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Abstract—As the algorithms mature, the bottleneck in applying 
Machine Learning (ML) to engineering, in particular to process 
analysis, monitoring and control, is often caused by the limited 
availability of suitable data and the cost of data acquisition. For 
many ML projects, datasets have been collected independently 
of subsequent analysis. In laboratory-based development, data 
acquisition and coverage of possible process uncertainties pose 
challenges to the preparation of datasets suitable for ML. This 
paper benchmarks existing design of experiments (DOE) 
strategies based on data generated by a simulation model, 
discussing their aptitude for training accurate ML regression 
models. 11 representative sampling strategies have been 
investigated to provide guidance for data collection under data 
acquisition constraints, including consideration of possible 
measurement uncertainties. As the optimal DOE depends on 
available data volume and the uncertainty level, 
recommendations for DOE selection are given. 

Keywords-Small-data; Process uncertainty; Design Of 
Experiments; Machine learning; Model-based sampling; Auto-
sklearn. 

I.  INTRODUCTION  
ML makes it possible to efficiently mine valuable 

information from data due to its powerful data analysis 
capabilities. With the prosperous advancement of algorithm 
research, model building is no longer a challenge limiting ML 
applications [1][2]. In fact, according to a survey from 
Crowdflower in 2016 [3], the efforts of data scientists are 
mainly (60%) consumed by data organizing and data cleaning. 
After this, 19% of the time is spent collecting datasets. This 
shows that data preparation involves considerable effort of 
ML applications in the current stage. However, this difficulty 
is often overlooked by the informatics community. In most 
cases, the datasets are pre-existing. With this standpoint, they 
simply optimate the algorithm at the software side for data 
analysis. However, the dataset's quality determines the upper 
limit of data analysis. Therefore, in some cases, it may be 
unfeasible to look at a solution only from the ML model side. 
Only recently, the intersection of experimental design towards 

data collection and ML has come to the fore. R. Arboretti et 
al. systematically reviewed the joint application of DOE and 
ML in areas such as industrial production, which identified the 
current status of research in terms of DOE selection for ML 
[4]. In this context, a preliminary study of the relationship 
between DOE selection and ML was conducted based on 
simulation models [5]. Roberto Fontana et al. benchmarked 
the performance of ML models obtained from data collected 
with different DOE strategies, where the potential of an Active 
Learning (AL) approach for dataset acquisition was 
investigated [6]. However, their experiments were limited to 
a specific amount of data without further guidance of DOE 
selection for varying data volumes. 

It is both a challenge and an advantage to look at data 
preparation from the perspective of a production engineer. 
Collecting a single element of the dataset requires that a 
product is physically produced and the relevant data is 
measured during the manufacturing process. In practice, an 
extra number of products is required to account for deficient 
outcomes. This limits the amount of usable data for ML 
analysis. The cost considerations often constrain the overall 
amount of data. However, pre-existing knowledge, experience 
or even intuition of the process often allows an engineer to 
focus the data generation on particularly relevant subsets of an 
overly complex parameter space.  

Purpose-built datasets for ML modeling may address two 
possible directions [7]:   

 
I. Finding the control variables and their optimal 

values that result to an optimal response  
II. Exploring the neighborhood around the optimal 

values to generate knowledge for monitoring, 
anomaly detection and control  
 

This article investigates the latter under the constraint of 
limited resources (e.g., time, budget) for data acquisition and 
fixed overall statistical process uncertainty. Based on the data 
obtained from an experimental lithium-ion battery (LIB) 
production line realized within the KIproBatt project [8], we 
describe the practical difficulties in preparing datasets for ind-
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Figure 1. LIB cell assembly process from separation to EOL-tests 

 

 
Figure 2. Cell output capacity related to cycle number in a cycling test 
 
ustrial process development in Section II. In Section III, 
existing DOE approaches are described. The ML package 
Auto-sklearn [9] and its modelling capabilities are introduced. 
Finally, the experimental setups for comparing the potential 
of different DOEs with predefined data resources are 
presented. The experiments include both cases with and 
without process uncertainties. The results of the experiments 
and the discussions are documented in Section IV. Guidelines 
for DOE selection based on experimental data are given at its 
end. Considerations on the application of an iterative DOE in 
case of small data are given with Emukit DOE as an example. 
Section V summarizes the contributions of this article and 
possible further expansions of this research are envisaged.  

II. DESCRIPTION OF SMALL-DATA CONTEXT 

A. Small data problem 
Small-batch production is often unavoidable in laboratory 

research, on a pilot production stage prior to upscaling [10], 
or in customer-specific (individualized) manufacturing [11]. 
Often, data acquisition is limited by budget or time constraints 
to datasets with less than one thousand elements. The 
particular choice of selected data points affects the outcomes 
of subsequent analysis. For illustration, we consider the 
project KIproBatt as an example of a typical small-scale data 
generation: a total of ca. 500 Li-ion battery cells is to be 
produced with a semi-automatic production line in a 
laboratory environment. Research questions include the 
impact of process deviations on the quality of final cells as 

well as the exploration of complex correlations among process 
parameters. Note that one cannot define the "small-data 
problem" by sole reference to a fixed amount of data. Instead, 
the characteristics and complexity of both the research 
objectives and the applied ML methods have to be considered. 

B. Lack of process knowledge & complexity of the 
production process 
The number of required data depends on the complexity of 

the process. A large number of features, non-linear 
relationships and interactions between features increase the 
complexity of the process and thus the number of data points 
required. These conditions are often found in industrial 
production processes [11]. The assembly process of a LIB 
pouch cell is an example of such a complex process and is 
depicted in Fig. 1: cell assembly starts with electrode 
separation. Then, the anodes and cathodes are dried and fed 
into a glove box with a controlled atmosphere. Next, a 
stacking machine assembles the electrodes with a separator 
into cell stacks (Z-fold stacking). After the packaging, sealing 
and electrolyte filling, the cell is activated by the first charge 
and discharge (formation). The gas generated in this 
procedure is removed and the cell is finally sealed. 

The complexity of this multi-step process leads to 
manifold variable interdependencies. Hence, an effective 
analysis should be based on a ML approach. However, it is 
challenged by limited data, which may lead to under sampling 
of the parameter space and a lack of convergence of the ML 
models. We define this as the fundamental characteristic of 
small-data context. 

C. Process uncertainty 
Complex processes are normally investigated for a limited 

set of process parameters only. While the remaining 
parameters are, in theory, assumed to remain constant, their 
unavoidable fluctuations contribute to statistical uncertainty 
in all measured data. Other sources for uncertainties lie, for 
instance, in the measurement uncertainties of the used sensors. 
This uncertainty is manifested in the data as identical input 
parameters will lead to a statistical spreading in the target 
responses. 

In the KIproBatt project, using the injected electrolyte 
volume as the only tunable factor with two levels, we 
produced four cells at each level while ensuring that the rest 
of the process parameters were unchanged. Each cell was then 
tested according to the same cycling protocol to evaluate its 
performance. The cycling protocol also includes non-cycling 
tests such as pulse tests, c-rate test and quick charge test. Pulse 
tests are designed to obtain information regarding battery resi- 
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Figure 3. Constraints and forces in the FEM model. 

TABLE I.  INPUT PARAMETERS IN THE FEM SIMULATION 

 Variables Range Unit 
Input Ym 50,000 – 600,000 Mpa 

Pr 0.1 – 0.45 1 
L 8000 – 10,000 mm 
W 1000 – 2000 mm 
F1 1000 – 10,000 kN 
F2 1000 – 5000 kN 
F3 1000 – 10,000 kN 
F4 1000 - 5000 kN 

Output  Displacement Ca. 0.7 – 400  mm 
 

Stance, which are labelled as 0 during data processing. The 
results, using output capacity (OC) as an indicator, are shown 
in Fig. 2.  

It can be seen that the performance of the battery cells 
within each batch varies. As the box plot illustrates, the 
process uncertainty is so evident in batch VF1.09 that cell D 
can be judged as an outlier (box plot). 

The reasons for this might be processing errors due to 
human operations, a lack of process understanding that leaves 
some potential variables uncontrolled, or measurement errors 
in the hardware. But in the end, what emerges is the 
uncertainty of the OC. 

When the process uncertainty exceeds the variation 
imposed on control variables, no direct conclusion can be 
derived. Normally, uncertainty reduction could be achieved 
either by optimizing hardware or by repeated measurement 
and averaging. However, for fixed measurement capacity, the 
latter implies a reduced ability for parameter space 
exploration. Therefore, DOE strategies can be developed 
further to find new compromises between resource allocation 
for uncertainty reduction and for parameter space sampling. 

 

III. SETTING OF THE EXPERIMENTS 
In this section, the potential of various sampling methods 

to build a regression model under different data volumes and 
levels of uncertainty are investigated. The analysis is divided 
into two parts:  

 
1. The first part is to understand the performance of 

different DOEs through training an optimal 
regression model as the data volume varies.  

2. The second analysis is to investigate the potential of 
these DOEs under varying levels of uncertainty, 
where different uncertainties are introduced to the 
target parameter.  
 

An independent test dataset is obtained using Latin 
Hypercube Sampling (LHS), which consists of 2,500 data 
points. The root mean square error (RMSE) of the predicted 
displacement versus the output from the Finite Element 
Method (FEM) simulation is used to measure the true error 
of the ML model. The R² Score is also employed to evaluate 
the model [12]. The best achievable performance with the 
given training dataset of these models on the test dataset is 
considered as the potential of the corresponding DOEs.  

FreeCAD was chosen as the platform for building 
simulation. It supports building models with python code and 
provides an application programming interface to facilitate the 
import and export of data. The simulation model includes 
eight input parameters: Young's modulus (Ym), Poisson's 
ratio (Pr), length (L) and width (W) of the beam with four 
force constraints applied to the beam. The displacement 
magnitude of the beam is defined as the target parameter. 
Table I and Fig. 3 provide further information about this 
simulation model. 

Twelve algorithms covered by Auto-sklearn are used to 
build the regression models for the prediction of the target 
parameter in the parameter space [13]. In order to provide an 
objective comparison among the DOEs without potential 
deviations during the training process, the settings of the 
hyperparameters in Auto-sklearn should be tuned to 
appropriate values [14]. Thus, it can be ensured that the 
potential of DOEs are effectively compared without the 
influence of non-optimal model training. 

 

A. Tested DOE strategies 
DOE is an established approach to systematically collect 

information about a system or process. It aims at delivering 
the most relevant experimental data for addressing a given 
research objective. The origin of classical DOE can be traced 
back to the Analysis of Variance (ANOVA) proposed by 
FISHER in the 1920s [15]. Conventional DOE has a set of 
proven paradigms: screening design, e.g., full factorial design 
(FFD) for identifying relevant parameters; response surface 
design, including central composite design (CCD), Box–
Behnken design (BBD), for detailed investigation of optimal 
parameter configurations [16]. With the development of data 
science and easier access to data, ML tools have been  
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Figure 4. Deviations of displacements from simulated values due to a 10% 
uncertainty (up to 10% of the maximal change of the displacement in the 
predefined input dataspace) 
 
successfully applied to many data analysis problems. ML has 
unparalleled efficiency advantages in analyzing big data 
(compared to the volume of data in conventional DOEs) with 
complex interdependencies. However, little attention has 
been paid to the interplay of data set generation and ML-
based data analysis. Represented by LHS, space-filling 
design is able to partition the data space isometrically into 
multiple levels [17][18]. This feature makes LHS well-suited 
to drive ML schemes. A series of studies have conducted the 
generation of datasets for ML based on conventional DOEs 
in the past five years [19][20]. In addition, motivated by some 
ML algorithm developments, iterative data acquisition 
schemes have been discussed.  

Emukit provides such a model-based iterative DOE 
scheme within a Bayesian optimization framework [21][22]. 
The Emukit DOE tool starts from a set of given initial data 
points and iterates the following three steps to generate sample 
points in a given input space: 

 
• fit a prediction model to the existing data  
• find the next point with the highest marginal 

predictive variance as predicted by the prediction model 
• add this new data point to the existing dataset 
 

Such iteration allows for the most efficient allocation of a 
limited number of data points based on certain metrics, such 
as marginal predictive variance of the model. This model-
based scheme works well with ML data analysis since a 
prediction model (e.g., Gaussian process model, GP model) is 
used to predict the target response and calculate the variance 
during each iteration of data acquisition [22].  

Table II contains a summary of the different DOEs which 
have been tested. Different settings for the CCD, criteria in the 
LHS and different acquisition functions in Emukit were 
considered as different DOEs. The range of the training data 
volume is set from 40 to 320. Since conventional DOEs (FFD, 
BBD, CCD) are predetermined by the number of input factors, 
levels and the DOE strategies, it is not possible to change the 

TABLE II.  DOES AND THEIR ABBREVIATION CODES  

Abbreviation Sub Descriptions 
FFD  Full-Factorial design 

CCD CCD_c Central-Composite design, where the 
star points are at the same distance 
from the center 

CCD CCD_i A scaled down CCD_c design with 
each factor level of the CCD_c design 
divided by a given constant 

CCD CCD_f Star points are at the center of each 
face of the factorial space 

BBD  Box-Behnken design 
LHS LHS_c Latin-Hypercube sampling, which 

centers the points within the intervals 
LHS LHS_m Maximize the minimum distance 

between points, randomly distribute 
points within the intervals 

LHS LHS_cm Maximize the minimum distance 
between points, centered them within 
the intervals 

LHS LHS_cor Minimize the maximum correlation 
coefficient 

Emukit Emukit_us Iterative sampling strategy, choose the 
next point according to the marginal 
predictive variance of a GP model [23] 

Emukit Emukit_ivr Choose the next point such that the 
total variance of the model is reduced 
maximally [25] 

 
data volume continuously to build multiple datasets with a 
specified amount of data. As an example, given 8 variables, 
the dataset generated according to FFD must consist of 28 data 
points. The adopted solution was to use the D-optimal 
criterion [23] to filter the required optimal design. For 
example, the use of the D-optimal criterion enables the 
construction of any subsets with less than 256 data points, 
which makes it possible to continuously change the amount of 
data within a certain range. 

B. ML modeling 
The model training using Auto-sklearn is repeated five 

times. The best performance among them, i.e., the 
performance of the best model that can be obtained for this 
training dataset, will be recognized as the potential of the 
corresponding DOE used for collecting the training dataset. 
The experiments were conducted on a Dell workstation 
(Intel® Xeon® W-2295 Processor: 3.00 GHz * 36, memory: 
128GiB). The settings of hyperparameters in Auto-sklearn 
used for modeling are shown in Table III.  

 

TABLE III.  HYPERPARAMETERS IN AUTO-SKLEARN 

Hyperparameters in Auto-sklearn Value  
time_left_for_this_task 300s 
per_run_time_limit 30s 
initial_configurations_metalearning 25 
memory_limit 20480 MB 
resampling_strategy "cross validation" 
resampling_strategy_arguments "folds: 5" 
n_jobs 18 
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Figure 5. The potential of tested DOE strategies 
 

C. Settings of the Uncertainty 
Uniform distributed noise was added to the target 

parameter to mimic the process uncertainty described in 

Section II C. The reason for choosing uniform distribution 
over Gaussian distribution lies in the fact that Gaussian noise 
will produce a large number of low-level noise points around 
zero. Such noise points cannot represent the set level of 
uncertainty.  
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Figure 6. The potential of Emukit strategies compared to the average 
potential of LHSs 

 
The tested range of process uncertainty was set to be 0-

20% of the variation range of the target parameter. To 
generate the process uncertainty, the random function in the 
Python Numpy library was employed. Fig. 4 shows the 
distribution of 20 generated uncertainty points at the 10% 
level of uncertainty.  

Owing to the instability in the noise points, ten sets of 
noise points were generated independently and added to the 
target parameter to create the ten different training datasets for 
each DOE strategy. For each training dataset, the modeling 
process was performed only once. 

It should be noted that for conventional DOEs or LHS 
strategies, the uncertainty addition scheme adopted is to 
generate all data points without uncertainty all at once. The 
uncertainties are then added directly to the output 
displacement as the final step in the data generation. For 
Emukit, however, this scheme does not correspond to the 
actual experiment procedure. The following data generation 
scheme is iterated to generate uncertainty-containing training 
data for Emukit: 

 
• fit a prediction model to the existing data  
• find the next point with the highest marginal 

predictive variance as predicted by the prediction 
model 

• add this new data point to the existing dataset 
 

The test dataset without uncertainty was used to evaluate the 
trained models. The average performance of the ten trained 
models is recognized as the potential of the corresponding 
DOE used for the training dataset. 

 

IV. RESULTS AND DISCUSSIONS 

A. Without uncertainty 
For a relatively complex parameter space consisting of 

eight input factors, most of the conventional DOE methods 
cannot build a promising training dataset. As can be seen from 
the first half in Fig. 5, the performance of conventional DOEs 
(FFD, CCD_f, CCD_c, CCD_i) are not comparable to that of 
LHS or Emukit under the same amount of data. BBD is the 

best strategy among conventional DOEs, which performs 
almost similarly. However, as mentioned above, one of the 
major drawbacks of conventional DOEs is their inability to 
generate a specified amount of data as required. With the aid 
of D-optimal design, the BBD strategy is also only capable of 
planning data points within its given range. Such a drawback 
greatly limits the use of conventional DOE in the ML domain. 

Also, the LHS and Emukit strategies outperform the 
conventional DOEs except for BBD at any amount of data. 
For the LHS family, with the exception of a few data points 
(LHS_m at 100, LHS_cor at 150), the LHSs perform 
essentially similarly with the same amount of data. It cannot 
be concluded that one certain LHS is necessarily better than 
other LHS strategies. As a kind of space-filling design, LHS 
is able to evenly distribute the limited data resource in a given 
data space to explore as much data space as possible. It is 
certainly a DOE suitable for ML data analysis. 

Both Emukit strategies (Emukit_us & Emukit_ivr) are 
safe choices compared to the LHSs. In other words, Emukit 
strategies never perform the worst at any data volume, not to 
mention that the Emukit_ivr has the top performance with 
small data volumes (40 - 100). 

Fig. 6 demonstrates this conclusion more clearly. The 
dashed line in Fig. 6 shows the average performance of the 
four LHS strategies. Both Emukit strategies outperform the 
average performance of LHSs over their data volume interval. 
This difference is particularly noticeable when the amount of 
data is relatively small (<120). Whereas, when the amount of 
data is sufficient (>250), the performance of LHSs can 
converge to Emukit_us. It can be concluded that one of 
Emukit's advantages is its ability to efficiently allocate data 
resources when data volumes are insufficient. 

Both LHS and Emukit can generate DOEs with the 
requirement of training data volume based on the number of 
input factors. As an iterative scheme, Emukit is more flexible 
than space filling DOE: it can continuously generate 
additional data points besides existing data. In contrast, LHS 
requires that the amount of data volume be specified at the 
beginning, which isn't compatible with additional data 
generation. 

But Emukit is not always the optimal choice. It needs an 
initial amount of data for subsequent iterations. If the model 
trained with the initial dataset does not drive Emukit correctly, 
then the results out of the iterations can be disastrous. This is 
further discussed in paragraph C in this section. 

 

B. With uncertainty 
According to the uncertainty generation scheme in Section 

III. A, 10 different sets of noisy data were generated for each 
dataset at each data volume. Most conventional DOEs showed 
inferior performance compared to LHSs. Thus, only CCD_i 
was selected from conventional DOEs for comparison in this 
phase. LHS_c from the LHS family was selected as a 
representative strategy. Since the CCD is a pre-set 
conventional DOE, the test range of CCD_i in the uncertainty 
test was set to 40-250. For LHS_c, the upper limit on the 
amount of data is extended to 700 for observing the 
improvement in model performance despite the existence of 
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Figure 7. Potential of LHS_c and CCD_i strategies with varying uncertainties 

 

 
Figure 8. Potential of Emukit strategies with different settings 
 

uncertainties. Emukit's performance under the impact of 
uncertainty is placed in paragraph D in this section. The 
experimental results are shown in both Fig. 7 and Fig. 9. 

It is clear that for both of the measured DOEs, increasing 
uncertainty leads to deterioration of model performances. The 
experiment results of Emukit demonstrate the same trend. 
Therefore, this conclusion is generalizable to all three types 
(conventional, space-filling, model-based iterative) of   DOE 
strategies. 

It can be observed from the second half of the Fig. 9 that 
the adverse effect due to uncertainty is gradually compensated 
for as the amount of training data rises. In the case of LHS_c, 
for example, the performance of the model obtained using 600 
noisy data with a 10% level of uncertainty is approximately 
the same as the performance of the model trained with 100 
training data without any uncertainty. This suggests that "big  
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Figure 9. The potential of Emukit_us compared to the Potential of LHS_c in small-data context with varying uncertainties. In the case of small uncertainty (a) 
no significant differences can be observed. For larger uncertainty (b-d) Emukit outperforms LHS as soon as a critical amount of data (red line) becomes 
available. 

 
data" can compensate the effect of uncertainty to some extent. 
However, no such trend appears in the results of CCD_i. Thus, 
it can be concluded that a space-filling design becomes 
preferable to a pre-determined conventional DOE under the 
influence of uncertainty. By employing more data, a 
predictive model, which is closer to the ground truth can be 
obtained. Even so, the effect of uncertainty remains at larger 
data volumes (600-700). 

C. Guide for iterative DOE: Emukit as an example 
As an iterative model-based DOE strategy, Emukit is 

governed by three hyperparameters: 
 
• the integrated GP-model 
• the acquisition functions 
• initial data volume as a percentage of total data 

volume  
 

It is not difficult to imagine that if the GP model has limited 
predictive power, then its predictions about data points are 
unreliable. Therefore, the first step in using Emukit is to 
optimize the GP model. The tuning of the GP model can be 
found in many references [24-27]. In this regard, the effects 
of the other two hyperparameters have been explored through 
experiments. A comparative experiment is conducted within 
the data volume from 40 to 120. The results are shown in Fig. 
8. 

As can be seen in Fig. 8, the potential of Emukit_ivr at 
small data volume (<80) outperforms that of Emukit_us. The 

advantage of the ivr acquisition function does not exist 
afterwards, where there is no longer a clear superior choice. 
Details about these acquisition functions in Emukit are 
available in [23] [25]. Considering the whole tested range of 
the training data, 50% initial data share is a safe choice for 
both acquisition functions. However, in case of extremely 
small data resources (<40), allocating more resources to the 
initial dataset seems to be a safe choice. It is also worth noting 
that the ivr acquisition is time consuming, which consumes 
at least twenty times as much time as the us acquisition. 
Considering the efficiency factor, us acquisition is a valid 
choice when the data resource is large enough. 

Discussion on the usage of Emukit with small data 
resources continues with the interference of uncertainties. 
With this purpose, we conducted experiments with a training 
data volume of 30-120 and the tested uncertainty level was 
set to 3%-10%. Uncertainty was added according to the 
settings described in Section III C. LHS_c and Emukit_us 
(50% initial data share) were selected as candidates for the 
experiment. The results are recorded in Fig. 8. The discussion 
of the results is presented in paragraph D. 

D. Tutorial on DOE selection in small-data context with 
uncertainty 
In this section, we provide a preliminary generalization 

towards DOE selection based on our experimental results. 
Again, it is important to state that our conclusion towards 
DOE selection is restricted to ML regression models. The goal 
of the DOE is to explore the predefined parameter space for a 
prediction model. The selection of DOEs is considered on the 
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basis of "you only get one chance" principle. Therefore, in 
addition to comparing the best accuracy of the trained models 
that each DOE can deliver, the reliability of this DOE in the 
worst-case scenario also has a decisive influence. More 
specifically, a DOE strategy that consistently brings the 
models to an R² of around 0.8 regardless of the uncertainties 
is preferable to a DOE that only in the best-case scenario 
enables a model to reach 0.9 while, in other cases leaves the 
models only managing an R² score of 0.7. 

An empirical conclusion from the ML community 
regarding the estimation of the required amount of training 
data is "two subjects per variable" (2SPV) rule of thumb [28] 
[29]. This rule is certainly influenced by the complexity of the 
model. The object of the unknown relationship lies in a 
multidimensional parameter space. A complex relationship 
between the target parameter and the input parameters 
demands a larger training dataset. Following this empirical 
law, an estimation (Est) of the amount of data required to 
mimic the exemplary FEM using multivariate linear 
regression with quadratic terms can be determined. 

 Est = 2 ∗ (8 + 8 + 28 +1) = 90 (1) 

The first term in brackets in (1) is the number of primary 
linear coefficients, the second and the third terms are the 
number of quadratic coefficients. At last, there is one constant 
coefficient. Therefor, for this FEM model, less than 90 data 
can be roughly recognized as a small-data context according 
to the 2SPV rule. 

Both LHS family and Emukit strategies are appropriate 
candidates when the data resources far exceed (>2Est) small-
data context. At this point, the main factor affecting the DOE 
selection is the time efficiency, which has been interpreted in 
Section IV A. The presence of uncertainty (<20%) leads to 
deterioration in model performance. To obtain well-
performing models it requires more data to compensate for the 
uncertainty (see Fig.7).  

The Emukit is the best choice in terms of best achievable 
prediction accuracy when the available data resource is 1-2 
times the size of the small-data context (Est - 2Est). This 
choice is safe when the uncertainty level stays below 10%. 
The application of Emukit demands discretion when the 
uncertainty level goes higher. In such cases, LHSs are safe 
candidates.  

The impact of uncertainty cannot be ignored in small-data 
context (<Est), where the available data resource is less than 
the estimation according to the empirical law. As shown in 
Fig. 8, for each uncertainty level, the amount of data for which 
Emukit exceeds LHS for the first time is marked with a red 
dotted line. It can be found that Emukit outperforms LHS only 
when the amount of data at its disposal exceeds 60. i.e., 
Emukit requires a minimal amount of initial training data in 
order to allocate data points correctly. If the uncertainty 
remains at a very low level (below 1%), Emukit could still be 
a good choice compared to LHS. As shown in the first plot of 
Fig. 8, the potential of LHS and Emukit are comparable within 
the data amount from 30 – 80. The above discussion on DOE 
selection is summarized in Table IV, where I denotes iterate 

sampling (represented by Emukit) and S denotes space-filling 
design (represented by LHS). 

TABLE IV.  APPROPRIATE DOE FOR DATA ACQUISITION 

          Uncertainty 
 
Data volume 

< 1 % 3% - 10% > 10% 

< 0.5Est I ≈ S S > I * S 
0.5Est - Est I > S S ≈ I * S 
Est - 2Est I > S I > S S 

> 2Est I > S I > S S 
 
Note that for cases marked with an asterisk in Table IV, 

iterative sampling is still reliable if the initial training dataset 
is able to yield a decent model until the effects of uncertainty 
become significant, or the available initial data is insufficient 
to enable the core model to deliver an effective predictive 
model. It is recommended to examine the performance of the 
model trained with the initial dataset. According to the 
experiments with Emukit, Gaussian Process models trained 
with limited initial data perform best if a positive R2 score (R2 
> 0) can be reached. 

V. CONCLUSION 
This article discussed characteristic aspects of the "small 

data problem" with process uncertainties. The performance 
of some existing DOE strategies was tested with data 
collected from a self-built FEM simulation. The accuracy of 
different ML regression models trained with data collected 
according to a specific DOE at given data volume are 
systematically compared. The effect of uncertainties on 
different DOEs was also quantified experimentally.  

On the basis of the experimental results, a preliminary 
discussion on how to select an appropriate DOE for data 
acquisition under the constraints of fixed data volume and a 
given level of measurement uncertainty is presented. Our 
study shows that space-filling design and iterative sampling 
strategy outperform conventional pre-determined DOE 
schemes for exploring tasks. The iterative sampling strategy 
is even superior to space-filling design in an ideal scenario 
with almost no uncertainty (<1%). However, when the effects 
of process uncertainty cannot be ignored (>3%), model-based 
iterative sampling strategy requires a certain amount of initial 
data to obtain a functional kernel model. In such 
circumstances, space-filling strategy is a safe alternative, 
particularly when data resources are constrained. 
Furthermore, we give recommendations on how to correctly 
drive a model-based iterative sampling strategy.  

In subsequent work, we will extend this research 
procedure to multiple models of varying complexity with a 
view to generalizing our conclusions about the DOE 
selection. Other sorts of process uncertainties will be taken 
into account.  
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CODE AVAILABILITY 
The data generation scripts and the model training scripts 

mentioned in the paper and the associated data are compiled 
on Github: https://github.com/xinchengxxc/Small-Dataset-
Acquisition-for-Machine-Learning-Analysis. 
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