

How little code is low-code? - Towards productivity

measures for the use of low-code development

platforms by business user developers

Olga Levina

Department of Business Management

Brandenburg University of Applied Sciences

Brandenburg an der Havel, Germany

email: olga.levina@th-brandenburg.de

Katharina Frosch

Department of Business Management

Brandenburg University of Applied Sciences

Brandenburg an der Havel, Germany

email: frosch@th-brandenburg.de

Abstract— Low code development platforms (LCDP) often

promise an easy and fast way to include data processing and

support into the otherwise non-digital process. This research

explores how to measure the productivity of low code

development to assess the effort needed for business users to

respond to their need for support via these tools. We chose

field experiments as a research method to evaluate the

feasibility and derive the metrics for software development

with LCDP by novices. The paper provides some insights on

how these measures can be implemented in practice, how to

support business unit developers to efficiently deliver

productive results, and how to evaluate LCDP-based

development processes.

Keywords- low code development platforms; software

development process; digital novices, productivity; performance

indicators

I. INTRODUCTION

Demand for data management solutions in a business
context, coupled with the challenge of modernizing legacy
systems is fueling the innovation of new software
development tools and methods. To create an application or
be productive in manual coding, the programmers need to
be skilled in specific programming languages. As skilled IT
staff is scarce, this development creates a positive
environment for the adoption of Low Code Development
Platforms (LCDPs). This paper builds on the findings by [1]
in the context of Business User Development of business
applications using LCDPs. While this previous research
explored the suitability of LCDPs to answer the data
management needs of business users and the platform’s
potential to provide them with a satisfactory development
tool turning business users into Business User Developers,
the expansion of this research focuses on the determination
of the productivity of the LCDP use in a specific business
software development project.

LCDPs promise an easy and fast possibility to include
data processing and support in the otherwise non-digital
process [2]. The terms “citizen developer” or “Business
Unit Developer” (BUD) [3] are often used in the LCDP

context to underline the potential of the software tools to
involve programming novices in the development of
solutions for their needs [4].

Low-code platforms abstain as far as possible from
using textual programming that requires manual coding and
offer instead visual or, less often, natural languages [5]. As
a result, developing applications using low-code
technologies is faster and may result in swifter delivery and
higher productivity [6]. Thus, this research addresses the
following research questions: How can the effort needed to
create an application with an LCDP by BUDs be assessed?
As well as, how can the effort for software development
using a programming language versus the development of
the same requirements using LCDPs be compared?

As LCDPs were shown by [1] to be a usable tool for
novices to address their digitalization needs, this research
expands this question and enriches the usage and
implementation of LCDPs by providing indicators for effort
assessment in the context of software development projects.

In particular, we suggest a metric for the evaluation of
LCDPs in terms of programming effort – the Low Code
Factor (LCF), which is defined as the number of actions
taken by the developers on the LCDP per use case. This
metric will allow an assessment of LCDPs in terms of their
effectiveness in fulfilling the digitization needs of the
BUDs. It is based on UCPA (Use Case Points Analysis) [7],
the effort assessment method for object-oriented software
development projects, which we extend by the user
interaction data with the LCDP.

As the research method, we use an experimental setting,
where software application requirements are derived and
documented by BUDs. Then we let BUDs create
applications using an open source LCDP Joget. Based on
LCDP activity logs, we evaluate the effort invested by
BUDs to develop an application with an LCDP. As a novel
contribution, we suggest LCF as a measure of BUD’s
productivity on the LCDP. A further metric, LCDPfit aims
to provide project managers with means for the assessment
of the project size and effort needed to complete the project.
Also, a cost-benefit calculation of the planned software

215

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

realization using the two different approaches (low code vs.
classic software development) can now be achieved.

The paper is structured as follows: First, we review the
current literature on how LCDPs are currently used in a
business context, and what methods are commonly used for
productivity assessment in software development. Then we
derive productivity measures, in particular the LCF, that we
then apply in our experimental setting. The results obtained
from the analysis lead to recommendations for
implementing LCDPs in a productive environment. We
close with a summary and outlook on future research.

II. RELATED WORK

A. Use of LCDP

The use of LCDPs in different business domains has
been increasingly the focus of research in the last few years.
Sanchis et al. [8] showed that rapidity and cost reduction
through intuitive development and management can be
attributed to the use of an LCDP in a manufacturing context.
Nowak et al. [9] showcase the usage of LCDPs in the
context of the internal logistics processes in a company
from the E-Commerce industry. This case study is meant to
display the use of LCDPs in the context of process
improvement as it allows for the direct elimination of found
limitations in processes. The authors argue that the
implementation of the IT support using LCDPs was
effective, i.e., an enhancement in terms of time and costs
needed for its realization.

Bies et al. [10] conducted a mixed-method study to
identify challenges and promising perspectives for digital
innovations in small and medium-sized enterprises (SMEs).
The authors found that the application areas of LCDPs are
mostly of a supportive nature such as the creation of
applications for resource management or the creation of
customized digital forms. Nevertheless, the majority of the
surveyed SMEs stated LCDPs to be of high to very high
relevance. Factors that diminish the relevance of low code
in SMEs are according to the authors: limited human
resources, as personnel is still necessary to develop and
maintain the application, knowledge transfer between the
platforms as well as training in dealing with IT structures
and detailed knowledge of the platforms.

Lethbridge [11] also explores the development process
of the software product as well as the aspects of
implementation and maintenance of the LCDP software
within the existing enterprise architecture. His findings
suggest that LCDPs create “technical debts” that can be
overcome by the development of the LCDP towards
“scaling, understandability, documentarily, usability,
vendor- independence and user experience for the
developers”. Hintsch et al. 2021 [12] also identify threats
and opportunities in the LCDP development concerning the
security and availability of the created applications.
Nevertheless, the authors also uncover success factors for
LCDP use in a business context by novices.

Kermanchi et al. [13] focus in their research on software
development methods and the use of LCDPs. In their
experiment, they explored the episodic experience with

different LCDPs among software developers with varying
levels of programming experience but no experience in the
specific LCDP. The findings show that previous
programming experience seems to have a significant impact
on developers' performance, experiences, and tool
preferences, yet most developers continue to have doubts
about the scalability and maintainability of applications
created with LCDPs. The opinions on the effectiveness of
the instruments vary among the participants.

Bernsteiner et al. [14] conduct expert interviews in their
research to investigate what skills developers with little or
no software development experience, i.e., novices, need to
successfully develop software on LCDPs. Several of the
interviewed experts mention that successfully developing
an LCDP solution requires at least basic programming
skills. This is in line with research findings stating that
LCDPs still require some prerequisites in software
development [15] or in database structures [16], which
hampers the adoption of LCDPs by non-programmers
without any further training.

Krejci et al. [16] report in a case study how non-IT
employees were involved in the process of digital
innovation while making efficient use of their IT resources.
These citizen developers, i.e., employees who are working
outside of the Information Technology (IT) department and
are not professional programmers, as users of LCDPs are
the focus of the analysis by Lebens et al. [17]. The authors
surveyed the use of LCDPs in organizations. The results
show that companies both large and small are making use
of low- and no-code platforms. Additionally, the majority
of the surveyed organizations have employees outside of the
IT department who are creating IT solutions.

Bock and Frank [18] provide a critical overview of the
LCPD features, architecture, and opportunities while
pointing out research directions for information systems
research in this domain. They state that although both
professional developers and citizen developers use LCDPs,
there is a lack of research on how to make LCDPs fit the
cognitive capabilities and personal working styles of these
two groups [p. 739]. This is in line with other studies
pointing out that successfully developing software on
LCDPs requires at least basic programming skills.

The use of development templates in the context of
software creation is analyzed by Boot et al. [19]. The
authors compare instructional software products made by
developers with low production experience and high
production experience, working with a template-based
authoring tool. The analysis showed that the technical and
authoring quality was equal for both groups, indicating that
templates enable domain specialists to participate
successfully in the production process. Research in agile
software development shows that projects based on the
Scrum methodology profit from having a coach on the team
[20]. The same is visible in software engineering education
[21].

BUDs and job crafting, i.e., proactive strategies to
improve work processes according to one’s own needs and
goals, are subjects of the analysis by Li et al. [3]. The
authors found that using LCDPs provides positive job

216

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

crafting consequences such as meaningfulness, for the
employees using these tools [3], [22]. In what follows, we
prefer to use the term BUDs instead of citizen developers,
stressing that they might make up for the lack of
programming skills with their large expertise in the
respective business domain. Nevertheless, the research does
not focus on the description of how much support was
needed for BUDs to finish their application.

In conclusion, in these first attempts to understand the
“human side” of LCDPs, research is still scarce concerning
acceptance and successful adoption by domain experts
outside corporate IT departments. We also lack information
on how effective (or productive) BUDs are in using LCDPs
to fulfill their own digital business needs.

B. Productivity assessment in software development

How widely LCDPs will be used in enterprise context

by BUDs without sound programming expertise might also
depend on the productivity they can achieve with the
respective tool.

 The concept of productivity in software development is
not new to the domain and has been studied from various
perspectives. However, there is still no consensus within
academic and industry circles, as some researchers argue
that using a single metric to measure productivity can lead
to problematic and misleading [6] assessments.

Hence, among the methods to assess productivity in
software development are lines of code [23]; function point
analysis [24]; and Use Case Points Analysis (UCPA).
UCPA was developed in the context of object-oriented
software development by Gustav Karner (see e.g., [7], [25])
and is similar to the function point analysis. We chose
UCPA in our study following [6] as it provides a way to
estimate the size and complexity of a software development
project early on, based solely on requirements [26]. UCPA
leverages use cases representing functional requirements as
its starting point. The resulting Use Case Points (UCP)
metric reflects the complexity of the project across three
dimensions - functional, technical, and environmental, i.e.,
considering the context of the project. Thus, UCPA allows
sizing and estimation of the effort required for a software
development project.

Hence, to assess productivity in a software development
project, we lend the definition from the economics
discipline and define software development productivity
simply as the ratio of outputs produced to the inputs
involved in that production, also following [6], [27], [28]
who use this definition in the software development
domain. In the context of application development, input is
defined as the time and activities invested in the
development and the output will be the implemented use
cases.

While UCPA presents a good tool for manual
programming effort assessment, it does not account for the
potential that the LCDPs are providing for the development
project.

Given the research activities in the areas of LCDP usage
in the business context, especially among BUDs, as well as
the nature of finding a digital solution to a business problem
being a software development project, the following
research questions are identified:

 RQ1: How can the effort needed to create an
application with LCDPs by BUDs be assessed?

 RQ2: How can the effort for software development
using a programming language versus the
development of the same requirements using an
LCDP be compared?

III. RESEARCH METHOD

To answer the research questions, experiments were set
up with the Master's students of Business Management and
Information Systems. The goal of the experiments was to
assess the effectiveness of the app development using the
LCDP Joget, which is described further in [1]. Therefore,
different scenarios requiring digital support were suggested
for the students for their implementation in the app, using
the LCDP. Based on the application design that was
documented in activity diagrams, user stories, and
mockups, as well as based on data logs from the experiment,
the productivity metric was derived.

A. Data collection based on field experiments

To gain evidence for answering our research questions,
we draw upon a field experiment where BUDs with little
prerequisites in software development build app prototypes
in the business domain of human resource management
(HRM) based on an LCDP given a finite time frame of a
few weeks. Overall, 13 HR apps have been developed.

The LCDP used for the experiment was Joget [29], an
open-source LCDP with the promise to easily build, run,
and maintain apps. A visual builder allows drag-and-drop
for pages, forms, views, data lists, menus, and a process
builder to automate workflows. It also offers user
management and role-based authentication. We used the
community edition that can be self-hosted at no license cost.

BUDs were Master's students of business management
with a specialization in human resources management (HR)
and Master's students of information systems management
(ISM). All of the ISM students had already taken at least
one course in advanced software engineering within their
Master's program at the time of the experiment but were far
from being experienced software developers. The HR
students had no previous expertise in software
development. None of the participants in either group was
familiar with or had heard of the LCDP selected for the
experiment. Figure 1 presents the data collection process
and the sequence of the experiments.

The experiment was divided into four self-contained
challenges with modified compositions of participants. The
challenges are described below.

217

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Process of the data collection in the field experiments

For the first two challenges, BUDs are Master's students

of business management with a specialization in HR (six
and 16 students, respectively). They sketched their app
concept and subsequently implemented it. In the third and
the fourth challenge master students of information systems
management (ISM) were provided with ready-prepared HR
app concepts and then asked to implement them (24 and
eight ISM students, respectively). The apps were from the
HR domain but otherwise differed in their content and
scope.

Challenge #1 was run with a few HR students as BUDs
(six) only, to have a pretest and check whether they are, at
all, able to use the LCDP to develop simple apps. The
pretest was run between April 21 and June 6, 2021 (47
days). To kick start app development BUDs were provided
with links to tutorials as well as with a basic app template
and a 30-minute video showing exemplarily how an app can
be built starting from this template. In this context, they
were also explicitly pointed to the open-source character of
app development in this setting, and about the possibility to
share and reuse app elements from other groups. In the
pretest, BUDs managed to develop apps but pointed out that
they would have enjoyed working in teams to solve
problems collaboratively. Furthermore, support from one
student who previously had graduated from a Bachelor's
program in software engineering and acted as an informal

coach for his fellow students has been acknowledged as
extremely helpful.

Based on the insights gained in the pretest, we recruited
the informal coach from challenge #1 to act as a formally
appointed coach in challenge #2 and decided to run
development in teams. For challenge #2 BUD teams (with
three to four HR students, 16 in total) developed their apps
within six weeks between November 1 and December 12,
2021 (42 days). The team members cooperated online, due
to the restrictions because of the COVID-19 pandemic.
Developers got the same kick start as in the pretest and were
also pointed towards the template and the possibility to
share and reuse apps. Furthermore, a coach with experience
in software development was available to get help with
questions on tool usage and minor development questions.

In Challenge #3, 24 BUDs in teams of four to seven ISR
students developed their apps between May 20 and June 7,
2022 (19 days). The first day of the development phase
(May 20, 2022) was organized as a face-to-face daylong
hackathon. The introductory video and tutorials were made
available beforehand, but no template or coach was
provided for the teams. During the development challenge,
two teams joined forces within the development process,
resulting in a seven-member team working on the
challenge.

Challenge #4 was a replica of challenge #3 with 8 ISM
students acting as BUDs, where one worked alone and the
others in teams of three or four students between May 24
and June 28, 2022 (36 days).

The effectiveness of using the LCDP to solve the
business needs for BUDs was described in [1]. In this
research, the focus is on the description of the productivity
metric for the project assessment as well as for the
assessment of the suitability of the LCDP for solving
business-related questions compared to the software
development using a programming language.

B. Measuring the coding effort on the LCDP

To evaluate efforts made by BUDs to develop their app,
the LCDP activity logs were archived and anonymized.
These data were used to calculate indicators to measure the
effort invested in app development based on the LCDP.
Note that there is no log data available for challenge #1. We
use the following indicators related to time spent on the
platform and the number of actions:

 Time on the platform (hours): Total time a
developer was active on the LCDP during the
developing stage. Based on the first and the last
action performed for each login identified, we can
compute the duration users are active per login. Idle
periods of 30 minutes or longer are omitted,
assuming that the user then has stopped developing.
Summing up yields the total time on the platform in
hours.

 Time investment (hours): Total time invested by
app is obtained by summing up hours spent on the
platform across all members of the developer team
of the respective app.

218

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Number of actions, by developer: For this variable,
we count actions taken by each developer, such as
creating, editing, and deleting code, forms, views,
or other assets.

 Number of actions, by app: Aggregation of actions
undertaken by all members of the development
team of the respective app.

As the duration of the development phase and team size
vary across challenges, app-based indicators for effort
invested are more informative as compared to effort
indicators at the level of individual developers.

Using these indicators and relying on the methods for
productivity measurement in software engineering
described in section II, the LCDP-related productivity
factors LCF and LCDPfit were derived and calculated.

C. The Low Code Factor (LCF)

The calculation of the LCF is based on the UCPA
method. This method considers users involved in the
interaction with the software as well as the interaction
patterns, i.e., use cases of these actors. The UCPA method
consists of several stages, see e.g., [25]:

First, the actors (roles interacting with the system) and
use cases need to be identified. Then, the actors need to be
classified into one of three categories based on the
complexity of interaction with the system according to [25]:

 Simple actor- e.g., system interface, weight 1

 Average actor- e.g., protocol-driven interface,
weight 2

 Complex actor- e.g., GUI, weight 3
Then, each use case needs to be classified based on its

integration complexity as simple, average, or complex.
Complexity assessment is based on aspects such as
transactions, i.e., communication, information exchange, or
data access, etc.

 Integrated use cases: already implemented
transactions in the LCDP, weight 0

 Simple use cases: 1-3 transactions, <5 classes,
weight 5

 Average use case: 4-7 transactions, 6-10 classes
weight 10

 Complex use case: >8 transactions, >11 classes,
weight 15

As LCDPs already provide some implemented
interaction patterns, we suggest a new class of use cases that
is specific to the use of LCDPs: the integrated use case with
the weight 0, as no programming effort is required to
implement this use case. Also, since the app development
project was based on the LCDP-based development, the
UML classes as referred to in UCPA were realized as “data
lists” in Joget terms.

After the classification of the use cases, the productivity
indicators need to be calculated (see [30] for calculation
details):

 Unadjusted use case points (UUCP) are calculated
as the sum of the unadjusted actor weight (UAW)
and unadjusted use case weight (UUCW):

o UUCP = UAW + UUCW

o UUCW is calculated by multiplying the
number of each use case type by a
weighting factor according to its
classification.

UAW is calculated by multiplying the number of actors
by the weighting factor.

Now, UUCP needs to be adjusted using technical
complexity factors (TCF) and environmental complexity
factors (ECF) to derive adjusted use case points (UCP).

 The combination of the UUCP variable with the
TCP and EF variables results in the actual number
of UCP of the project:

o UCP = UUCP×TCF×ECF

 TCF is one of the factors applied to the estimated
size of the software to account for technical
considerations of the system. It is determined by
assigning a score between 0 (factor is irrelevant)
and 5 (factor is essential) to each of the 13 technical
factors. This score is then multiplied by the defined
weighted value for each factor (TF).

o TCF = 0.6 + (TF/100)

 ECF is determined by assigning a score between 0
(no experience) and 5 (expert) to each of the 8
environmental factors. This score is then multiplied
by the defined weighted value for each factor (EF):

o ECF = 1.4 + (-0.03 x EF)

This value is multiplied by the productivity factor (PF),
which represents the number of hours required to develop
each UCP:

 Total Effort =UCP×PF.

Tables II and III provide the calculations for selected

apps from challenge #3. In sum, the productivity assessment
in our context considers UCP as the output measure and PF
as the input measure. To assess the productivity of the
LCDP-based app development, we introduce the LCF and
LCDPfit metrics that are based on the platform log data that
was generated per app.

The Low Code Factor (LCF) assesses the effort
submitted versus the functional complexity required for the
realization of the business solution that is calculated using
UCPA. To calculate the LCF we derive the number of
actions performed per app (see Table I) and divide them per
weighted use cases UCP. Thus, it provides the measurement
of the platform interaction needed to realize the use cases.
LCDPfit is calculated as the quotient of the number of lines
of code needed to realize the app despite using an LCDP
and the UCP. Thus, the LCDPfit provides an assessment of
the programming effort required despite using the LCDP,

219

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

while LCF assesses the effort of the platform interaction for
the realization of the app.

Calculation and interpretation of LCF and LCDPfit for
productivity assessment across the presented challenges are
described in the following section.

IV. RESULTS

The experiment has shown that in all challenges, BUDs
were able to create a software application using an LCDP in
a given amount of time without any (challenges #1 and #2)
or at least no extensive professional training (challenges #3
and #4) in software development, see also [1]. All apps
created during the challenges have been successfully
developed and implemented. “Successfully” means that
they met the requirements depicted in the conceptual papers
and that 13 apps worked when tested. The technology
readiness of the prototypes corresponds to level 3
(experimental proof of concept) according to the European
Union Technology Readiness Levels [31].

Overall, our data comprises 568 logins, resulting in
10,395 actions taken, respectively. The distribution of time
spent on the platform is right-skewed, with most developers
investing not more than 10 hours in development.
Moreover, we observe two outliers with more than 60
(challenge #2) and more than 30 (challenge #3) hours,
respectively. When analyzing effort at the level of
developers, comparing means may lead to misleading
results whereas modal values provide a more robust
measure for typical development effort.

To gain more insights into what effort is needed to
develop a business app using LCDP and analyze time spent
on the platform and the number of actions taken by the app
for each of the 13 apps that have been created across
challenges #2 to #4 (Table 1).

TABLE I. EFFORT PER APP

App Challenge Total time No. of actions

1 #2 20.28 929

2 #2 23.72 608

3 #2 81.41 2454

4 #2 25.13 807

5 #2 19.91 417

6 #3 30.91 951

7 #3 43.92 1344

8 #3 19.18 373

9 #3 30.03 946

10 #3 17.5 686

11 #4 10.92 363

12 #4 12.91 299

13 #4 14.51 207

Table 1 shows that the number of actions taken per app

and time investment for development by app varies
considerably. However, effort invested by the app does not
necessarily seem to depend on previous programming
expertise, as on average, the completely unexperienced
BUDs in challenge #2 show a medium effort level
concerning both, time and number of actions as compared
to the somewhat experienced BUDs in challenges #3
(higher effort levels) and #4 (lower effort levels).

In the next step, we undertake productivity assessments
for each of the 13 apps developed across challenges #2 to
#4 using the suggested metric, the low code factor (LCF).
This measurement will allow us to assess the effort
submitted versus the functional complexity required for the
realization of the business solution that is calculated using
UCPA.

To assess the development productivity, LCF and
LCDPfit are calculated. Table II shows the use cases and
weights of the apps 6 –8 as well as their Technical
Complexity Factor (TCF), Environmental Complexity
Factor (ECF) as well as the productivity factor that is
calculated as the quotient of the total effort (time spent on
the app) and the weighted UCP.

TABLE II. UCPA CALCULATION OF THE APPS

App
No. of

actors
Use Case Weight

6 3

user login 2

solve quiz 5

view score 10

view detailed score 10

view feedback 10

see score per applicant 10

generate user 5

manage questions 5

manage evaluation guides 10

 UUCP 67

7 3

login 5

upload doc 5

solve task 0

view results 10

view doc 5

provide task 10

check results 10

send feedback 10

CRUD results 15

CRUD users; 15

creates tasks 10

solves tasks 5

 UUCP 100

8 4

solve quiz 5

view score 10

view score per applicant 10

generate evaluation 5

manager users 10

 UUCP 40

Table III shows the TCF and ECF of some of the apps

as well the UCP according to the calculation of UUCP and
adjusting it with the TCF and ECF:

220

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 UUCP = UAW + UUCP

 UCP = UUCP×TCF×ECF

The productivity factor was calculated using the time

spent per app from Table I and the UCP value.

TABLE III. METRIC OF THE APPS 6-8

App TCF ECF UCP PF LCF LCDPfit

6 1.02 1.1 84.85 0.36 11.21 9.09

7 1.02 1.1 123.36 0.36 10.90 3.55

8 1.02 1.1 58.06 0.33 6.42 5.34

Furthermore, Table III shows the LCF and the LCDPfit

metrics for the selected apps. Assessment and data for all 13
apps are provided in the dataset at Zenodo [32].

The selected apps were designed by three different BUD
teams according to the general requirements to build a mini
assessment center for an HR responsible. Besides this
general description, each team was supported by a
“customer”, i.e., an HR Master student who derived the
requirements for the app and was supervising their
implementation. All three teams did not have any previous
knowledge of the LCDP in question, i.e., Joget, encountered
similar values of the TCF and ECF in the UCP calculation.
Despite similar basic conditions, the teams fulfilled their
task with different functional extenuations. While app 7
realized twelve of the required use cases, team 8 realized
five and team 6 nine use cases. Nevertheless, the teams
showed similar productivity factors (see Table III). The
efficiency of the LCDP use as indicated by the LCF and
LCDPfit also varied between the teams, with team 6
engaging in the highest programming and LCDP
engagement effort as shown by LCDPfit and LCF metrics
respectively, and team 8 showed an efficient use of the
platform and its given functionalities as shown by the LCF.

V. SUMMARY AND OUTLOOK

Using the results of the described experiment, we can
draw the conclusion that BUDs can create their software
applications in their business domain using an LCDP, and
that time and effort invested in development are not
significantly different between BUDs with no and BUDs
with some programming knowledge. One interpretation of
this result is that the LCDP used is really low code, as it
does not seem to make a difference whether developers
have no or some prerequisites in software development.
Differences in the average effort displayed may for example
result from individual performance preferences in the
developer teams. Another possible explanation is that the
complexity of the apps varied between challenges and also
between apps within a challenge.

Besides the suitability of LCDP to support the
realization of digitalization by BUDs this paper explored
the possibility to measure the productivity of a software
developer using LCDP as well as to provide an estimate for
the effort needed to compose a business app using a LCDP.
Therefore, an experiment with three different challenges

was conducted. All the solutions for the challenges led to an
app that was ready to be implemented in the business
context. Although the quality of the created artifacts was not
measured, and the size of the developer groups varied, the
research offers valuable insights into the development
process using LCDP by both non-IT and IT-trained users.

In addition, this paper presented two indicators to
measure LCDP performance within the software
development process: Low Code Factor (LCF), which
measures the software development effort needed for the
app creation using an LCDP, and the LCDPfit, a metric that
can assess the suitability of an LCDP to realize the intended
use cases. These metrics and results can be used by
managers and practitioners to support an effective and
successful LCDP implementation. The applied research
method can be expanded by HR and ISM researchers to
support their conceptual artifacts in a low-code
development context with data. Also, the suggested
indicators can be used to assess the process performance of
the software development with LCDP.

In our future work, the focus will be on understanding
the intensity of the programming activity and how it might
reflect a behavioral pattern. This will involve quantifying
the motivation of the developer team by using the
activity/action profiles of the app development process.
Additionally, we envision exploring, how LCDP empowers
BUDs within their working environment. Another future
research direction will focus on the job-crafting effects of
LCDP-based development for BUD and experts.

REFERENCES

[1] K. Frosch and O. Levina, „Taking the Matter in their own

Hands – Can Business Unit Developers Fullfill their

Digital Demands with Low-Code Development

Platforms?,“ Design and application of socially-aware IT

(DASAIT) IARIA, Apr. 2023, no. 18001, ISSN: 2308-
3956, ISBN: 978-1-68558-077-3.

[2] S. Rafi, M. A. Akbar, M. Sánchez-Gordón, and R.

Colomo-Palacios, „DevOps Practitioners’ Perceptions of

the Low-code Trend,“ International Symposium on

Empirical Software Engineering and Measurement, pp.
301–306, Sep. 2022, doi: 10.1145/3544902.3546635.

[3] M. M. Li, C. Peters, M. Poser, K. Eilers, and E. Elshan,

„ICT-enabled job crafting: How Business Unit

Developers use Low-code Development Platforms to

craft jobs,“ International Conference on Information
Systems (ICIS), Dec. 2022, ISBN 978-1-958200-04-9.

[4] K. Talesra, „Low-Code Platform for Application

Development,“ International Journal of Applied

Engineering Research, vol. 16, pp. 346–351, doi:
10.37622/IJAER/16.5.2021.346-351, 2021.

[5] M. Hirzel, „Low-code programming models,“

Communications of the ACM, vol. 66, pp. 76–85, 2023.

[6] A. Trigo, J. Varajao, and M. Almeida, „Low-Code Versus

Code-Based Software Development: Which Wins the

Productivity Game?,“ IT Professional, vol. 24, pp. 61–68,
2022, doi: 10.1109/MITP.2022.3189880.

221

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] J. Smith, „The Estimation of Effort Based on Use Cases,“

Rational Software, White Paper. [Online]. Available

from:

https://www.inf.ufpr.br/andrey/ci221/docs/finalTP171.p
df (last accessed: Dec 1, 2023).

[8] R. Sanchis, Ó. García-Perales, F. Fraile, and R. Poler,

„Low-code as enabler of digital transformation in

manufacturing industry,“ Applied Sciences, vol. 10, 12,

Dec. 2020, doi: 10.3390/app10010012.

[9] F. Nowak, J. Krzywy, and W. Statkiewicz, „Study on the

Impact of the Use of No-code Application on Internal

Logistics Processes in a Company from the E-Commerce

Industry - Process Analysis,“ European Research Studies

Journal, vol. 25, pp. 59–71, Aug. 2022, doi:

10.35808/ERSJ/2936.

[10] L. Bies, M. Weber, T. Greff, and D. Werth, „A Mixed-

Methods Study of Low-Code Development Platforms:

Drivers of Digital Innovation in SMEs,“ International

Conference on Electrical, Computer, Communications

and Mechatronics Engineering (ICECCME), 2022, doi:
10.1109/ICECCME55909.2022.9987920.

 [11] T. C. Lethbridge, „Low-Code Is Often High-Code, So We

Must Design Low-Code Platforms to Enable Proper

Software Engineering,“ Lecture Notes in Computer

Science, vol. 13036, pp. 202–212, 2021, doi:

10.1007/978-3-030-89159-6_14/COVER.

[12] J. Hintsch, D. Staegemann, M. Volk, and K. Turowski,

„Low-code Development Platform Usage: Towards

Bringing Citizen Development and Enterprise IT into

Harmony,“ ACIS 2021 Proceedings, vol. 10, Jan. 2021.

[Online]. Available from:
https://aisel.aisnet.org/acis2021/11.

[13] A. Kermanchi, „Developer Experience in Low-Code

Versus Traditional Development Platforms - A

Comparative Experiment,“ Aalto University, Dec. 2022

[Online]. Available from:

https://aaltodoc.aalto.fi/server/api/core/bitstreams/18f94

53c-5930-4a94-a545-4f9dc51be7aa/content (last
accessed: Dec 1, 2023).

[14] R. Bernsteiner, S. Schlögl, C. Ploder, T. Dilger, and F.

Brecher, „Citizen vs. Professional developers:

Differences and Similarities of Skills and Training

Requirements for Low Code Development Platform“, in
ICERI2022 Proceedings, 2022, pp. 4257–4264.

[15] A. Sahay, A. Indamutsa, D. Di Ruscio, and A.

Pierantonio, „Supporting the understanding and

comparison of low-code development platforms,“

Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), 2020, pp. 171–178.

 [16] D. Krejci, L. Küng, and S. Missonier, „A Case Study of

Enterprise-wide Digital Innovation: Involving Non-IT

Employees“, ECIS 2022 Research Papers, June 2022.

[Online]. Available from:

https://aisel.aisnet.org/ecis2022_rp/55 (last accessed:
Dec 1, 2023).

[17] M. Lebens, R. J. Finnegan, S. C. Sorsen, and J. Shah,

„Rise of the Citizen Developer,“ Muma Business Review,
Vol. 5, pp. 101–111, 2021, doi: 10.28945/4885.

[18] A. C. Bock and U. Frank, „Low-Code Platform,“

Business and Information Systems Engineering, vol. 63,

pp. 733–740, Dec. 2021, doi: 10.1007/S12599-021-
00726-8/FIGURES/1.

[19] E. W. Boot, J. J. G. Van Merriënboer, and A. L. Veerman,

„Novice and experienced instructional software

developers: Effects on materials created with

instructional software templates,“ Educational

Technology Research and Development, vol. 55, pp.
647–666, 2007, doi: 10.1007/s11423-006-9002-9.

[20] C. Bunse, I. Grützner, C. Peper, S. Steinbach-Nordmann,

and G. Vollmers, „Coaching professional software

developers an experience report,“ Software Engineering

Education Conference, pp. 123–130, 2006, doi:
10.1109/CSEET.2006.11.

[21] H. I. Akyüz and M. Kurt, „Effect of teacher’s coaching in

online discussion forums on students’ perceived self-

efficacy for the educational software development,“

Procedia - Social and Behavioral Sciences, vol. 9, pp.

633–637, Jan. 2010, doi:
10.1016/J.SBSPRO.2010.12.209.

[22] E. Elshan, E. Dickhaut, and P. Ebel, „An Investigation of

Why Low Code Platforms Provide Answers and New

Challenges,“ 56th Hawaii International Conference on
System Sciences, 2023, ISBN: 978-0-9981331-6-4.

[23] R. Pressman, Software Quality Engineering: A

Practitioner’s Approach, New York, NY, USA:
McGraw-Hill Education, 2009.

[24] C. J. Lokan, „Function points,“ Adv. Comput, vol. 5, pp.
297–347, 2005.

[25] M. K. Chemuturi, Software Estimation Best Practices,

Tools & Techniques. Fort Lauderdale, J. Ross Publishing,

2009.

[26] R. K. Clemmons, „Project estimation with use case

points,“ J. Defense Softw. Eng., vol. 19, pp. 18–22, 2006.

[27] K. Petersen, „Measuring and predicting software

productivity: A systematic map and review,“ Inf. Softw.
Technol., vol. 53, pp. 317–343, 2011.

[28] R. Premraj, B. Kitchenham, M. Shepperd, and P.

Forselius, „An empirical analysis of software

productivity over time,“ 11th IEEE International

Software Metrics Symposium (METRICS), Sept. 2005,
https://doi.org/10.1109/METRICS.2005.8.

[29] Joget. [Online]. Available from: www.joget.org (last
accessed: Dec 1, 2023).

[30] M. Ochodek, J. Nawrocki, and K. Kwarciak,

„Simplifying effort estimation based on Use Case

Points,“ Information and Software Technology, vol. 53,

pp. 200–213, 2011, doi: 10.1016/j.infsof.2010.10.005.

[31] European Commission, Technology readiness levels

(TRL), 2014. [Online]. Available from:

https://ec.europa.eu/research/participants/data/ref/h2020/

222

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

wp/2014_2015/annexes/h2020-wp1415-annex-g-
trl_en.pdf (last accessed: Dec 1, 2023).

[32] O. Levina, UCPA for Low Code Factor Calculation.

[Online]. Available from:

https://zenodo.org/records/8308333, 2023 (last accessed:
Dec 1, 2023).

223

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

