were planning one sprint at time.

 On the end of project, when only odd data, specific for a
certain market or a certain component, was left it was
difficult to plan the sprints. When we had many small tasks,
which were not very related to each other and which were
not easy to separate and divide into the sprint tasks, Kanban
[11] was more suitable. Therefore, when we were
approaching the end of the project, we switched our
development process to a Kanban. In contrast to Scrum,
tasks in Kanban are performed one after the other, without
collecting them into sprints. One of the main Kanban
principles is to limit “work in progress” by defining the
maximum of tasks, which can be performed in parallel. If
this number is exceeded, no new tasks are taken from the
backlog until there is an available capacity for a new task.
Changes to the product backlog take effect as soon as
capacity becomes available. A typical Kanban board is
presented on the Figure 8 where both short and long running
tasks can be executed in parallel.

 Figure 8. Our Knaban process. Adapted from [11].

Since we could not appreciate time for the tasks that were
left, we just put them on the board and took them as soon as
the previous task was finished.

A. Team Selection

A good team communication is one of the necessary
prerequisite for a successful development [2]. The absence,
irregularity and incompleteness in communication among the
company’s teams caused the duplication and inconsistency in
the present MSC architecture. According to the agile

317

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

manifesto people and interactions should be over tool and
processes [3]. As the reengineering to the MDD solution was
a new challenge for the developers in our company, it was
important to have a “self-selected” team [3], with the
developers that were interested and willing to work on it.
Since the main part of our project consisted of working with
the legacy code, we wanted to have experts in the team, with
deep domain knowledge about all existent MSC files.
Applying organizational patterns “architects also
implements” [7], three architects from different teams where
chosen, one for each MSC product owner team. In that way
we got a good expertise for different business domains, for
all types of the MSC files. On the other side, the chosen
experts worked together in a pair-development sessions,
supporting the concept of “generalizing specialists”.
Generalizing specialists are often referred to as craftspeople,
multi-disciplinary developers, cross-functional developers
and deep generalist [28]. It was important that the experts
working on the project could see the whole impact of the
changes, not only within their expertise domain.

Another important task, related to the team
communication, was informing all teams, which were the
product owners of the MSC files, about this project. We
wanted to avoid making the same mistake as it was done
before. Therefore, it became very important with sprint
demos, combined with the result presentation, for all affected
teams. The two important purposes of demos were:

• Spread the knowledge about the done and to-be done
project tasks

• Show that the MDD project can be rapidly
developed.

Additionally, the knowledge spread was even more
effective with the chosen experts, belonging to the different
teams, since each expert talked to its colleagues about the
ongoing project.

B. Reverse engineering of the Legacy code

We needed to do a one-time reverse engineering in order
to convert a large amount of the existing MSC data, legacy
code, to the new MSC XML format. We developed our own
tool for this purposes since no open-source tool was
completely suitable. The main question was: when to start
with the reverse engineering? At the end or at the beginning
of the project? Very soon we realized that we could not
design our model in detail without the data from the existing
MSC definitions. It was data stored in the MSC definition,
which lead the reengineering process. This data became a
kind of business requirement in our project. Consequently
the requirements were not developed; they were discovered
during the reversing process.

We decided to adopt a spike principle. The spike is a full
cross-section of the modeling and architecture aspects of the
project for a specific scenario. The aim of the spike approach
is to develop the whole chain for only one, chosen user
scenario. The first chosen scenario is a simple one, and
during the incremental development process every next
scenario is a more complex one [29]. We started with the

round-tripping (the whole chain: model – code generation –
reversing back to the model) for simple scenarios, which we
expanded, in each sprint, to the more complex scenarios. In
that way we could develop the reverse engineering tool, the
code generators and to design the model in parallel. The
results of the reverse engineering helped us with the
specification of the model objects for both the logical model
and for the central MCS registry. Working in that way, we
allowed “the business requirements coming late in the
project”. In our case, the business requirements were mainly
the results (predictable and unpredictable) from the reversing
process, which steered the reengineering project. Since we
could do the round-tripping very early in the project, it was a
way in which we could start testing our MDD approach
early, under the development.

C. Round tripping with the TDD approach

According to the lean principles, we wanted to specify
our model just according to the existing data, without
unnecessary objects or unnecessary properties, which risk
never to be used. In order to be able to do that, we wanted to
do the reversing first and specify the logical model and fill
the data in the MSC registry upon these results. We used a
TDD approach and started with writing unit tests first. For
this purpose we used test framework developed and already
used in the company. This framework simulates the
execution of the TNP messages sent among server and client
components. Because of that the test scenarios that we wrote
can be reused later on, for testing AMS components, when
the DMC is introduced.

According to the TDD principles we wrote the tests first,
run them on “empty” code and developed the code, until the
tests passed. Since we had to test several parts of our MDD
approach (the logical model, the central MSC registry, the
code generators and the reverse engineering tool), we
established our own TDD process for the MDD testing. The
main idea was to use the same tests, which reflects the parts
of one spike, both to develop the reverse engineering tool
and the code generators. Our TDD process is presented on
the Figure 9 and will be described now through one real
spike. The chosen spike is called “Get all markets” and the
goal is to get all existing markets, described in the present
MSC files. We started with writing a test, which consisted of
sending a TNP message “TNPGetAllMarkets”. The next step
was to develop the reverse engineering tool for this scenario.
The legacy code was used as input data. We developed the
corresponding methods in the reversing tool, which extracted
markets from the existing data, producing the results in the
XML format, and inserted them in our MSC registry. It was
a list of all markets. Then we redesigned the model and
registry entities and refactored the reversing tool according
to the model changes. This process flow is presented with
semi-dashed arrows on the Figure 9.

318

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Figure 9. Our TDD process

The TDD logic for the code generators was the
following. What we had, so far, was the reversing tool
working for the chosen scenario, and some data in the central
MSC registry. We used the same test against the code
generators, trying to get all markets from the MSC registry.
We developed the code generators using the mentioned test.
This process is marked with dashed arrows on the Figure 9.
The final goal was to get the same code lines in the generated
code files, as we had in the corresponding legacy code files,
concerning the data affected by the chosen spike. In order to
verify this, we run the whole round-trip but this time we used
the generated code files as the input for the reverse
engineering tool. Eventually we compared the newly
generated files with the previous ones and the legacy code
files and if there were some differences we adjusted the
reversing tool and the code generators accordingly. This
process is marked with full arrows on the Figure 9. After this
sprint we had a list of all markets in the MSC registry, the
code generators methods, which generate files containing
such a list, and the reversing tool methods for extracting such
a list from the generated files. In the following sprints we
used more advanced scenarios, such as, for example, “Get all
markets where is Order supported with commands: Enter,
Modify”.

At the end of each sprint we run the whole round
tripping, starting from the legacy code. In that way we could
confirm that both the newly implemented code worked, as
well as that the previously implemented code was not
broken. As the final verification process we confirmed that
all client components could be compiled without errors. We
did the usual integration tests also, in order to confirm that
the communication among the client components and the
AMS components has not been changed. When we
completely finished with the reversing, we disabled this
functionality. We needed the reversing only for extracting
the existing data. It has not been possible do the reversing
nor the round tripping since the project was released.

D. Test-first Tests

Two reasons were crucial for choosing the TDD
approach in the reengineering project. As first, we believed
that the TDD approach could accelerate the development.
The second reason was the fact that we did not have enough
knowledge about the MSC files content so we did not have a
clear idea how to start the implementation. Therefore,
writing the tests first was a good start. We usually started
with file investigation and wrote the test-first tests as soon
as we understood the existing code. It was an excellent start
to begin the implementation of one spike. We applied often
the “learn it” TDD pattern [30] in order to examine the files
and write the test-first tests accordingly.

The introduction of the TDD approach was important
because of the following reasons:

• By developing and testing in parallel we shortened
the implementation phase.

• We did not produce any wastes in the logical model
(unnecessary info). We designed the model just
according to the data that we got from the reverse
engineering. We achieved to avoid the usual
modeling mistake when a large amount of metadata
is put in the model.

• The reengineering process was accelerated since the
reverse and forward engineering were performed
simultaneously.

• We showed how the TDD can be an efficient way to
work with, since this development method has not
been yet widely spread within the company. When it
has been introduced once, it would be easier to
introduce the TDD thinking in other projects too.

• We learned a lot about the different TDD patterns.
• We can reuse some of these tests later on, for the

DMC architecture testing.
It is important to say that we had to reverse the legacy

code from the code, which was written in the different
programming languages. We had to develop separate
methods for the reversing from C++, Java and C#.
Fortunately, the respective legacy code files had a similar
structure; the syntax was the main difference. So we could
develop the corresponding reversing methods based on the
common objects.

E. Continuous Integration with Automation

The continuous integration is a software development
practice where the software is integrated frequently, having
the integrations verified by automatic builds to detect
integration errors [31]. TDD and Continuous Integration (CI)
are agile practices, which complete each other. TDD
produces code that is well designed and relatively easy to
integrate with other code. The incremental addition of small
parts to the system, together with the automatic builds,
provides the continual system development without
extensive integration work [32]. The general continuous
integration concept was already introduced in the company.
All client and server components, which use the MSC

319

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

definition, have the automatic builds enabled. When the code
changes in the code repository, which is Clear Case in our
case, the automatic builds are started by a trigger scripts. The
trigger scripts, integrated in the Clear Case and specially
developed for this purposes, are responsible to start the
automatic builds on the build servers. If the builds fail, the
responsible product owners are immediately notified by
email.

On the end of the project, we have automated some of the
processes reducing the amount of work and time spent on
working with the MSC definition architecture. We use
ClearCase (CC) as a configuration management tool and we
have a build server for automatic build processes. Since all
client MSC definition files were in CC, we decided to keep
even the generated files in the CC repository, at least under
some period. This decision was made by the management.

When the MSC definition registry file is updated and
checked into CC, the following steps are executed
automatically:

• The MSC definition files with hard-coded data,
belonging to the client components, are checked out
from CC.

• The code generators are invoked by a CC trigger
script. All MSC definition files are generated.

• All generated files are checked into CC, if the
generation did not fail. Otherwise the “undo
checkout” operation is done.

• All client components, affected by the mentioned
code generation, are recompiled. If some
compilation fails, the error report is immediately sent
to the component owners.

Continuous integration verified that all parts of the MDD
solution are synchronized. To clarify, previously existing
tests are run against the generated files, as they were run
against the hard-coded files before. In that way we had an
automated check that the legacy code was not broken. New
test suit, containing tests used for the code generators
development, were also added to the automated test
execution. The corresponding tests were not run against the
reverse engineering tool, since this functionality was
disabled on the end of the project.

F. Light-weight Documentation

Although the documentation generation was not among
the project requirements, the MDD solution enabled a
possibility to generate documentation about the MSC for the
different markets in a light way. The MSC registry,
expressed in the XML format, supported a possibility for
writing comment lines. In that way we could easily develop a
generator that generates a HTML files presenting different
MSC aspects. For example, beside basic tables describing the
supported capabilities on the separate markets, it was
interesting to create lists for each capability, presenting all
markets where the capability is supported. The latter
information was very useful for the product management
team, to get quick information about the market capabilities.
The user-friendly presentation was highly appreciated, since

it shortened time when searching for information. In the
described way we achieved to get light-weight
documentation, which is easy to update and does not cost
much to maintain. Thanks to the XML format of the MSC
registry, the documentation generators development was a
trivial job, lasting for just one developer day. Such way of
documenting MSC definitions fitted well the agile
philosophy.

G. Results

The project was completed within the 4 sprints, lasting
for 4 weeks each, and one month of Kanban process. At the
early stage of the project, without enough experience, we
could not plan the first sprint in the most efficient way. It
was during the first sprint, which took more than the one
month, when we made the decision to do the reverse and the
forward engineering in parallel. After that, the development
was accelerated as well as the sprint’s velocities. Velocity of
the first sprint was only 10 story points. Every next sprint
was executed with a velocity of 15 to 20 story points. We
planned the coming sprints according to the results and
experience from the previous sprints. During the Kanban
process, the development speed decreased again since we
were stacked with a lot of small problems which were
supposed to be solved separately. On the other side, the fact
that we were approaching the end of the project encouraged
us with completing the tasks. Although we could have
completed the project several weeks earlier, if we planned
the first sprint better, the management was satisfied with the
performed results. The extenuating circumstance was the fact
that the intermediate solution was an internal project, without
fixed released date to the customer.

IX. AGILE AND LEAN PRACTICES IN MDD

The agile and lean methods are light in contrast to the
MDD that can become complex. Through the application of
the agile and lean principles, the MDD becomes more
pragmatic and more useful. Some of the agile and lean
principles, used in our Agile MDD approach, are explained
below.

A. Architectural aspects

“Eliminating waste” Eliminating the duplication of
information was also according to the XP’s principle “Never
duplicate your code” [33]. This principle is the heart of the
MDD – to have one central input point, model (models) from
which everything else is generated.

“Think big, act small” We were thinking on the DMC as
a final architecture but acted in a stepwise way, via an
intermediate solution.

“Simplicity is essential.” We have simplified the full
scale MDA. Instead of the UML modeling language we used
the XML. The PIM and PSMs were merged, avoiding the
maintenance of several models and transformations among
them. On the other side, by merging PIM and PSMs in one
model we lost a good separation of concerns but it was a
price worth paying.

320

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Organizational aspects

“Self-organizing teams” contributed to the successful
MDD introduction, since the evolved people were indeed
interested to complete the project.

“Empower the team” Roles are turned – the managers are
taught how to listen to the developers [22]. Despite the fact
that the management puts non-technical constraints on our
project, they allowed the developers to make decisions,
regarding the intermediate solution, on their own. It
contributed to faster development, since the developers did
not have to wait for feedback from the management, for each
decision.

“We became a constantly learning organization, through
relentless reflection and continuous improvement.” Since the
organization was without enough previous knowledge within
the MDD area, we learned a lot about applying this concept
in practice.

C. Development process aspects

“Deliver as fast as possible”. The implementation phase
of our Agile MDD approach was short.

“Spike principle” applied on the round-tripping, which
includes both the reverse and the forward engineering, made
the introduction of the TDD philosophy spontaneous and
natural.

“Forward and reverse engineering attain the same
importance.” Since the model was designed upon the results
of the legacy code reversing, this process, although being
only a one time process, was equally important as the
forward engineering.

“Constant feedback” practice was particularly important
in the reengineering process since we did not have a clear
idea, from the beginning, how the data reversing should be
performed.

“Welcome changing requirements, even late in
development.” The industrial experience report presented an
iterative development, which allowed late model changes.
We worked in sprints, according to the Spike principle,
which implied the frequent model changes, in each sprint.

 “Combine Scrum and Kanban process tools” as it is
suitable. When the projects tasks can be strictly divided and
planed, than the Scrum is more appropriate. But for some
long running task, such was a reengineering process in our
case, the Kanban was more appropriate since it was difficult
to plan sprints in advance.

D. Benefits of the Agile MDD approach

We got a lot of benefits by introducing the Agile MDD
approach.
1. Agile principles can make the starting curve for the

MDD shorter. Through the application of the agile
principles the long learning curve and introduction gap
of MDD methods and tools could be avoided. Instead of
spending a long time building a big thing we had a small
team spending a little time building a small thing but we
integrated regularly to see the whole system [11].

2. We introduced the TDD approach, showing the
effectiveness of such an approach. TDD approach
contributed to the accelerated reengineering to the MDD
solution since the reverse and forward engineering were
performed in parallel.

3. “Base your management decisions on a long-term
philosophy, even at the expense of short-term financial
goals.” We have prepared, in advance, for the
introduction of the DMC architecture: the model
specification and the reverse engineering job are already
done. As well as the test cases, some of them are going
to be reused.

4. The Agile MDD approach could be used instead of the
full scale MDA. When all MDA recommendations
could not be applied, we adjusted them to our system
and organization, with a help of Agile and Lean
principles.

5. Agile modeling helped against building gargantuan
models [15] and specifying potentially unused data.

X. RELATED WORK

The idea of combining the agile ideas with the MDD
concept has been present in both research and industry world
for some time. But as a relatively new idea it is still without
enough empirical results, which should lead to the right
direction where and how this idea should be evolved even
more. Many authors agree with the conclusion that the agile
principles can be combined with the MDD, making, usually
long and time-consuming process of modeling, being
iterative and incremental. [34] explored this idea even more,
by applying a set of agile principles on UML modeling, such
as pair-modeling, test-driven development and regression
testing. In [35] a comprehensive framework, showing the
various ways to take advantage of the complementarity
between the agile methods and MDD, is proposed.

Although it could be assumed that the agile methods
should be used for the development of new software systems,
they could be used for the legacy code evolution as well as
discussed in [36]. By applying the agile methodology on the
reverse engineering process, some authors have already
made proposals for an incremental agile reverse engineering
process. [37] and [38] describe a framework support for an
agile reverse engineering process. [39] proposes an iterative
reengineering approach that uses reverse engineering
patterns for the reverse engineering and test-driven
development for the forward engineering, where the reverse
engineering and forward engineering activities are done
independently, one after the other.

To our best knowledge there is no author who explores a
simultaneous application of TDD both on the reverse
engineering and forward engineering process when the
legacy system is reengineered to the MDD. Additionally,
there is no author who discusses the whole agile
development process for the system’s evolution to the MDD
solution.

321

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

XI. CONCLUSION AND FUTURE WORK

This industrial report presented an evolution process of
an existing system - the architecture of the MSC definition,
to a Model-Driven Development solution. The main point of
this paper was to show how agile and lean principles helped
us in a decision making process during the intermediate
solution production, within a short time frame. In that way
we coped successfully both with the management constraints
as well as with the complexity and time-consuming
introduction of the MDD concept.

This industrial report showed that the agile philosophy
and the MDD concept can be successfully combined,
resulting in an accelerated development process. Agile
principles relax the OMG’s recommendations reducing the
complexity from the MDD concept, making the MDD easier
to adopt in organizations. As this paper showed, an agile
MDD could be a key success factor for organizations, which
are not ready for the introduction of the full-scale MDA.
Consequently we could expand Ambler’s “agile modeling”
philosophy on the whole MDD, including the reengineering
process, meaning that it should be situational, adjusted to the
running project, organizational structure and development
process. Additionally, a development process based on the
TDD logic can contribute to improved development
efficiency and decrease the total time spent on the
development and testing.

By being aware of the “Think big act small”-principle,
we got a simple and applicable solution, which could easily
grow to a more complex one. With a help of agile and lean
ideas we modernized the MSC architecture. Such evolution
made this architecture more flexible and more responsive to
the future changes, regarding both the technical and the
business aspects. “It is not the strongest of the species that
survive, nor the most intelligent, but the ones most
responsive to change [40].”

REFERENCES

[1] Mina Boström Nakicenovic: An Agile Model-Driven
Development Approach – A case study in a finance
organization. Proceedings of ICSEA 2011.

[2] M. Pikkarainen, J. Haikara, o. Salo, P. Abrahamsson, J. Still:
The Impact of Agile Practices on Communication in Software
Development. Journal Empirical Software Engineering, Vol.
13, Issue 3, pp 303-337, June 2008.

[3] AgileManifesto, www.agilemanifesto.org. Accessed in May
2012.

[4] Dave West, Tom Grant: Agile Development – Mainstream
Adoption Has Changed Agility, Forrester Research, 2010.

[5] Hans Wegener: Agility in Model Driven Software
Development? Implication for Organization, Process and
Architecture, 2002.

[6] T. Dybå, T. Dingsoyr, Empirical Studies of Agile Software
Development: A systematic review, Inform. Softw. Technol.
(2008), doi:10.1016/j.infsof.2008.01.006

[7] James O. Coplien, Neil B. Harrison: Organizational Patterns
of Agile Software Development, Prentice Hall, 2005.

[8] Paloma Caceras, Francisco Diaz, Esperanza Marcos:
Integrating an Agile Process in a Model Driven Architecture.

http://www.sciweavers.org/publications/integrating-agile-
process-model-driven-architecture Accessed in May 2012.

[9] Marko Boger, Toby Baier, Frank Wienberg, Winfried
Lamersdorf: Extreme Modeling, 2000. http://vsis-
www.informatik.uni-
hamburg.de/getDoc.php/publications/70/XM.pdf Accessed in
May 2012.

[10] Pritha Guha, Kinjal Shah, Shiv Shankar Prasad Shukla,
Shweta Singh: Incorporating Agile With MDA Case Study:
Online Polling System. International Journal of Software
Engineering & Applications (IJSEA), Vol.2, No.4, October
2011.

[11] Henrik Kniberg: Kanban Vs Scrum.
http://www.infoq.com/minibooks/kanban-scrum-minibook
Accessed in May 2012.

[12] Oliver Sims: Enterprise MDA or How Enterprise Systems
Will Be Built. MDA Journal, September 2004.

[13] Arie van Derusen, Eelo Visser and Jos Warmer: Model
Driven Software Evolution: A Research Agenda. CMSR 2007
Workshop on Model-Driven Software Evolution (MoDSE)
Amsterdam 2007.

[14] Nourchene Elleuch, Adel Khalfallah and Samir Ben Ahmed:
Software Architecture in Model Driven Architecture, IEEE,
pp 219-223, 2007.

[15] Hailpern B, Tarr P: Model-driven Development: The good,
the bad and the ugly. IBM Systems Journal, Vol.45, No.3,
2006.

[16] I. Lazar, B. Parv, S. Motogna, I-G Czibula, C-L Lazar: An
Agile MDA Approach For Executable UML Structured
Activities

[17] James O. Coplien, Gertrud Bjornvig: Lean Architecture for
Agile Software Development, Wiley 2010.

[18] Scott W. Ambler: Agile Model Driven Development Is Good
Enough. IEEE Software 2003.

[19] Scott W. Ambler: Agile Model Driven Development,

http://www.xootic.nl/magazine/feb-2007/ambler.pdf Accessed in
May 2012.

[20] SunGard, www.sungard.com. Accessed in May 2012.

[21] TNP SDK documentation: SunGard Front Arena

[22] Mary Poppendieck, Tom Poppendieck: Lean Software
Development, An Agile toolkit. Addison Wesley, 2005.

[23] Krzysztof Czarnecki, Ulrich W. Eisenecker: Generative
Programming, Addison Wesley 2000.

[24] MDA, www.omg.org/mda. Accessed in May 2012.

[25] Martin Fowler: Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

[26] Vitaly Khusidman, William Ulrich: Architecture-Driven
Modernization: Transforming the Enterprise. www.omg.org
Accessed in May 2012.

[27] Thomas O. Meservy, Kurt D. Fenstermacher: Transforming
Software Development: An MDA Road Map. IEEE Software,
September 2005.

[28] S. W. Ambler, Generalizing Specialist: Improving Your IT
Carrer Skills (2012),
http://www.agilemodeling.com/essays/generalizingSpecialists
.htm. Accessed in May 2012.

[29] Ray Carroll, Claire Fahy, Elyes Lehtihet, Sven van der Meer,
Nektarios Georgalas, David Cleary: Applying the P2P
paradigm to management of large-scale distributed networks
using Model Driven Approach, Network Operations and
Management Symposium, 2006. NOMS 2006. 10th
IEEE/IFIP Volume, Issue , 3-7 April 2006 Page(s):1 – 14.

[30] Kent Beck: Test-Driven Development By Example, Addison
Wesley, 2003.

322

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[31] Martin Fowler: Continuous integration,
http://martinfowler.com/articles/continuousIntegration.html
Accessed April 2012.

[32] Michael Karlesky, Greg Williams, William Bereza, Matt
Fletcher: Mocking the Embedded World: Test-Driven
Development, Continuous Integration and Design Patterns.
Embeded System Conference Silicon Valley, April 2007.

[33] Ron Jeffries, Ann Anderson, Chet Hendrickson:
ExtremeProgramming. Addison Wesley, 2001.

[34] Yuefeng Zhang, Shailesh Patel: Agile Model Driven
Development In Practice. IEEE Software 2010.

[35] Vincent Mahe, Benoit Combemale, Juan Cadavid: Crossing
Model Driven Engineering and Agility – Preliminary
Thoughts on Benefits and Challenges, 2010. ECMFA 2010.

[36] Dave Thomas: Agile Evolution – Towards The Continuous
Improvement of Legacy Software. Journal of Object
Technology, vol. 5, no.7, September-October 2006, pp.19-26

[37] Maria Istela Cagnin, Jose Carlos Maldonado, Fernao Stella
Germano, Paulo Cesar Masiero, Alessandra Chan, Rosangela
DelossoPenteado: An Agile Reverse Engineering Process
based on a Framework

[38] Maria Istela Cagnin, Jose Carlos Maldonado, Fernao Stella
Germano, Rosangela DelossoPenteado: PARFAIT: Towards a
Framework-based Agile Reengineering Process

[39] Vinicius Durelli, Rosangela Penteado, Simone de Sousa
Borges, Matheus Viana: An iterative reengineering process
applying Test-Driven Development and Reverse Engineering
Patterns, INFOCOMP – Special Edition, p. 01–08, fev. 2010

[40] Charles Darwin: The Origin of the Species, 1859.

