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Abstract—Recent standardization work for database 

languages has reflected the growing use of typed graph 

models (TGM) in application development. Such data 

models are frequently only used early in the design process, 

and not reflected directly in underlying physical database. In 

previous work, we have added support to a relational 

database management system (RDBMS) with role-based 

structures to ensure that relevant data models are not 

separately declared in each application but are an important 

part of the database implementation. In this work, we 

implement this approach for the TGM: the resulting 

database implementation is  novel in retaining the best 

features of the graph-based and relational database 

technologies. 

Keywords—typed graph model; graph schema; relational 

database; implementation; information integration. 

I.  INTRODUCTION 

The work in this paper was signaled in a conference 
presentation [1] in early 2023 and reflects ongoing work in 
the standardization community to create standards for 
graph databases. This has already led to the adoption of a 
new chapter in the International Standards Organization 
(ISO) standard 9075 [2] for property graph queries, and a 
draft international standard (DIS) on Graph Query 
Language (GQL) is now expected in early 2024. 

Many data models assist in the development of 
software, such as the Unified Modeling Language (UML) 
[3][4], entity frameworks, and persistence architectures. 
During such early conceptual model building, incremental 
and interactive exploration can be helpful [5] as fully 
automated integration tools may combine things in an 
inappropriate way, and the use of data types [6] can help to 
ensure that semantic information is included not merely in 
the model, but also in the final database. In this short paper 
we report on such an implementation of the Typed Graph 
Model (TGM), using metadata in a relational database 
management system (RDBMS) [7], partly inspired by 
recent developments in the PostgreSQL community [8]. 
Some recent database management systems (DBMS) have 
included metadata in the relational model to form a bridge 
with the physical database, so that the data model can be 
enforced across all applications for a single database. In 
this work, we provide a mechanism for integrating the 
graphical data model in the physical RDBMS. 

As with the original relational model, the TGM has a 
rigorous mathematical foundation as an instance of a 
Graph Schema. 

The plan of this paper is to review the TGM in Section 
II, and discuss the implementation details in Section III. 
Section IV presents an illustrative example, and Section V 
provides some conclusions. 

II. THE TYPED GRAPH MODEL AND INFORMATION 

INTEGRATION 

We will construct a TGM for a database by declaring 
instances of nodes and edges as an alternative to 
specifying tables of nodes and edges. 

A. Typed Graphs Formalism 

In this section we review the informal definition of the 
TGM from [2], using small letters for elements (nodes, 
edges, data types, etc.) and capital letters for sets of 
elements. Sets of sets are printed as bold capital letters. A 
typical example would be n ∈ N ∈ N ⊆ ℘(N), where N is 
any set and ℘(N) is the power-set of N. 

Let T denote a set of simple or structured (complex) 
data types. A data type t:=(l,d)∈T has a name l and a 
definition d. Examples of simple (predefined) types are 
(int,ℤ), (char,ASCII), (%,[0..100]), etc. It is also possible 
to define complex data types like an order line (OrderLine, 
(posNo, partNo, partDescription, quantity)). The 
components need to be identified in T, e. g., (posNo,int>0). 
Recursion is allowed as long as the defined structure has a 
finite number of components. 

The UML-notation was chosen as graphical 
representation for nodes and include the properties as 
attributes including their data types. Labels are written in 
the top compartment of the UML-class. Edges of the TGS 
are represented by UML associations. For the label and 
properties of an edge we use the UML-association class, 
which has the same rendering as an ordinary class, but its 
existence depends on an association (edge), which is 
indicated by a dotted line from the association class to the 
edge. This not only allows to label an edge but to define 
user defined edge types. The correspondence between the 
UML notation and the TGS definition is shown in Table I.  

Definition 1 (Typed Graph Schema, TGS)  A typed 

graph schema is a tuple TGS=(N
S
,E

S
,ϱ,T,τ,C)   

where:  
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• N
S
 is the set of named (labeled) objects (nodes) n with 

properties of data type t:=(l,d)∈T, where l is the label 

and d the data type definition.  

• E
S

 is the set of named (labeled) edges e with a 

structured property p:=(l,d)∈T, where l is the label 

and d the data type definition.  

• ϱ is a function that associates each edge e to a pair of 

object sets (O,A), i. e., ϱ(e):=(O
e
,A

e
)  with 

O
e
,A

e
∈℘(N

S
). O

e
 is called the tail and A

e
 is called the 

head of an edge e.  

• τ is a function that assigns for each node n of an edge 

e a pair of positive integers (i
n
,k

n
), i. e., τ

e
(n):=(i

n
,k

n
) 

with i
n
∈N

0
 and k

n
∈N. The function τ defines the min-

max multiplicity of an edge connection. If the min-

value i
n
 is 0 then the connection is optional.  

• C is a set of integrity constraints, which the graph 

database must obey.  

The notation for defining data types T, which are used for 

node types N
S

 and edge types E
S

, can be freely chosen: 

and in this implementation SQL will be used for 

identifiers and expressions, together with a strongly typed 

relational database engine. The integrity constraints C 

restrict the model beyond the structural limitations of the 

multiplicity τ of edge connections. Typical constraints in 

C are semantic restrictions of the content of an instance 

graph. For instance, in an order processing graph-database 

a constraint should require that an “order”-node o should 

have at least one “order-detail” node ol connected by an 

edge labelled “belongs_to” (see example order GDB in 

Table II.) 

Definition 2 (Typed Graph Model)  A typed graph 

Model is a tuple TGM=(N,E,TGS,φ) where:  

• N is the set of named (labeled) nodes n with data types 

from N
S
 of schema TGS.  

• E is the set of named (labeled) edges e with properties 

of types from E
S
 of schema TGS.  

• TGS is a typed graph schema as defined above..  

• φ is a homomorphism that maps each node n and edge 

e of TGM to the corresponding type element of TGS, 

formally:  

φ:TGM→TGS 

n↦φ(n):=n
S
(∈N

S
) 

e↦φ(e):=e
S

(∈E
S

) 

The fact that φ maps each element (node or edge) to 
exactly one data type implies that each element of the 
graph model has a well-defined data type. The 
homomorphism is structure preserving. This means that 
the cardinality of the edge types is enforced, too. In our 

Pyrrho implementation, the declaration of nodes and edge 
of the TGM develops the associated TGS incrementally 
including the development of the implied type system T. 
Data type and constraint checking is applied for all nodes 
and edges before any insert, update, or delete action can be 
committed. 

B. The Data Integration Process  

The full benefit of information integration requires the 
integration of source data with their full semantics. We 
believe a key success factor is to model the sources and 
target information as accurately as possible. The 
expressive power and flexibility of the TGM allows 
precise description of the meta-data of the sources and 
target in the same model, which simplifies the matching 
and mapping of the sources to the target. The tasks of the 
data integration process are: 

1) model sources as TGS Si (i = 1, 2, ..., n)  
2) model target schema T as TGS G  
3) match and map sources Si with TGS G  
4) check and improve quality  
5) convert TGS G back to T again  
Steps 3 and 4 can occur together in an interactive 

process once the basic model has been outlined. Such a 
process is crucial for Enterprise Information Integration 
(EII) and other data integration projects, which demand 
highly accurate information quality, which can be further 
improved with the use of different mappings.  

To start the process, it may be necessary to collect 
structure and type information from a data expert or from 
additional information. Where sources are databases, the 
rigid structures provide a good starting point. Otherwise, 
the relevant data must first be identified together with its 
meta-data if available. This includes coding and names for 
the data items. The measure units and other meta-data 
provided by the data owner are used to adjust all measures 
to the same scale. The paper of Laux [6] gives some 
examples how to transform relational, object oriented, and 
XML-schemata into a TGS.  

If the source is unstructured or semi-structured, e.g., 
documents or XML/HTML data, concepts and 
mechanisms from Information Retrieval (IR) and 
statistical analysis may help to identify some implicit 
structure or identify outliers and other susceptible data. If 
the data are self-describing (JSON, key-value pairs, or 
XML) linguistic matching can be applied with additional 
help from a thesaurus or ontology. Nevertheless, it is 
advisable to validate the matching with instance data or an 
information expert. 

The use of hyper-nodes n ∈ NS and hyper-edges e ∈ ES 
instead of simple nodes resp. edges allow to group nodes 
and edges to higher abstracted complex model aggregates. 
This is particularly useful to keep large models clearly 
represented and manageable. Each sub-graph can be 
rendered as a hyper-node. If the division is disjoint these 
hyper-nodes are connected via hyper-edges forming a 
higher abstraction level schema. 

193

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



We present two possible TGS abstraction levels for a 
single enterprise in UML notation in Figure 1.  The dashed 
green line in part (a) encompasses the Customer data, 
comprising Customer master data, customers’ orders, and 
order positions. In part (b) this information is concentrated 
in one node type named “Customer”. The Supplier data 
side (red dashed line) is modelled in the same manner. The 
stock management data show in the detailed part (a) the 
bill of material (BOM) which is modelled as a recursive 
edge “Part of” on the parts node. This is no longer 
explicitly visible in the aggregated part (b). This hidden 
information should be part of the now complex property 
“part” of the Stock node. 

This little example demonstrates already the flexibility 
of the model in terms of detail and abstraction. We discuss 
this example in some detail in Section IV. 

III. IMPLEMENTATION IN THE RELATIONAL DATABASE 

SCHEMA 

The implementation of a typed graph modelling system 
can build on the user-defined type mechanism of an 
RDBMS. Node and edge types should have special 
columns: for node types, there is an automatic primary key 
with default name ID, and edge types also automatic 

foreign keys for their source and destination nodes, that 
are referred to here by their default names LEAVING and 
ARRIVING, and these should have automated support 
from the RDBMS. It should be possible to convert 
between standard types and node/edge types and rearrange 
subtype relationships. These tables can be equipped with 
indexes, constraints, and triggers in the normal ways. 

Then, if every node type or edge type corresponds to a 
single base table containing the instances of that type, one 
way to build a graph is to insert rows in these tables. But a 
satisfactory implementation needs to simplify the tasks of 
graph definition and searching. Most implementations add 
CREATE and MATCH statements, which we describe 
next, and indicate how they can be implemented in the 
RDBMS. 

A. Graph-oriented Syntax Added to SQL 

The typical syntax for CREATE sketches nodes and 
edges using additional arrow-like tokens, for example: 

[CREATE (:Person {name:'Fred Smith'})<-
[:Child]-(a:Person {name:'Peter Smith'}), 
(a)-[:Child]->(b:Person {name:'Mary Smith'}) 
-[:Child]->(:Person {name:'Lee Smith'}), 
(b)-[:Child]->(:Person {name:'Bill Smith'})] 

 

 
 

Figure 1. Example TGM of a commercial enterprise showing two levels of detail 
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Without any further declarations, this builds a graph 
with nodes for Person and edges for Child, as in Figure 2.  

There is already a standard abstract syntax [9][10], that 
can be represented as: 

CREATE Graph {','Graph} [THEN Statement]. 

Graph = Node Path {',' Node Path } . 
Path =  { Edge Node } . 
Node = '(' GraphItem ')' . 
Edge = '-[' GraphItem ']->' | '<-[' GraphItem ']-'. 
GraphItem = [id | Node_Value] [GraphLabel] [ 
Document] . 
GraphLabel = ':' (id | Label_Value) [GraphLabel] . 

In this syntax, the strings enclosed in single quotes are 
tokens, including several new token types for the TGM. In 
corresponding source input, unquoted strings are used for 
case-insensitive identifiers and double quoted strings for 
case-sensitive identifiers, possibly containing other 
Unicode characters. As usual in SQL, string constants in 
input will be single quoted, and doc is a JSON-like 
structure providing a set of properties and value 
expressions, possibly including metadata definitions for 
ranges and multiplicity. 

Nodes and edges and new node types and edge types 
can be introduced with this syntax. The database engine 
constructs a base table for each distinct label, with 
columns sufficient to represent the associated properties. 
These database base tables for node types (or edge types) 
contain a single row for each node (resp. edge) including 
node references. They can be equipped with indexes, 
constraints, and triggers in the normal ways. 

To the normal SQL DML, we add the syntax for the 
MATCH query, which has a similar syntax, except that it 
may contain unbound identifiers for nodes and edges, their 
labels and/or their properties. 

MatchStatement = MATCH Match {',' Match} 
[WhereClause] [Statement] [THEN Statements END]. 
Match = (MatchMode [id '='] MatchNode) {'|' Match}. 

The first part of the MATCH clause has an optional 
MatchMode (see below) and one or more graph 

expressions, which in simple cases appear to have the 
same form as in the CREATE statement. 
MatchNode = '(' MatchItem ')' {(MatchEdge|MatchPath) 
MatchNode}. 
MatchEdge = '-[' MatchItem '->' | '<-' MatchItem ']-' . 
MatchItem =  [id | Node_Value] [GraphLabel] [ 
Document | WhereClause ] . 

In all cases, the execution of the MATCH proceeds 
directly on the tables, without needing auxiliary SQL 
statements. The MATCH algorithm proceeds along the 
node expressions, matching more and more of its nodes 
and edges with those in the database by assigning values to 
the unbound identifiers. If we cannot progress to the next 
part of the MATCH clause, we backtrack by undoing the 
last binding and taking an alternative value. If the 
processing reaches the end of the MATCH statement, the 
set of bindings contributes a row in the default result, 
subject to the optional WHERE condition. 

In this way, the MATCH statement can be used (a) as 
in Prolog, to verify that a particular graph fragment exists 
in the database, (b) to display the bindings resulting from 
the process of matching a set of fragments with the 
database, (c) to display a set of values computed from such 
a list of bindings, or (d) to perform a sequence of actions 
for each binding found. In case (d) no results are 
displayed, as the MATCH statement has been employed 
for its side effects. These could include further CREATE, 
MATCH or other SQL statements, or assignment 
statements updating fields referenced in the current 
bindings. 

Following the forthcoming GQL standard, repeating 
patterns are supported by the MATCH statement (see [9]): 

MatchPath = '[' Match ']' MatchQuantifier . 
MatchQuantifier = '?' | '*' | '+' | '{' int , [int] '}' . 
MatchMode = [TRAIL|ACYCLIC| SIMPLE] 

[SHORTEST |ALL|ANY] . 

The MatchMode controls how repetitions of path 
patterns are managed in the graph matching mechanism. A 
MatchPath creates lists of values of bound identifiers in its 
Match. By default, binding rows that have already 
occurred in the match are ignored, and paths that have 
already been listed in a quantified graph are not followed. 
The MatchMode modifies this default behaviour: TRAIL 
omits paths where an edge occurs more than once, 
ACYCLIC omits paths where a node occurs more than 
once, SIMPLE looks for a simple cycle. The last three 
options apply to MatchStatements that do not use the 
comma operator, and select the shortest match, all matches 
or an arbitrary match. 

The implementation of the matching algorithm uses 
continuations to control the backtracking behavior. 
Continuations are constructed as the match proceeds and 
represent the rest of the matching expression. 

The MATCH statement can be used in two ways. The 
first is make the dependent Statement a RETURN 
statement that contributes a row to a result set for each 
successful binding of the unbound identifiers in the 
MATCH, for example, 

 
 

Figure 2. Browser output for web address 
http://localhost:8180/ps/PS/PERSON/NAME='Peter Smith'?NODE 
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MATCH ({name:'Peter Smith'}) [()-[:Child]->()]+ 
(x) RETURN x.name 

will yield a list of the descendants of Peter Smith.  
Without using RETURN or any dependent statements, 

the result of a MATCH statement is the list of bindings. 
The above example has two columns, one for each of the 
unbound identifiers p and x, but p will be an array with an 
element for each iteration of the pattern.  

The results are shown in Figure 3, which also shows all 
of the statements needed in our implementation to build 
and display this small example, including two lines for 
replacing the default primary key ID. A feature of the 
implementation described in this paper is the lack of 
structural clutter. 

 In sections B and C, we continue this small example 
with two further steps, to display the contents as a graph, 
and to show how the relational database directly supports 
object-oriented application programming for such 
graphical data. 

B. Graph versus Relation 

The nodes and edges contained in the database 
combine to form a set of disjoint graphs that is initially 
empty. Adding a node to the database adds a new entry to 
this set. When an edge is added, either the two endpoints 
are in the same graph, or else the edge will connect two 
previously disjoint graphs. If each graph in the set is 
identified by a representative node (such as the one with 
the lowest uid) and maintains a list of the nodes and edges 
it contains, it is easy to manage the set of graphs as data is 
added to the database.  

If an edge is removed, the graph containing it might 
now be in at most two pieces: the simplest algorithm 
removes it from the set and adds its nodes and edges back 
in.  

It is helpful if the RDBMS is extended to provide a 
graphical display as in Figure 2 above. In our work the 
RDBMS provides a simple HTTP service, so that once the 
database has given appropriate authorization an ordinary 
web access will display the graph in a browser. Selection 
of a node with the mouse displays its properties. 

The database with its added graph information can be 
used directly in ordinary database application processing, 
with the advantage of being able to perform graph-oriented 
querying and graph-oriented stored procedures. The 
normal processing of the database engine naturally 
enforces the type requirements of the model, and also 
enforces any constraints specified in graph-oriented 
metadata. The nodes and edges are rows in ordinary tables 
that can be accessed and refined using normal SQL 
statements. In particular, using the usual dotted syntax, 
properties can be SET and updated, and can be removed 
by being set to NULL. 

C. Database Design by Example 

From the above description of the CREATE statement, 
we can see that this mechanism allows first versions of 
types and instances to be developed together, with minimal 
schema indications. The MATCH statement allows 
extension of the design by retrieving instances and 
creating related nodes and edges.  

If example nodes and edges are created, the DBMS 
creates suitable node and edge types, modifying these if 
additional properties receive values in later examples. 

 

 
Figure 3. This shows the commands needed in our implementation to create a new database containing the example graph data, some simple graph-oriented 

queries, and some steps to develop the model and make it available to the network 
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Since transactions are supported, tentative examples can 
be explored and rolled back or committed. Alter 
statements can change names, enhance property types and 
modify subtype relationships, and the SQL Cast function 
can be used to parse the string representation of a structure 
value. The usual restrict/cascade actions are available, and 
node and edge types can have additional constraints, 
triggers, and methods.  As each node and edge type has an 
associated base table in the database, the result of this 
process is a relational database that is immediately usable. 

As the TGM is developed and merged with other 
graphical data, conflicts will be detected and diagnostics 
will help to identify any obstacles to integrating a new part 
of the model, so that the model as developed to that point 
can be refined. The SQL ALTER TABLE and ALTER 
TYPE statements, together with a metadata syntax, allow 
major changes to the model to be performed automatically, 
e.g., to enforce expectations on the data. 

It is important that all such major changes, indeed all 
cascades and trigger side effects, are validated as part of 
the transaction commit process, so that the database is not 
left in an inconsistent state as a result of a mistake or 
security exception. An example of such a cascade occurs 
where a graph has been created using the server’s autokey 
mechanism for primary keys, and the analyst has identified 
a more suitable numeric or string-valued key. A single 
ALTER TABLE statement can install this as the new 
primary key and the change automatically propagates to 
the edge types that attach to the node type in question. The 
previous primary key remains as a unique key but can later 
be dropped without losing any information. Figure 3 
shows this process, and its consequences are visible in 
Figures 2 and 4. 

Other restructuring of node types can be performed 
with the help of the CAST function, which can be used to 
parse complex types from strings, array and set 
constructors, and UNNEST. Node and edge manipulations 
can also be performed by triggers and stored procedures.  

The points covered in the above section already go a 
long way towards an integrated DBMS product that 
supports the TGM. The resulting TGM implementation 
inherits aspects such as transacted behavior, constraints, 
triggers, and stored procedures from the relational 
mechanisms, since Match and Create statements are 

implemented as Procedure Statements. The security model 
in the underlying RDBMS, with its users, roles, and grants 
of privileges also applies to the base tables and hence to 
the graphs. Node and edge types emerge as a special kind 
of structured type. It is thus a relatively simple matter to 
support view-mediated remote access and object-oriented 
entity management. Nodes and edges are entities and the 
same access and Multiple Version Concurrency Control 
(MVCC) models in our previous work [11] transfer with 
little trouble into the new features.  

As the TGM is developed and merged with other 
graphical data, conflicts will be detected and diagnostics 
will help to identify any obstacles to integrating a new part 
of the model, so that the model as developed to that point 
can be refined. 

It is natural to expect a user interface that displays a 
graphical version of the property graph. Figure 2 was 
generated by sending a link (see caption of Figure 2) to  
our implementation’s HTTP service to draw a picture of a 
portion of a graph starting at a given node. Selection of a 
node or edge displays the properties of that node and links 
to redraw the graph starting at another node. 

Our database server implementation has for years 
generated classes for C#, Python or Java applications 
corresponding to versioned database objects. Here this 
leads to object-oriented application programming, where 
node and edge types correspond to classes whose instances 
are nodes and edges. The Match and Create statements can 
be used (a) for SQL clients in commands and prepared 
statements, (b) in the generated C#, Java or Python and the 
widely used database connection methods ExecuteReader 
and ExecuteNonQuery, or (c) in JavaScript posted to the 
web service interface of the database server. In Figure 4 
we show a portion of a C# application program to display 
the descendants of Peter Smith in the little example graph 
database discussed above. 

The normal processing of the database engine naturally 
enforces the type requirements of the model, and also 
enforces a range of constraints specified in graph-oriented 
metadata. The nodes and edges are rows in ordinary tables 
that can be accessed and refined using normal SQL 
statements. In particular, using the usual dotted syntax, 
properties can be SET and updated, and can be removed 
by being set to NULL. 
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IV. AN EXAMPLE 

Examples for a graph structure usually choose social 
networks. We want to show that the TGM is equally 
suitable for Enterprise Resource Planning (ERP) and other 
business systems. As a non-trivial example, we have 
chosen a commercial enterprise which buys parts and 
products, resells the purchased products or assembles 

products from purchased parts and sells these value-added 
products. It does not develop and construct products from 
raw material but add some value to parts or assembles 
some products to form systems. 

The data model shown above in Figure 1 is suitable for 
a customer-supplier ordering system and comprises 3 
company divisions or departments: sales (green), stock 
(blue), and procurement (red). These are framed in Figure 
1(a) with a green dashed line for sales data, with blue for 

 
 

Figure 4. A portion of a C# application program to find the descendants of Peter Smith in the example database above 
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stock data, and red for procurement or purchase. The graph 
schema is visualized using UML notation which allows 
specifying the cardinality of the edges. The 
correspondence between the Typed Graph Schema (TGS) 
elements and the UML is shown in Table I. 

The sales division needs to manage customer data and 
process the customer’s orders. It consists of Customer 
nodes with properties CustNo, Name and Address. The 
Name and Address might as well be structured data types 
for first- and last name resp. street, ZIP code, and city. The 
CustOrder node mainly comprises OrdNo, the (redundant) 
CustNo, order date Date and the order total Sum in Euros. 
The CustOrder contains 1 to many order detail lines of 
OrderPos which consist at least of the order quantity as 
property. The order quantity itself is suppressed in the 
UML diagram to avoid overloading the picture. According 
to the semantics of the TGM the edge arrows signify the 
reading direction of the edge type. In the case of 
“belongs_to” the reading direction is from OrderPos to 
CustOrder.  

All other necessary properties for an order line (e. g. 
partNo, PartName, UnitProce) could be determined by 
following the edges of the model to the Part, Stock, and 
CustOrder node. In Figure 1 (a) only the nodes Customer 
and CustOrder are showing exemplified properties.   More 
properties are maintained in a real situation, e. g. planned 
delivery, shipping date, etc for a customer order. The same 
applies to all other nodes, e. g.  unit and quantity discount 
for parts. 

The procurement division is responsible for 
maintaining the supplier data and ordering of parts and 
products from them. It mirrors the sales model structurally 
and comprises supplier, the purchases (SupplOrd, 
PurchPos) and the supplier catalogue. Purchase- and Sales 
division have connections to the stock management.  

Finally, the stock division comprises master data 
management and stock management. Master data 
management includes structural information about the 
parts in the form a Bill Of Materials (BOM). Stock 
management deals with adding parts to the stock and 
releaseing them from stock, The central node of the stock 
model is the Part node who distinguishes between 
purchased parts (PurchasedParts) and in-house products 
(InHouseProduct) modelled as subtypes of Part. We have a 
BOM structurally represented as a recursive edge 
“part_of” on the part nodes. The BOM forms a tree 

structure with the product at the top. The product is made 
up recursively of components (composed parts) and finally 
of single parts.  The stock itself is represented as a node 
with properties like number of parts, reservations, and 
commissions. A stock node is linked to a part and a 
storage location. This allows knowing exactly which part 
is located at a certain location in the warehouse. 

Figure 1 (b) gives a high level view on the scenario. 
Such kinds of abstractions are important for complex 
graphs in order to keep the model manageable. CASE 
tools that support zoom-in and zoom-out functions would 
be beneficial to assist the graph modelling. 

The syntax of the above presented example ERP model 
will be presented in the following subsection. Multiline 
statements are enclosed in square brackets. 

A. Syntax of the ERP example 

First we start with the sales graph (green schema), 
followed by the supplier (red schema) and stock division 
(blue schema), and finally the three divisions are linked by 
the edge types “serves”, “supplies”, “canSupply”, 
“orders”, and “from”. 

The green schema is illustrated in Figure 5 below, and 
the declarations: 
// sales division 
[CREATE  
(a:Customer {CustNo:1001, Name:'Adam', Address:'122, 
Nutley Terrace, London, ST 7UR, GB'} ),  // Customer 
(b:Customer {CustNo:1002, Name:'Brian', Address:'45, 
Belsize Square, London, ST 7UR, GB'} ),  
 // … 
(f:Customer {CustNo:1006, Name:'Eddy', Address:'72, 
Ibrox Street, Glasgow, G51 1AA, UK'} ),  // customer 
without order 
 (o1:CustOrder {OrdNo:2001, CustNo:1001, 
Datum:DATE'2023-03-22', SummE:211.00} ),  // 
CustOrder 
(o2:CustOrder {OrdNo:2002, CustNo:1002, 
Datum:DATE'2023-03-22', SummE:24.00} ), 
// … 
(o8:CustOrder {OrdNo:2008, CustNo:1002, 
Datum:DATE'2023-04-24', SummE:808.00} ), 
 (op1:OrderPos {Quantity:4, Unit:'piece'} ),  // 
OrdPos 
(op2:OrderPos {Quantity:4, Unit:'litre'} ), 
// …  
(op18:OrderPos {Quantity:10, Unit:'piece'} ), 
(a)<-[:ORDERED_BY]-(o1),  // each order was ordered 
by exactly 1 customer 
(a)<-[:ORDERED_BY]-(o6), 
(a)<-[:ORDERED_BY]-(o7), 
(b)<-[:ORDERED_BY]-(o2),  
//… 
(o1)<-[:BELONGS_TO]-(op1),  // each orderPos belongs 
to exactly 1 order  
(o2)<-[:BELONGS_TO]-(op2), 
 
// … 
(o8)<-[:BELONGS_TO]-(op9), // and an order has at 
least 1 orderPos 
(o8)<-[:BELONGS_TO]-(op10), 
(o1)<-[:BELONGS_TO]-(op11),  
// … 

(o8)<-[:BELONGS_TO]-(op18)] 

TABLE I. TGS CORRESPONDENCE WITH UML NOTATION 

 
TGS UML 

n ∈ NS class 

e ∈ ES association 

t = (l, d) ∈ 

T 

l = name of n resp. e; d = type of n resp. e 

ϱ (e) all ends of e 

τe(n) (min,max)-cardinality of e at n 

C constraints in [ ] or { } 
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We continue with the supplier division, illustrated in 
Figure 6 below. Here are sample declarations for this 
section: 
// supplier division 
[ CREATE    
(a:Supplier {SupplNo:101, Name:'Rawside Furniture', 
Address:'58 City Rd, London , EC1Y 2AL, UK'} ),  
(b:Supplier {SupplNo:102, Name:'Andreas Stihl Ltd', 
Address:'Stihl House Stanhope Road, GU 15 3 YT, 
Camberley Surrey, GB'} ), 
// …  
// SupplOrd 
(o1:SupplOrd {OrdNo:2001, SupplNo:101, 
Datum:DATE'2023-01-11', "Sum€":260.00} ),  
(o2:SupplOrd {OrdNo:2002, SupplNo:102, 
Datum:DATE'2023-02-22', "Sum€":2405.00} ), 
// … 
// OrdPos purchase details 
(op1:PurchOrd {PosNo:1, Quantity:4, Unit:'piece'} ),  
(op2:PurchOrd {PosNo:1, Quantity:4, Unit:'litre'} ), 
// … 
// (Supplier)<-[:SUPPLIED_BY]-(SupplOrd) 
(a)<-[:SUPPLIED_BY]-(o1),  // each order was ordered 
by exactly 1 Supplier 
(a)<-[:SUPPLIED_BY]-(o4), 
// … 
// (SupplOrd)<-[:IS_POS_OF]-(OrdPos) 
(o1)<-[:IS_POS_OF]-(op1),  // each PurchPos belongs 
to exactly 1 order  
(o2)<-[:IS_POS_OF]-(op2), 
// … 
(o1)<-[:IS_POS_OF]-(op7), // and an order has at 
least 1 PurchPos 
(o1)<-[:IS_POS_OF]-(op8), 
(o1)<-[:IS_POS_OF]-(op9), 
//… 
// SupplCatalog 
(sc11:SupplCatalog {SupplNo:101, SPartNo:'sp1', 
description:'Hammer handle, Wood (ash), Weight:100 
g', unit:'piece', unitPrice:2.00}), //P15 
(sc12:SupplCatalog {SupplNo:101,SPartNo:'sp2', 
description:'Tabletop, Wood (oak), Color:brown, 
Size:80w x120l cm', unit:'piece', unitPrice:40.00}), 
//P16 
// … 
(sc46:SupplCatalog {SupplNo:104, SPartNo:'sp6', 
description:'Shelf spruce, Color: white, Weight:6 kg, 
Size:60w x180h cm', unit:'piece', unitPrice:20}), 
// (Supplier)-[:HAS]->(SupplCatalog) 
(a)-[:HAS]->(sc11), (a)-[:HAS]->(sc12), (a)-[:HAS]-
>(sc13), (a)-[:HAS]->(sc14), (a)-[:HAS]->(sc15), (a)-
[:HAS]->(sc16), 

(b)-[:HAS]->(sc21), (b)-[:HAS]->(sc22), (b)-
[:HAS]->(sc23), (b)-[:HAS]->(sc24), (b)-[:HAS]-
>(sc25)] 

  
 Next, the Stock part, shown in Figure 7 below. Here are 
sample declarations: 
// stock division 
// create Part types  
create type Part as (PartID char ,Designation char, 
Color char, Weight char, Size char) nodetype 
// PurchasedPart 
create type PurchasedPart under Part as 
(PreferredSupplNo int, sumOrderedThisYear currency, 
discountPrice currency)   
// InHouseProduct 
create type InHouseProduct under Part as 
(ProductionPlan char, producedThisYear int, 
manufacturingCosts currency)  
[CREATE  
(a1:Location {LocationNo:10011, Aisle:1, Shelf:'left 
A', Rack: 'A1'} ),  // Location 
(a2:Location {LocationNo:10012, Aisle:1, Shelf:'left 
A', Rack: 'A2'} ), 
// … 
(l:Location {LocationNo:10111, Aisle:2, Shelf:'left 
A', Rack: 'A1'} ),  // Location without parts 
//Part will be filled implicitly  
// PurchasedPart 
(p1:PurchasedPart {PartID:'P01' 
,Designation:'Wallplug',Material:'Fiber', 
Color:'grey', Weight:'6 g', Size:'12 cm', 
PreferredSupplNo:103, sumOrderedThisYear:2000, 
discountPrice:'0.04 €'  }),  //p1 Wallplug 

 

 
 

 
Figure 6. The Supplier part of the example database from Figure 1  

Figure 5. The customer section of the database (from Figure 1) 

 
Figure 7. The Stock part of the example database from 

Figure 1 
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(p5:PurchasedPart {PartID:'P05' ,Designation:'Metal 
nail', Material:'Metal', Color:'grey', Weight:'2 g', 
Size:'A 50 x2.2 mm', 
PreferredSupplNo:102, sumOrderedThisYear:10000, 
discountPrice:'0.005 €'}),  //p5 Metal nail 
// … 
(p30:PurchasedPart {PartID:'P30' 
,Designation:'Degreasing liquid', Material:'benzine', 
Color:'clear', Weight:'100 g', Size:'100 ml bottle' , 

    PreferredSupplNo:101, sumOrderedThisYear:150, 
discountPrice:'1.80 €'}), //p30 Degreasing liquid 
// InHouseProduct 
(p2:InHouseProduct {PartID:'P02' ,Designation:'Power 
plug', Color:'white', Weight:'30 g', Size:'dia 5 cm 
', 
ProductionPlan:'P02 Power plug',  
producedThisYear:1000, manufacturingCosts:'2.50 €'}),  
(p3:InHouseProduct {PartID:'P03' 
,Designation:'Hammer', Material:'Compound 
material',Color:'blue', Weight:'1,1 kg', Size:'35 cm 
long', 
ProductionPlan:'P03 Hammer', producedThisYear:100, 
manufacturingCosts:'2.50 €'}), 
// … 
(p28:InHouseProduct {PartID:'P28' 
,Designation:'Tableleg', 
Material:'Metal',Color:'Silver', Weight:'1 
kg',Size:'80w x120l cm', 
ProductionPlan:'P28 Tableleg', producedThisYear:160, 
manufacturingCosts:'7.00 €'}), 

 

 
// Stock 
(s1:Stock {PartID:'P02', LocationNo:10011, 
available:55, commissioned:20, 
reserved_until:DATE'2023-09-22'} ), 
(s2:Stock {PartID:'P11', LocationNo:10012, 
available:500, commissioned:100, 
reserved_until:DATE'2023-10-12'} ), 
// … 
(s34:Stock {PartID:'P30', LocationNo:10101, 
available:30, commissioned:5, 
reserved_until:DATE'2024-09-21'} ), 
 //BOM 
(p2)<-[:IS_Part_OF {no_of_components:1}]-(p11),  
(p2)<-[:IS_Part_OF {no_of_components:2}]-(p12)<-
[:IS_Part_OF {no_of_components:1}]-(p13), 
(p3)<-[:IS_Part_OF {no_of_components:1}]-(p14), 
// … 
(p26)<-[:IS_Part_OF {no_of_components:1}]-(p23), 
// Links: Parts<-Stock->Location 
(p1)<-[:stocked]-(s33)-[:at]->(i3),   
(p2)<-[:stocked]-(s1)-[:at]->(a1),   
// … 
(p30)<-[:stocked]-(s34)-[:at]->(k)] 

Table II summarizes the schema objects (node and edge 

types) of the ERP graph schema and Figure 8 shows part 

of the resulting graph view of the database. 

TABLE II. NODE AND EDGE TYPES IN AN EXAMPLE DATABASE (RELATIONAL DESCRIPTION) 

 
Type name Informal Description SuperType 

Customer (CustNo, Name, Address)  

CustOrder (CustNo, Datum, OrdNo, Summ€)  

OrderPos (Id, Quantity, Unit)  

Location (LocationNo, Reihe, Shelf, Rack)  

PurchasePart (PartID, Designation, Material, Color, Weight, Size) Part 

InHouseProduct (PartID, Designation, Material, Color, Weight, Size) Part 

Stock (PartID, LocationNo, Available, Commissioned, Reserved_Until)  

Supplier (SupplNo, Name, Address)  

SupplOrd (OrdNo, SupplNo, Datum, Sum€)  

PurchPos (PosNo, Quantity, Unit)  

SupplCatalog (SupplNo, SPartNo, Desription, Weight, Unit, unitPrice)  

 
Type name Leaving Arriving Other properties 

Ordered_by CustOrder Customer  

Belongs_to OrderPos CustOrder  

Is_Part_Of Part Part No_of_components 

Stocked Stocked Part  

At Part Location  

Supplied_by SupplOrd Supplier  

Is_Pos_of PurchPos SupplOrd  

Has Sypplier SupplCatalog  

Orders OrderPos Part  

From_ OrderPos Stock  

Supplied PurchPos ParchasePart  

Can_Spply SupplCatalog PurchasePart  

Serves PurchPos OrderPos  
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V. CONCLUSIONS 

The purpose of this paper was to report some progress 
in our Typed Graph Modeling workstream. The work is 
available on Github [11] for free download and use and is 
not covered by any patent or other restrictions. The main 
challenges, as expected, were related to the 
implementation of the MATCH algorithm for repeating 
patterns, and the solution found is an elegant one involving 
continuations and documented in the Pyrrho blog [12] and 
in [11].  We plan to add further facilities for altering the 
types of graph properties, and to track development of the 
forthcoming GQL standard. 

Unsurprisingly, the performance of our implementation 
is modest for complex statements when the database 
becomes large. Simple CREATE and MATCH statements 

like those found in benchmarks are processed at over 2500 
per second. The implementation will no double benefit 
from a review of this aspect. 

The current “alpha” state of the software implements 
all of the above ideas. The test suite includes simple cases 
that demonstrate the integration of the relational and typed 
graph model concepts in Pyrrho DBMS. The 
implementation is backward compatible with previous 
versions of Pyrrho DBMS, so legacy databases can 
immediately use these new capabilities. Pyrrho DBMS is 
free standing and works directly with the operating system 
(Windows, Linux, or MacOS), and clients interact with the 
server using TCP/IP or HTTP. 

It is our hope that other DBMS developers will also 
adopt GQL in new versions of their  DBMS. 

 

Figure 8. A part of the ERP example graph, after changes to primary keys similar to Figure 2 and 3 (e.g., PART now has key PartID).  
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