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Abstract— One effective way of learning programming 

techniques is to refer to sample programs. However, it becomes 

difficult and time-consuming to find a suitable sample 

program visually for a complex programming subject. To 

overcome this shortcoming, research and development of 

recommendation systems for software engineering have been 

actively conducted. This paper discusses a recommendation 

system for Java sample programs using unsupervised machine 

learning techniques. The proposed system includes three major 

steps: (1) extracting invoked methods used in each sample 

program, (2) soft clustering the sample program by applying a 

data mining technique to the extracted methods, and (3) 

ranking programs in a cluster by calculating a weighted 

average concerning the extracted methods. Experiments using 

sample programs related to a graphical user interface and 

string handling have confirmed the effectiveness of the 

proposed recommendation system. A generative artificial 

intelligence model can successfully generate a description of 

the cluster using invoked method names that specify each soft 

cluster. The proposed recommendation system and a 

generative artificial intelligence model can collaborate for 

improving a programming education environment. 

Keywords-component; Recommendation System for Software 

Engineering; Maximal Frequent Itemset; Unsupervised Machine 

Learning; Soft clustering. 

I.  INTRODUCTION 

This research paper is an extension of the previously 
reported contribution to the Java sample program 
recommendation system [1]. The study includes 
improvement of algorithms for analyzing program structure, 
and performing soft clustering. Additional experiments on 
programming subjects covering standard Java classes 
including a Graphical User Interface (GUI), string handling, 

file Input/Output (I/O), socket, multithreading, collection, etc. 

are performed. 
It is widely recognized that sample programs provide an 

effective means for learning new programming techniques. 
In particular, sample programs for using Application 
Programming Interfaces (API) related to open-source 
programs are widely available on the Internet. Since the 
amount of publicly concerning sample programs becomes 
enormous, it might become time-consuming and error-prone 
to find an appropriate sample program visually. Over the past 

few decades, there has been a great deal of research and 
development on the software recommendation systems that 
provide useful programming information for students and 
developers. 

Recommendation systems are originally employed in 
online stores and video/music websites, where rankings of 
items are calculated based on users’ reactions and similarities 
among products and/or works. The recommendation system 
for software development is intended to assist programmer’s 
effort. It is designed to deals with artifacts, such as sample 
programs, specifications, test cases and bug reports. Several 
techniques have been developed to collect, rank, and 
visualize similar artifacts based on various indicators 
reflecting their nature. These techniques are often specific to 
software engineering and cause a recommendation system to 
be called a Recommendation System for Software 
Engineering (RSSE) [2]. 

This paper discusses a sample program recommendation 
system using a soft clustering technique. The proposed 
system deals with Java sample programs that are collected 
from the Internet. Assuming that a characteristic of a Java 
program is determined by the API calls, the name of a 
declared method and the names of invoked methods are 
extracted from these sample programs. The system 
automatically clusters Java sample programs based on the 
invoked methods applying a data mining technique named 
Apriori algorithm [3]. Because the Apriori algorithm is based 
on a set theoretic relation, the algorithm implements soft 
clustering, where one sample program belongs to multiple 
clusters. The system ranks the sample programs in each 
cluster using a Term Frequency-Inverse Document 
Frequency (tf-idf) [4] or weighted vector space model. 
Experiments confirm that higher ranked samples tend to 
contain more types of invoked methods than those ranked 
lower, which means this system assists a student in selecting 
sample programs suitable for learning. 

The contributions of this study are as follows: 
I. In general, API call patterns differ from one 

programming subject to another. This system can soft 
cluster sample programs for each programming subjects 
based on the API call patterns. This process is automatic, 
as the system automatically determines parameters for 
optimal soft clustering, which is newly implemented in 
this study. 
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II. The RSSEs proposed so far employ hard clustering, if 
any. In hard clustering, the results depend on the initial 
values and have the restriction that one sample belongs 
to only one cluster. This study employes soft clustering 
supported by a set theoretic relation. Therefore, a sample 
program can belong to multiple clusters, and a cluster 
only contains programs related by set theory. Soft 
clustering provides the optimal access paths that reflect 
characteristics of the sample program. 

III. By modifying tf-idf to give greater weights to the 
methods that are used to define a cluster, sample 
programs that fit the subject of a cluster and include rare 
APIs are ranked higher. 

IV. The proposed system employs unsupervised machine 
learning, making it lightweight to use, operate and 
maintain the system. In fact, simply by collecting 
sample programs and running the proposed system, a 
student can get suitable sample programs to support 
his/her learning. 

The rest of this paper is organized as follows. Section II 
describes the state-of-the-art research on the RSSEs. Section 
III overviews the proposed system. Section IV describes the 
implementation of the main functions of the proposed system. 
Section V shows the experimental results using typical Java 
programming techniques. Section VI discusses other 
implementation options and collaboration with a generative 
AI model. Section VII concludes the paper with our plans for 
future work. 

 

II. STATE-OF-THE-ART RESEARCH 

This section outlines recent studies concerning 
recommendation systems for software engineering. 
Technically, they can be broadly classified into clustering, 
pattern mining, and similarity. Many studies use multiple 
techniques. 

A. Survey 

Gasparic and Janes [5] survey 46 research and 
development articles on RSSE published between 2003 and 
2013, and categorize them with respect to covered data and 
methods for recommendation. The most common type of 
covered data is source code with 21 papers, followed by help 
information to perform source code changes with 6 papers. 
As for the recommendation methods, list format is the most 
common with 33 papers, followed by document format with 
three papers, and table format with two papers. 

Ko, Lee, Park, and Choi [6] discuss the recommendation 
system research trends from a macro perspective using top-
ranking articles and conference papers electrically published 
between 2010 and 2021. The study analyzes how the 
recommendation models and technologies are utilized in 
seven main service fields including education service and 
academic information service. Smart education that accesses 
vast digital resources has stimulated a rapid increase of 
educational recommendation systems. The goal of the 
systems is to provide learners with personalized educational 
materials. 

B. Clustering 

Katirtzis, Diamantopoulos, and Sutton [7] discuss an 
algorithm that extracts API call sequences and then clusters 
them to create an API usage summary known as a source 
code snippet. Hierarchical clustering is performed by 
calculating the distance of extracted API call sequences 
using the longest common subsequence (LCS) algorithm [8]. 
Then, code slice techniques are applied to create a source 
code snippet. 

Chen, Peng, Chen, Sun, Xing, Wang, and Zhao [9] 
propose an approach for API sequence recommendation with 
three strategies, i.e., heuristic search using a modified longest 
common subsequence algorithm, clustering API sequence 
using a hierarchical clustering algorithm, and summarizing 
API sequence recommendations. They use the clustering to 
make it easier for programmers to find similar API 
recommendations and to facilitate the API selection. Since 
they use a modified hierarchical clustering algorithm, each 
API is always hard clustered belonging to just one cluster. 

C. Pattern Mining 

Hsu and Lin [10] propose a recommendation system 
based on frequent patterns in source code. They originally 
define 17 syntax patterns and extract them from the source 
code under study. A sequence pattern extraction algorithm 
based on frequency known as Prefix-Span [11] is applied to 
generate recommended API usage patterns. 

Chen, Gao, Ren, Peng, Xia, and Lyu [12] discuss a 
method to mine the usage patterns of low frequency APIs. 
Their method is based on three views, i.e., method-API 
relationship for local view, API-API co-occurrence for 
global view, and project structure for external view. With 
experiments of several hundreds of Java projects, their 
method is confirmed to achieve an increased rate for 
retrieving the low-frequency APIs. 

D. Similarity 

Diamantopoulos and Symeonidis [13] develop a system 
to recommend sample code stored in software repositories on 
the Internet, such as GitHub, GitLab and Bitbucket. The 
input to the system is a code fragment presented by a user, 
and the output is a set of sample codes similar to the code 
fragment. Similarities among source codes are calculated 
based on the vector space model and the Levenshtein 
distance [14]. 

Hora [15] discusses a source code recommendation 
system that analyzes source code contained in a particular 
project and creates ranked API usage examples on a web site. 
The system ranks the source code based on three quality 
measures, i.e., similarity, readability, and reusability. The 
similarity is calculated using the cosine similarity [4][16] in 
data analysis, while readability and reusability are calculated 
using indicators developed in software engineering studies. 

Nguyen, Rocco, Sipio, Ruscio, and Penta [17] implement 
a system to present API usage in a timely manner during a 
coding process and discuss the evaluation of experimental 
results. The system calculates the similarity among similar 
projects by tf-idf and ranks API usage patterns using a 
collaborative filtering technique [18]. 
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E. Approach of this Study 

This study concerns a recommendation system for 
sample programs based on API call patterns, which is similar 
to many of the studies described in this section. The system 
first soft clusters sample programs based on a set of 
frequently occurring APIs. Next, the tf-idf model is used to 
calculate the recommendation of the programs belonging to 
each cluster. The significant difference from previous studies 
is the implementation of soft clustering that allows a single 
program to belong to multiple clusters. The study also 
automatically adjusts a clustering parameter to optimize the 
number of clusters. This implementation allows us to 
efficiently handle the hundreds of sample programs required 
in programming education. 

III. OVERVIEW OF PROPOSED SYSTEM 

This section describes the architecture of the proposed 
system from the functional point of view and outlines typical 
usage with an example from experiments performed in this 
study. 

A. Architecture 

Figure 1 depicts the architecture of the proposed system. 
The input for this system is a collection of sample programs 
stored in the Sample code repository. Currently, these 
sample programs are manually collected from the Internet, 
and stored in a specific project typically in Eclipse, an 
Integrated Development Environment (IDE) for Java [19]. In 
this study, we assume that all sample programs are correct 
and work properly. 
 

 
 

Figure 1. Overview of the proposed system. 

 
Java programming techniques typically classified into 

several subjects, such as File I/O, collection, GUI, socket, 

and multithreading. This classification is widely accepted in 

programming education. The proposed system is designed 

to store Java sample programs in multiple packages or 

categories. Figure 2 shows the package structure used in this 

study, which is stored in a project of Eclipse named 

Sample_Code. 

Programming education typically requires several to 

thirty Java sample programs in a package, though there is no 

limit to the number of Java files to include in each package. 

The File_IO.Sample_1 and File_IO.Sample_2 packages 

contain a set of sample programs for file IO, which is used 

for the experiments described in the previous paper [1]. 
 

 
Figure 2. Package structure of Sample_code. 

 

More than ten packages covering typical Java 

programming subjects are newly added. The 

GUI.ComboBox and String_Handling packages are used for 

the experiments described in the rest of this paper. 

B. Starting Code Analyzer 

The initial GUI screen of the proposed system contains 
only one JComboBox with the top directory of sample 
programs as an argument. The user of this system can view 
the package structure of the sample programs, and select 
one of the packages by pulling down the JComboBox. 
Figure 3 shows the screen dump that selects the 
GUI.ComboBox package. 
 

 

Figure 3. Screen dump for selecting the GUI.ComboBox package. 
 

Then, the code analyzer in Figure 1 starts to extract 
declared method names and invoked method names from all 
Java files under the selected package or directory. A list of 
invoked method names is used for clustering the declared 
methods and ranking them. 

Since Java allows a class to define its own methods, the 
same method name can be defined across multiple classes. 
In a Java program, a non-static method needs a reference 
variable to identify the class to which the method belongs. 
In this study, a new function to convert variable names to 
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class names is implemented in the code analyzer in order to 
uniquely distinguish non-static methods. 

For example, Java has the HashMap and TreeMap classes. 
The both classes have the non-static put methods to insert an 
element to the map classes. The code analyzer generates 
HashMap.put and/or TreeMap.put by converting a reference 
variable to a class name. This conversion process is newly 
implemented in this study, and allows us to identify the 
difference between the put method in the HashMap class 
method and that in the TreeMap class. 

C. Automatic Identification of Subjects and Clusters 

Following code analysis, the Apriori algorithm [3] runs to 
identify the set of invoked methods that occur frequently. 
Programming subjects are automatically identified based on 
the frequent method set. Each subject corresponds to a 
cluster featured by the frequent method name set. Figure 4 
shows an example of clustering with 17 identified clusters 
for the GUI.ComboBox package that includes 18 Java files 
and 45 declared methods.  

 

 

Figure 4. Identified programming subjects or clusters with class name. 
 
Every non-static method name is preceded by a class 

name in Figure 4. Sometimes class names are so long that it 
is better to omit them for the purpose of a concise display. 
Unchecking the With Class ID checkbox at the top left 
corner of the initial GUI, the method names without class 
names are displayed as shown in Figure 5. 

 

 

Figure 5. Identified programming subjects or clusters without class name. 

 
Strictly, this study uses a soft clustering technique based 

on a maximal frequent itemset [20], i.e., a compact itemset 

that represents a frequent itemset. The method names 
displayed in Figures 4 and 5 are elements of a maximal 
frequent itemset. For example, “getItemCount JPanel add 
setPreferredSize Dimension setMaximumRowCount” 
suggests from the method names that the cluster is related to 
the programming techniques that specify the number of 
elements in a JComboBox, the size of a JComboBox, and the 
maximum number of rows that can be displayed.  

D. Calculation of Recommended Ranking 

Selecting an element in the JComboBox shown in Figures 
4 and 5 causes to specify a cluster of methods, which starts 
calculations of recommendation values for each of the 
declared methods in the cluster. Figure 6 shows an example 
of a method recommendation. The values of 
recommendation for each declared method are normalized 
so that the maximum value is equal to one. 

 

 
Figure 6. Sample of program recommendation. 

 
Each method name is prefixed with a class name or a Java 

file name, so that a student can easily find out source code 
using an IDE, such as Eclipse, NetBeans and IntelliJ IDEA. 
 

IV. IMPLEMENTATION 

This section describes the implementation of three major 
steps for generating a recommendation. Those steps are code 
analysis, soft clustering, and ranking. 

A. Code Analysis for Extracting Invoked Method Set 

Functions necessary for system development are typically 
provided as runtime methods in Java. After learning the 
control structure of programs and object-oriented techniques, 
students and developers enhance their programming skills by 
learning how to use the runtime methods provided by Java 
communities. Therefore, the methods being invoked are 
closely related to the functionality of the programs under 
development. In this study, we assume that program 
similarity can be computed by the similarity of the method 
sets being invoked. 

The code analyzer in Figure 1 extracts a declared method 
signature and a set of invoked method names. We 
implemented the code analyzer using the Scanner class [21], 
a tokenizer in Eclipse Java Development Tools (JDT) core. 
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This class provides the functionality to classify the tokens in 
a Java program into more than 100 types, and excludes 
comments for facilitating efficient analysis of executable 
statements. The Scanner class is also used in Eclipse [19] for 
navigating Java programs, including a class-method 
hierarchy and a list of field variables. 

Figure 7 shows a sample of a Java program. Figure 8 
shows the declared method signature and a list of invoked 
method names that are extracted from the Java program. A 
method or API with the same name is usually invoked 
multiple times in a declared method. Therefore, the code 
analyzer extracts the invoked method name and the number 
of times invoked, which are used for calculating cosine 
similarity [4][16]. For example, the main method in the 
JComboBox_3 class in Figure 7 invokes the Dimension 
method twice, and JComboBox.setPreferredSize method 
twice, etc.  
 

 

Figure 7. Sample Java program named JComboBox_3.java. 

 

Figure 8. Invoked method names and the number of invoked times. 
 

It should be noted that the methods, such as println() and 
printStackTrace(), are intentionally excluded from the 
extraction process because they are often used to print data 
values for debugging purpose. They are considered to fail to 
characterize the function of a declared method. 

B. Soft Clustering Based on Apriori Algorithm 

1) Apriori algorithm and maximal frequent itemset 
Apriori algorithm proposed by Agrawal and Srikant [3] 

starts by identifying the frequent individual items of length 
one, and extending them to larger itemset as long as those 
itemset frequently appear in the database under consideration. 

Let us a database D be a set of transactions t, i.e., D= {t1, 
t2,…, tn}. Let us each transaction ti be a nonempty set of 
itemset, i.e., ti = {ii1, ii2,…, iim}. The itemset is a nonempty set 
of items observed together. 

The support value of an itemset is defined as the number of 
transactions in the database D. Using terms of the database D 
and transaction ti, the support value of an itemset X is defined 
by the following formula: 

 

Support(X)= | { ti∈D : X⊆ti & 1 ≤ i ≤ n } |  (1) 

 
A set of items is called frequent if its support value is 

greater than a user-specified minimum support value, i.e., 
minSup.  

Here, we cite the Apriori principle: 

If an itemset is frequent, then all of its subsets are 
also frequent. 

This means that if a set is infrequent, then all of its 
supersets are infrequent. The Apriori algorithm works based 
on this principle, in which the frequent item sets of length k 
are utilized to identify frequent item sets of length k+1. 

Since the frequent itemset generated by the Apriori 
algorithm tends to be very large, it is beneficial to identify a 
compact representation of all the frequent itemset. One such 
approach is to use a maximal frequent itemset [20]. 

 
Definition:  

A maximal frequent itemset is a frequent itemset for 
which none of its immediate supersets are frequent. 
 

Table I shows an example of a database consisting of five 
transactions of itemset.  

TABLE I. EXAMPLE OF DATABASE 

 
 

Figure 9 illustrates an example of the maximal frequent 
itemset in a lattice structure where a node corresponds to an 
itemset and arcs correspond to the subset relation [20]. 
MinSup is set to 20% (= 1/5*100). Since the number of 
transactions in the database is 5, minSup 20% means if an 

JComboBox_3::main(String[]) 
 Dimension, 2 
 JComboBox.getItemCount, 1 
 JComboBox.setMaximumRowCount, 1 
 JComboBox.setPreferredSize, 2 
 JFrame, 1 
 JFrame.getContentPane, 1 
 JFrame.setBounds, 1 
 JFrame.setDefaultCloseOperation, 1 
 JFrame.setTitle, 1 
 JFrame.setVisible, 1 
 JPanel, 1 
 JPanel.add, 2 
 add, 1 
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itemset appears once or more than once, it is frequent. In 
Figure 9, the nodes surrounded by solid lines indicate the 
frequent itemset, while the nodes with yellow backgrounds 
indicate the maximal frequent itemset. By definition, the 
maximal frequent itemset forms the boundary between 
frequent and infrequent itemset. 

All frequent itemset can be derived from the set of 
maximal itemset. In Figure 9, the following three sets of 
itemset are generated form the maximal frequent itemset: 

{{A, B, C} {A, B}, {A, C}, {B, C}, {A}, {B}, {C}} 
{{A, C, D} {A, C}, {A, D}, {C, D}, {A}, {C}, {D}} 
{{B, C, D} {B, C}, {B, D}, {C, D}, {B}, {C}, {D}}. 
Each maximal frequent itemset defines a soft cluster of 

itemset where one element belongs to multiple clusters. For 
example, the itemset {A, C} belongs to the two clusters {A, 
B, C} and {A, C, D}. 
 

 
Figure 9. Maximal frequent itemset in lattice structure with 20% minSup. 

 
Figure 10 illustrates an example of the maximal frequent 

itemset with minSup of 40%. In the case of Figure 10, the 
following four sets of itemset are derived: 

{{A, C}, {A}, {C}} 
{{A, D}, {A}, {D}} 
{{B, C}, {B}, {C}} 
{{C, D}, {C}, {D}}. 
 

 
Figure 10. Maximal frequent itemset in lattice structure with 40% minSup. 

 
It should be noted that the maximal frequent itemset, and 

thus the number of elements in the itemset, changes 
according to the value of minSup. In the proposed system, 
the value of minSup is varied by 1% to find the minSup that 

produces the maximal frequent itemset with the largest 
number of itemsets. 

Table II shows some of the package names containing 
Java programs used in the experiment, the number of Java 
files, and the number of declared methods. Because String 
and Collection APIs are rather simple to use, only one 
declared method, i.e., main, is used in each Java file. 
Therefore, the number of Java files is equal to the number of 
declared methods. In contrast, the API related to GUI is 
complex to use, and multiple declared methods are used in a 
Java file. Therefore, the number of declared methods is 
larger than the number of Java files. 

TABLE II. NUMBER OF JAVA FILES AND METHODS 

 
 
Figure 11 shows the value of minSup and the number of 

clusters or itemsets in the maximal frequent itemset for each 
package. The maximum number of clusters is reached when 
the munSup is between 4% and 6%.  

In general, there is a certain trend between the number of 
declared methods and the number of clusters. The 
Collection and GUI.Label packages have the eleven 
declared methods and the twelve declared methods, 
respectively. The number of clusters is maximized when 
minSup is between 4% and about 9%. The File_IO and 
GUI.Combobox packages have the 40 methods and the 45 
methods, respectively. The maximum number of clusters is 
observed when minSup is between 4% and 6%. The GUI 
package consists of nine sub-packages and contains 152 
declared methods. Maximum number of clusters occurs 
when minSup is 4%. 

 

 

Figure 11. Values of minSup and the number of clusters. 
 
In the current implementation, minSup is varied from 3% 

to 12% to count the number of generated clusters. Then, the 
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minSup that maximizes the number of clusters is determined. 
The lists of invoked methods shown in Figures 4 and 5 
present clusters of a GUI.ComboBox with a minSup of 4%. 

 

2) Soft clustering sample programs 
More than ten binary programs that implement the Apriori 

algorithm are available on the web page maintained by 
Borgelt [22]. For the sake of openness and efficiency of 
implementation, this study uses fpgrowth.exe listed on the 
web page. Specifically, we implement a maximal-frequent-
itemset generating function by calling fpgrowth.exe using 
java.lang.Runtime.exec() that executes the specified 
command and arguments as a separated process. The input 
data for this program is the set of invoked methods for each 
declared method, which is generated by the code analyzer 
ignoring the number of invoked methods citations. The 
result of running fpgrowth.exe is written to a file. Next, this 
file is read by the proposed recommendation system, which 
implements the linkage with the Apriori algorithm. 

Figure 12 shows the maximal frequent itemset generated 
from the sample programs in GUI.ComboBox package 
shown in Figure 5, with a minSup of 4%. The maximal 
frequent itemset corresponds to the programming subjects. 
Figure 4 shows the complete set of method names preceded 
by the class name, which is actually used to calculate the 
recommended values. 

 

Figure 12. Example of generated maximal frequent itemset. 

Figure 13 shows a list of declared methods that contain at 
least one invoked method name that is included in a 
maximal frequent itemset. For example, clusters 1, 2, 4, and 
7 are about actionPerformed, and itemStateChanged. 
 

Figure 13. Declared methods belonging to each cluster. 

0) DefaultComboBoxModel JTextField JButton addActionListener 

JLabel JComboBox setBounds setDefaultCloseOperation setTitle 

setVisible getContentPane Dimension setPreferredSize add JPanel 

<Intentionally omitted> 

1) getElementAt getText setText parseInt getSize 

JComboBox_2::actionPerformed(ActionEvent) 

JD_ComboBox_6::actionPerformed(ActionEvent) 

JD_ComboBox_7::actionPerformed(ActionEvent) 

JD_ComboBox_8::actionPerformed(ActionEvent) 

2) removeElementAt getText setText parseInt getSize 

JComboBox_2::actionPerformed(ActionEvent) 

JD_ComboBox_6::actionPerformed(ActionEvent) 

JD_ComboBox_7::actionPerformed(ActionEvent) 

JD_ComboBox_8::actionPerformed(ActionEvent) 

3) addActionListener add JPanel getContentPane setVisible setTitle 

setDefaultCloseOperation 

HT_ComboBox_1::main(String[]) 

HT_ComboBox_2::HT_ComboBox_2() 

HT_ComboBox_3::HT_ComboBox_3() 

JComboBox_1::JComboBox_1() 

JComboBox_2::JComboBox_2() 

JComboBox_3::main(String[]) 

JComboBox_4::JComboBox_4() 

JComboBox_5::JComboBox_5() 

JD_ComboBox_1::JD_ComboBox_1() 

JD_ComboBox_2::JD_ComboBox_2() 

JD_ComboBox_3::JD_ComboBox_3() 

JD_ComboBox_4::JD_ComboBox_4() 

JD_ComboBox_5::JD_ComboBox_5() 

JD_ComboBox_6::JD_ComboBox_6() 

JD_ComboBox_7::JD_ComboBox_7() 

JD_ComboBox_8::JD_ComboBox_8() 

4) addItem 

HT_ComboBox_3::actionPerformed(ActionEvent) 

JComboBox_1::JComboBox_1() 

JComboBox_1::actionPerformed(ActionEvent) 

5) addItemListener JLabel JPanel add getContentPane setVisible 

setTitle setDefaultCloseOperation setPreferredSize Dimension 

setBounds JComboBox 

<Intentionally omitted> 

6) getItemCount JPanel add setPreferredSize Dimension 

setMaximumRowCount 

HT_ComboBox_1::main(String[]) 

HT_ComboBox_2::HT_ComboBox_2() 

HT_ComboBox_3::HT_ComboBox_3() 

JComboBox_1::JComboBox_1() 

JComboBox_2::JComboBox_2() 

JComboBox_3::main(String[]) 

JComboBox_4::JComboBox_4() 

JComboBox_5::JComboBox_5() 

JD_ComboBox_1::JD_ComboBox_1() 

JD_ComboBox_2::JD_ComboBox_2() 

JD_ComboBox_3::JD_ComboBox_3() 

JD_ComboBox_4::JD_ComboBox_4() 

JD_ComboBox_5::JD_ComboBox_5() 

JD_ComboBox_6::JD_ComboBox_6() 

JD_ComboBox_7::JD_ComboBox_7() 

JD_ComboBox_8::JD_ComboBox_8() 

7) getSelectedIndex getSelectedItem 

HT_ComboBox_3::actionPerformed(ActionEvent) 

HT_ComboBox_3::itemStateChanged(ItemEvent) 

JComboBox_4::itemStateChanged(ItemEvent) 

JD_ComboBox_3::actionPerformed(ActionEvent) 

JD_ComboBox_5::itemStateChanged(ItemEvent) 

8 to 16   <Intentionally omitted> 

0) DefaultComboBoxModel JTextField JButton addActionListener JLabel 

JComboBox setBounds setDefaultCloseOperation setTitle setVisible 

getContentPane Dimension setPreferredSize add JPanel 

1) getElementAt getText setText parseInt getSize 

2) removeElementAt getText setText parseInt getSize 

3) addActionListener JPanel add getContentPane setVisible setTitle 

setDefaultCloseOperation 

4) addItem 

5) addItemListener JLabel JPanel add getContentPane setVisible setTitle 

setDefaultCloseOperation setPreferredSize Dimension setBounds 

JComboBox 

6) getItemCount JPanel add setPreferredSize Dimension 

setMaximumRowCount 

7) getSelectedIndex getSelectedItem 

8) setEditable Dimension JPanel add getContentPane setVisible setTitle 

setDefaultCloseOperation setPreferredSize 

9) setEditable JButton JPanel add getContentPane setVisible setTitle 

setDefaultCloseOperation addActionListener 

10) setMaximumRowCount JComboBox JPanel add setPreferredSize 

Dimension getContentPane setVisible setTitle setDefaultCloseOperation 

setBounds 

11) setSelectedIndex JPanel add setPreferredSize Dimension 

getContentPane setVisible setTitle setDefaultCloseOperation setBounds 

JComboBox 

10) setMaximumRowCount JComboBox JPanel add setPreferredSize 

Dimension getContentPane setVisible setTitle setDefaultCloseOperation 

setBounds 

11) setSelectedIndex JPanel add setPreferredSize Dimension 

getContentPane setVisible setTitle setDefaultCloseOperation setBounds 

JComboBox 

12) setBounds JPanel add setPreferredSize Dimension 

setDefaultCloseOperation getContentPane JFrame setVisible 

13) equals setText getText 

14) getSource 

15) getStateChange getSelectedItem setText 

16) setLocation JPanel add getContentPane setVisible setTitle 

setDefaultCloseOperation setEditable setSize 
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Cluster 3 is about how to create a GUI containing a 
ComboBox. Cluster 6 is related to the JComboBox property 
settings. Since the JComboBox needs to be placed in a 
screen frame, the API for JFrame, e.g., lines 22-27 of 
Figure 7, are commonly included. The declared methods of 
sample programs of clusters 3 and 6 are overlapping as soft 
clustering is employed in this study. Since this stage is 
before the recommended ranks are calculated, only the 
declared method names belonging to each cluster are listed.  

Due to space constraints, clusters 0, 5, 8 through 16 are 
intentionally omitted. Many of the clusters consist of the 
same 16 declared methods as listed in clusters 3 and 6. In 
this implementation, if a declared method includes one or 
more invoked methods that comprise a maximal frequent 
itemset, then it is treated as an element of the cluster 
corresponding to that maximal frequent itemset. Therefore, 
the same set of methods appears in many clusters. The 
implemented condition seems to be most appropriate. 
However, if a user wants to reduce the number of elements 
belonging to each cluster, it can be easily implemented by 
setting the number of methods included in a maximal 
frequent itemset to two or more. 

C. Calculation of Recommendation Ranking 

1) Definition of tf-idf 
The Term Frequency-Inverse Document Frequency (tf-

idf) weight is a statistical measure that is commonly used in 
information retrieval [4]. In the context of our study, the tf-
idf can be rephrased as follows: 

Tf (term frequency) means the frequency of an invoked 
method name in a sample program, 

Idf (inverse document frequency) indicates a numerical 
value used for measuring the importance of an invoked 
method name in a set of sample programs. 

Among several options to calculate the tf and idf, we 
adopt the following definitions.  

Tfi is defined as the number of occurrences of an invoked 
method i in declared method. 

Idfi is defined as log(N/DFi), where N is the total number 
of declared methods that occur in a package of sample 
programs, and DFi is the number of declared methods 
where an invoked method i appears at least once. It 
should be noted that idfi of an invoked method i that 
appears in all declared methods is equal to log(N/N), 
which is equal to 0. 

 

2) Calculating Tf-idf for Sample Program Recommendation 
As mentioned earlier, the maximal frequent itemset 

consists of a set of method names that suggest programming 
subjects. Examples of the maximal frequent itemset is 
displayed on the JCombobox in the GUI as shown in 
Figures 4 and 5. The proposed system identifies a set of 
declared methods related to the maximal frequent itemset 
when a user selects a cell on the JCombobox. Then, the 
proposed system starts to compute tf and idf for each of 
invoked methods that are defined in the set of declared 
methods.  

Table III lists the tf and idf values of the invoked method 
names relating to the maximal frequent itemset 

{getItemCount, JPanel, add, setPreferredSize, Dimension, 
setMaximumRowCount} that is shown on the seventh line 
from the top in Figure 5. There are 35 invoked methods in 
the 16 declared methods in cluster 6 that concerns the 
maximal frequent itemset. 

TABLE III. TF AND IDF VALUES FOR INVOKED METHOD NAMES 

 
 

Since the proposed system uses soft clustering based on a 
maximal frequent itemset, the method names that are 
included in the maximal frequent itemset should be 
considered to characterize the sample programs more 
strongly than the others. In this study, the weights of the 
invoked method names are adjusted using the following 
formula. 

Let us MFI be the Maximal Frequent Itemset specified by 
a user and idfmax be the maximum of idf values. 
 

Adjusted idfj= idfj + idfmax    if j ∊MFI  (2) 

                  = idfj                if j ∉MFI   

 
Table IV shows the adjusted idf values for the maximal 

frequent itemset {getItemCount, JPanel, add, 
setPreferredSize, Dimension, setMaximumRowCount}. The 
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add methods are defined in both of the JPanel and JFrame 
classes. They are distinguished in the internal processing. 
Because the add method of the JFrame class is called via 
the getContentPane method, as shown in line 23 of Figure 7, 
it is simply denoted by add. 

TABLE IV. ADJUSTED IDF VALUES 

 
 

The degree of recommendation DegRi for a declared 
method i is calculated as: 

where tfik is the number of occurrences of the invoked 
method k in the declared method i, and idfk is the inverse 
document frequency of the invoked method k. 

Table V shows the degrees of recommendation for the 
declared method regarding the maximal frequent itemset 
{getItemCount, JPanel, add, setPreferredSize, Dimension, 
setMaximumRowCount}. 

TABLE V. DEGREES OF RECOMMENDATION FOR SAMPLE PROGRAM 

 
 

The maximal degree of recommendation is normalized to 
be 1.000 and displayed in the text area of the GUI. For the 
lists in Table V, the normalized degrees of recommendation 
are obtained by dividing all the degrees by 19.623. This 
calculation generates the final list of recommendations 
shown in Figure 6. 

V. EXPERIMENTAL RESULTS 

This section describes two sets of experimental results. 
The first set of experimental results is about declared 
methods or sample programs relating to the GUI.Combobox 
package. Because GUI components in Java are typically 
embedded in a screen frame called JFrame, the declared 
methods for the GUI.Combobox package inevitably 
accompany JFrame APIs. Consequently, they are often 
complicated. The other set of experimental results concerns 
the String_Handring package. APIs for the String class tend 
to be called alone. Therefore, the declared methods for the 
String_Handring package are often concise. 

A. Experiment on Programs in GUI.Combobox Package 

Figure 14 shows the sample Java files included in the 
GUI.Combobox package that is listed on the 10th line from 
the bottom in Figure 2. The number of Java files is 18, and 
the number of declared method is 45 as shown in Table II. 

 

 

Figure 14. Sample Java files included in GUI.Combobox package. 

 
Let us the programming subject be “getItemCount JPanel 

add setPreferredSize Dimension setMaximumRowCount” as 
listed on the seventh line from the top in Figure 5. The 
generated recommendation list is shown in Figure 6. Figure 
7 shows the source program of the declared method named 
JComboBox_3.java::main(String[]) with the normalized 
recommendation value of 1.000. This method has the top 
recommended rank because it contains all the invoked 
method names or APIs that make up the programming 
subject. 

Figure 15 shows the declared method of eighth 
recommended rank with the normalized recommendation 
value of 0.660 named JD_ComboBox6(). This method fails 
to include two APIs of programming subjects, i.e., 
getItemCount and setMaximumRowCount. Instead, it 
includes APIs, such as JTextField and JButton. 
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Figure 15. Sample program with normalized recommendation  
value of 0.660. 

 
Figure 16 shows the declared method named 

JD_ComboBox_1() that is ranked at the end of 
recommendation list with the normalized recommendation 
value of 0.209. The method is a basic program for the usage 
of JComboBox and its integration into JFrame. 

 

 
Figure 16. Sample program with normalized recommendation  

value of 0.209. 

 
Because of the recommended value calculation formula, a 

declared method that is closely related to a programming 
subject is ranked high. In general, a lower-ranked declared 
method is concise and better suited for beginners in learning 
programming because it contains fewer APIs or invoked 
methods. A declared method containing many APIs and less 
related to the programming subject tends to be ranked in the 
middle of the recommendation list. 

 

B. Experiment on Programs in String_Handring Package  

In Java programming language, the String class provides 
various APIs that can be used to handle string data. It 
includes APIs like length, charAt, equals, indexOf, 
substring, toUpperCase, toLowerCase, etc. These APIs 
facilitate string processing.  

Figure 17 shows the sample Java files included in the 
String_Handring package that is located on the second line 
from the bottom in Figure 2. The number of Java files is 31, 
which is the same as the number of the declared method 
named main as shown in Table II. Since sample programs 
on the String class are rather simple, only one declared 
method is defined in each Java file. 

 

Figure 17. Sample Java files included in String_Handring package. 

 
Figure 18 shows 15 identified programming subjects or 

clusters of the String_Handring package. Figure 18 reveals 
some commonly used APIs for string processing, such as 
equals, indexOf, and substring. Since this system uses soft 
clustering, there are APIs common to multiple clusters. For 
example, the equals API appears in four clusters, the 
compareTo API in three clusters as shown in Figure 18. 
 

 

Figure 18. Identified programming subjects of String_Handring package. 

 
Figure 19 shows a list of recommended declared methods 

for the programing subject “trim replaceFirst replaceAll 
replace toLowerCase toUpperCase.” The proposed system 
lists five declared methods with recommended values from 
1.000 to 0.275. 
 

 

Figure 19. List of recommended declared methods. 
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Figure 20 shows the top-ranked sample program with the 
normalized recommendation value of 1.000. This sample 
program contains all the method names that constitute the 
programming subject. 
 

 

Figure 20. Sample program with normalized recommendation  
value of 1.000. 

 
Figure 21 shows the sample program with a normalized 

recommendation value of 0.802. This sample program only 
contains two method names that constitute the programming 
subject, i.e., toLowerCase and toUpperCase. However, this 
program has a high recommended value because it contains 
many methods related to String class, such as equlas, 
indexOf, and substring. 
 

 

Figure 21. Sample program with normalized recommendation  
value of 0.802. 

 
Figure 22 shows the sample program with the normalized 

recommendation value of 0.275. This program only includes 
the replace method twice, causing to a low recommendation. 
 
 

 

Figure 22. Sample program with normalized recommendation  
value of 0.275. 

 
In the recommendation calculation proposed in this study, 

sample programs with fewer method types generally rank 

lower than those with richer in method types. However, the 
simpler program can be useful for beginners in 
programming because of its conciseness. 

VI. DISCUSSION 

A. Syntax Analysis 

In this study, the Scanner [21] class is used for parsing 
sample programs mainly because it reduces development 
effort. There are several options of parsing tools, including 
JavaParser [23] and ANTLR [24], both of which generate an 
Abstract Syntax Tree (AST). An AST is an intermediate 
representation of a source program represented by a tree 
structure. A few hundred lines of programming for 
traversing an AST allow an application to perform more 
complex operations than a mere method name extraction. 
ANTLR can parse formal languages including Java. All 
parsing tools work independent of IDEs and can parse 
sample programs stored in arbitrary directories. 

B. Generative AI 

ChatGPT is a chat-based generative AI released by 
OpenAI in Nov 2022 [25]. The ChatGPT August 3 version 
allows users to get Java sample programs for JComboBox 
successfully. Since Java programs are generally 
characterized by APIs they call, ChatGPT precisely 
generates a report that contains a targeted sample program 
using a prompt including those APIs. 

For example, the following prompt generates a report 
with a sample program that sets the number of elements to 
be displayed in a JComboBox’s dropped-down list using the 
setMaximumRowCount method:  

 
Would you show me a sample Java program about 

JComboBox using setMaximumRowCount method? 

 
The proposed system and ChatGPT can be used to 

support each other. The proposed recommendation system 
automatically generates a list of APIs, which is helpful for 
writing prompts to ChatGPT. 

For example, the list of APIs identified by the proposed 
system facilitates writing the following prompt: 

 
Would you show me a programming subject using the 
following Java APIs: “getItemCount JPanel add 
setPreferredSize Dimension setMaximumRowCount”? 
 
Figure 23 shows a gist of ChatGPT’s response to this 

prompt. The response briefly states the subject and also 
suggests areas for further study. 

 

 

Figure 23. Gist of response from ChatGPT. 

Subject: Creating a JComboBox within a JPanel 

Objective: Build a GUI application that contains a JComboBox 
inside a JPanel, allowing users to select options from the 
dropdown list. < Intentionally omitted > 

This subject will allow you to explore GUI customization and 

layout management in Java Swing while using the mentioned Java 

APIs to create a visually appealing and interactive user interface. 
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The proposed recommended system has a lot of potential 
to improve the programming learning environment by 
working together with generative AI models, such as 
ChatGPT, Bing, Bard and Claude [26]. 

VII. CONCLUSION AND FUTURE WORK 

This study deals with a recommendation system of Java 
sample programs using unsupervised machine learning. The 
proposed system soft clusters the sample program based on 
the set of invoked method names that are frequently 
observed. The clustering that corresponds to a programming 
subject is performed automatically using the Apriori 
algorithm. The recommended ranking of the sample 
programs in a cluster is calculated based on an adjusted tf-idf 
model that takes the method name and the number of times it 
is invoked.  

This study is an extension of a previously published study 
[1]. The system described in this paper has been significantly 
enhanced in its functionality to perform source program 
parsing and soft clustering. Enhancements in parsing have 
made it possible to accurately parse complex sample 
programs, which allows the proposed system to handle 
sample programs on a variety of Java programming subjects. 
The functionality to optimize the value of minSup, i.e., a 
parameter of the Apriori algorithm, has been introduced to 
automatically perform optimal soft clustering. 

It is confirmed through experiments using sample 
programs in the File_IO, GUI, and String_Handring 
packages, etc. that the sample programs containing APIs 
related to a programming subject are ranked high on a 
produced recommendation list. In addition, the set of APIs 
automatically identified by the proposed recommendation 
system is helpful for writing successful prompts for 
generative AI models including ChatGPT. The combination 
of the proposed system and the generative AIs offers 
significant potential to provide an unprecedented 
programming education environment. 

Manual sample program acquisition from the Internet is 
time consuming and is a subject for future research. 
Additional experiments with larger number of sample 
programs are planned for a programming class room. 
Experiments in cooperation with generative AI are also 
planned. 
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