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Abstract— Quadcopters are four rotor Vertical Take-Off and 

Landing (VTOL) Unmanned Aerial Vehicle (UAV) with agile 

manoeuvring ability, small form factor and light weight – which 

makes it possible to carry on small platforms.  Quadcopters are 

also used in urban environment for similar reasons – especially 

the ability to carry on small payloads, instead of using 

helicopters on larger vehicle which are not possible in these 

dense places. In this paper, we present a new approach for 

autonomous landing a quadcopter in 3D urban environment, 

where the first stage is based on free obstacle environment and 

maximal visibility for the drone in the palled landing spot. Our 

approach is based on computer-vision algorithms using markers 

identification as input for the decision by Stochastic Gradient 

Descent (SGD) classifier with Neural Network decision making 

module with greedy motion planner avoiding static and 

dynamic obstacles in the environment. We use OpenCV with its 

built-in ArUco module to analyse the camera images and 

recognize platform/markers, then we use Sci-Kit Learn 

implementation of SGD  classifier to predict landing optimum 

angle and compare results to manually decide by simple 

calculations. Our research includes real-time experiments using 

Parrot Bebop2 quadcopter and the Parrot Sphinx Simulator. 
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I. INTRODUCTION AND RELATED WORK 

   A Quadcopter is a specific type of a UAV, with four 

rotors and Vertical takeoff and Landing (VTOL) capability, 

its agility, light weight and size makes it a perfect companion 

to smaller boats from sail-boats to even kayak, rather than 

classic helicopters that accompany bigger ships or fixed-

wings airplanes on extremely large aircraft carriers. 

The efficient computation of visible surfaces and 

volumes in 3D environments is not a trivial task. The visibility 

problem has been extensively studied over the last twenty 

years, due to the importance of visibility in GIS and 

Geomatics, computer graphics and computer vision, and 

robotics. Accurate visibility computation in 3D environments 

is a very complicated task demanding a high computational 

effort, which could hardly have been done in a very short time 

using traditional well-known visibility methods [1].  

The exact visibility methods are highly complex, and 

cannot be used for fast applications due to their long 

computation time. Previous research in visibility computation 

has been devoted to open environments using DEM models, 

representing raster data in 2.5D (Polyhedral model), and do 

not address, or suggest solutions for, dense built-up areas.  

Most of these works have focused on approximate 

visibility computation, enabling fast results using 

interpolations of visibility values between points, calculating 

point visibility with the Line of Sight (LOS) method. Lately, 

fast and accurate visibility analysis computation in 3D 

environments. 

  A vast number of algorithms have been suggested for 

speeding up the process and reducing computation time. 

Franklin evaluates and approximates visibility for each cell in 

a DEM model based on greedy algorithms. Wang et al. 

introduced a Grid-based DEM method using viewshed 

horizon, saving computation time based on relations between 

surfaces and the line of sight (LOS method). Later on, an 

extended method for viewshed computation was presented, 

using reference planes rather than sightlines.  

 One of the most efficient methods for DEM visibility 

computation is based on shadow-casting routine. The routine 

cast shadowed volumes in the DEM, like a light bubble. 

Extensive research treated Digital Terrain Models (DTM) in 

open terrains, mainly Triangulated Irregular Network (TIN) 

and Regular Square Grid (RSG) structures. Visibility analysis 

in terrain was classified into point, line and region visibility, 

and several algorithms were introduced, based on horizon 

computation describing visibility boundary. 

  In the many uses of UAV (Unmanned Aerial Vehicle) a 

pilot uses real-time telemetry to take-off, fly and land the craft 

with continuous communication between ground station and 

the UAV on-board computer. Making these tasks 

autonomous, will allow UAVs to perform missions without 

continuous communication, and thus prevent hijack or 

damage by hackers, be more stealth for surveillance and have 

unlimited distance from ground station (bound to energy 

limitation). 
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Autonomous landing of a UAV is a problem on the focus 

of many studies [6][7][8] and landing on marine vessel makes 

this problem even more complex due to sea level motion that 

also occur when target platform is at stand-still. 

The object of this research is to produce a safe landing 

mechanism for a quadcopter in 3D urban environment, in 

order to allow it to perform fully autonomous missions carried 

out at sea. Also, this mechanism could be used in pilot guided 

missions, as guideline suggestions to the pilot with how/when 

it is safe to land . 

We assume the target position is known and Ground Station 

sets “home” position in the drone to be target’s GPS position. 

Then the Bebop2 built-in “Return Home” function will bring 

it to the target, with up to a few meters off. 

The proposed mechanism will perform the following tasks 

to achieve a "safe landing" decision: First, we need to visually 

search for and recognize the platform target and find the 

docking area. Once the target is found, the drone should set 

course and fly to target to be exactly above. Then, we detect 

and analyze the position of the landing surface and its plane 

angle relative to the camera. And finally, we will send the data 

to each of two implementations of the decision algorithms: 1. 

Using a supervised machine-learning classifier (pre-loaded 

with data), The machine input requires a quick pre-processing 

to set the data into a fixed structure vector, to resemble fitted 

data in the classifier. 2. Calculating directly from the data 

returned from the ArUco detection functions. The drone will 

then land safely on the boat, by sending a “land” command on 

time. 

The problem of autonomous landing an UAV was on the 

focus of many studies as the survey review state-of-the art 

methods of vision-based autonomous landing, for a wide 

range of UAV classes from fixed-wing to multi-rotors and 

from large-scale aircrafts to miniatures. The main motivation 

for dealing with autonomous landing is the difficulty in 

performing a successful landing even with a pilot controlling 

the UAV. As it seems by statistics showed in [5], most of the 

accidents related to Remotely Piloted Aircraft Systems 

(RPAS) occur when the pilot tries to land the UAV. 

 Extensive research has been done on the subject to explore 

the various situations, technologies and methods to engage 

this problem. The work performed on previous studies, 

reviewed later in this section, is a great starting point for this 

project, as it is purely academic and relays on series of already 

existent technologies and tools, such as OpenCV [4], Sci-kit 

learn and the Parrot Ground SDK [2]. 

 

Figure 1. Proposed autonomous landing mechanism 

In the following sections, we first introduce an overview 

of 3D models and extended the 3D visible volumes analysis. 

In the next section, we present the autonomous navigation 

process based on our fast visibility analysis with training data 

and classifier as can be seen in Figure 1. Later, we present the 

simulation based on our 3D visible volumes analysis. 

II. AUTONOMOUS NAVIGATION PROCESS 

 The basic step starting this process related to obstacle 

avoidance and visible area described in the next sections. 

Following that, we divide the autonomous navigation mission 

into two separate problems. The first part deals with 

navigating UAV from an arbitrary position far from target, as 

far field. The second part is related to navigating to the target 

in the near field where the target is visible. 

 In the first scenario, which is when the mission objectives 

are reached and the drone needs to get to the target vessel for 

landing, we can use the built-in functionality of the drone to 

“Return Home” by setting it “Home” position to the target’s 

known GPS position. 

 Bebop2 “Return Home” function works in a way that it 

will lift the drone to 20m above ground relative to take-off 

position, then fly directly to GPS position of “Home” and 

descend to 2m. Notice that if the drone is starting at height of 

more than 20m it will not descend to 20m, but rather keep its 

height until final descend near “Home”. 

 The “Return Home” accuracy brings the drone to “Home” 

sometimes with offset of a few meters. This is good enough to 

get us to the second problem of navigation with visual distance 

to the target, until the drone will be directly above target and 

ready for landing. 

 Once the drone is at “Home” position, it will rotate and 

with each full rotation the tilt angle will increase to look 

further below, and if after rotating and tilting to the maximum 

of -90 degrees to the horizon, i.e., directly down, it will try 

again at higher altitude (1m up) to maybe see further away.  

After getting a visual identification the drone will set 

course, keeping the target in the middle of the screen, and 

moving forward to it, tilting the camera during the movements 

until the landing pad is directly below. According to that, 

landing pad located in the middle of the image and camera tilt 

is maximum. 

Then the drone will lower altitude to ~50cm while keeping 

the landing pad centered underneath, and in that height the 

data from the AR tags will be converted to a vector of 

predefined structure to feed a classifier trained to detect 

optimum landing angle/position. Once the classifier gives 

“Safe” signal – a “Land” command will issue to the drone to 

perform immediately. 

III. FAST AND APPROXIMATED VISIBILITY ANALYSIS 

In this section, we present an analytic analysis of the 

visibility boundaries of planes, cylinders and spheres for the 

predicted scene presented in the previous sub-section, which 

leads to an approximated visibility. 

Search Platform Fly To Target
Identify Landing 

Area

Descend Close 
To Target

Analyze Plane 
Angular Position

Decide: 

If Safe - Land
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A. Analytic 3D Visible Volumes Analysis 

In this section, we present fast 3D visible volumes analysis 

in urban environments, based on an analytic solution which 

plays a major role in our proposed method of estimating the 

number of clusters. We present an efficient solution for visible 

volumes analysis in 3D. 

We analyze each building, computing visible surfaces and 

defining visible pyramids using analytic computation for 

visibility boundaries. For each object we define Visible 

Boundary Points (VBP) and Visible Pyramid (VP). 

A simple case demonstrating analytic solution from a 

visibility point to a building can be seen in Figure 2(a). The 

visibility point is marked in black, the visible parts colored in 

red, and the invisible parts colored in blue where VBP marked 

with yellow circles.  

 
                            (a)                                                        (b) 

Figure 2. (a) Visibility Volume Computed with the Analytic Solution. (b) 

Visible Pyramid from a Viewpoint (marked as a Black Dot) to VBP of a 

Specific Surface 

In this section, we introduce our concept for visible 

volumes inside bounding volume by decreasing visible 

pyramids and projected pyramids to the bounding volume 

boundary. First, we define the relevant pyramids and volumes. 

 

The Visible Pyramid (VP): we define VPi
j=1..Nsurf(x0, y0, 

z0) of the object i as a 3D pyramid generated by connecting 

VBP of specific surface j to a viewpoint V(x0, y0, z0). 

In the case of a box, the maximum number of Nsurf for a 

single object is three. VP boundary, colored with green 

arrows, can be seen in Figure 2(b). 

For each VP, we calculate Projected Visible Pyramid 

(PVP), projecting VBP to the boundaries of the bounding 

volume S. 

Projected Visible Pyramid (PVP) - we define 

PVPi
j..Nsurf(x0, y0, z0) of the object i as 3D projected points to 

the bounding volume S, VBP of specific surface j trough 

viewpoint V(x0, y0, z0). VVP boundary, colored with purple 

arrows, can be seen in Figure 3.  

The 3D Visible Volumes inside bounding volume S, VVS, 

computed as the total bounding volume S, VS,  minus the 

Invisible Volumes IVS . In a case of no overlap between 

buildings, IVS is computed by decreasing the visible volume 

from the projected visible volume, ∑ ∑ (V(PVPi
j
) −

Nsurf
j=1

Nobj

i=1

V(VPi
j
)). 

By decreasing the invisible volumes from the total 

bounding volume, only the visible volumes are computed, as 

seen in Figure 4. Volumes of VPV and VP can be simply 

computed based on a simple pyramid volume geometric 

formula. 

 

 

Figure 3. Invisible Projected Visible Pyramid Boundaries colored with 
purple arrows from a Viewpoint (marked as a Black Dot) to the boundary 

surface ABCD of Bounding Volume S 

In a case of two buildings without overlapping, IVS 

computed for each building, as presented above, as can be 

seen in Figure 5. 

 

 

Figure 4. Invisible Volume V(PVPi
j
) − V(VPi

j
) Colored in Gray Arrows. 

Decreasing Projected Visible Pyramid boundary surface ABCD of 

Bounding Volume S from Visible Pyramid 

 

Figure 5. Invisible Volume V(PVPi
j
) − V(VPi

j
) Colored in Gray Arrows. 

Decreasing Projected Visible Pyramid boundary surface ABCD of 

Bounding Volume S from Visible Pyramid 

Considering two buildings with overlap between object's 

Visible Pyramids, as seen in Figure 6(a). In Figure 6(b), VP1
1 

boundary is colored by green lines, VP2
1 boundary is colored 

by purple lines and the hidden and Invisible Surface between 

visible pyramids IS
VP1

i

VP2
i

 is colored in white. 
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Invisible Hidden Volume (IHV) - We define Invisible 

Hidden Volume (IHV), as the Invisible Surface (IS) between 

visible pyramids projected to bounding box S. 

For example, IHV in Figure 6(c) is the projection of the 

invisible surface between visible pyramids colored in white, 

projected to the boundary plane of bounding box S. 

In the case of overlapping buildings, by computing 

invisible volumes 𝐼𝑉𝑆 , we decrease IHV twice between the 

overlapped objects, as can be seen in Figure 6(c), IHV 

boundary points denoted as {A11, . . , A18}. The same scene is 

presented in Figure 7, where Invisible Volume V(PVPi
j
) −

V(VPi
j
) is colored in purple and green arrows for each 

building. 

   

 
                      (a)                                          (b)                                                           

 
(c) 

Figure 6. (a)  Computing Hidden Surfaces between Buildings , VP2
1 Base 

Plane, IS
VP1

i

VP2
i

 (b) The Two Buildings - VP1
1 in green and VP2

1 in Purple 

(from the Viewpoint) and IS
VP1

i

VP2
i

 in White (c) IHV boundary points colored 

with gray circles denoted 

The PVP of the object close to the viewpoint is marked in 

black, colored with pink circles denoted as boundary set points 

{B11 , . . , B18} and the far object's PVP is colored with orange 

circles, denoted as boundary set points {C11, . . , C18}. It can be 

seen that IHV is included in each of these invisible volumes, 

where {A11, . . , A18} ∈ {B11 , . . , B18}  and  {A11, . . , A18} ∈
{C11, . . , C18}. 

Therefore, we add IHV between each overlapping pair of 

objects to the total visible volume.  

The same analysis holds true for multiple overlapping 

objects, adding the IHV between each two consecutive 

objects. 

In Figure 8, we demonstrate the case of three buildings 

with overlapping. The invisible surfaces are bounded with 

dotted lines, while the projected visible surfaces to the 

overlapped building are colored in gray. In order to calculate 

the visible volumes from a viewpoint, IHV between each two 

buildings must be added as a visible volume, since it is already 

omitted at the previous step as an invisible volume. 

 

Figure 7. Invisible Volume V(PVPi
j
) − V(VPi

j
) colored in purple and green 

arrows for each building. PVP of the object close to viewpoint colored in 

black, colored with pink circles and the far object PVP colored with orange 

circle 

 

Figure 8. Three overlapping buildings. Invisible surfaces bounded with 
dotted lines, projected visible surfaces of the overlap building colored in 

gray 

      In this part, we extend the previous visibility analysis 

concept and include cylinders as continuous curves 

parameterization . 

Cylinder parameterization can be described in (1): 

  

      ,         (1) 

 

      We define the visibility problem in a 3D environment for 

more complex objects as: 

 

     (2) 

 

ln ( , , )c dC x y z
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( , , ) cos( )C d
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where 3D model parameterization is , and the 

viewpoint is given as . Extending the 3D cubic 

parameterization, we also consider the case of the cylinder. 

Integrating (1) to (2) yields: 

 

                        (3) 

 

(4) 

 

    As can be noted, these equations are not related to Z axis, 

and the visibility boundary points are the same for each x-y 

cylinder profile, as seen in (3), (4). . 

    The visibility statement leads to complex equation, which 

does not appear to be a simple computational task. This 

equation can be efficiently solved by finding where the 

equation changes its sign and crosses zero value; we used 

analytic solution to speed up computation time and to avoid 

numeric approximations. We generate two values of  

generating two silhouette points in a very short time 

computation. Based on an analytic solution to the cylinder 

case, a fast and exact analytic solution can be found for the 

visibility problem from a viewpoint. 

    We define the solution presented in (4) as x-y-z 

coordinates values for the cylinder case as Cylinder 

Boundary Points (CBP). CBP, defined in (5), are the set of 

visible silhouette points for a 3D cylinder, as presented in 

Figure 9: 

 

(5) 

 

        
                    (a)                                         (b)  

Figure 9. Cylinder Boundary Points (CBP) using Analytic Solution marked 

as blue points, Viewpoint Marked in Red: (a) 3D View (Visible Boundaries 

Marked with Red Arrows); (b) Topside View. 

In the same way, sphere parameterization can be described as 

formulated in (6): 

 

               (6) 

 

We define the visibility problem in a 3D environment for this 

object in (7): 

 

     (7) 

 

where the 3D model parameterization is , and the 

viewpoint is given as . Integrating (6) to (7) 

yields: 

 

   (8) 

Where r is defined from sphere parameter, and 

are changes from visibility point along Z axis, as described in 

(8). The visibility boundary points for a sphere, together with 

the analytic solutions for planes and cylinders, allow us to 

compute fast and efficient visibility in a predicted scene from 

local point cloud data, which are updated in the next state. 

This extended visibility analysis concept, integrated with 

a well-known predicted filter and extraction method, can be 

implemented in real time applications with point clouds data. 

 

IV. VISIBILITY-BASED DRONE AUTONOMOUS LANDING 

The landing pad designed as a plate with five markers – 

one in the center and four others on each corner: 

 

Figure 10. Landing pad with fiducial markers 

Every ArUco marker has an ID as described in Figure 10, 

which can be determined when the marker gets detected, and 
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by that we can easily center the drone location above the 

landing pad even if only one or two markers are in view. 

This landing pad has markers with ID values of {18,28, 

17,25,4} selected randomly, but once selected they are very 

important to the implementation since  the training data 

linked to the classifiers used as will be discussed later. 

The proposed system takes each frame, and resolve all 

markers, then create a data vector of fixed length with all the 

necessary information of the markers. 

Data format for each marker can be described as: [ID, rx, 

ry, rz, tx, ty, tz],  

Where [

𝑟𝑥

𝑟𝑦

𝑟𝑧

] is the rotation vector of a single marker and 

[

𝑡𝑥

𝑡𝑦

𝑡𝑧

]  is the translation vector of that marker. This format 

repeats five times in each vector, where a tag ID has a fixed 

position for each tag. When a marker could not be found on 

a frame, the tag ID and all values of that marker will be set to 

zero. 

Then send this vector to a classifier which will simply 

return strings telling us if the drone is centered above the 

landing pad or a correction movement is required. Possible 

answers are in the set: “CENTER”, “DOWNWARD”, 

“FORWARD”, “RIGHT”, “LEFT”. 

For the Navigation we added more ArUCO tags 

surrounding this pad, in three sizes, so that they will be visible 

from varying distances along the navigation and descend 

process of the mechanism. 

We used eight large tags, each surrounded by four medium 

tags and in between another five small tags as seen in Figure 

11. The landing pad is printed on A4 page. And each of the 

eight patterns described here is also on an A4 page. 

 

Figure 11. Navigation Assisting Tag Board Design 

A. Training Data and Classifiers 

In order to train the classifier, we used OpenGL as can be 

seen in Figure 12 to simulate the landing pad in a precisely 

controlled position and viewing angles. By that, we created a 

labeled data set, then use this precisely labeled data to fit in a 

variety of classifiers and test for accuracy. Following that, we 

tested several classifiers and selected the best performance 

for the purpose of the landing mechanism proposed. 

 

 

Figure 12. OpenGL Simulation for Training Data 

The simulated platform rotating in roll, pitch and yaw - 

controlled by passing parameters, allowing me to tag every 

rendered frame as either safe for landing or not without visual 

computation (pre-label the data). 

The simulator gets parameters from command line for 

setting some axis angle to run on a limited range, while 

rolling over all possible values of angles and positions, so the 

workload could be divided to parallel processes and even run 

on different machines. 

After a few days running on several computers in parallel, 

the simulators generated a total of 15,193,091 vectors dataset, 

that could be used as training dataset for different models of 

classifiers. 

Sci-Kit Learn package implements SVM with a fit 

function that takes labeled data as input in two variables: Y 

vector of y labels in a single column and X array of x vectors 

– each x vector is a line vector corresponds to the appropriate 

y in Y. 

SVM does not allow incremental learning, i.e., it needs all 

data at once. This was quit an issue with the data size we tried 

to fit – fifteen million vectors. However, Sci-Kit Learn offers 

other types of classifiers, although all of them do not perform 

actual incremental learning (they do need all data at once), 

nonetheless, they do implement a partial fit function that can 

take each round a small portion of the data, and update the 

classifier’s support vectors. 

For each classifier, we tried different parameters, and 

different sizes of the dataset by selecting randomly a fraction 

of the data. Then, test the model (using 25% of the data for 

test) to check it prediction accuracy. 

 

TABLE I.  CLASSIFIERS ACCURACY COMPARISSION 

Classifier Type Best accuracy 

SGD, epsilon insensitive 57.341% 

SGD, hinge 75.716% 

SGD, huber 59.841% 

SGD, log 73.658% 

SGD, modified huber 73.362% 

SGD, squared eps. insensitive  59.6% 

SGD, squared hinge 73.857% 

SGD, squared loss 57.171% 

Perceptron 74.579% 

Bernoulli NB 62.317% 

Passive Aggressive Classifier 74.455% 
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The result in Table I shows that even the best classifier got 

only approximately 75% success in recall. This is insufficient 

for a safety mechanism even with filters added to the process 

of a final “safe” decision. 

To further increase accuracy, we thought it would be more 

effective to use more than one classifier, in a voting manner, 

to decide together on the data. At first, we suggested a voting 

scheme that takes 10-15 of the best classifiers and check if 

more than 50% of them agree on a "safe" result, take that as 

the answer, we checked that over the data and results did not 

increase accuracy at all. Then we thought maybe a classifier 

of classifiers outputs could extract some new information in 

a smarter manner than a simple voting, and will help increase 

accuracy. We created a new dataset of the same size, only this 

time the vector consisted of zero for safe and one for unsafe 

result of a classifier over fifteen of the best classifiers (72%-

75% accuracy) and trained this dataset on all types of 

classifiers with different parameters as before. This time, all 

classifiers listed above got around 76% accuracy, where the 

best classifier reached 76.8% accuracy. Approximately 2% 

improvement.  

Finally, looking closely on live videos of the ArUco 

markers detections, we noticed that the axis drawn on the 

detected markers tend to shift rapidly usually around more 

“safe” angles, so we tried to manually correct the data, and 

remove some of the spiking data that is tagged as safe – i.e., 

the simulator created it as a safe angle, but detection errors 

made it as a vector that should rather be tagged as unsafe. 

All data marked as safe, with “Z” axis angle in all detected 

markers, re-tag as unsafe, if a certain threshold is passed.  

Before rectifying the dataset consisted of about 50% safe 

labels. This method reduced the number of “safe” tagged 

vector to about 20% of the data. 

Fitting this new retagged dataset to all models as before, 

and testing again for accuracy, results improvements shown 

in details reported in Table III. The results improved 

drastically. 

Best classifier selected for the mechanism is SGD 

(Stochastic Gradient Descend) with loss parameter set to 

logarithmic. This classifier showed 86% percent accuracy, 

which could be used with some filtering to suppress false 

alarm rate even more. 

 

V. SPATIAL RAPID RANDOM TREES 

In this section, the Rapid Random Trees (RRT) path 

planning technique is briefly introduced with spatial 

extension, which is the basic motion planning drone 

algorithm. RRT is dealing with high-dimensional spaces by 

taking into account dynamic and static obstacles including 

dynamic and non-holonomic robots' constraints. 

The main idea is to explore a portion of the space using 

sampling points in space, by incrementally adding new 

randomly selected nodes to the current tree's nodes. 

RRTs have an (implicit) Voronoi bias that steers them 

towards yet unexplored regions of the space. However, in case 

of kinodynamic systems, the imperfection of the underlying 

metric can compromise such behavior. Typically, the metric 

relies on the Euclidean distance between points, which does 

not necessarily reflect the true cost-to-go between states. 

Finding a good metric is known to be a difficult problem. 

Simple heuristics can be designed to improve the choice of the 

tree state to be expanded and to improve the input selection 

mechanism without redefining a specific metric. 

A. RRT Stages  

The RRT method is a randomized one, typically growing 

a tree search from the initial configuration to the goal, 

exploring the search space. These kinds of algorithms consist 

of three major steps: 

1. Node Selection: An existing node on the tree is chosen 

as a location from which to extend a new branch. 

Selection of the existing node is based on probabilistic 

criteria such as metric distance. 

2. Node Expansion: Local planning applied a generating 

feasible motion primitive from the current node to the 

next selected local goal node, which can be defined by a 

variety of characters. 

3. Evaluation: The possible new branch is evaluated based 

on cost function criteria and feasible connectivity to 

existing branches. 

These steps are iteratively repeated, commonly until the 

planner finds feasible trajectory from start to goal 

configurations, or other convergence criteria. 

 

 

Figure 13. The RRT algorithm: (A) Sampling and node selection steps;  

(B) Expansion step. 

A simple case demonstrating the RRT process is shown in 

Figure 13. The sampling step selects Nrand, and the node 

selection step chooses the closest node, Nnear,  as shown in 

Figure 13.A. The expansion step, creating a new branch to a 

new configuration, Nnew, is shown in Figure 13.B. An example 

for growing RRT algorithm is shown in Figure 14. 

 

Figure 14. Example for growing RRT algorithm. 
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B. Spatial RRT Formulation  

We formulate the RRT planner and revise the basic RRT 

planner for a 3D spatial analysis case for a continuous path 

from initial state xinit to goal state xgoal:  

1. State Space: A topological space, X. 

2. Boundary Values: 
initx X  and 

goalx X . 

3. Free Space: A function : { , }D X true false→  that determines 

whether ( ) freex t X where 
freeX consist of the attainable 

states outside the obstacles in a 3D environment.  

4. Inputs: A set, U, contains the complete set of attainable 

    control efforts ui, that can affect the state. 

5. Incremental Simulator: Given a current state, ( )x t , and 

input over time interval t , compute ( )x t t+  . 

6. 3D Spatial Analysis: A real value function, f (x; u, OCPi) 

which specifies the cost to the center of 3D visibility 

volumes cluster points (OCP) between a pair of points in

X . 

C. Spatial RRT Formulation  

We present a revised RRT pseudo code described in Table 

II, for spatial case generating trajectory T, applying K steps 

from initial state xinit. The f function defines the dynamic 

model and kinematic constraints,  �̇� = f (x; u, OCPi), where u 

is the input and OCPi  set the next new state and the feasibility 

of following the next spatial visibility clustering point. 

TABLE II.  SPATIAL RRT PSEUDO CODE 

Generate Spatial RRT (xinit; K; ∆𝑡)  

T.init (xinit); 

For k = 1 to K do 

             xrand ← random.state(); 

             xnear ← nearest.neighbor (xrand; T ); 

             u ← select.input (xrand; xnear); 

             xnew ← new.state (xnear; u; ∆𝑡; f); 

             T.add.vertex (xnew); 

             T.add.edge (xnear; xnew; u); 

End 

Return T 

D. Search Method 

Our search is guided by following spatial clustering points 

based on 3D visible volumes analysis in 3D urban 

environments, i.e., Optimal Control. The cost function for 

each next possible node (as the target node) consists of 

probability to closest OCP, POCPi , and probability to random 

point, Prand . 

In case of overlap between a selected node and obstacle in 

the environment, the selected node is discarded, and a new 

node is selected based on POCPi and Prand.  

E. STP Planner Pseudo-Code 

We present our STP planner pseudo code described in 

Table III, for spatial case generating trajectory T with search 

space method presented above. The search space is based on 

POCPi and Prand. We apply K steps from initial state xinit. The f  

function defines the dynamic model and kinematic 

constraints,  ẋ = f (x; u), where u is the input and OCPi  are 

local target points between start to goal states.  

 

 

 

 

 

 

 

 

 

 

 

Figure 15. STP Search Method: (A) Start and Goal Points; (B) Explored 

Space to the Goal Through OCP 

F. Completeness 

Motion-planning and search algorithms commonly 

describe 'complete planner' as an algorithm that always 

provides a path planning from start to goal in bounded time. 

For random sampling algorithms, 'probabilistic complete 

planner' is defined as: if a solution  exists, the planner will 

eventually find it by using  random sampling. In the same 

manner, the deterministic sampling method (for example, 

grid-based search) defines completeness as resolution 

completeness. 

Sampling-based planners, such as the STP planner, do not 

explicitly construct search space and the space's boundaries, 

but exploit tests with preventing collision with obstacles and, 

in our case, taking spatial considerations into account. 

Similarly, to other common RRT planners, which share 

similar properties with the STP planner, our planner can be 

classified as a probabilistic complete one. 

VI. SIMULATIONS 

The quadcopter we used in this research is a Parrot Bebop2 

drone. It is a GPS drone with full HD 1080p wide-angle video 

camera with 3-axis digital stabilization, that can also take 

14MB still pictures.  

Bebop2 has GPS guided Return Home feature, strong 6” 

propellers, long rage communication (with WiFi extender or 

Skycontroller remote), which makes it suitable for a windy 

outdoors flight. 

The Bebop2 drone uses seven different sensors 

simultaneously to keep it stable and produce an extremely 

stabilized video even when the drone makes tiny maneuvers 

to keep itself in place, the apparent view to the user looks like 

the drone is in fixed position as if it was hanging on a crane. 

Also, there are no moving parts when we pan/tilt the camera, 

it is done entirely by changing the relevant pane in the full 

fisheye image. 

 

 

Goal Goal 

OCPOCP

A) B) 
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TABLE III. STP PLANNER PSEUDO CODE 

STP Planner (xinit; xGoal ;K; ∆𝑡; OCP)  
T.init (xinit); 

xrand ← random.state(); 

xnear ← nearest.neighbor(xrand; T ); 

u ← select.input(xrand; xnear); 

xnew ← new.state.OCP (OCP1; u; ∆𝑡; f); 

While xnew≠ xGoal do 

xrand ← random.state(); 

xnear ← nearest.neighbor(xrand; T ); 

u ← select.input(xrand; xnear); 

xnew ← new.state.OCP (OCPi; u; ∆𝑡; f); 

T.add.vertex(xnew); 

T.add.edge(xnear; xnew; u); 

end  

return T; 
 

Function new.state.OCP (OCPi;u; ∆𝑡; f)  
Set POCPi , Set Prand 

p←uniform_rand[0..1] 

if    0 < p < POCPi 

       return xnew = f(OCPi,u,∆𝑡); 

else  

      if POCPi < p < Prand+ POCPi 

then 

       return RandomState(); 

end. 

 

Parrot Ground SDK includes software development suite 

that provides a tool for developers to communicate and 

control with Parrot drones that uses AR.SDK3 framework, 

e.g., Mambo, Bebop, Disco, and Anafi. It also includes a 

simulator platform called Sphinx, built on Gazebo platform, 

with Parrot drones not just as models but with full featured 

firmware that are similar to the ones on the equivalent 

physical drones. This allows developers to fully test and 

debug their programs with real firmware feedback from a 

drone in mid-flight without the risk of injury or damages to 

equipment. 

Ground SDK also provides a python wrapper called 

Olympe, to easily control drone objects. We preferred a third-

party implementation named pyparrot, which is better 

documented and fully open-sourced, so it would be easier to 

add or change functionality to my needs. 

A. ArUco Markers  

The first problem we had to deal with, involves detection 

and identification of the landing pad. Afterword, we had to 

gather all planar information to pass to the decision 

mechanism for processing. 

In order to simplify detection and get a fast and robust 

identification and planar information of the target, we used 

AR-tags on a specially designed landing pad. 

Specifically, the use of off-the-shelf open source ArUCO 

seem to be a simple solution (other implementations of AR-

tags, e.g., APRIL-TAGS may be suitable as well). 

Implementation of ArUco marker detection exists in open-

source library OpenCV, available for c/c++ and python. In 

order to get the marker real-world coordinates, we need the 

projection matrix of the camera and the distortion coefficients 

vector. To get these parameters a calibration is needed to be 

done once, then it could be loaded through a configuration 

file. The calibration process also available in OpenCV 

documentation, using a printed checkboard of known 

dimensions, and about twenty shots in different orientations 

and locations across the screen. 

We incorporate different marker sizes to be able to detect 

markers in different distances from the target landing pad and 

follow the tags. ArUco Markers also have tag ID encoded in 

them so we even know which tag we are seeing and thus what 

size it is or where it is located on the board. 

 
TABLE IV.  IMPROVEMENTS IN ACCURACY OF CLASSIFIERS 

 

B. Implementation 

To get control over a Bebop2 Drone, we found two python 

wrappers that we could use, and tested both of them. The first  

one comes with a Parrot Ground-SDK suite which includes 

the Sphinx Simulator, called Olympe. The Second wrapper 

pyparrot, originally developed for the Parrot Mambo, but 

now capable of controlling most of the newer generation 

Parrot drones. 

We decided to work with pyparrot due to two main 

reasons: 1. Olympe used a closed virtual environment that 

made it harder to install additional packages using pip. 2. 

pyparrot is an open source, making it easy to adapt and 

change to my needs, it also suggests two types of video 

handling class: the first one uses FFMPEG and the other 

opens SDP file with VLC on a separate thread. Both methods 

were slow and missed critical frames especially in SEARCH 

mode, when the camera rotates to find the target. Sometimes 

the video smeared so badly we could barely recognize the 

landing pad even when we knew where it was there. 

We changed the video handler to run on a separate thread 

(like the VLC option on pyparrot) only that in my 

Classifier type 
Best 

accuracy 

Before 

correction 

Improve

ment 

SGD, epsilon 

insensitive 
83.450% 57.341% 26.11% 

SGD, hinge 85.062% 75.716% 9.35% 

SGD, huber 81.876% 59.841% 22.04% 

SGD, log 86.175% 73.658% 12.52% 

SGD,  

modified huber 
86.131% 73.362% 12.77% 

SGD, squared 

eps. Insensitive 
82.019% 59.6% 22.42% 

SGD,  

squared hinge 
85.891% 73.857% 12.03% 

SGD, squared 

loss 
82.942% 57.171% 25.77% 

Perceptron 85.470% 74.579% 10.89% 

Bernoulli NB 81.664% 62.317% 19.35% 

Passive 

Aggressive 

Classifier 

84.041% 74.455% 9.59% 
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implementation we used standard OpenCV capturing module 

VideoCapture to open SDP file (contains IP, port, codec) for 

streaming coming from the drone or sphinx (depends on 

DRONE_IP parameter in the code), and another separate 

thread for the automation state machine that runs the different 

stages of this autonomous mission control and landing 

mechanism. 

For proof of concept, all experiments were simulated in 

Gazebo based Sphinx simulator without moving wave 

simulations, or any automated changes in landing-pad angles 

or position. The changes were made manually by rotating the 

pad during simulation when the drone was waiting to get a 

safe signal from either classifier or calculations.  

The experiment also did not simulate the use of “Return 

Home” functionality and assumed to start near target at about 

five meters in a random position. 

The drone starts to search around to get a visual of the 

landing pad, then fly to set exactly above while looking 

directly down (-90 degrees below horizon). 

Drone initiates with slow descend while keeping target in 

the middle of the frame, until reaches height of less than 

50cm. 

In this stage, decision mechanism under test should trigger 

“safe” when ArUco markers of the pad will be in a position 

that is regarded flat enough to be considered as safe. 

 In a preliminary experiment, we found that the classifier 

that we trained, could not get to a “safe” decision even when 

the landing pad was flat without any movements. Same 

classifier was tested with images from web-cam input seems 

to work fine, this could be issue caused by miscalibration of 

the camera. These inaccuracies cause ArUco functions that 

heavily relay on camera calibration, to produce different 

range of data relative to what the classifier was trained with 

(data from an OpenGL graphics drawn landing pad). This 

method should be further explored in future work. 

Simplified manual calculation that work directly on data 

from ArUco functions output, could also be easily 

recalibrated and adjustable to fit with data ranges of mis-

calibrated data. Finally, running full scenario of the 

experiment with landing pad on unsafe initial position got the 

drone flying above it and waiting, then manually flatten the 

landing pad, made the decision mechanism to trigger “safe” 

and send a landing command to the drone, which landed in 

the desired spot.  

 

VII. CONCLUSION AND FUTURE WORK 

    In this work we introduced a mechanism for autonomous 

landing a quadcopter in. The work focused to assist in the 

final stage of an autonomous mission, when drone returned 

to home, but still needs to find exact position of landing on 

the target and dealing with sea-level motion of the target. 

    In this study we developed a training simulator to create 

large data set of visual input, produced by OpenGL graphics 

in a controllable manner. 

    Also, we compared different types of trained classifiers to 

find best match to our particular data, and competed best 

classifier vs. direct observation and improvements as can be 

seen in Table IV.    

    For conclusion, the ArUco functions produce enough 

information regarding marker positions to be used manually 

and get a satisfying result for that manner. It is fast and robust 

and easily read to get a quick answer to whether it is safe or 

not, and the use of a classifier is not necessary. 
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