
Deep Learning Decision Making for

Autonomous Drone Landing in 3D Urban Environment

Oren Gal1,2 and Yerach Doytsher3
 1Department of Marine Technologies 2Kinneret Academic College 3Mapping and Geo-information Engineering

 University of Haifa Kinneret Technion - Israel Institute of Technology

 Haifa, Israel Israel Haifa, Israel

e-mails: {orengal@alumni.technion.ac.il, doytsher@technion.ac.il}

Abstract— Quadcopters are four rotor Vertical Take-Off and

Landing (VTOL) Unmanned Aerial Vehicle (UAV) with agile

manoeuvring ability, small form factor and light weight – which

makes it possible to carry on small platforms. Quadcopters are

also used in urban environment for similar reasons – especially

the ability to carry on small payloads, instead of using

helicopters on larger vehicle which are not possible in these

dense places. In this paper, we present a new approach for

autonomous landing a quadcopter in 3D urban environment,

where the first stage is based on free obstacle environment and

maximal visibility for the drone in the palled landing spot. Our

approach is based on computer-vision algorithms using markers

identification as input for the decision by Stochastic Gradient

Descent (SGD) classifier with Neural Network decision making

module with greedy motion planner avoiding static and

dynamic obstacles in the environment. We use OpenCV with its

built-in ArUco module to analyse the camera images and

recognize platform/markers, then we use Sci-Kit Learn

implementation of SGD classifier to predict landing optimum

angle and compare results to manually decide by simple

calculations. Our research includes real-time experiments using

Parrot Bebop2 quadcopter and the Parrot Sphinx Simulator.

Keywords - Swarm; Visibility; 3D; Urban environment;

autonomous landing.

I. INTRODUCTION AND RELATED WORK

 A Quadcopter is a specific type of a UAV, with four

rotors and Vertical takeoff and Landing (VTOL) capability,

its agility, light weight and size makes it a perfect companion

to smaller boats from sail-boats to even kayak, rather than

classic helicopters that accompany bigger ships or fixed-

wings airplanes on extremely large aircraft carriers.

The efficient computation of visible surfaces and

volumes in 3D environments is not a trivial task. The visibility

problem has been extensively studied over the last twenty

years, due to the importance of visibility in GIS and

Geomatics, computer graphics and computer vision, and

robotics. Accurate visibility computation in 3D environments

is a very complicated task demanding a high computational

effort, which could hardly have been done in a very short time

using traditional well-known visibility methods [1].

The exact visibility methods are highly complex, and

cannot be used for fast applications due to their long

computation time. Previous research in visibility computation

has been devoted to open environments using DEM models,

representing raster data in 2.5D (Polyhedral model), and do

not address, or suggest solutions for, dense built-up areas.

Most of these works have focused on approximate

visibility computation, enabling fast results using

interpolations of visibility values between points, calculating

point visibility with the Line of Sight (LOS) method. Lately,

fast and accurate visibility analysis computation in 3D

environments.

 A vast number of algorithms have been suggested for

speeding up the process and reducing computation time.

Franklin evaluates and approximates visibility for each cell in

a DEM model based on greedy algorithms. Wang et al.

introduced a Grid-based DEM method using viewshed

horizon, saving computation time based on relations between

surfaces and the line of sight (LOS method). Later on, an

extended method for viewshed computation was presented,

using reference planes rather than sightlines.

 One of the most efficient methods for DEM visibility

computation is based on shadow-casting routine. The routine

cast shadowed volumes in the DEM, like a light bubble.

Extensive research treated Digital Terrain Models (DTM) in

open terrains, mainly Triangulated Irregular Network (TIN)

and Regular Square Grid (RSG) structures. Visibility analysis

in terrain was classified into point, line and region visibility,

and several algorithms were introduced, based on horizon

computation describing visibility boundary.

 In the many uses of UAV (Unmanned Aerial Vehicle) a

pilot uses real-time telemetry to take-off, fly and land the craft

with continuous communication between ground station and

the UAV on-board computer. Making these tasks

autonomous, will allow UAVs to perform missions without

continuous communication, and thus prevent hijack or

damage by hackers, be more stealth for surveillance and have

unlimited distance from ground station (bound to energy

limitation).

224

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Autonomous landing of a UAV is a problem on the focus

of many studies [6][7][8] and landing on marine vessel makes

this problem even more complex due to sea level motion that

also occur when target platform is at stand-still.

The object of this research is to produce a safe landing

mechanism for a quadcopter in 3D urban environment, in

order to allow it to perform fully autonomous missions carried

out at sea. Also, this mechanism could be used in pilot guided

missions, as guideline suggestions to the pilot with how/when

it is safe to land .

We assume the target position is known and Ground Station

sets “home” position in the drone to be target’s GPS position.

Then the Bebop2 built-in “Return Home” function will bring

it to the target, with up to a few meters off.

The proposed mechanism will perform the following tasks

to achieve a "safe landing" decision: First, we need to visually

search for and recognize the platform target and find the

docking area. Once the target is found, the drone should set

course and fly to target to be exactly above. Then, we detect

and analyze the position of the landing surface and its plane

angle relative to the camera. And finally, we will send the data

to each of two implementations of the decision algorithms: 1.

Using a supervised machine-learning classifier (pre-loaded

with data), The machine input requires a quick pre-processing

to set the data into a fixed structure vector, to resemble fitted

data in the classifier. 2. Calculating directly from the data

returned from the ArUco detection functions. The drone will

then land safely on the boat, by sending a “land” command on

time.

The problem of autonomous landing an UAV was on the

focus of many studies as the survey review state-of-the art

methods of vision-based autonomous landing, for a wide

range of UAV classes from fixed-wing to multi-rotors and

from large-scale aircrafts to miniatures. The main motivation

for dealing with autonomous landing is the difficulty in

performing a successful landing even with a pilot controlling

the UAV. As it seems by statistics showed in [5], most of the

accidents related to Remotely Piloted Aircraft Systems

(RPAS) occur when the pilot tries to land the UAV.

 Extensive research has been done on the subject to explore

the various situations, technologies and methods to engage

this problem. The work performed on previous studies,

reviewed later in this section, is a great starting point for this

project, as it is purely academic and relays on series of already

existent technologies and tools, such as OpenCV [4], Sci-kit

learn and the Parrot Ground SDK [2].

Figure 1. Proposed autonomous landing mechanism

In the following sections, we first introduce an overview

of 3D models and extended the 3D visible volumes analysis.

In the next section, we present the autonomous navigation

process based on our fast visibility analysis with training data

and classifier as can be seen in Figure 1. Later, we present the

simulation based on our 3D visible volumes analysis.

II. AUTONOMOUS NAVIGATION PROCESS

 The basic step starting this process related to obstacle

avoidance and visible area described in the next sections.

Following that, we divide the autonomous navigation mission

into two separate problems. The first part deals with

navigating UAV from an arbitrary position far from target, as

far field. The second part is related to navigating to the target

in the near field where the target is visible.

 In the first scenario, which is when the mission objectives

are reached and the drone needs to get to the target vessel for

landing, we can use the built-in functionality of the drone to

“Return Home” by setting it “Home” position to the target’s

known GPS position.

 Bebop2 “Return Home” function works in a way that it

will lift the drone to 20m above ground relative to take-off

position, then fly directly to GPS position of “Home” and

descend to 2m. Notice that if the drone is starting at height of

more than 20m it will not descend to 20m, but rather keep its

height until final descend near “Home”.

 The “Return Home” accuracy brings the drone to “Home”

sometimes with offset of a few meters. This is good enough to

get us to the second problem of navigation with visual distance

to the target, until the drone will be directly above target and

ready for landing.

 Once the drone is at “Home” position, it will rotate and

with each full rotation the tilt angle will increase to look

further below, and if after rotating and tilting to the maximum

of -90 degrees to the horizon, i.e., directly down, it will try

again at higher altitude (1m up) to maybe see further away.

After getting a visual identification the drone will set

course, keeping the target in the middle of the screen, and

moving forward to it, tilting the camera during the movements

until the landing pad is directly below. According to that,

landing pad located in the middle of the image and camera tilt

is maximum.

Then the drone will lower altitude to ~50cm while keeping

the landing pad centered underneath, and in that height the

data from the AR tags will be converted to a vector of

predefined structure to feed a classifier trained to detect

optimum landing angle/position. Once the classifier gives

“Safe” signal – a “Land” command will issue to the drone to

perform immediately.

III. FAST AND APPROXIMATED VISIBILITY ANALYSIS

In this section, we present an analytic analysis of the

visibility boundaries of planes, cylinders and spheres for the

predicted scene presented in the previous sub-section, which

leads to an approximated visibility.

Search Platform Fly To Target
Identify Landing

Area

Descend Close
To Target

Analyze Plane
Angular Position

Decide:

If Safe - Land

225

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Analytic 3D Visible Volumes Analysis

In this section, we present fast 3D visible volumes analysis

in urban environments, based on an analytic solution which

plays a major role in our proposed method of estimating the

number of clusters. We present an efficient solution for visible

volumes analysis in 3D.

We analyze each building, computing visible surfaces and

defining visible pyramids using analytic computation for

visibility boundaries. For each object we define Visible

Boundary Points (VBP) and Visible Pyramid (VP).

A simple case demonstrating analytic solution from a

visibility point to a building can be seen in Figure 2(a). The

visibility point is marked in black, the visible parts colored in

red, and the invisible parts colored in blue where VBP marked

with yellow circles.

 (a) (b)

Figure 2. (a) Visibility Volume Computed with the Analytic Solution. (b)

Visible Pyramid from a Viewpoint (marked as a Black Dot) to VBP of a

Specific Surface

In this section, we introduce our concept for visible

volumes inside bounding volume by decreasing visible

pyramids and projected pyramids to the bounding volume

boundary. First, we define the relevant pyramids and volumes.

The Visible Pyramid (VP): we define VPi
j=1..Nsurf(x0, y0,

z0) of the object i as a 3D pyramid generated by connecting

VBP of specific surface j to a viewpoint V(x0, y0, z0).

In the case of a box, the maximum number of Nsurf for a

single object is three. VP boundary, colored with green

arrows, can be seen in Figure 2(b).

For each VP, we calculate Projected Visible Pyramid

(PVP), projecting VBP to the boundaries of the bounding

volume S.

Projected Visible Pyramid (PVP) - we define

PVPi
j..Nsurf(x0, y0, z0) of the object i as 3D projected points to

the bounding volume S, VBP of specific surface j trough

viewpoint V(x0, y0, z0). VVP boundary, colored with purple

arrows, can be seen in Figure 3.

The 3D Visible Volumes inside bounding volume S, VVS,

computed as the total bounding volume S, VS, minus the

Invisible Volumes IVS . In a case of no overlap between

buildings, IVS is computed by decreasing the visible volume

from the projected visible volume, ∑ ∑ (V(PVPi
j
) −

Nsurf
j=1

Nobj

i=1

V(VPi
j
)).

By decreasing the invisible volumes from the total

bounding volume, only the visible volumes are computed, as

seen in Figure 4. Volumes of VPV and VP can be simply

computed based on a simple pyramid volume geometric

formula.

Figure 3. Invisible Projected Visible Pyramid Boundaries colored with
purple arrows from a Viewpoint (marked as a Black Dot) to the boundary

surface ABCD of Bounding Volume S

In a case of two buildings without overlapping, IVS

computed for each building, as presented above, as can be

seen in Figure 5.

Figure 4. Invisible Volume V(PVPi
j
) − V(VPi

j
) Colored in Gray Arrows.

Decreasing Projected Visible Pyramid boundary surface ABCD of

Bounding Volume S from Visible Pyramid

Figure 5. Invisible Volume V(PVPi
j
) − V(VPi

j
) Colored in Gray Arrows.

Decreasing Projected Visible Pyramid boundary surface ABCD of

Bounding Volume S from Visible Pyramid

Considering two buildings with overlap between object's

Visible Pyramids, as seen in Figure 6(a). In Figure 6(b), VP1
1

boundary is colored by green lines, VP2
1 boundary is colored

by purple lines and the hidden and Invisible Surface between

visible pyramids IS
VP1

i

VP2
i

 is colored in white.

226

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Invisible Hidden Volume (IHV) - We define Invisible

Hidden Volume (IHV), as the Invisible Surface (IS) between

visible pyramids projected to bounding box S.

For example, IHV in Figure 6(c) is the projection of the

invisible surface between visible pyramids colored in white,

projected to the boundary plane of bounding box S.

In the case of overlapping buildings, by computing

invisible volumes 𝐼𝑉𝑆 , we decrease IHV twice between the

overlapped objects, as can be seen in Figure 6(c), IHV

boundary points denoted as {A11, . . , A18}. The same scene is

presented in Figure 7, where Invisible Volume V(PVPi
j
) −

V(VPi
j
) is colored in purple and green arrows for each

building.

 (a) (b)

(c)

Figure 6. (a) Computing Hidden Surfaces between Buildings , VP2
1 Base

Plane, IS
VP1

i

VP2
i

 (b) The Two Buildings - VP1
1 in green and VP2

1 in Purple

(from the Viewpoint) and IS
VP1

i

VP2
i

 in White (c) IHV boundary points colored

with gray circles denoted

The PVP of the object close to the viewpoint is marked in

black, colored with pink circles denoted as boundary set points

{B11 , . . , B18} and the far object's PVP is colored with orange

circles, denoted as boundary set points {C11, . . , C18}. It can be

seen that IHV is included in each of these invisible volumes,

where {A11, . . , A18} ∈ {B11 , . . , B18} and {A11, . . , A18} ∈
{C11, . . , C18}.

Therefore, we add IHV between each overlapping pair of

objects to the total visible volume.

The same analysis holds true for multiple overlapping

objects, adding the IHV between each two consecutive

objects.

In Figure 8, we demonstrate the case of three buildings

with overlapping. The invisible surfaces are bounded with

dotted lines, while the projected visible surfaces to the

overlapped building are colored in gray. In order to calculate

the visible volumes from a viewpoint, IHV between each two

buildings must be added as a visible volume, since it is already

omitted at the previous step as an invisible volume.

Figure 7. Invisible Volume V(PVPi
j
) − V(VPi

j
) colored in purple and green

arrows for each building. PVP of the object close to viewpoint colored in

black, colored with pink circles and the far object PVP colored with orange

circle

Figure 8. Three overlapping buildings. Invisible surfaces bounded with
dotted lines, projected visible surfaces of the overlap building colored in

gray

 In this part, we extend the previous visibility analysis

concept and include cylinders as continuous curves

parameterization .

Cylinder parameterization can be described in (1):

 , (1)

 We define the visibility problem in a 3D environment for

more complex objects as:

 (2)

ln (, ,)c dC x y z

ln

sin()

(, ,) cos()C d

r const

r

C x y z r

c

=

=

 _ max

0 2

1

0 peds

c c

c h

= +

co s co s 0 0 0'(,) ((,) (, ,)) 0
n t n tz zC x y C x y V x y z − =

227

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where 3D model parameterization is , and the

viewpoint is given as . Extending the 3D cubic

parameterization, we also consider the case of the cylinder.

Integrating (1) to (2) yields:

 (3)

(4)

 As can be noted, these equations are not related to Z axis,

and the visibility boundary points are the same for each x-y

cylinder profile, as seen in (3), (4). .

 The visibility statement leads to complex equation, which

does not appear to be a simple computational task. This

equation can be efficiently solved by finding where the

equation changes its sign and crosses zero value; we used

analytic solution to speed up computation time and to avoid

numeric approximations. We generate two values of

generating two silhouette points in a very short time

computation. Based on an analytic solution to the cylinder

case, a fast and exact analytic solution can be found for the

visibility problem from a viewpoint.

 We define the solution presented in (4) as x-y-z

coordinates values for the cylinder case as Cylinder

Boundary Points (CBP). CBP, defined in (5), are the set of

visible silhouette points for a 3D cylinder, as presented in

Figure 9:

(5)

 (a) (b)

Figure 9. Cylinder Boundary Points (CBP) using Analytic Solution marked

as blue points, Viewpoint Marked in Red: (a) 3D View (Visible Boundaries

Marked with Red Arrows); (b) Topside View.

In the same way, sphere parameterization can be described as

formulated in (6):

 (6)

We define the visibility problem in a 3D environment for this

object in (7):

 (7)

where the 3D model parameterization is , and the

viewpoint is given as . Integrating (6) to (7)

yields:

 (8)

Where r is defined from sphere parameter, and

are changes from visibility point along Z axis, as described in

(8). The visibility boundary points for a sphere, together with

the analytic solutions for planes and cylinders, allow us to

compute fast and efficient visibility in a predicted scene from

local point cloud data, which are updated in the next state.

This extended visibility analysis concept, integrated with

a well-known predicted filter and extraction method, can be

implemented in real time applications with point clouds data.

IV. VISIBILITY-BASED DRONE AUTONOMOUS LANDING

The landing pad designed as a plate with five markers –

one in the center and four others on each corner:

Figure 10. Landing pad with fiducial markers

Every ArUco marker has an ID as described in Figure 10,

which can be determined when the marker gets detected, and

(,)z constC x y =

0 0 0(, ,)V x y z

sincos

sin cos 0

0

x

y

z

r Vr

r r V

c V

 −

− − =
 −

_

_ _ _

1 1 1

1.. 2 0 0 0

, ,
(, ,)

, ,PBP bound

PBP bound PBP bound PBP bound

i N
N N N

x y z
CBP x y z

x y z= =

=

sin cos

(, ,) sin sin

cos

0

0 2

Sphere

r const

r

C x y z r

r

=

=

0 0 0'(, ,) ((, ,) (, ,)) 0C x y z C x y z V x y z − =

(, ,)C x y z

0 0 0(, ,)V x y z

0 0 0(, ,)V x y z

228

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

by that we can easily center the drone location above the

landing pad even if only one or two markers are in view.

This landing pad has markers with ID values of {18,28,

17,25,4} selected randomly, but once selected they are very

important to the implementation since the training data

linked to the classifiers used as will be discussed later.

The proposed system takes each frame, and resolve all

markers, then create a data vector of fixed length with all the

necessary information of the markers.

Data format for each marker can be described as: [ID, rx,

ry, rz, tx, ty, tz],

Where [

𝑟𝑥

𝑟𝑦

𝑟𝑧

] is the rotation vector of a single marker and

[

𝑡𝑥

𝑡𝑦

𝑡𝑧

] is the translation vector of that marker. This format

repeats five times in each vector, where a tag ID has a fixed

position for each tag. When a marker could not be found on

a frame, the tag ID and all values of that marker will be set to

zero.

Then send this vector to a classifier which will simply

return strings telling us if the drone is centered above the

landing pad or a correction movement is required. Possible

answers are in the set: “CENTER”, “DOWNWARD”,

“FORWARD”, “RIGHT”, “LEFT”.

For the Navigation we added more ArUCO tags

surrounding this pad, in three sizes, so that they will be visible

from varying distances along the navigation and descend

process of the mechanism.

We used eight large tags, each surrounded by four medium

tags and in between another five small tags as seen in Figure

11. The landing pad is printed on A4 page. And each of the

eight patterns described here is also on an A4 page.

Figure 11. Navigation Assisting Tag Board Design

A. Training Data and Classifiers

In order to train the classifier, we used OpenGL as can be

seen in Figure 12 to simulate the landing pad in a precisely

controlled position and viewing angles. By that, we created a

labeled data set, then use this precisely labeled data to fit in a

variety of classifiers and test for accuracy. Following that, we

tested several classifiers and selected the best performance

for the purpose of the landing mechanism proposed.

Figure 12. OpenGL Simulation for Training Data

The simulated platform rotating in roll, pitch and yaw -

controlled by passing parameters, allowing me to tag every

rendered frame as either safe for landing or not without visual

computation (pre-label the data).

The simulator gets parameters from command line for

setting some axis angle to run on a limited range, while

rolling over all possible values of angles and positions, so the

workload could be divided to parallel processes and even run

on different machines.

After a few days running on several computers in parallel,

the simulators generated a total of 15,193,091 vectors dataset,

that could be used as training dataset for different models of

classifiers.

Sci-Kit Learn package implements SVM with a fit

function that takes labeled data as input in two variables: Y

vector of y labels in a single column and X array of x vectors

– each x vector is a line vector corresponds to the appropriate

y in Y.

SVM does not allow incremental learning, i.e., it needs all

data at once. This was quit an issue with the data size we tried

to fit – fifteen million vectors. However, Sci-Kit Learn offers

other types of classifiers, although all of them do not perform

actual incremental learning (they do need all data at once),

nonetheless, they do implement a partial fit function that can

take each round a small portion of the data, and update the

classifier’s support vectors.

For each classifier, we tried different parameters, and

different sizes of the dataset by selecting randomly a fraction

of the data. Then, test the model (using 25% of the data for

test) to check it prediction accuracy.

TABLE I. CLASSIFIERS ACCURACY COMPARISSION

Classifier Type Best accuracy

SGD, epsilon insensitive 57.341%

SGD, hinge 75.716%

SGD, huber 59.841%

SGD, log 73.658%

SGD, modified huber 73.362%

SGD, squared eps. insensitive 59.6%

SGD, squared hinge 73.857%

SGD, squared loss 57.171%

Perceptron 74.579%

Bernoulli NB 62.317%

Passive Aggressive Classifier 74.455%

229

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The result in Table I shows that even the best classifier got

only approximately 75% success in recall. This is insufficient

for a safety mechanism even with filters added to the process

of a final “safe” decision.

To further increase accuracy, we thought it would be more

effective to use more than one classifier, in a voting manner,

to decide together on the data. At first, we suggested a voting

scheme that takes 10-15 of the best classifiers and check if

more than 50% of them agree on a "safe" result, take that as

the answer, we checked that over the data and results did not

increase accuracy at all. Then we thought maybe a classifier

of classifiers outputs could extract some new information in

a smarter manner than a simple voting, and will help increase

accuracy. We created a new dataset of the same size, only this

time the vector consisted of zero for safe and one for unsafe

result of a classifier over fifteen of the best classifiers (72%-

75% accuracy) and trained this dataset on all types of

classifiers with different parameters as before. This time, all

classifiers listed above got around 76% accuracy, where the

best classifier reached 76.8% accuracy. Approximately 2%

improvement.

Finally, looking closely on live videos of the ArUco

markers detections, we noticed that the axis drawn on the

detected markers tend to shift rapidly usually around more

“safe” angles, so we tried to manually correct the data, and

remove some of the spiking data that is tagged as safe – i.e.,

the simulator created it as a safe angle, but detection errors

made it as a vector that should rather be tagged as unsafe.

All data marked as safe, with “Z” axis angle in all detected

markers, re-tag as unsafe, if a certain threshold is passed.

Before rectifying the dataset consisted of about 50% safe

labels. This method reduced the number of “safe” tagged

vector to about 20% of the data.

Fitting this new retagged dataset to all models as before,

and testing again for accuracy, results improvements shown

in details reported in Table III. The results improved

drastically.

Best classifier selected for the mechanism is SGD

(Stochastic Gradient Descend) with loss parameter set to

logarithmic. This classifier showed 86% percent accuracy,

which could be used with some filtering to suppress false

alarm rate even more.

V. SPATIAL RAPID RANDOM TREES

In this section, the Rapid Random Trees (RRT) path

planning technique is briefly introduced with spatial

extension, which is the basic motion planning drone

algorithm. RRT is dealing with high-dimensional spaces by

taking into account dynamic and static obstacles including

dynamic and non-holonomic robots' constraints.

The main idea is to explore a portion of the space using

sampling points in space, by incrementally adding new

randomly selected nodes to the current tree's nodes.

RRTs have an (implicit) Voronoi bias that steers them

towards yet unexplored regions of the space. However, in case

of kinodynamic systems, the imperfection of the underlying

metric can compromise such behavior. Typically, the metric

relies on the Euclidean distance between points, which does

not necessarily reflect the true cost-to-go between states.

Finding a good metric is known to be a difficult problem.

Simple heuristics can be designed to improve the choice of the

tree state to be expanded and to improve the input selection

mechanism without redefining a specific metric.

A. RRT Stages

The RRT method is a randomized one, typically growing

a tree search from the initial configuration to the goal,

exploring the search space. These kinds of algorithms consist

of three major steps:

1. Node Selection: An existing node on the tree is chosen

as a location from which to extend a new branch.

Selection of the existing node is based on probabilistic

criteria such as metric distance.

2. Node Expansion: Local planning applied a generating

feasible motion primitive from the current node to the

next selected local goal node, which can be defined by a

variety of characters.

3. Evaluation: The possible new branch is evaluated based

on cost function criteria and feasible connectivity to

existing branches.

These steps are iteratively repeated, commonly until the

planner finds feasible trajectory from start to goal

configurations, or other convergence criteria.

Figure 13. The RRT algorithm: (A) Sampling and node selection steps;

(B) Expansion step.

A simple case demonstrating the RRT process is shown in

Figure 13. The sampling step selects Nrand, and the node

selection step chooses the closest node, Nnear, as shown in

Figure 13.A. The expansion step, creating a new branch to a

new configuration, Nnew, is shown in Figure 13.B. An example

for growing RRT algorithm is shown in Figure 14.

Figure 14. Example for growing RRT algorithm.

230

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Spatial RRT Formulation

We formulate the RRT planner and revise the basic RRT

planner for a 3D spatial analysis case for a continuous path

from initial state xinit to goal state xgoal:

1. State Space: A topological space, X.

2. Boundary Values:
initx X and

goalx X .

3. Free Space: A function : { , }D X true false→ that determines

whether () freex t X where
freeX consist of the attainable

states outside the obstacles in a 3D environment.

4. Inputs: A set, U, contains the complete set of attainable

 control efforts ui, that can affect the state.

5. Incremental Simulator: Given a current state, ()x t , and

input over time interval t , compute ()x t t+ .

6. 3D Spatial Analysis: A real value function, f (x; u, OCPi)

which specifies the cost to the center of 3D visibility

volumes cluster points (OCP) between a pair of points in

X .

C. Spatial RRT Formulation

We present a revised RRT pseudo code described in Table

II, for spatial case generating trajectory T, applying K steps

from initial state xinit. The f function defines the dynamic

model and kinematic constraints, �̇� = f (x; u, OCPi), where u

is the input and OCPi set the next new state and the feasibility

of following the next spatial visibility clustering point.

TABLE II. SPATIAL RRT PSEUDO CODE

Generate Spatial RRT (xinit; K; ∆𝑡)

T.init (xinit);

For k = 1 to K do

 xrand ← random.state();

 xnear ← nearest.neighbor (xrand; T);

 u ← select.input (xrand; xnear);

 xnew ← new.state (xnear; u; ∆𝑡; f);

 T.add.vertex (xnew);

 T.add.edge (xnear; xnew; u);

End

Return T

D. Search Method

Our search is guided by following spatial clustering points

based on 3D visible volumes analysis in 3D urban

environments, i.e., Optimal Control. The cost function for

each next possible node (as the target node) consists of

probability to closest OCP, POCPi , and probability to random

point, Prand .

In case of overlap between a selected node and obstacle in

the environment, the selected node is discarded, and a new

node is selected based on POCPi and Prand.

E. STP Planner Pseudo-Code

We present our STP planner pseudo code described in

Table III, for spatial case generating trajectory T with search

space method presented above. The search space is based on

POCPi and Prand. We apply K steps from initial state xinit. The f

function defines the dynamic model and kinematic

constraints, ẋ = f (x; u), where u is the input and OCPi are

local target points between start to goal states.

Figure 15. STP Search Method: (A) Start and Goal Points; (B) Explored

Space to the Goal Through OCP

F. Completeness

Motion-planning and search algorithms commonly

describe 'complete planner' as an algorithm that always

provides a path planning from start to goal in bounded time.

For random sampling algorithms, 'probabilistic complete

planner' is defined as: if a solution exists, the planner will

eventually find it by using random sampling. In the same

manner, the deterministic sampling method (for example,

grid-based search) defines completeness as resolution

completeness.

Sampling-based planners, such as the STP planner, do not

explicitly construct search space and the space's boundaries,

but exploit tests with preventing collision with obstacles and,

in our case, taking spatial considerations into account.

Similarly, to other common RRT planners, which share

similar properties with the STP planner, our planner can be

classified as a probabilistic complete one.

VI. SIMULATIONS

The quadcopter we used in this research is a Parrot Bebop2

drone. It is a GPS drone with full HD 1080p wide-angle video

camera with 3-axis digital stabilization, that can also take

14MB still pictures.

Bebop2 has GPS guided Return Home feature, strong 6”

propellers, long rage communication (with WiFi extender or

Skycontroller remote), which makes it suitable for a windy

outdoors flight.

The Bebop2 drone uses seven different sensors

simultaneously to keep it stable and produce an extremely

stabilized video even when the drone makes tiny maneuvers

to keep itself in place, the apparent view to the user looks like

the drone is in fixed position as if it was hanging on a crane.

Also, there are no moving parts when we pan/tilt the camera,

it is done entirely by changing the relevant pane in the full

fisheye image.

Goal Goal

OCPOCP

A) B)

231

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III. STP PLANNER PSEUDO CODE

STP Planner (xinit; xGoal ;K; ∆𝑡; OCP)
T.init (xinit);

xrand ← random.state();

xnear ← nearest.neighbor(xrand; T);

u ← select.input(xrand; xnear);

xnew ← new.state.OCP (OCP1; u; ∆𝑡; f);

While xnew≠ xGoal do

xrand ← random.state();

xnear ← nearest.neighbor(xrand; T);

u ← select.input(xrand; xnear);

xnew ← new.state.OCP (OCPi; u; ∆𝑡; f);

T.add.vertex(xnew);

T.add.edge(xnear; xnew; u);

end

return T;

Function new.state.OCP (OCPi;u; ∆𝑡; f)
Set POCPi , Set Prand

p←uniform_rand[0..1]

if 0 < p < POCPi

 return xnew = f(OCPi,u,∆𝑡);

else

 if POCPi < p < Prand+ POCPi

then

 return RandomState();

end.

Parrot Ground SDK includes software development suite

that provides a tool for developers to communicate and

control with Parrot drones that uses AR.SDK3 framework,

e.g., Mambo, Bebop, Disco, and Anafi. It also includes a

simulator platform called Sphinx, built on Gazebo platform,

with Parrot drones not just as models but with full featured

firmware that are similar to the ones on the equivalent

physical drones. This allows developers to fully test and

debug their programs with real firmware feedback from a

drone in mid-flight without the risk of injury or damages to

equipment.

Ground SDK also provides a python wrapper called

Olympe, to easily control drone objects. We preferred a third-

party implementation named pyparrot, which is better

documented and fully open-sourced, so it would be easier to

add or change functionality to my needs.

A. ArUco Markers

The first problem we had to deal with, involves detection

and identification of the landing pad. Afterword, we had to

gather all planar information to pass to the decision

mechanism for processing.

In order to simplify detection and get a fast and robust

identification and planar information of the target, we used

AR-tags on a specially designed landing pad.

Specifically, the use of off-the-shelf open source ArUCO

seem to be a simple solution (other implementations of AR-

tags, e.g., APRIL-TAGS may be suitable as well).

Implementation of ArUco marker detection exists in open-

source library OpenCV, available for c/c++ and python. In

order to get the marker real-world coordinates, we need the

projection matrix of the camera and the distortion coefficients

vector. To get these parameters a calibration is needed to be

done once, then it could be loaded through a configuration

file. The calibration process also available in OpenCV

documentation, using a printed checkboard of known

dimensions, and about twenty shots in different orientations

and locations across the screen.

We incorporate different marker sizes to be able to detect

markers in different distances from the target landing pad and

follow the tags. ArUco Markers also have tag ID encoded in

them so we even know which tag we are seeing and thus what

size it is or where it is located on the board.

TABLE IV. IMPROVEMENTS IN ACCURACY OF CLASSIFIERS

B. Implementation

To get control over a Bebop2 Drone, we found two python

wrappers that we could use, and tested both of them. The first

one comes with a Parrot Ground-SDK suite which includes

the Sphinx Simulator, called Olympe. The Second wrapper

pyparrot, originally developed for the Parrot Mambo, but

now capable of controlling most of the newer generation

Parrot drones.

We decided to work with pyparrot due to two main

reasons: 1. Olympe used a closed virtual environment that

made it harder to install additional packages using pip. 2.

pyparrot is an open source, making it easy to adapt and

change to my needs, it also suggests two types of video

handling class: the first one uses FFMPEG and the other

opens SDP file with VLC on a separate thread. Both methods

were slow and missed critical frames especially in SEARCH

mode, when the camera rotates to find the target. Sometimes

the video smeared so badly we could barely recognize the

landing pad even when we knew where it was there.

We changed the video handler to run on a separate thread

(like the VLC option on pyparrot) only that in my

Classifier type
Best

accuracy

Before

correction

Improve

ment

SGD, epsilon

insensitive
83.450% 57.341% 26.11%

SGD, hinge 85.062% 75.716% 9.35%

SGD, huber 81.876% 59.841% 22.04%

SGD, log 86.175% 73.658% 12.52%

SGD,

modified huber
86.131% 73.362% 12.77%

SGD, squared

eps. Insensitive
82.019% 59.6% 22.42%

SGD,

squared hinge
85.891% 73.857% 12.03%

SGD, squared

loss
82.942% 57.171% 25.77%

Perceptron 85.470% 74.579% 10.89%

Bernoulli NB 81.664% 62.317% 19.35%

Passive

Aggressive

Classifier

84.041% 74.455% 9.59%

232

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

implementation we used standard OpenCV capturing module

VideoCapture to open SDP file (contains IP, port, codec) for

streaming coming from the drone or sphinx (depends on

DRONE_IP parameter in the code), and another separate

thread for the automation state machine that runs the different

stages of this autonomous mission control and landing

mechanism.

For proof of concept, all experiments were simulated in

Gazebo based Sphinx simulator without moving wave

simulations, or any automated changes in landing-pad angles

or position. The changes were made manually by rotating the

pad during simulation when the drone was waiting to get a

safe signal from either classifier or calculations.

The experiment also did not simulate the use of “Return

Home” functionality and assumed to start near target at about

five meters in a random position.

The drone starts to search around to get a visual of the

landing pad, then fly to set exactly above while looking

directly down (-90 degrees below horizon).

Drone initiates with slow descend while keeping target in

the middle of the frame, until reaches height of less than

50cm.

In this stage, decision mechanism under test should trigger

“safe” when ArUco markers of the pad will be in a position

that is regarded flat enough to be considered as safe.

 In a preliminary experiment, we found that the classifier

that we trained, could not get to a “safe” decision even when

the landing pad was flat without any movements. Same

classifier was tested with images from web-cam input seems

to work fine, this could be issue caused by miscalibration of

the camera. These inaccuracies cause ArUco functions that

heavily relay on camera calibration, to produce different

range of data relative to what the classifier was trained with

(data from an OpenGL graphics drawn landing pad). This

method should be further explored in future work.

Simplified manual calculation that work directly on data

from ArUco functions output, could also be easily

recalibrated and adjustable to fit with data ranges of mis-

calibrated data. Finally, running full scenario of the

experiment with landing pad on unsafe initial position got the

drone flying above it and waiting, then manually flatten the

landing pad, made the decision mechanism to trigger “safe”

and send a landing command to the drone, which landed in

the desired spot.

VII. CONCLUSION AND FUTURE WORK

 In this work we introduced a mechanism for autonomous

landing a quadcopter in. The work focused to assist in the

final stage of an autonomous mission, when drone returned

to home, but still needs to find exact position of landing on

the target and dealing with sea-level motion of the target.

 In this study we developed a training simulator to create

large data set of visual input, produced by OpenGL graphics

in a controllable manner.

 Also, we compared different types of trained classifiers to

find best match to our particular data, and competed best

classifier vs. direct observation and improvements as can be

seen in Table IV.

 For conclusion, the ArUco functions produce enough

information regarding marker positions to be used manually

and get a satisfying result for that manner. It is fast and robust

and easily read to get a quick answer to whether it is safe or

not, and the use of a classifier is not necessary.

REFERENCES

[1] O. Gal and Y. Doytsher, “Autonomous Drone Landing in 3D

Urban Environment Using Real-Time Visibility Analysis,”
GEOProcessing 2023, The Fifteenth International Conference
on Advanced Geographic Information Systems, Applications,
and Services, pp. 67- 72, 2023.

[2] Parrot Inc., “developer.parrot.com,” 2020. [Online]. Available:
https://developer.parrot.com/docs/olympe/userguide.html.

[3] A. McGovern, “pyparrot github repository,” Jan. 2020.
[Online] https://github.com/amymcgovern/pyparrot.

[4] OpenCV, Open Source Computer Vision Library, 2015.

[5] K. Williams, “A Summary of Unmanned Aircraft
Accident/Incident Data: Human Factors Implications,” The
Federal Aviation Admistrator Oklahoma City, 2004.

[6] A. F. Cobo and F. C. Benıtez, “Approach for Autonomous
Landing on Moving Platforms based on computer vision,” The
International Journal of Computer Vision, vol 4., 2016.

[7] L. Daewon, R. Tyler, and K. H. Jin, “Autonomous landing of a
VTOL UAV on a moving platform using image-based visual
servoing,” IEEE International Conference on Robotics and
Automation, pp. 971-976, 2012.

[8] T. Merz, S. Duranti, and G. Conte, “Autonomous Landing of
an Unmanned Helicopter Based on Vision and Inertial
Sensing,” Experimental Robotics IX, pp. 343-352, 2006.

233

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

