
Lightweight Approach to Java Sample Code Recommendation System

Using Apriori-Based Soft Clustering

Yoshihisa Udagawa

Faculty of Informatics

Tokyo University of Information Sciences

Chiba-city, Chiba, Japan

e-mail: yu207233@rsch.tuis.ac.jp

Abstract— One effective way of learning programming

techniques is to refer to sample programs. However, it becomes

difficult and time-consuming to find a suitable sample

program visually for a complex programming subject. To

overcome this shortcoming, research and development of

recommendation systems for software engineering have been

actively conducted. This paper discusses a recommendation

system for Java sample programs using unsupervised machine

learning techniques. The proposed system includes three major

steps: (1) extracting invoked methods used in each sample

program, (2) soft clustering the sample program by applying a

data mining technique to the extracted methods, and (3)

ranking programs in a cluster by calculating a weighted

average concerning the extracted methods. Experiments using

sample programs related to a graphical user interface and

string handling have confirmed the effectiveness of the

proposed recommendation system. A generative artificial

intelligence model can successfully generate a description of

the cluster using invoked method names that specify each soft

cluster. The proposed recommendation system and a

generative artificial intelligence model can collaborate for

improving a programming education environment.

Keywords-component; Recommendation System for Software

Engineering; Maximal Frequent Itemset; Unsupervised Machine

Learning; Soft clustering.

I. INTRODUCTION

This research paper is an extension of the previously
reported contribution to the Java sample program
recommendation system [1]. The study includes
improvement of algorithms for analyzing program structure,
and performing soft clustering. Additional experiments on
programming subjects covering standard Java classes
including a Graphical User Interface (GUI), string handling,

file Input/Output (I/O), socket, multithreading, collection, etc.

are performed.
It is widely recognized that sample programs provide an

effective means for learning new programming techniques.
In particular, sample programs for using Application
Programming Interfaces (API) related to open-source
programs are widely available on the Internet. Since the
amount of publicly concerning sample programs becomes
enormous, it might become time-consuming and error-prone
to find an appropriate sample program visually. Over the past

few decades, there has been a great deal of research and
development on the software recommendation systems that
provide useful programming information for students and
developers.

Recommendation systems are originally employed in
online stores and video/music websites, where rankings of
items are calculated based on users’ reactions and similarities
among products and/or works. The recommendation system
for software development is intended to assist programmer’s
effort. It is designed to deals with artifacts, such as sample
programs, specifications, test cases and bug reports. Several
techniques have been developed to collect, rank, and
visualize similar artifacts based on various indicators
reflecting their nature. These techniques are often specific to
software engineering and cause a recommendation system to
be called a Recommendation System for Software
Engineering (RSSE) [2].

This paper discusses a sample program recommendation
system using a soft clustering technique. The proposed
system deals with Java sample programs that are collected
from the Internet. Assuming that a characteristic of a Java
program is determined by the API calls, the name of a
declared method and the names of invoked methods are
extracted from these sample programs. The system
automatically clusters Java sample programs based on the
invoked methods applying a data mining technique named
Apriori algorithm [3]. Because the Apriori algorithm is based
on a set theoretic relation, the algorithm implements soft
clustering, where one sample program belongs to multiple
clusters. The system ranks the sample programs in each
cluster using a Term Frequency-Inverse Document
Frequency (tf-idf) [4] or weighted vector space model.
Experiments confirm that higher ranked samples tend to
contain more types of invoked methods than those ranked
lower, which means this system assists a student in selecting
sample programs suitable for learning.

The contributions of this study are as follows:
I. In general, API call patterns differ from one

programming subject to another. This system can soft
cluster sample programs for each programming subjects
based on the API call patterns. This process is automatic,
as the system automatically determines parameters for
optimal soft clustering, which is newly implemented in
this study.

254

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. The RSSEs proposed so far employ hard clustering, if
any. In hard clustering, the results depend on the initial
values and have the restriction that one sample belongs
to only one cluster. This study employes soft clustering
supported by a set theoretic relation. Therefore, a sample
program can belong to multiple clusters, and a cluster
only contains programs related by set theory. Soft
clustering provides the optimal access paths that reflect
characteristics of the sample program.

III. By modifying tf-idf to give greater weights to the
methods that are used to define a cluster, sample
programs that fit the subject of a cluster and include rare
APIs are ranked higher.

IV. The proposed system employs unsupervised machine
learning, making it lightweight to use, operate and
maintain the system. In fact, simply by collecting
sample programs and running the proposed system, a
student can get suitable sample programs to support
his/her learning.

The rest of this paper is organized as follows. Section II
describes the state-of-the-art research on the RSSEs. Section
III overviews the proposed system. Section IV describes the
implementation of the main functions of the proposed system.
Section V shows the experimental results using typical Java
programming techniques. Section VI discusses other
implementation options and collaboration with a generative
AI model. Section VII concludes the paper with our plans for
future work.

II. STATE-OF-THE-ART RESEARCH

This section outlines recent studies concerning
recommendation systems for software engineering.
Technically, they can be broadly classified into clustering,
pattern mining, and similarity. Many studies use multiple
techniques.

A. Survey

Gasparic and Janes [5] survey 46 research and
development articles on RSSE published between 2003 and
2013, and categorize them with respect to covered data and
methods for recommendation. The most common type of
covered data is source code with 21 papers, followed by help
information to perform source code changes with 6 papers.
As for the recommendation methods, list format is the most
common with 33 papers, followed by document format with
three papers, and table format with two papers.

Ko, Lee, Park, and Choi [6] discuss the recommendation
system research trends from a macro perspective using top-
ranking articles and conference papers electrically published
between 2010 and 2021. The study analyzes how the
recommendation models and technologies are utilized in
seven main service fields including education service and
academic information service. Smart education that accesses
vast digital resources has stimulated a rapid increase of
educational recommendation systems. The goal of the
systems is to provide learners with personalized educational
materials.

B. Clustering

Katirtzis, Diamantopoulos, and Sutton [7] discuss an
algorithm that extracts API call sequences and then clusters
them to create an API usage summary known as a source
code snippet. Hierarchical clustering is performed by
calculating the distance of extracted API call sequences
using the longest common subsequence (LCS) algorithm [8].
Then, code slice techniques are applied to create a source
code snippet.

Chen, Peng, Chen, Sun, Xing, Wang, and Zhao [9]
propose an approach for API sequence recommendation with
three strategies, i.e., heuristic search using a modified longest
common subsequence algorithm, clustering API sequence
using a hierarchical clustering algorithm, and summarizing
API sequence recommendations. They use the clustering to
make it easier for programmers to find similar API
recommendations and to facilitate the API selection. Since
they use a modified hierarchical clustering algorithm, each
API is always hard clustered belonging to just one cluster.

C. Pattern Mining

Hsu and Lin [10] propose a recommendation system
based on frequent patterns in source code. They originally
define 17 syntax patterns and extract them from the source
code under study. A sequence pattern extraction algorithm
based on frequency known as Prefix-Span [11] is applied to
generate recommended API usage patterns.

Chen, Gao, Ren, Peng, Xia, and Lyu [12] discuss a
method to mine the usage patterns of low frequency APIs.
Their method is based on three views, i.e., method-API
relationship for local view, API-API co-occurrence for
global view, and project structure for external view. With
experiments of several hundreds of Java projects, their
method is confirmed to achieve an increased rate for
retrieving the low-frequency APIs.

D. Similarity

Diamantopoulos and Symeonidis [13] develop a system
to recommend sample code stored in software repositories on
the Internet, such as GitHub, GitLab and Bitbucket. The
input to the system is a code fragment presented by a user,
and the output is a set of sample codes similar to the code
fragment. Similarities among source codes are calculated
based on the vector space model and the Levenshtein
distance [14].

Hora [15] discusses a source code recommendation
system that analyzes source code contained in a particular
project and creates ranked API usage examples on a web site.
The system ranks the source code based on three quality
measures, i.e., similarity, readability, and reusability. The
similarity is calculated using the cosine similarity [4][16] in
data analysis, while readability and reusability are calculated
using indicators developed in software engineering studies.

Nguyen, Rocco, Sipio, Ruscio, and Penta [17] implement
a system to present API usage in a timely manner during a
coding process and discuss the evaluation of experimental
results. The system calculates the similarity among similar
projects by tf-idf and ranks API usage patterns using a
collaborative filtering technique [18].

255

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

E. Approach of this Study

This study concerns a recommendation system for
sample programs based on API call patterns, which is similar
to many of the studies described in this section. The system
first soft clusters sample programs based on a set of
frequently occurring APIs. Next, the tf-idf model is used to
calculate the recommendation of the programs belonging to
each cluster. The significant difference from previous studies
is the implementation of soft clustering that allows a single
program to belong to multiple clusters. The study also
automatically adjusts a clustering parameter to optimize the
number of clusters. This implementation allows us to
efficiently handle the hundreds of sample programs required
in programming education.

III. OVERVIEW OF PROPOSED SYSTEM

This section describes the architecture of the proposed
system from the functional point of view and outlines typical
usage with an example from experiments performed in this
study.

A. Architecture

Figure 1 depicts the architecture of the proposed system.
The input for this system is a collection of sample programs
stored in the Sample code repository. Currently, these
sample programs are manually collected from the Internet,
and stored in a specific project typically in Eclipse, an
Integrated Development Environment (IDE) for Java [19]. In
this study, we assume that all sample programs are correct
and work properly.

Figure 1. Overview of the proposed system.

Java programming techniques typically classified into

several subjects, such as File I/O, collection, GUI, socket,

and multithreading. This classification is widely accepted in

programming education. The proposed system is designed

to store Java sample programs in multiple packages or

categories. Figure 2 shows the package structure used in this

study, which is stored in a project of Eclipse named

Sample_Code.

Programming education typically requires several to

thirty Java sample programs in a package, though there is no

limit to the number of Java files to include in each package.

The File_IO.Sample_1 and File_IO.Sample_2 packages

contain a set of sample programs for file IO, which is used

for the experiments described in the previous paper [1].

Figure 2. Package structure of Sample_code.

More than ten packages covering typical Java

programming subjects are newly added. The

GUI.ComboBox and String_Handling packages are used for

the experiments described in the rest of this paper.

B. Starting Code Analyzer

The initial GUI screen of the proposed system contains
only one JComboBox with the top directory of sample
programs as an argument. The user of this system can view
the package structure of the sample programs, and select
one of the packages by pulling down the JComboBox.
Figure 3 shows the screen dump that selects the
GUI.ComboBox package.

Figure 3. Screen dump for selecting the GUI.ComboBox package.

Then, the code analyzer in Figure 1 starts to extract
declared method names and invoked method names from all
Java files under the selected package or directory. A list of
invoked method names is used for clustering the declared
methods and ranking them.

Since Java allows a class to define its own methods, the
same method name can be defined across multiple classes.
In a Java program, a non-static method needs a reference
variable to identify the class to which the method belongs.
In this study, a new function to convert variable names to

256

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

class names is implemented in the code analyzer in order to
uniquely distinguish non-static methods.

For example, Java has the HashMap and TreeMap classes.
The both classes have the non-static put methods to insert an
element to the map classes. The code analyzer generates
HashMap.put and/or TreeMap.put by converting a reference
variable to a class name. This conversion process is newly
implemented in this study, and allows us to identify the
difference between the put method in the HashMap class
method and that in the TreeMap class.

C. Automatic Identification of Subjects and Clusters

Following code analysis, the Apriori algorithm [3] runs to
identify the set of invoked methods that occur frequently.
Programming subjects are automatically identified based on
the frequent method set. Each subject corresponds to a
cluster featured by the frequent method name set. Figure 4
shows an example of clustering with 17 identified clusters
for the GUI.ComboBox package that includes 18 Java files
and 45 declared methods.

Figure 4. Identified programming subjects or clusters with class name.

Every non-static method name is preceded by a class

name in Figure 4. Sometimes class names are so long that it
is better to omit them for the purpose of a concise display.
Unchecking the With Class ID checkbox at the top left
corner of the initial GUI, the method names without class
names are displayed as shown in Figure 5.

Figure 5. Identified programming subjects or clusters without class name.

Strictly, this study uses a soft clustering technique based

on a maximal frequent itemset [20], i.e., a compact itemset

that represents a frequent itemset. The method names
displayed in Figures 4 and 5 are elements of a maximal
frequent itemset. For example, “getItemCount JPanel add
setPreferredSize Dimension setMaximumRowCount”
suggests from the method names that the cluster is related to
the programming techniques that specify the number of
elements in a JComboBox, the size of a JComboBox, and the
maximum number of rows that can be displayed.

D. Calculation of Recommended Ranking

Selecting an element in the JComboBox shown in Figures
4 and 5 causes to specify a cluster of methods, which starts
calculations of recommendation values for each of the
declared methods in the cluster. Figure 6 shows an example
of a method recommendation. The values of
recommendation for each declared method are normalized
so that the maximum value is equal to one.

Figure 6. Sample of program recommendation.

Each method name is prefixed with a class name or a Java

file name, so that a student can easily find out source code
using an IDE, such as Eclipse, NetBeans and IntelliJ IDEA.

IV. IMPLEMENTATION

This section describes the implementation of three major
steps for generating a recommendation. Those steps are code
analysis, soft clustering, and ranking.

A. Code Analysis for Extracting Invoked Method Set

Functions necessary for system development are typically
provided as runtime methods in Java. After learning the
control structure of programs and object-oriented techniques,
students and developers enhance their programming skills by
learning how to use the runtime methods provided by Java
communities. Therefore, the methods being invoked are
closely related to the functionality of the programs under
development. In this study, we assume that program
similarity can be computed by the similarity of the method
sets being invoked.

The code analyzer in Figure 1 extracts a declared method
signature and a set of invoked method names. We
implemented the code analyzer using the Scanner class [21],
a tokenizer in Eclipse Java Development Tools (JDT) core.

257

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This class provides the functionality to classify the tokens in
a Java program into more than 100 types, and excludes
comments for facilitating efficient analysis of executable
statements. The Scanner class is also used in Eclipse [19] for
navigating Java programs, including a class-method
hierarchy and a list of field variables.

Figure 7 shows a sample of a Java program. Figure 8
shows the declared method signature and a list of invoked
method names that are extracted from the Java program. A
method or API with the same name is usually invoked
multiple times in a declared method. Therefore, the code
analyzer extracts the invoked method name and the number
of times invoked, which are used for calculating cosine
similarity [4][16]. For example, the main method in the
JComboBox_3 class in Figure 7 invokes the Dimension
method twice, and JComboBox.setPreferredSize method
twice, etc.

Figure 7. Sample Java program named JComboBox_3.java.

Figure 8. Invoked method names and the number of invoked times.

It should be noted that the methods, such as println() and
printStackTrace(), are intentionally excluded from the
extraction process because they are often used to print data
values for debugging purpose. They are considered to fail to
characterize the function of a declared method.

B. Soft Clustering Based on Apriori Algorithm

1) Apriori algorithm and maximal frequent itemset
Apriori algorithm proposed by Agrawal and Srikant [3]

starts by identifying the frequent individual items of length
one, and extending them to larger itemset as long as those
itemset frequently appear in the database under consideration.

Let us a database D be a set of transactions t, i.e., D= {t1,
t2,…, tn}. Let us each transaction ti be a nonempty set of
itemset, i.e., ti = {ii1, ii2,…, iim}. The itemset is a nonempty set
of items observed together.

The support value of an itemset is defined as the number of
transactions in the database D. Using terms of the database D
and transaction ti, the support value of an itemset X is defined
by the following formula:

Support(X)= | { ti∈D : X⊆ti & 1 ≤ i ≤ n } | (1)

A set of items is called frequent if its support value is

greater than a user-specified minimum support value, i.e.,
minSup.

Here, we cite the Apriori principle:

If an itemset is frequent, then all of its subsets are
also frequent.

This means that if a set is infrequent, then all of its
supersets are infrequent. The Apriori algorithm works based
on this principle, in which the frequent item sets of length k
are utilized to identify frequent item sets of length k+1.

Since the frequent itemset generated by the Apriori
algorithm tends to be very large, it is beneficial to identify a
compact representation of all the frequent itemset. One such
approach is to use a maximal frequent itemset [20].

Definition:

A maximal frequent itemset is a frequent itemset for
which none of its immediate supersets are frequent.

Table I shows an example of a database consisting of five
transactions of itemset.

TABLE I. EXAMPLE OF DATABASE

Figure 9 illustrates an example of the maximal frequent
itemset in a lattice structure where a node corresponds to an
itemset and arcs correspond to the subset relation [20].
MinSup is set to 20% (= 1/5*100). Since the number of
transactions in the database is 5, minSup 20% means if an

JComboBox_3::main(String[])
 Dimension, 2
 JComboBox.getItemCount, 1
 JComboBox.setMaximumRowCount, 1
 JComboBox.setPreferredSize, 2
 JFrame, 1
 JFrame.getContentPane, 1
 JFrame.setBounds, 1
 JFrame.setDefaultCloseOperation, 1
 JFrame.setTitle, 1
 JFrame.setVisible, 1
 JPanel, 1
 JPanel.add, 2
 add, 1

258

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

itemset appears once or more than once, it is frequent. In
Figure 9, the nodes surrounded by solid lines indicate the
frequent itemset, while the nodes with yellow backgrounds
indicate the maximal frequent itemset. By definition, the
maximal frequent itemset forms the boundary between
frequent and infrequent itemset.

All frequent itemset can be derived from the set of
maximal itemset. In Figure 9, the following three sets of
itemset are generated form the maximal frequent itemset:

{{A, B, C} {A, B}, {A, C}, {B, C}, {A}, {B}, {C}}
{{A, C, D} {A, C}, {A, D}, {C, D}, {A}, {C}, {D}}
{{B, C, D} {B, C}, {B, D}, {C, D}, {B}, {C}, {D}}.
Each maximal frequent itemset defines a soft cluster of

itemset where one element belongs to multiple clusters. For
example, the itemset {A, C} belongs to the two clusters {A,
B, C} and {A, C, D}.

Figure 9. Maximal frequent itemset in lattice structure with 20% minSup.

Figure 10 illustrates an example of the maximal frequent

itemset with minSup of 40%. In the case of Figure 10, the
following four sets of itemset are derived:

{{A, C}, {A}, {C}}
{{A, D}, {A}, {D}}
{{B, C}, {B}, {C}}
{{C, D}, {C}, {D}}.

Figure 10. Maximal frequent itemset in lattice structure with 40% minSup.

It should be noted that the maximal frequent itemset, and

thus the number of elements in the itemset, changes
according to the value of minSup. In the proposed system,
the value of minSup is varied by 1% to find the minSup that

produces the maximal frequent itemset with the largest
number of itemsets.

Table II shows some of the package names containing
Java programs used in the experiment, the number of Java
files, and the number of declared methods. Because String
and Collection APIs are rather simple to use, only one
declared method, i.e., main, is used in each Java file.
Therefore, the number of Java files is equal to the number of
declared methods. In contrast, the API related to GUI is
complex to use, and multiple declared methods are used in a
Java file. Therefore, the number of declared methods is
larger than the number of Java files.

TABLE II. NUMBER OF JAVA FILES AND METHODS

Figure 11 shows the value of minSup and the number of

clusters or itemsets in the maximal frequent itemset for each
package. The maximum number of clusters is reached when
the munSup is between 4% and 6%.

In general, there is a certain trend between the number of
declared methods and the number of clusters. The
Collection and GUI.Label packages have the eleven
declared methods and the twelve declared methods,
respectively. The number of clusters is maximized when
minSup is between 4% and about 9%. The File_IO and
GUI.Combobox packages have the 40 methods and the 45
methods, respectively. The maximum number of clusters is
observed when minSup is between 4% and 6%. The GUI
package consists of nine sub-packages and contains 152
declared methods. Maximum number of clusters occurs
when minSup is 4%.

Figure 11. Values of minSup and the number of clusters.

In the current implementation, minSup is varied from 3%

to 12% to count the number of generated clusters. Then, the

259

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

minSup that maximizes the number of clusters is determined.
The lists of invoked methods shown in Figures 4 and 5
present clusters of a GUI.ComboBox with a minSup of 4%.

2) Soft clustering sample programs
More than ten binary programs that implement the Apriori

algorithm are available on the web page maintained by
Borgelt [22]. For the sake of openness and efficiency of
implementation, this study uses fpgrowth.exe listed on the
web page. Specifically, we implement a maximal-frequent-
itemset generating function by calling fpgrowth.exe using
java.lang.Runtime.exec() that executes the specified
command and arguments as a separated process. The input
data for this program is the set of invoked methods for each
declared method, which is generated by the code analyzer
ignoring the number of invoked methods citations. The
result of running fpgrowth.exe is written to a file. Next, this
file is read by the proposed recommendation system, which
implements the linkage with the Apriori algorithm.

Figure 12 shows the maximal frequent itemset generated
from the sample programs in GUI.ComboBox package
shown in Figure 5, with a minSup of 4%. The maximal
frequent itemset corresponds to the programming subjects.
Figure 4 shows the complete set of method names preceded
by the class name, which is actually used to calculate the
recommended values.

Figure 12. Example of generated maximal frequent itemset.

Figure 13 shows a list of declared methods that contain at
least one invoked method name that is included in a
maximal frequent itemset. For example, clusters 1, 2, 4, and
7 are about actionPerformed, and itemStateChanged.

Figure 13. Declared methods belonging to each cluster.

0) DefaultComboBoxModel JTextField JButton addActionListener

JLabel JComboBox setBounds setDefaultCloseOperation setTitle

setVisible getContentPane Dimension setPreferredSize add JPanel

<Intentionally omitted>

1) getElementAt getText setText parseInt getSize

JComboBox_2::actionPerformed(ActionEvent)

JD_ComboBox_6::actionPerformed(ActionEvent)

JD_ComboBox_7::actionPerformed(ActionEvent)

JD_ComboBox_8::actionPerformed(ActionEvent)

2) removeElementAt getText setText parseInt getSize

JComboBox_2::actionPerformed(ActionEvent)

JD_ComboBox_6::actionPerformed(ActionEvent)

JD_ComboBox_7::actionPerformed(ActionEvent)

JD_ComboBox_8::actionPerformed(ActionEvent)

3) addActionListener add JPanel getContentPane setVisible setTitle

setDefaultCloseOperation

HT_ComboBox_1::main(String[])

HT_ComboBox_2::HT_ComboBox_2()

HT_ComboBox_3::HT_ComboBox_3()

JComboBox_1::JComboBox_1()

JComboBox_2::JComboBox_2()

JComboBox_3::main(String[])

JComboBox_4::JComboBox_4()

JComboBox_5::JComboBox_5()

JD_ComboBox_1::JD_ComboBox_1()

JD_ComboBox_2::JD_ComboBox_2()

JD_ComboBox_3::JD_ComboBox_3()

JD_ComboBox_4::JD_ComboBox_4()

JD_ComboBox_5::JD_ComboBox_5()

JD_ComboBox_6::JD_ComboBox_6()

JD_ComboBox_7::JD_ComboBox_7()

JD_ComboBox_8::JD_ComboBox_8()

4) addItem

HT_ComboBox_3::actionPerformed(ActionEvent)

JComboBox_1::JComboBox_1()

JComboBox_1::actionPerformed(ActionEvent)

5) addItemListener JLabel JPanel add getContentPane setVisible

setTitle setDefaultCloseOperation setPreferredSize Dimension

setBounds JComboBox

<Intentionally omitted>

6) getItemCount JPanel add setPreferredSize Dimension

setMaximumRowCount

HT_ComboBox_1::main(String[])

HT_ComboBox_2::HT_ComboBox_2()

HT_ComboBox_3::HT_ComboBox_3()

JComboBox_1::JComboBox_1()

JComboBox_2::JComboBox_2()

JComboBox_3::main(String[])

JComboBox_4::JComboBox_4()

JComboBox_5::JComboBox_5()

JD_ComboBox_1::JD_ComboBox_1()

JD_ComboBox_2::JD_ComboBox_2()

JD_ComboBox_3::JD_ComboBox_3()

JD_ComboBox_4::JD_ComboBox_4()

JD_ComboBox_5::JD_ComboBox_5()

JD_ComboBox_6::JD_ComboBox_6()

JD_ComboBox_7::JD_ComboBox_7()

JD_ComboBox_8::JD_ComboBox_8()

7) getSelectedIndex getSelectedItem

HT_ComboBox_3::actionPerformed(ActionEvent)

HT_ComboBox_3::itemStateChanged(ItemEvent)

JComboBox_4::itemStateChanged(ItemEvent)

JD_ComboBox_3::actionPerformed(ActionEvent)

JD_ComboBox_5::itemStateChanged(ItemEvent)

8 to 16 <Intentionally omitted>

0) DefaultComboBoxModel JTextField JButton addActionListener JLabel

JComboBox setBounds setDefaultCloseOperation setTitle setVisible

getContentPane Dimension setPreferredSize add JPanel

1) getElementAt getText setText parseInt getSize

2) removeElementAt getText setText parseInt getSize

3) addActionListener JPanel add getContentPane setVisible setTitle

setDefaultCloseOperation

4) addItem

5) addItemListener JLabel JPanel add getContentPane setVisible setTitle

setDefaultCloseOperation setPreferredSize Dimension setBounds

JComboBox

6) getItemCount JPanel add setPreferredSize Dimension

setMaximumRowCount

7) getSelectedIndex getSelectedItem

8) setEditable Dimension JPanel add getContentPane setVisible setTitle

setDefaultCloseOperation setPreferredSize

9) setEditable JButton JPanel add getContentPane setVisible setTitle

setDefaultCloseOperation addActionListener

10) setMaximumRowCount JComboBox JPanel add setPreferredSize

Dimension getContentPane setVisible setTitle setDefaultCloseOperation

setBounds

11) setSelectedIndex JPanel add setPreferredSize Dimension

getContentPane setVisible setTitle setDefaultCloseOperation setBounds

JComboBox

10) setMaximumRowCount JComboBox JPanel add setPreferredSize

Dimension getContentPane setVisible setTitle setDefaultCloseOperation

setBounds

11) setSelectedIndex JPanel add setPreferredSize Dimension

getContentPane setVisible setTitle setDefaultCloseOperation setBounds

JComboBox

12) setBounds JPanel add setPreferredSize Dimension

setDefaultCloseOperation getContentPane JFrame setVisible

13) equals setText getText

14) getSource

15) getStateChange getSelectedItem setText

16) setLocation JPanel add getContentPane setVisible setTitle

setDefaultCloseOperation setEditable setSize

260

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Cluster 3 is about how to create a GUI containing a
ComboBox. Cluster 6 is related to the JComboBox property
settings. Since the JComboBox needs to be placed in a
screen frame, the API for JFrame, e.g., lines 22-27 of
Figure 7, are commonly included. The declared methods of
sample programs of clusters 3 and 6 are overlapping as soft
clustering is employed in this study. Since this stage is
before the recommended ranks are calculated, only the
declared method names belonging to each cluster are listed.

Due to space constraints, clusters 0, 5, 8 through 16 are
intentionally omitted. Many of the clusters consist of the
same 16 declared methods as listed in clusters 3 and 6. In
this implementation, if a declared method includes one or
more invoked methods that comprise a maximal frequent
itemset, then it is treated as an element of the cluster
corresponding to that maximal frequent itemset. Therefore,
the same set of methods appears in many clusters. The
implemented condition seems to be most appropriate.
However, if a user wants to reduce the number of elements
belonging to each cluster, it can be easily implemented by
setting the number of methods included in a maximal
frequent itemset to two or more.

C. Calculation of Recommendation Ranking

1) Definition of tf-idf
The Term Frequency-Inverse Document Frequency (tf-

idf) weight is a statistical measure that is commonly used in
information retrieval [4]. In the context of our study, the tf-
idf can be rephrased as follows:

Tf (term frequency) means the frequency of an invoked
method name in a sample program,

Idf (inverse document frequency) indicates a numerical
value used for measuring the importance of an invoked
method name in a set of sample programs.

Among several options to calculate the tf and idf, we
adopt the following definitions.

Tfi is defined as the number of occurrences of an invoked
method i in declared method.

Idfi is defined as log(N/DFi), where N is the total number
of declared methods that occur in a package of sample
programs, and DFi is the number of declared methods
where an invoked method i appears at least once. It
should be noted that idfi of an invoked method i that
appears in all declared methods is equal to log(N/N),
which is equal to 0.

2) Calculating Tf-idf for Sample Program Recommendation
As mentioned earlier, the maximal frequent itemset

consists of a set of method names that suggest programming
subjects. Examples of the maximal frequent itemset is
displayed on the JCombobox in the GUI as shown in
Figures 4 and 5. The proposed system identifies a set of
declared methods related to the maximal frequent itemset
when a user selects a cell on the JCombobox. Then, the
proposed system starts to compute tf and idf for each of
invoked methods that are defined in the set of declared
methods.

Table III lists the tf and idf values of the invoked method
names relating to the maximal frequent itemset

{getItemCount, JPanel, add, setPreferredSize, Dimension,
setMaximumRowCount} that is shown on the seventh line
from the top in Figure 5. There are 35 invoked methods in
the 16 declared methods in cluster 6 that concerns the
maximal frequent itemset.

TABLE III. TF AND IDF VALUES FOR INVOKED METHOD NAMES

Since the proposed system uses soft clustering based on a
maximal frequent itemset, the method names that are
included in the maximal frequent itemset should be
considered to characterize the sample programs more
strongly than the others. In this study, the weights of the
invoked method names are adjusted using the following
formula.

Let us MFI be the Maximal Frequent Itemset specified by
a user and idfmax be the maximum of idf values.

Adjusted idfj= idfj + idfmax if j ∊MFI (2)

 = idfj if j ∉MFI

Table IV shows the adjusted idf values for the maximal

frequent itemset {getItemCount, JPanel, add,
setPreferredSize, Dimension, setMaximumRowCount}. The

261

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

add methods are defined in both of the JPanel and JFrame
classes. They are distinguished in the internal processing.
Because the add method of the JFrame class is called via
the getContentPane method, as shown in line 23 of Figure 7,
it is simply denoted by add.

TABLE IV. ADJUSTED IDF VALUES

The degree of recommendation DegRi for a declared
method i is calculated as:

where tfik is the number of occurrences of the invoked
method k in the declared method i, and idfk is the inverse
document frequency of the invoked method k.

Table V shows the degrees of recommendation for the
declared method regarding the maximal frequent itemset
{getItemCount, JPanel, add, setPreferredSize, Dimension,
setMaximumRowCount}.

TABLE V. DEGREES OF RECOMMENDATION FOR SAMPLE PROGRAM

The maximal degree of recommendation is normalized to
be 1.000 and displayed in the text area of the GUI. For the
lists in Table V, the normalized degrees of recommendation
are obtained by dividing all the degrees by 19.623. This
calculation generates the final list of recommendations
shown in Figure 6.

V. EXPERIMENTAL RESULTS

This section describes two sets of experimental results.
The first set of experimental results is about declared
methods or sample programs relating to the GUI.Combobox
package. Because GUI components in Java are typically
embedded in a screen frame called JFrame, the declared
methods for the GUI.Combobox package inevitably
accompany JFrame APIs. Consequently, they are often
complicated. The other set of experimental results concerns
the String_Handring package. APIs for the String class tend
to be called alone. Therefore, the declared methods for the
String_Handring package are often concise.

A. Experiment on Programs in GUI.Combobox Package

Figure 14 shows the sample Java files included in the
GUI.Combobox package that is listed on the 10th line from
the bottom in Figure 2. The number of Java files is 18, and
the number of declared method is 45 as shown in Table II.

Figure 14. Sample Java files included in GUI.Combobox package.

Let us the programming subject be “getItemCount JPanel

add setPreferredSize Dimension setMaximumRowCount” as
listed on the seventh line from the top in Figure 5. The
generated recommendation list is shown in Figure 6. Figure
7 shows the source program of the declared method named
JComboBox_3.java::main(String[]) with the normalized
recommendation value of 1.000. This method has the top
recommended rank because it contains all the invoked
method names or APIs that make up the programming
subject.

Figure 15 shows the declared method of eighth
recommended rank with the normalized recommendation
value of 0.660 named JD_ComboBox6(). This method fails
to include two APIs of programming subjects, i.e.,
getItemCount and setMaximumRowCount. Instead, it
includes APIs, such as JTextField and JButton.

262

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 15. Sample program with normalized recommendation
value of 0.660.

Figure 16 shows the declared method named

JD_ComboBox_1() that is ranked at the end of
recommendation list with the normalized recommendation
value of 0.209. The method is a basic program for the usage
of JComboBox and its integration into JFrame.

Figure 16. Sample program with normalized recommendation

value of 0.209.

Because of the recommended value calculation formula, a

declared method that is closely related to a programming
subject is ranked high. In general, a lower-ranked declared
method is concise and better suited for beginners in learning
programming because it contains fewer APIs or invoked
methods. A declared method containing many APIs and less
related to the programming subject tends to be ranked in the
middle of the recommendation list.

B. Experiment on Programs in String_Handring Package

In Java programming language, the String class provides
various APIs that can be used to handle string data. It
includes APIs like length, charAt, equals, indexOf,
substring, toUpperCase, toLowerCase, etc. These APIs
facilitate string processing.

Figure 17 shows the sample Java files included in the
String_Handring package that is located on the second line
from the bottom in Figure 2. The number of Java files is 31,
which is the same as the number of the declared method
named main as shown in Table II. Since sample programs
on the String class are rather simple, only one declared
method is defined in each Java file.

Figure 17. Sample Java files included in String_Handring package.

Figure 18 shows 15 identified programming subjects or

clusters of the String_Handring package. Figure 18 reveals
some commonly used APIs for string processing, such as
equals, indexOf, and substring. Since this system uses soft
clustering, there are APIs common to multiple clusters. For
example, the equals API appears in four clusters, the
compareTo API in three clusters as shown in Figure 18.

Figure 18. Identified programming subjects of String_Handring package.

Figure 19 shows a list of recommended declared methods

for the programing subject “trim replaceFirst replaceAll
replace toLowerCase toUpperCase.” The proposed system
lists five declared methods with recommended values from
1.000 to 0.275.

Figure 19. List of recommended declared methods.

263

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 20 shows the top-ranked sample program with the
normalized recommendation value of 1.000. This sample
program contains all the method names that constitute the
programming subject.

Figure 20. Sample program with normalized recommendation
value of 1.000.

Figure 21 shows the sample program with a normalized

recommendation value of 0.802. This sample program only
contains two method names that constitute the programming
subject, i.e., toLowerCase and toUpperCase. However, this
program has a high recommended value because it contains
many methods related to String class, such as equlas,
indexOf, and substring.

Figure 21. Sample program with normalized recommendation
value of 0.802.

Figure 22 shows the sample program with the normalized

recommendation value of 0.275. This program only includes
the replace method twice, causing to a low recommendation.

Figure 22. Sample program with normalized recommendation
value of 0.275.

In the recommendation calculation proposed in this study,

sample programs with fewer method types generally rank

lower than those with richer in method types. However, the
simpler program can be useful for beginners in
programming because of its conciseness.

VI. DISCUSSION

A. Syntax Analysis

In this study, the Scanner [21] class is used for parsing
sample programs mainly because it reduces development
effort. There are several options of parsing tools, including
JavaParser [23] and ANTLR [24], both of which generate an
Abstract Syntax Tree (AST). An AST is an intermediate
representation of a source program represented by a tree
structure. A few hundred lines of programming for
traversing an AST allow an application to perform more
complex operations than a mere method name extraction.
ANTLR can parse formal languages including Java. All
parsing tools work independent of IDEs and can parse
sample programs stored in arbitrary directories.

B. Generative AI

ChatGPT is a chat-based generative AI released by
OpenAI in Nov 2022 [25]. The ChatGPT August 3 version
allows users to get Java sample programs for JComboBox
successfully. Since Java programs are generally
characterized by APIs they call, ChatGPT precisely
generates a report that contains a targeted sample program
using a prompt including those APIs.

For example, the following prompt generates a report
with a sample program that sets the number of elements to
be displayed in a JComboBox’s dropped-down list using the
setMaximumRowCount method:

Would you show me a sample Java program about

JComboBox using setMaximumRowCount method?

The proposed system and ChatGPT can be used to

support each other. The proposed recommendation system
automatically generates a list of APIs, which is helpful for
writing prompts to ChatGPT.

For example, the list of APIs identified by the proposed
system facilitates writing the following prompt:

Would you show me a programming subject using the
following Java APIs: “getItemCount JPanel add
setPreferredSize Dimension setMaximumRowCount”?

Figure 23 shows a gist of ChatGPT’s response to this

prompt. The response briefly states the subject and also
suggests areas for further study.

Figure 23. Gist of response from ChatGPT.

Subject: Creating a JComboBox within a JPanel

Objective: Build a GUI application that contains a JComboBox
inside a JPanel, allowing users to select options from the
dropdown list. < Intentionally omitted >

This subject will allow you to explore GUI customization and

layout management in Java Swing while using the mentioned Java

APIs to create a visually appealing and interactive user interface.

264

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The proposed recommended system has a lot of potential
to improve the programming learning environment by
working together with generative AI models, such as
ChatGPT, Bing, Bard and Claude [26].

VII. CONCLUSION AND FUTURE WORK

This study deals with a recommendation system of Java
sample programs using unsupervised machine learning. The
proposed system soft clusters the sample program based on
the set of invoked method names that are frequently
observed. The clustering that corresponds to a programming
subject is performed automatically using the Apriori
algorithm. The recommended ranking of the sample
programs in a cluster is calculated based on an adjusted tf-idf
model that takes the method name and the number of times it
is invoked.

This study is an extension of a previously published study
[1]. The system described in this paper has been significantly
enhanced in its functionality to perform source program
parsing and soft clustering. Enhancements in parsing have
made it possible to accurately parse complex sample
programs, which allows the proposed system to handle
sample programs on a variety of Java programming subjects.
The functionality to optimize the value of minSup, i.e., a
parameter of the Apriori algorithm, has been introduced to
automatically perform optimal soft clustering.

It is confirmed through experiments using sample
programs in the File_IO, GUI, and String_Handring
packages, etc. that the sample programs containing APIs
related to a programming subject are ranked high on a
produced recommendation list. In addition, the set of APIs
automatically identified by the proposed recommendation
system is helpful for writing successful prompts for
generative AI models including ChatGPT. The combination
of the proposed system and the generative AIs offers
significant potential to provide an unprecedented
programming education environment.

Manual sample program acquisition from the Internet is
time consuming and is a subject for future research.
Additional experiments with larger number of sample
programs are planned for a programming class room.
Experiments in cooperation with generative AI are also
planned.

REFERENCES

[1] Y. Udagawa, “Lightweight Sample Code Recommendation
System to Support Programming Education,” The Ninth
International Conference on Advances and Trends in Software
Engineering (SOFTENG 2023), IARIA, Apr. 2023, pp. 1-7,
ISSN: 2519-8394, ISBN: 978-1-68558-042-1.

[2] M. P. Robillard, W. Maalej, R. J. Walker, and T. Zimmermann,
“Recommendation systems for software engineering,” IEEE
Software 27, pp. 80-86, Jul. 2010, DOI: 10.1109/MS.2009.161

[3] R. Agrawal and R. Srikant, “Mining sequential patterns,” The
11th IEEE International Conference on Data Engineering
(ICDE), pp. 3-14, 1995, DOI: 10.1109/ICDE.1995.380415

[4] G. Sidorov. “Vector Space Model for Texts and the tf-idf
Measure,” In Syntactic n-grams in Computational Linguistics,
pp. 5-14, Apr. 2019, Springer, Cham, ISBN: 978-3-030-14770-
9.

[5] M. Gasparic and A. Janes, “What Recommendation Systems
for Software Engineering Recommend: A Systematic
Literature Review,” Journal of Systems and Software 113, pp.
101-113, Mar. 2016, DOI: 10.1016/j.jss.2015.11.036

[6] H. Ko, S. Lee, Y. Park, and A. Choi, “A Survey of
Recommendation Systems: Recommendation Models,
Techniques, and Application Fields,” Electronics vol. 11, pp.
141-188, Jan. 2022, DOI: 10.3390/electronics11010141

[7] N. Katirtzis, T. Diamantopoulos, and C. Sutton, “Summarizing
Software API Usage Examples Using Clustering Techniques,”
The 21st International Conference on Fundamental
Approaches to Software Engineering, vol. 10802, Springer, pp.
189-206, Apr. 2018, DOI: 10.1007/978-3-319-89363-1_11

[8] “Longest Common Subsequence,” Available from:
https://www.tutorialspoint.com/design_and_analysis_of_algori
thms/design_and_analysis_of_algorithms_longest_common_su
bsequence.htm

[9] C. Chen, X. Peng, B. Chen, J. Sun, Z. Xing, X. Wang, and W.
Zhao, “More Than Deep Learning: Post-processing for API
Sequence Recommendation,” Empirical Software Engineering.
vol.27, pp. 1-32, Oct. 2021, Available from:
https://ink.library.smu.edu.sg/sis_research/6580

[10] S.-K. Hsu and S.-J. Lin, “Mining Source Codes to Guide
Software Development,” Asian Conference on Intelligent
Information and Database Systems (ACIIDS 2010), pp. 445-
454, Mar. 2010, DOI: 10.1007/978-3-642-12145-6_46

[11] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U.
Dayal, and M. Hsu, “Prefixspan: Mining Sequential Patterns
Efficiently by Prefix-Projected Pattern Growth,” The 17th
international conference on data engineering, pp. 215-224, Apr.
2001.

[12] Y. Chen, C. Gao, X. Ren, Y. Peng, X. Xia, and M. R. Lyu,
“API Usage Recommendation Via Multi-View Heterogeneous
Graph Representation Learning,” IEEE Transactions on
Software Engineering, vol. 49, pp. 3289-3304, May 2023,
DOI: 10.1109/TSE.2023.3252259

[13] T. Diamantopoulos and A. Symeonidis, “Mining Source
Code for Component Reuse,” Mining Software Engineering
Data for Software Reuse, Advanced Information and
Knowledge Processing, Springer, pp. 133-174, Mar. 2020,
DOI: 10.1007/978-3-030-30106-4_6

[14] “Levenshtein Distance,” Wikipedia, Nov. 2023, Available
from: https://en.wikipedia.org/wiki/Levenshtein_distance

[15] A. Hora, “APISonar: Mining API usage examples,”
Wiley Online Library, Software: Practice and Experience, vol.
51, issue 2, pp. 319-352, Oct. 2[4]020, DOI: 10.1002/spe.2906

[16] “Cosine Similarity,” Wikipedia, Oct. 2023, Available from:
https://en.wikipedia.org/wiki/Cosine_similarity

[17] P. T. Nguyen, J. D. Rocco, C. D. Sipio, D. D. Ruscio,
and M. D. Penta, “Recommending API Function Calls and
Code Snippets to Support Software Development,” IEEE
Transactions on Software Engineering, vol. 48, issue 7, pp.
2417-2438, Jul. 2022, DOI: 10.1109/TSE.2021.3059907

[18] A. Roy, “Introduction to Recommender Systems-1:
Content-Based Filtering and Collaborative Filtering,” Jul. 29,
2020, Available from: https://towardsdatascience.com/
introduction-to-recommender-systems-1-971bd274f421

[19] Eclipse foundation, “Download Eclipse Technology that is
right for you,” Nov. 2023, Available from:
https://www.eclipse.org/downloads/

[20] J. Rousu, “582364 Data mining, 4 cu Lecture 4: Finding
frequent itemsets - concepts and algorithms,” University of
Helsinki, Apr. 2010, Available from:
https://www.cs.helsinki.fi/group/bioinfo/teaching/dami_s10/da
mi_lecture4.pdf

265

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[21] Eclipse documentation “Interface IScanner,” in
org.eclipse.jdt.core.compiler, Dec. 2023, Available from:
https://help.eclipse.org/latest/index.jsp?topic=%2Forg.eclipse.j
dt.doc.isv%2Freference%2Fapi%2Forg%2Feclipse%2Fjdt%2F
core%2Fcompiler%2Fpackage-summary.html

[22] “Christian Borgelt’s Web Pages,”, Nov. 2022, Available from:
https://borgelt.net/fpgrowth.html

[23] JavaParser.org, “Tools for your Java code,” 2019, Available
from: https://javaparser.org

[24] T. Parr, “Download ANTLR”, Sept. 2023, Available from:
https:// www.antlr.org/download.html

[25] OpenAI, “Introducing ChatGPT,” Nov. 2022, Available from:
https://openai.com/blog/chatgpt

[26] J. Horsey “ChatGPT vs Bing vs Bard vs Claude comparison
which ones right for you?” Aug. 2023, Available from:
https://www.geeky-gadgets.com/chatgpt-vs-bing-vs-bard-vs-
claude/

266

International Journal on Advances in Software, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

