
82

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Methodological Choices in Machine Learning Applications

Kendall E. Nygard
Department of Computer Science

North Dakota State University

Fargo, ND, USA

Email: kendall.nygard@ndsu.edu

Mostofa Ahsan, Aakanksha Rastogi,

Rashmi Satyal
Department of Computer Science

North Dakota State University

Fargo, ND, USA

Email: {mostofa.ahsan, aakanksha.rastogi,

rashmi.satyal}@ndsu.edu

Abstract—Machine learning is a subset of artificial intelligence

in which a machine has an ability to learn and employ complex

algorithms to impersonate human behavior. Development of a

machine learning model involves careful preparation and

management of data and selection and features to produce

meaningful results. The data issues are often challenging due to

availability, characteristics, properties, categorization, and

balance. We report on relevant literature, case studies and

experiments surrounding the data issues. We describe

alternative machine learning methodologies and emphasize

supervised learning, including treatment of experimental

procedures. Procedures and challenges in the collection,

quantity, distribution, quality, sampling, of and relevancy of

data are included. Applications of machine learning models are

presented, including classification models for self-driving cars.

These models introduce anti-autonomy trust modeling. We also

describe intrusion detection models that can detect malicious

activity in computing systems. These applications also provide

insight into overfitting and underfitting training data. Feature

engineering and feature selection issues are presented, including

approaches to identifying, combining, and eliminating

attributes and features to determine which are needed and their

significance. Approaches for treating class imbalances in data

management are discussed. Comparisons among categorical

encoding techniques are presented. The work provides

perspective and insight into resolving multiple issues that must

be addressed in utilizing machine learning models in practice.

Keywords- Machine Learning; Data Management; Feature

Engineering; Feature Selection; Self-Driving Cars; Intrusion

Detection.

I. INTRODUCTION

Machine Learning (ML) is a rapidly emerging area of

artificial intelligence. Many types of applications have been

successfully developed and new successes are regularly

reported. The famous Turing award winner Jim Gray referred

to data science as a “fourth paradigm,” taking a rightful place

among empirical, theoretical, and computational sciences [2].

Often viewed as interdisciplinary, data science involves

mathematics, statistics, and computer science as well as other

related areas. In many applications, the availability of large

and relevant datasets, and the methods of data science

provide the lifeblood of machine learning problem-solving

approaches. Analyses and decision support in nearly every

area of human endeavor today are related to machine

learning.

The example machine learning studies that we describe

are in the areas of self-driving cars and intrusion detection [1]

[3][34][37][38]. Self-driving cars are a real-world example of

a system that requires machine learning, since they involve

complex computations, algorithms, computing systems,

mechanics, and behavioral aspects that endanger human life

if automated decisions or controls go awry. Automated cars

have features such as remote engine start, advanced

information systems, moving object detection (MOD), lane

change assist, anti-lock braking system (ABS), to name just

a few. These systems can create vulnerabilities to cyber-

attacks from things like bugs introduced in their core software

code, remote access to the onboard diagnostic system (OBD)

of the vehicle, or controller area network (CAN) bus [77].

For a self-driving car study focused on classification, we

utilized available multi-attribute data about specific

collisions. The data contained many features and attributes of

the vehicle itself, the damage incurred, roadway conditions,

etc. The objective of the study was to build a classification

model that could translate the detailed data into collision

predictions and to drive an anti-autonomy trust model. There

were several important and difficult choices made related to

scale and balance within the available dataset, and in feature

engineering. A linear sequential supervised machine learning

model was employed.

The intrusion detection study used supervised learning

techniques to build a model for identifying outside threats

initiated by malicious actors who wish to breach or

compromise a system. Among other datasets, the study

examined the famous dataset that originated in the KDD

(Knowledge Discovery and Data Mining) competition and

was later modified to form the now publicly available NSL

(Network Security Laboratory) KDD dataset [7][8].

Data management and feature engineering are important

steps in the cybersecurity domain to prepare data for machine

learning algorithms and build effective models for detecting

security threats and anomalies. Data analysis involves

exploring, visualizing, and understanding the data to identify

patterns, trends, and anomalies [48]. This may include

statistical analysis, correlation analysis, time series analysis,

and other techniques to gain insights into the data. In the

cybersecurity domain, data analysis may also involve

extracting features that are relevant to the security domain,

such as network traffic flow, packet size and content, system

83

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

logs, user behavior, and other indicators of security threats

[49]. Feature engineering is the process of selecting,

transforming, and creating features that are relevant and

informative for the machine learning model. This may

involve selecting features that are correlated with the target

variable, transforming features to make them more

informative or meaningful, and to create new features from

existing ones [50]. Feature engineering in the cybersecurity

domain may also involve domain-specific knowledge and

expertise to select and create features that capture the specific

characteristics of security threats and anomalies [51][52].

Feature engineering techniques may also involve

dimensionality reduction, feature scaling, and other

preprocessing techniques to improve the performance of the

machine learning model. All these methods have their

strengths and weaknesses, and their effectiveness may

depend on the specific dataset and classification problem at

hand. In the cybersecurity domain, they can be useful to

improve the performance of machine learning models that

aim to detect and classify security threats, anomalies, or

attacks [53]. We describe some of the data analysis and

feature engineering techniques used in cybersecurity in the

data management section of this paper.

The rest of the paper is structured as follows. In Section

II, we describe supervised machine learning with illustrations

of the flow of a machine learning model and data splits for

cross validation. In Section III, we present a self-driving cars

example illustrating an implementation of a linear sequential

supervised learning artificial neural network model utilizing

multiple pre-processed complex attributes. In Section IV, we

present the intrusion detection example, explaining how a

machine learning model can be tuned to predict and identify

attacks. In Section V, we describe data management and

feature engineering issues that are ubiquitous in machine

learning practice. This section also includes several

categorical encoding techniques for preprocessing data for a

machine learning algorithm. Finally, we conclude our work

in Section VI. An abbreviated version of the work is available

in [1].

II. MACHINE LEARNING EXPERIMENTS

Machine learning methods are of four distinct types.

Supervised learning models are trained using datasets with

known labels, then used to make predictions on new data.

Unsupervised learning models work with unlabeled data and

seek clusters or patterns in the data. Semi-supervised learning

is a hybrid approach that uses both unsupervised and

supervised learning techniques. Reinforcement learning uses

no labeled data, but instead is based upon evaluation of

rewards or punishments of behaviors. We have conducted

extensive experiments using supervised learning in

applications concerning circumstances under which

collisions occur in self-driving cars and in detecting

intrusions into computer platforms.

Supervised machine learning (SML) methods are very

effective in addressing classification problems. When applied

to classification tasks, a SML method has a set of available

data for which their correct classifications are known. Such a

data set can be represented as shown below.

(𝒙1,𝑦1), (𝒙2,𝑦2), … (𝒙𝑛,𝑦𝑛)

Here, the xi shown in bold are vectors that capture a data

instance or situation, and the corresponding yi values are

discrete labels for the available classifications.

The initial task in a supervised learning experiment is to

computationally train the machine learning model to accept

the known data instances as input and to produce the correct

target as output. Many types of SML methods can be used in

training, including decision trees, neural networks, support

vector machines, and logistic regressions [78]. For some

methods, training can be a computationally intensive process.

Once trained, the model is available to accept new data

instances and predict their target classification. The model is

successful if it has high values of performance measures such

as percentage of accuracy in correctly classifying the new

data instances, called the ability to generalize. There are

multiple issues surrounding the characteristics of the

available data, the classes into which they fall, their attributes

and features, and the learning models charged with producing

the predictions. Concerning baseball, Coach Yogi Berra

famously said, “It's tough to make predictions, especially

about the future.” This aphorism is equally true in machine

learning [46].

Figure 1 illustrates the general flow of a machine learning

technique. Several tasks are included. The overall task of the

DEVELOP phase shown at the top is to produce a Final

Model that is fully specified, trained and feeds into the

PREDICT phase shown below the dotted line, where it is

available for generalization use on new data. Starting from

the top, the data is shown as partitioned into splits for

Training, Validation and Test. The full data is divided into

the Training Split and the Test Split. A good way to perform

training is to withhold a portion of the data while training is

done. It is viewed as a mistake to train and test a machine

learning model on the same data. So, doing that would result

in the model memorizing all the data/target pairs, resulting in

the model perfectly knowing all of the answers, leaving no

ability to generalize. The result is known as overfitting. For

validation purposes, the Training Split is typically divided

into pieces called folds. Called k-fold cross validation, Figure

2 illustrates basic logic for splitting the data. In this example,

k=5 so there are five equal parts. This corresponds to the

Validation Split and Model Tuning blocks in Figure 1. In

Figure 2, shown in bold italics on the diagonal, there is a

designated fold in each row that is specified for testing, with

the other four used for training. The key idea is to find the

best set of meta-level parameters for a model being

developed. All major machine learning models have

parameters. For example, an ML that utilizes an Artificial

Neural Network (ANN) in some way, will be parameterized

with settings like Learning Rate (governs weight

adjustments), topology (number of hidden layers, nodes

84

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

within layers, and interconnectedness), and activation

functions.

In cross validation, when a model is trained on the folds,

a performance metric, such as classification accuracy, can be

calculated on the testing fold. After all the fold splits are

evaluated in this way, an average is calculated, which yields

a score for the parameter settings. Various optimization

methods can be employed to explore the parameter space in

a quest to identify the best settings. Viewed more generally,

the Model Tuning block can also be viewed as exploring

various types of models in a quest to not only optimize the

use of one type of model, but to also choose among

competing models.

In multiple places of the ML process, there is a need to

evaluate the quality of the predictions using a metric. The

empirical accuracy of a method is simply the percentage of

the predictions made that are correct. Other metrics are

available. More details are provided later in this paper.

Raw data is rarely available in a form that is suitable for

direct use by an ML model. Pre-processing of data is typically

necessary to deal with such things as null or missing values,

outliers, transforming or reconciling numeric and categorical

values, rescaling, and standardizing. We expand on the data-

centric issues, for the example applications reported in this

article.

Feature Engineering also appears in Figure 1. Features

are those characteristics that are present in the data that are

potentially useful in predicting a target outcome.

Figure 1. Flow of a Machine Learning Model [3].

Figure 2. Data Splits for Cross Validation.

 It is often effective in ML to modify or combine features in

some way to produce a new feature that can improve the

prediction accuracy of the method. Called Feature

Engineering, the operations that can be carried out include

things like mathematically transforming a single feature or

applying a functional calculation on multiple features.

Feature Selection refers to reducing the number of features

employed by the model while retaining acceptable results.

Reducing the features needed can ease the data collection task

and reduce the computational load of running the model.

Feature Selection typically follows Feature Engineering. We

provide details related to the examples discussed in this

paper.

Unsupervised Learning is different than supervised

learning in many ways. Some of the most known algorithms

are, k-means clustering, hierarchical clustering, principal

component analysis, and a priori algorithm [45]. The need for

unsupervised models is increasing in the cybersecurity

domain since attacks are being modified every day [47].

We have discussed multiple machine learning techniques

in this section. The primary concern is to make proper choice

of methods to optimize the solution of a problem. We discuss

the criteria we need to adopt to address a machine leaning

problem in the following sections.

III. SELF-DRIVING CARS APPLICATIONS

A self-driving car underway must adhere to laws and rules

of the road, like adhering to speed limits, stopping at red

traffic lights, turning from an appropriate lane, etc. In

addition, the vehicle must carry out control actions in

response to sensor and communication information that

provides information regarding things like conditions of the

roadway (such as snow, rain, deteriorated pavement);

construction zones; presence of bicycles, pedestrians, other

cars, or obstacles; or visibility issues like glare, fog, snow,

rain, darkness, or any type of impaired lighting.

When addressing how a self-driving car can be trained to

carry out an appropriate action under circumstances that it

encounters, we draw an analogy with how positive

85

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reinforcement can work efficiently when a person or animal

learns a new skill or behavior. This vehicle training need

lends itself naturally to Reinforcement Learning (RL), a

powerful machine learning technique that rewards good

behaviors, and as needed, punishes bad behaviors. A RL

training method proceeds iteratively and is illustrated in

Figure 3 [76]. While undergoing learning in a simulated

environment, the vehicle is an agent that carries out actions,

receives their consequences in the form of positive or

negative feedback, and adjusts their model of actions

accordingly. When complete, experience gained in this way

can maximize rewards. With acceleration, deceleration and

steering as the primary actions, a self-driving car (agent) aims

at maximizing short-term rewards (like safe driving) and

long-term rewards (like fast arrival at the destination) using

the RL approach.

Figure 3. Reinforcement Learning illustration.

We carried out extensive experiments using supervised

learning for analyses of collisions that occur with self-driving

cars. Official collision reports basically map data items that

describe driving conditions into a collision classification. We

used these reports to help determine circumstances under

which self-driving cars carry out actions that cause collisions

or fail to avoid them. These harmful actions are referred to as

anti-autonomy traits and factors on the part of the vehicle that

cause collisions and diminish trust [3][39]. Data availability

was a challenge since jurisdictions of different states, federal

traffic agencies and motor vehicle departments often do not

make their data publicly available. Data used in this study

was submitted by the manufacturers of autonomous vehicles

to the California Department of Motor Vehicles for collisions

that occurred with other cars, pedestrians, bicyclists, and

other objects during their test drives on roads and freeways in

the state. All data applied to collisions that occurred while the

cars were being driven in autonomous driving mode. The

collisions occurred between October 2014 and March 2020

[3][39]. The attributes of this dataset are listed in Table I

below. All attribute names are feature type categorical and

data type object.

TABLE I. COLLISION DATA ATTRIBUTES [3]

Attribute Type Attribute Names

Autonomous vehicle details Manufacturer Name, Business
Name, Vehicle Year, Vehicle

Make, Vehicle Model, Vehicle

was (stopped in traffic/moving)

Attribute Type Attribute Names

Accident Details Date of Accident, Time of
Accident

Involved in Autonomous vehicle

accident

Involved in Autonomous Vehicle

Accident
(Pedestrian/Bicyclist/Other),

Number of vehicles involved with

Autonomous Vehicle

Autonomous vehicle damage Vehicle Damage, Damaged Area

Details of other vehicle involved

in accident

Vehicle 2 Year, Vehicle 2 Make,

Vehicle 2 Model, Vehicle 2 was

(stopped in traffic/moving)

Involved in other vehicle

accident

Involved in Vehicle 2 Accident
Pedestrian, Involved in Vehicle 2

Accident Bicyclist, Involved in

Vehicle 2 Accident Other,

Number of vehicles involved with

Vehicle 2

Injuries Injured, Injured Driver, Injured
Passenger, Injured Bicyclist

Vehicle driving mode Vehicle Driving Mode

Weather conditions for both

vehicles

Clear, Cloudy, Raining, Snowing,

Fog/Visibility, Other, Wind

Lighting conditions for both

vehicles

Daylight, Dusk-Dawn, Dark
Street Lights, Dark-No Street

Lights, Dark-Street Lights Not
Functioning

Roadway surface for both

vehicles

Dry, Wet, Snowy-Icy,

Slippery/Muddy/Oily/etc., Holes-

Deep-Rut, Loose Material on
Roadway, Obstruction on

Roadway, Construction/Repair

Zone, Reduced Roadway Width,

Flooded, Other, No Unusual

Conditions

Preceding Movement of

Autonomous Vehicle before

collision

Stopped, Proceeding Straight, Ran
Off Road, Making Right Turn,

Making Left Turn, Making U

Turn, Backing, Slowing/Stopping,
Passing Other Vehicle, Changing

Lanes, Parking Maneuver,

Entering Traffic, Unsafe Turning,
Xing into Opposing Lane, Parked,

Merging, Travelling Wrong Way,

Other

Preceding Movement of Other

Vehicle before collision

Stopped, Proceeding Straight, Ran
Off Road, Making Right Turn,

Making Left Turn, Making U

Turn, Backing, Slowing/Stopping,

Passing Other Vehicle, Changing

Lanes, Parking Maneuver,
Entering Traffic, Unsafe Turning,

Xing Into Opposing Lane, Parked,

Merging, Travelling Wrong Way,
Other

Type of Collision Head On, Side Swipe, Rear End,

Broadside, Hit Object,

Overturned, Vehicle/Pedestrian,
Other

Other CVC Sections Violated Cited,

Vision Obscurement, Inattention,
Stop and Go Traffic,

Entering/Leaving Ramp, Previous

Collision, Unfamiliar with Road,

Defective WEH Equip Cited,

Uninvolved Vehicle, Other, Non-

Apparent, Runaway Vehicle

86

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This data was extracted from PDF files and converted into

CSV format with 256 rows of data in 140 columns. As is

often the case in machine learning, data cleaning was a

significant effort, and included pre-processing steps for

augmenting, labeling, and classifying the data [3][39]. Data

was augmented to 5256 rows with the goal of yielding a

model with minimal noise. Details of data augmentation

criteria is described in [3]. The core purpose of the study was

to associate conditions into a level of trust that people had in

a self-driving car. The values of attributes in the data that

describe conditions and circumstances that are present when

a collision occurs provide a handle to model a mapping

between data and trust level. After pre-processing the data, a

linear sequential supervised learning ANN model called

NoTrust was devised, validated, and tested to classify the

target data, using the basic approach illustrated in Figure 1.

The model used the libraries provided by Keras with the

Tensorflow backend [40][41][42]. Python was used for

programming since it integrates with Keras to access the

neural network Application Programming Interface. The

deep learning libraries of Keras support fast prototyping,

modularity, and smooth computation.

There are multiple challenges concerning data, features,

and metrics in applying the ML methodology to the self-

driving car application. First, there were only 256 collision

reports available, which is arguably a small number to use in

a ML method. This was mitigated by augmenting the data to

produce a larger set to develop a model with higher accuracy.

Also, in the context of alternative target value possibilities,

the data is unbalanced in that the number of samples across

the distinct classes differs widely. Section V describes

methods, such as oversampling, to deal with unbalanced data.

Second, there are 140 attributes, a large number relative to

sample size, as shown in Table I. Thus, the possible

permutations and combinations that could be evaluated in the

ANN model are explosive. Fortunately, with initial analyses

of the data and evaluation runs, it was possible to identify a

subset of attributes and features that were mandatory to

include. This analysis was done by systematically

configuring sets with and without specific attributes,

evaluating each combination, and comparing the outcomes.

Using this search method, we identified certain categorial

features that were closely correlated with the anti-

autonomous traits of the vehicles. This supported dropping

the features related to date/time of accident, vehicle

manufacturer, weather conditions, lighting conditions,

roadway conditions, vehicle movement and type of collision.

Ultimately, we arrived at the five attributes shown below to

form the mandatory set.

• Vehicle driving mode = autonomous

• Vehicle damage = moderate and major

• First vehicle involved = Pedestrians/Bicycle/Other

• Second vehicle involved = Bicycle/Other

• Injuries sustained = Pedestrians/Bicyclists/Others

While keeping the model simple and still retaining

accuracy, the mandatory feature set performed well in

making trust and do not trust predictions for autonomous

vehicles. However, when anti-autonomous traits of the self-

driving car itself were incorporated into the model it became

apparent that more attributes had to be utilized.

Anti-autonomy refers to decisions and actions taken by

a self-driving car that are in some way inappropriate in terms

of increasing risk, diminishing safety, causing potential harm,

or lowering trust. It entails from an unexpected,

unconventional, and abnormal decisions that self-driving car

makes in the event of unfavorable surrounding driving

conditions related to weather, roadway surface conditions,

drivability of other vehicles and, pedestrians or bicyclists

sharing the road. Autonomous vehicles have been known to

have certain technological shortcomings in terms of Lidar

failing when the weather conditions are rainy or foggy with

limited visibility. Extensive study and analysis of the

collision data revealed the following anti-autonomous

behavior of self-driving cars [3]:

• In 50.22% of collisions, a pedestrian was involved

while the vehicle was driving autonomously.

• In 52.08% of collisions, a pedestrian was involved

while vehicle was driving autonomously and was

moving in traffic.

• In 55.13% of the collisions, a bicyclist was involved

while the vehicle was driving autonomously and

was about to slow down or stop. These statistics

illustrate the confusing behavior of a self-driving

car, its mechanical functioning and decision making

at the second when a bicyclist appears in front of

them.

• In 55.84% of the collisions, a pedestrian was

involved while the vehicle was driving

autonomously and was attempting to make a parking

maneuver. These statistics reveal a potential

malfunction of vehicle operation in terms of gauging

pedestrian behavior and hitting the breaks just in

time.

• 54.28% of the collisions happened when the vehicle

was driving autonomously during foggy weather

with limited visibility. These statistics depict the

malfunctioning of the sensors, camera, and Lidar

sensors.

• In 51.71% of the collisions, a pedestrian was

involved while the vehicle was driving

autonomously during foggy weather with limited

visibility.

• In 50.68% of the collisions, a bicyclist was involved

when the vehicle was driving autonomously at night

when streetlights were on.

• In 53.18% of the collisions, a pedestrian was

involved when the vehicle was driving

autonomously at night when streetlights were on.

87

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The anti-autonomous traits that were incorporated into the

model include vehicle driving mode, type of collision,

weather conditions, roadway surface conditions and injuries

sustained by pedestrian/bicyclists/others. In addition to the

linear sequential ANN, evaluation of Recurrent Neural

Networks (RNN) models with Long Short-Term Memory

(LSTM) were available for possible comparison purposes.

The primary reason for choosing a sequential ANN model

was that the classification sought is binary, predicting

whether the autonomous vehicles could be trusted. A

sequential ANN model utilizes a stack of layers with each

layer having exactly one input tensor and one output tensor.

This contrasts with a Functional API with shared layers, non-

linear topology, and multiple inputs/outputs. This study uses

an input stack of layers of selective features that have a single

output to model affirmation or denial of trust. Thus, we

avoided layer sharing, non-linear topologies, multiple

inputs/outputs, or creation of a directed acyclic graph or

graph of layers. These properties favor the choice of

sequential ANN. Also, this model was chosen over RNN

because the data utilized for model processing was not a time

series or natural language sequence data. When the additional

attributes are included, along with measures of severity of

damage sustained by vehicle, the imbalance of the data

increases. More specifically, the larger number of predictors

added more noise, redundancies, increased overfitting, and

decreased the quality of the predictions. A related study by

Meiri and Zahavi [4] used simulated annealing to search the

attribute space.

Combinatorial problems often have issues related to model

accuracy, performance, and optimizer bias. Also, the model

solutions offered by machine learning include approximation

errors, which further exacerbates issues related to differences

between training and validation data [5]. This can be solved

by two approaches – active learning and passive learning.

Active learning involves updating the model itself to assure a

convergence between training and validation curves, in turn

improving model accuracy and optimization bias. Passive

learning involves the training set providing a uniform and

sufficient coverage of the search space [5]. In a similar

context, Charikar, Guruswami, Kumar, Rajagopalan, and

Sahai [6] defined and studied combinatorial feature selection

problems, presented a theoretical framework, and provided

algorithms on approximation and hardness results of these

combinatorial problems [6].

IV. INTRUSION DETECTION APPLICATIONS

In today’s world of connected devices, security of the

network is of critical importance. Unauthorized access and

malicious activities are a great threat to confidentiality,

integrity, and availability that form the information security

triad. The role of an Intrusion Detection System (IDS) is to

detect abnormalities caused by an unauthorized reach into the

network and send alerts. An IDS is an element of support for

a wall of defense between cyber-attacks. Supervised ML

techniques in an IDS can provide high detection accuracy,

particularly against known types of attacks.

The NSL-KDD is an update and improvement to the

KDD’99 dataset that was developed for the KDD Cup

competition in 1999 [7]. These datasets are publicly available

and are very widely used for IDS experiments. The data is

primarily internet traffic consisting of 43 features per record,

of which the last two are class (attack or normal) and score

(severity of traffic input) [8]. The class column provides

information on whether the record is considered normal or is

a member of one of four attack classes - Denial of Service

(DoS), Probe, Remote-to-Local (R2L) or User-to-Root

(U2R). There are14 attack types under these 4 classes:

Apache2, Smurf, Neptune, Back, Teardrop, Pod, Land,

Mailbomb, Processtable, UDPstorm, WarezClient,

Guess_Password, WarezMaster, Imap, Ftp_write, Named,

Multihop, Phf, Spy, Sendmail, SmpGetAttack, AnmpGuess,

Worm, Xsnoop, Xlock, Buffer_Overflow, Httptuned,

Rootkit, LoadModule, Perl, Xterm, Ps, SQLattack, Satan,

Saint, Ipsweep, Portsweep, Nmap, Mscan [43][44]. A

mixture of categorical (nominal), binary and numeric

variables are in the feature set. Each record has basic,

content-related, time-related, and host-based features [9].

The attributes of this dataset are listed in Table II.

TABLE II. NSL-KDD DATASET ATTRIBUTES [9]

Attribute Type Attribute Names

Basic Duration, Protocol_type, Service, Flag, Src_bytes,

Dst_bytes, Land, Wrong_fragment, Urgent

Content

related

Hot, Num_failed_logins, Logged_in,
Num_compromised, Root_shell, Su_attempted,

Num_root, Num_file_creations, Num_shells,

Num_access_files, Num_outbound_cmds,
Is_hot_login, Is_guest_login

Time related Count, Srv_count, Serror_rate, Srv_serror_rate,

Rerror_rate, Srv_rerror_rate, Same_srv_rate,

Diff_srv_rate, Srv_diff_host_rate

 Host based

traffic

Dst_host_count, Dst_host_srv_count,

Dst_host_same_srv_rate, Dst_host_diff_srv_rate,

Dst_host_same_src_port_rate,
Dst_host_srv_diff_host_rate, Dst_host_serror_rate,

Dst_host_srv_serror_rate, Dst_host_rerror_rate,

Dst_host_srv_rerror_rate

The study also used the UNSW-NB15 dataset. This

dataset has 49 features categorized into 6 groups: basic, flow,

time, content, labelled and additional generated features [10].

There are 9 attack types: fuzzers, analysis, back-doors, DoS,

exploits, generic, reconnaissance, shell code and worms [11].

This dataset has a mixture of categorical, binary, and

numerical datatypes. The attributes of this dataset are listed

in Table III below.

TABLE III. UNSW-NB15 DATASET ATTRIBUTES [16]

Attribute Type Attribute Names

Basic state, dur, sbytes, dbytes, sttl, dttl, sloss, dloss,

service, sload, dload, spkts, dpkts

Flow srcip, sport, dstip, dsport, proto

88

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Content swin, dwin, stcpb, dtcpb, smeansz, dmeansz,
trans_depth, res_bdy_len

Time sjit, djit, stime, ltime, sintpkt, dintpkt, tcprtt,

synack, ackdat

Additional generated

(general purpose)

is_sm_ips_ports, ct_state_ttl,
ct_flw_http_mthd, is_ftp_login, ct_ftp_cmd

Additional generated

(connection)

ct_srv_src, ct_srv_dst, ct_dst_ltm, ct_src_ltm,

ct_src_dport_ltm, ct_dst_sport_ltm,

ct_dst_src_ltm

Labelled attack_cat, attack_cat

The target attribute either identifies records as ‘normal’ or

‘attack’ or distinguishes the record as a particular attack type.

Depending on the desired goal of an intrusion detection

system, the machine learning model is tuned to identify a

particular attack, which is a challenge. It is thus essential to

understand the requirement thoroughly and preprocess input

data accordingly.

As an illustration of evaluation metrics, at a high level in

the IDS study, for each input vector we have exactly one of

the following outcomes:

TP = True Positive = Correct predication that the input

vector is an Attack

TN = True Negative = Correct prediction that the input

vector is not an Attack

FN = False Negative = Incorrect prediction the input

vector is not an Attack

FP = False Positive = Incorrect prediction the input vector

is an Attack

The most widely reported metric is Basic Accuracy of the

model, which simply reports the proportion of attack reports

that are correct.

Accuracy = (TP + TN)/(TP = TN = FP +FN)

Basic Accuracy is notoriously deceptive when the classes are

unbalanced, as in the case of intrusion detection studies,

where most input vectors are not attacks. False reports are of

interest. This gives rise to the need for metrics such as

Precision and Recall, which can be calculated from

information in the confusion matrix given below.

 Prediction

Actual

 Attack Not an Attack

Attack TP FN

Not an Attack FP TN

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

Precision measures the proportion of the vectors reported

by the IDS as attacks that are real attacks. Recall measures

the proportion of the vectors that are real attacks and do get

reported as such. This means that when Recall is high the IDS

does not misclassify many true attacks.

In Intrusion Detection applications, false negatives can be

very deadly, which favors high Recall. However, dealing

with false positives also has a cost. Unfortunately,

experiments that improve Precision typically reduce Recall.

The reverse is also often true. For this reason, the harmonic

mean of the two, called the F1 score is often calculated.

F1 = (2*(Precision * Recall))/(Precision + Recall).

The effect of the F1 score, which falls between 0 and 1, is to

punish extreme values.

The NSL-KDD and UNSW NB-15 datasets are used for

training machine learning models by several researchers. In

[34] researchers trained the KDD-99 dataset with a mutation

of a convolutional neural network and Long Short Term

Memory (LSTM) network. The machine learning algorithm

test accuracy was 99.7% , which outperformed other models,

including DenseNet, CNN (Convolutional Neural Network),

GRU (Gated Recurrent Unit), BiLSTM, and Auto Encoder.

The experiment was multilabel and nearly all the individual

target variables had f1-score, precision and recall exceeding

98%. Work reported in [54] and [55] took similar steps for

setting up a machine learning model experimental design to

train the NSL KDD and UNSW NB-15 datasets and were

able to improve accuracy in both cases.

The NSL-KDD data set has 49 attributes of 6 types and 9

types of intrusions. We considered possibilities for reducing

the number of attributes without eliminating information

critical to the classifications. Principal Component Analysis

(PCA) is a time-honored statistical method for identifying

high correlations and ranking the relative importance of the

attributes. Although we considered PCA, we alternatively

chose to implement an autoencoder neural network. In brief,

an autoencoder is a multiple layer neural network in which

the input and output layers are identical, and a middle layer

is of smaller dimensionality. An autoencoder is a deep

learning unsupervised learning method in that the labels for

the known data play no role, and after training, the middle

layer becomes a compressed version of the input data. The

middle layer serves as a pattern that is a discrete model of the

data in a compact form. The approach requires

experimentation that searches through alternative topologies

and tuning parameters of the neural network, including

number of layers, nodes within layers, learning rate, and

number of epochs. Results of the autoencoder experimental

work are given in Table IV below.

TABLE IV. PERFORMANCE EVALUATION OF IDS CLASSIFICATION

Algorithm Accuracy

(%)

Precisio

n

Recall F1_sc

ore

Autoencoder 88.76 0.852 0.971 0.908

SVM 86.54 0.824 0.913 0.901

Logistic

Regression

82.12 0.808 0.921 0.893

89

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The results show that the model performs well as a binary

classifier for threat detection. After applying auto encoder,

the accuracy reaches 88.76%, False positives occur at a low

rate, so that the method flags only a few normal network

inputs as attacks, , which is useful in keeping a focus on real

threats. Importantly, recall at a high level of 97.1% means

that nearly all real attacks are correctly identified and flagged.

This is a must-have feature of an IDS since undetected attacks

can be very damaging. SVM with RBF kernel (Radial Basis

Function) competes with the Autoencoder with a good F1

score. The simple logistic regression works well for binary

classification but fails to achieve better results for the NSL

KDD dataset. These experiments are a baseline for machine

learning methodologies and their proper application. We did

not perform any parameter tuning for this experiment, which

might have improved the accuracy and performance metrics.

V. DATA AND FEATURE ENGINEERING

We provide descriptions of data management and feature

engineering issues that are pervasive in ML practice and were

of importance in our applied studies.

A. Data Management

Class imbalance in a dataset means that the relative

numbers of instances within the classes vary significantly in

number [17]. The magnitude of the discrepancies will also

vary. Class imbalance is common in most important data

domains, including detection of things like fraudulent

activities, anomalies, oil spills, and in medical diagnoses. The

imbalance of classes occurs in both binary class and multi-

class classification [18]. In binary classes, the smaller and

larger cardinality classes are called minority and majority

classes respectively [17][19]. Class imbalance can influence

the training process of ML techniques and lead to ignoring

the minority class entirely. We discuss some of the

approaches to treat class imbalances. Figures 4 – 10 illustrate

the results of applying each technique.

Random oversampling of a minority class. In this approach

data instances in minority classes are duplicated at random to

induce a balance of membership between classes. Due to

randomness of the oversampling, the method is naïve in that

it makes no assumptions about the classes and their members

[20][21]. Since exact copies of some data instances are

included in training, there is a risk of overfitting. Classifier

accuracy may also be influenced, and computational effort

may be increased.

Random undersampling of a majority class. This approach

discards data instances from majority classes to induce

balancing [22]. As in the case of the oversampling method,

the discarded data is chosen randomly and naively. The

method applies to both binary and multiclass data. The

approach can make it difficult to distinguish boundaries

between classes, with an inimical impact on performance

measures [23].

Synthetic Minority Oversampling Technique (SMOTE).

This technique was introduced in 2002 to address the

shortcomings of the oversampling and undersampling

approaches [24][25]. The technique generates synthetic data

by calculating feature space similarities between minority

class data instances. The K-nearest neighbors of each data

instance in a minority class are calculated, then randomly

selected one by one. The method then calculates linear

interpolations among the data and uses them to create

synthetic data instances.

Borderline SMOTE. The SMOTE approach encounters

issues when minority class data instances occur in the vicinity

of majority class data instances, creating undesirable bridges.

The Borderline SMOTE variation addresses this drawback by

oversampling only minority class instances near the

borderline. Data points are called border points if they are

incident to both minority and majority classes and called

noise points otherwise [26]. Border points are then utilized to

balance the data between classes.

K-Means SMOTE. This technique generates minority class

samples in safe and crucial borders of input spaces and thus

assists performance in classification. The method begins by

clustering the dataset using the K-means procedure, then

selects the clusters that have higher numbers of minority

samples [27]. Additional synthetic samples are then assigned

to clusters where minority class samples are sparsely

distributed. No noise points are generated.

SVM SMOTE. A variation of Borderline-SMOTE, the

method finds misclassification points. The borderline points

are approximated and classified with a Support Vector

Machine (SVM) classifier [28]. Synthetic data points are

created randomly around the lines joining each minority class

support vector with its neighbors.

Adaptive Synthetic Sampling – ADASYN. A limitation of

Borderline SMOTE is that is utilizes only synthetic points

generated from extreme observations and the borderline

instances and neglects the rest of the points in minority

classes. This issue is addressed by ADASYN by creating

synthetic data using the density of the existing data [29]. The

ratio of synthetically generated data is created in inverse

relation to the minority class density. In this way, a less dense

area creates more synthetic data.

The Churn Modeling Data from Kaggle was applied to the

methods [30]. Figure 4 shows the distribution of the data in

the original classes, followed by the outcomes of the

alternative methods in Figures 5 to 10.

90

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Original Class Imbalance Illustration.

Figure 5. Outcome of Random Oversampling.

Figure 6. Outcome of SMOTE.

Figure 7. Outcome of Borderline-SMOTE.

Figure 8. Outcome of K-Means SMOTE.

Figure 9. Outcome of SVM SMOTE.

Figure 10. Outcome of ADASYN.

B. Data Management and Feature Engineering

There are multiple methods for feature engineering on

categorical data. The inputs to ML algorithms must be

numeric, but many applications have categorical data. In our

work with ML methods for self-driving car collisions there

are examples of ordinal categorical data, such as rating of

severity of damages or a weather condition. The intrusion

detection work examples include counts of file access

attempts, session duration, or error rates. There are also

examples of nominal data, such as a type of vehicle in our

self-driving car work, or whether a flag is set in the intrusion

detection work. Various encoding methods are used to

convert the variables into a useful numerical representation

[10]. Choosing an appropriate encoding scheme is an

essential part of data preprocessing for a ML algorithm. Some

of the categorical encoding techniques are described below.

91

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B.1. One-hot encoding

This method converts an attribute with N possible

categories into N distinct features. In the NSL-KDD dataset,

the protocol type attribute has 3 possible values - Internet

Message Control Protocol (ICMP), Transmission Control

Protocol (TCP) and User Datagram Protocol (UDP). One-hot

encoding converts this attribute into three feature columns as

shown in Figure 11. It follows a 0/1 representation to indicate

presence (indicated by 1) or absence (indicated by 0) of a

value.

Figure 11. One-hot encoding used in Protocol Type attribute.

One-hot encoding has the advantage that it can convert

ordinal and categorical features into orthogonal vector space

[56]. It is one of the most used feature transformation

techniques in machine learning experiments. The

disadvantage of one-hot encoding appears when features with

high cardinality are transformed. It might have the curse of

dimensionality, also leading to a very sparse matrix. Also,

there is a possibility to introduce bias in case the feature is

distributed in an orderly fashion [57].

B.2. Dummy coding

Like one-hot encoding, dummy coding converts an

attribute with N values to a feature set of N-1 values. The

converted set of binary variables are called dummy variables.

Figure 12 illustrates one-hot ending and dummy coding

applied to the same set of categorical records.

Figure 12. One-hot and dummy encoding used in the same dataset [12].

An advantage of dummy encoding is that it decreases the

complexity and entropy complications. Dummy variable is of

slightly better space complexity since it creates (k-1) dummy

variables for k original variables. Whereas one hot encoding

creates exactly k number of converted variables. The dummy

variable trap is a camp term in machine learning

preprocessing that refers to more than one independent

categorical feature being multi-collinear [58][59].

B.3. Effect coding

While one-hot encoding and dummy coding use only 0

and 1 to encode categorical variables, effect coding sets

values that sum to zero in the new feature set. As a result,

negative values may also be generated in the encoded feature

set. Effect coding is a preferred choice when there is an

interaction of categorical variables in a dataset as it can

provide reasonable estimates of main effect and of the

interaction [13]. Effect coding has an advantage over dummy

coding when there is an interaction between categorical

variables [60]. The benefit is that the feature will achieve a

reasonable estimate of both main effect and interaction using

effect coding, which is efficient when training data is

unbalanced [61].

B.4. Hash encoding

Hash encoding is appropriate for categorical variables that

have many possible values. The method uses a hash function

to map categorical values into numbers. Commonly used

hash functions include Message Digest functions MD2,

MD4, MD5 and Secure Hash Algorithms SHA0, SHA1,

SHA2 and SHA3. The MD5 hash function is used by default

[12]. Hash encoding returns a variable map with smaller

dimensions than other encoding schemes, such as one-hot

encoding or dummy coding. Figure 13 below illustrates the

hash-encoding process:

Figure 13. Hash Encoding Process [14].

Hash encoding is a fast and memory-efficient technique

for categorical feature encoding. It has limitations such as

inducing collisions and losing ordering information. Unlike

the one-hot and dummy encoding, the method can handle

unseen categorical values during interference by mapping

them to a random numerical value [62]. Also, since it does

not need a separate encoding dictionary, it is quite easy to

deploy. Hash encoding can result in collisions, where

different categorical values are mapped to the same

numerical value. This can reduce the accuracy of the machine

learning model and make it difficult to interpret the

92

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

importance of the feature. Hash encoding is considered

unsuitable for categorical features with a small number of

unique values, since the collision rate can be high, and the

encoding may not be informative [63].

B.5. BaseN encoding

BaseN encoding converts categorical variables into a

consistently encoded feature set using a selected base, such

as base 2 for binary encoding. The base or radix is the

available number that can be used in different combinations

to represent all values in a numbering system. A BaseN

encoder encodes categorical values into arrays of their base-

n representation.

BaseN encoding is a powerful technique for encoding

categorical variables as numerical variables. BaseN encoding

preserves ordinal relationships among categories, which can

improve the interpretability and accuracy of the machine

learning model [64]. It can reduce the number of features in

the machine learning model, which improves computational

efficiency and reduces risk of overfitting. Limitations are

potential for noise or sparsity, inability to capture complex

relationships, and compatibility with specific machine

learning models. The suitability of BaseN encoding depends

on the specific dataset and machine learning task at hand [65].

B.6. Target encoding

Target encoding (also known as mean encoding) replaces

a variable with a mean of the target value for that variable.

Figure 14 provides an illustration. When the values of a

categorical variable are already of a high volume, target

encoding provides an advantage over other methods as it does

not add extra dimensions to the dataset.

Figure 14. Target Encoding [15].

Target encoding can reduce the number of features in the

machine learning model, which improves computational

efficiency and reduces the risk of overfitting [66]. Target

encoding is a powerful technique for encoding categorical

variables as numerical variables based on the target variable.

Limitations include potential for bias or overfitting, limited

generalization to new data, and lack of compatibility with

certain machine learning models. The suitability of Target

encoding depends on the specific dataset and machine

learning task. It is recommended to use cross-validation to

avoid overfitting when using target encoding [67].

B.7. Label or ordinal encoding scheme

Ordinal categorical variables require that the order of the

variable be preserved. For example, a road surface when a

collision occurs might be categorized as dry, somewhat wet,

or very wet so that the 3 values have an order that might

provide additional insights. Ordinal encoding scheme aims at

preserving this order when mapping values to numeric form.

The method simply assigns each label a number (for example

dry=1, somewhat wet=2 and very wet=3).

Label encoding preserves ordinal relationships among

categories, which improves the interpretability and accuracy

of the model [68]. It can reduce the number of features in the

machine learning model, improving computational

efficiency, and reducing risk of overfitting. Limitations are

potential for bias or arbitrary ranking, inability to capture

complex relationships, and lack of compatibility with specific

machine learning models. The suitability of Label encoding

depends on the specific dataset and machine learning task

addressed. It is recommended to use label encoding only

when the categorical variable has a meaningful order, or the

number of categories is small [69].

C. Feature Selection

The complexity of ML models increases with the

dimensionality of the dataset. Predictive models often fail to

achieve high accuracy because of inadequate analyses

directed to feature selection. Selecting the most important and

significant features reduces the complexity of the model and

can also increase the prediction performance [37][38].

Multiple approaches are available and effective for reducing

the feature set. Prominent ones are described below.

Filter Methods. In our work, we choose feature selection

methods that apply to situations with a categorical output,

such as whether an input vector is an attack or not. The filter

methods eliminate features independently of the ML method

used. A univariate feature filter evaluates the importance of

single features using univariate statistical tests. Each feature

is paired with the target to evaluate statistical significance

between them. The analysis of variance or ANOVA F-test is

widely used. The F-test calculates the ratio between variance

values [31]. The resultant measures of the relative importance

of individual features provide a tool for determining features

that are unnecessary or of little importance.

The filter method is effective for scalability, especially for

high-dimensional datasets with a large number of features

[70]. It improves accuracy and interpretability by removing

irrelevant and redundant features. It also helps to reduce

overfitting and improve generalization. The disadvantages of

the filter method are the lack of modeling interaction and/or

non-linear relationships between features and the target

93

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

variables [79]. The method limits the accuracy and predictive

power to a certain threshold [71].

Wrapper Methods. Wrapper methods directly evaluate

combinations of features by running the ML model restricted

to the set of candidate features. Taken to an extreme, all

combinations would be evaluated, an impossible task in

practice. Thus, various search space approaches are

employed. Forward search iteratively adds promising feature

vectors one by one to build a feature set. Backward search

starts with all features and successively eliminates those that

perform poorly. Many approaches based on optimization

techniques are available [32][33]. The self-driving car work

basically follows a forward selection approach based on both

advance knowledge about the importance of certain features

from analytics on the data itself along with test runs of the

ML model. Heavy computational load and possibilities of

overfitting are potential drawbacks [34].

The Wrapper method is efficient in capturing complex

relationships and interactions between features and targets. It

can handle non-linear relationships which is often impossible

for other feature selection techniques [72]. Like the filter

method, it improves the interpretability and generalization

ability of the model. Wrapper methods are computationally

expensive, especially for high dimensional data. Also, the

wrapper method can overfit the model to the training data,

especially if the search space of feature subsets is large or the

evaluation metric is not carefully chosen [73].

Embedded Methods. Embedded methods utilize

mathematical information that is available during the training

of the model to determine the relative importance of features.

In some sense embedded methods mitigate the drawbacks of

the filter and wrapper methods but retain their strengths.

When implemented carefully, they are not prone to

overfitting [35]. The XGBoost technique produces an

importance score for each attribute that is used to identify

those that can be confidently eliminated [36]. In applications

like intrusion detection, having many attributes presents a

huge computational burden. The embedded methods are

highly successful in greatly reducing the features needed in

intrusion detection ML work.

The Embedded method handles non-linear relationships

and interactions among features and the target variable, a

capability that may not possessed by the filter method or

many other feature selection techniques [74]. The method is

a powerful technique for feature selection that can capture

complex relationships and interactions among features and

the target variable. Limitations include high computational

cost, lack of compatibility with certain models, and potential

for overfitting or underfitting. The suitability of embedded

method depends on the specific dataset, machine learning

model, and optimization algorithm [75].

VI. CONCLUSION AND FUTURE WORK

Machine learning is now a well-established and effective

approach in many domains. When using machine learning

approaches in practice, issues arise concerning choices for

which type of model to use, parameters to choose and tune,

data management, feature engineering and selection. We

address many of these issues in the context of applications to

self-driving cars and intrusion detection. The applications are

of high importance in inter-related areas of cybersecurity,

trust, risk, safety, reliability, autonomy, and anti-autonomy.

For the studies concerning self-driving cars, we present uses

for reinforcement learning and supervised learning that

reveal circumstances under which the autonomous vehicle

makes decisions to take actions that result in collisions. For

intrusion detection, model choices and computational results

are presented that result in excellent values for performance

metrics. Included are reports of recall metrics that indicate

that it is possible to use machine learning methods that flag

nearly all potentially dangerous attack vectors. The data-

centric and feature engineering challenges are extensive and

detailed, but addressable. We describe approaches to

addressing these challenges. Results reveal several

implications for needs for next steps in research. New

frontiers include methods that can be deployed in real-time,

automate feature engineering, choose, and extract features

dynamically, and simultaneously support optimization of

multiple performance evaluation metrics.

REFERENCES

[1] K. E. Nygard, M. Ahsan, A. Rastogi, and R. Satyal, “Data and

Feature Engineering Challenges in Machine Learning,” in

ADVCOMP 2022, The Sixteenth International Conference on

Advanced Engineering Computing and Applications in

Sciences, pp. 1–10, November 2022.

[2] T. Hey, S. Tansley, and K. Tolle, “The Fourth Paradigm: Data-

Intensive Scientific Discovery,” Redmond, Washington:

Microsoft Research, 2009.

[3] A. Rastogi, “Trust and Anti-Autonomy Modelling of

Autonomous Systems,” Order No. 28255688, North Dakota

State University, Ann Arbor, 2020.

[4] R. Meiri and J. Zahavi, “Using simulated annealing to optimize

the feature selection problem in marketing applications,”

In European Journal of Operational Research, vol. 171, no. 3,

pp. 842-858, 2006.

[5] M. Lombardi and M. Milano, “Boosting combinatorial

problem modeling with machine learning,” In Proceedings of

the 27th International Joint Conference on Artificial

Intelligence, pp. 5472-5478, 2018.

[6] M. Charikar, V. Guruswami, R. Kumar, S. Rajagopalan, and A.

Sahai, “Combinatorial feature selection problems,”

In Proceedings 41st Annual Symposium on Foundations of

Computer Science, pp. 631-640, 2000.

[7] KDD Cup 1999 Data, Kdd.ics.uci.edu [Online]. Available

from:

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[Accessed: 2022.08.22].

94

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[8] A Deeper Dive into the NSL-KDD Data Set. Medium [Online].

Available from: https://towardsdatascience.com/a-deeper-

dive-into-the-nsl-kdd-data-set-15c753364657 [Accessed:

2022.08.22].

[9] L. Dhanabal and S.P. Shantharajah, “A Study on NSL-KDD

Dataset for Intrusion Detection System Based on Classification

Algorithms,” In International Journal of Advanced Research

in Computer and Communication Engineering, vol. 4, no. 6,

pp. 446-452, June 2015.

[10] S. Choudharya and N. Kesswani, “Analysis of KDD-Cup’99,

NSL-KDD and UNSW-NB15 Datasets using Deep Learning in

IoT,” In Procedia Computer Science, vol. 167, pp. 1561-1573,

2020.

[11] A. Divekar, M. Parekh, V. Savla, R. Mishra, and M. Shirole,

“Benchmarking datasets for Anomaly-based Network

Intrusion Detection: KDD CUP 99 alternatives,” In 2018 IEEE

3rd International Conference on Computing, Communication

and Security (ICCCS), IEEE, pp. 1-8, 2018.

[12] 8 Categorical Data Encoding Techniques to Boost your Model

in Python!, Analytics Vidhya [Online]. Available from:

https://www.analyticsvidhya.com/blog/2020/08/types-of-

categorical-data-encoding/ [Accessed: 2022.08.22].

[13] Introduction to SAS, UCLA: Statistical Consulting Group.

[Online]. Available from:

https://stats.idre.ucla.edu/sas/modules/sas-learning-

moduleintroduction-to-the-features-of-sas/ [Accessed:

2022.08.22]

[14] A Data Scientist’s Toolkit to Encode Categorical Variables to

Numeric. [Online]. Available from:

https://towardsdatascience.com/a-data-scientists-toolkit-to-

encode-categorical-variables-to-numeric-d17ad9fae03f

[Accessed: 2022.08.22]

[15] Improve your classification models using Mean /Target

Encoding. [Online]. Available from:

https://medium.com/datadriveninvestor/improve-your-

classification-models-using-mean-target-encoding-

a3d573df31e8 [Accessed: 2022.08.22]

[16] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data

set for network intrusion detection systems (UNSW-NB15

network data set),” In 2015 military communications and

information systems conference (MilCIS), IEEE, pp. 1-6, 2015.

[17] N. Japkowicz and S. Stephen, “The class imbalance problem:

A systematic study,” In Intelligent data analysis, vol, 6, no. 5,

pp. 429-449, 2002.

[18] R. Gomes, M. Ahsan, and A. Denton, “Random Forest

Classifier in SDN Framework for User-Based Indoor

Localization,” In 2018 IEEE International Conference on

Electro/Information Technology (EIT), IEEE, pp. 0537-0542,

2018.

[19] A. Ali, S. M. Shamsuddin, and A. L. Ralescu, “Classification

with class imbalance problem: A review,” In Int. J. Adv. Soft

Comput. its Appl., vol. 5, no. 3, 2013.

[20] A. Ghazikhani, H. S. Yazdi, and R. Monsefi, “Class imbalance

handling using wrapper-based random oversampling,” In 20th

Iranian Conference on Electrical Engineering (ICEE2012),

IEEE, pp. 611-616, 2012.

[21] Z. Zheng, Y. Cai, and Y. Li, “Oversampling method for

imbalanced classification,” In Computing and Informatics, vol.

34, no. 5, pp. 1017-1037, 2015.

[22] A. M. Denton, M. Ahsan, D. Franzen, and J. Nowatzki, “Multi-

scalar analysis of geospatial agricultural data for

sustainability,” In 2016 IEEE International Conference on Big

Data (Big Data), IEEE, pp. 2139-2146, 2016.

[23] N. V. Chawla, N. Japkowicz, and A. Kotcz, “Special Issue on

Learning from Imbalanced Data Sets,” In ACM SIGKDD

explorations newsletter, vol. 6, no. 1, pp. 1-6, 2004.

[24] M. Ahsan, R. Gomes, and A. Denton, “SMOTE

Implementation on Phishing Data to Enhance Cybersecurity,”

In 2018 IEEE International Conference on

Electro/Information Technology (EIT), IEEE, pp. 0531-0536,

2018.

[25] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer, “SMOTE: Synthetic minority over-sampling

technique,” In Journal of artificial intelligence research,

vol. 16, pp. 321-357, 2002.

[26] H. Han, W. Y. Wang, and B. H. Mao, “Borderline-SMOTE: A

new over-sampling method in imbalanced data sets learning,”

In International conference on intelligent computing, pp. 878-

887. Springer, Berlin, Heidelberg, 2005.

[27] H. Hairani, K. E. Saputro, and S. Fadli, “K-means-SMOTE

untuk menangani ketidakseimbangan kelas dalam klasifikasi

penyakit diabetes dengan C4.5, SVM, dan naive Bayes,” In J.

Teknol. dan Sist. Komput., vol. 8, no. 2, pp. 89-93, 2020.

English – H. Hairani, K. E. Saputro, and S. Fadli, “K-means-

SMOTE to trate class imbalance in the classification of

diabetes with C4.5, SVM, and Naïve Bayes,” In J. Teknol. dan

Sist. Komput., vol. 8, no. 2, pp. 89-93, 2020.

[28] Y. Tang, Y. Q. Zhang, and N. V. Chawla, “SVMs modeling for

highly imbalanced classification,” In IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39,

no. 1, pp. 281-288, 2008.

[29] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN: Adaptive

synthetic sampling approach for imbalanced learning,” In 2008

IEEE international joint conference on neural networks (IEEE

world congress on computational intelligence), IEEE, pp.

1322-1328, 2008.

[30] O. Özdemir, M. Batar, and A. H. Işık , “Churn Analysis with

Machine Learning Classification Algorithms in Python,”

In The International Conference on Artificial Intelligence and

Applied Mathematics in Engineering, pp. 844-852. Springer,

Cham, 2019.

[31] N. O. F. Elssied, O. Ibrahim, and A. H. Osman, “A novel

feature selection based on one-way ANOVA F-test for e-mail

spam classification,” In Research Journal of Applied Sciences,

Engineering and Technology, vol. 7, no. 3, pp. 625-638, 2014.

[32] M. Ahsan, R. Gomes, and A. Denton, “Application of a

convolutional neural network using transfer learning for

tuberculosis detection,” In 2019 IEEE International

Conference on Electro Information Technology (EIT), IEEE,

pp. 427-433, 2019.

[33] A. Mustaqeem, S. M. Anwar, M. Majid, and A. R. Khan,

“Wrapper method for feature selection to classify cardiac

arrhythmia,” In 2017 39th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society

(EMBC), IEEE, pp. 3656-3659, 2017.

[34] M. Ahsan and K. Nygard, “Convolutional Neural Networks

with LSTM for Intrusion Detection,” In The 35th International

95

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Conference on Computers and Their Applications (CATA

2018), vol. 69, pp. 69-79. 2020.

[35] H. Liu, M. Zhou, and Q. Liu, “An embedded feature selection

method for imbalanced data classification,” In IEEE/CAA

Journal of Automatica Sinica, vol. 6, no. 3, pp. 703-715, 2019.

[36] Y. Wang and X. S. Ni, “A xgboost risk model via feature

selection and bayesian hyper-parameter optimization,” In

arXiv preprint arXiv:1901.08433, 2019.

[37] M. Chowdhury, J. Tang, and K. Nygard, “An artificial immune

system heuristic in a smart grid,” In The 28th International

Conference on Computers and Their Applications, 2013.

[38] M. Chowdhury and K. Nygard, “Machine learning within a con

resistant trust model,” In The 33rd International Conference on

Computers and Their Applications (CATA 2018), pp. 9-14,

2018.

[39] A. Rastogi and K. Nygard, “Threat and alert analytics in

autonomous vehicles,” In The 35th International Conference

on Computers and Their Applications (CATA 2018), vol. 69,

pp. 48-59, 2020.

[40] Home - Keras Documentation, Keras.io, 2020. [Online].

Available: https://keras.io/. [Accessed: 2022.08.16].

[41] “TensorFlow,” TensorFlow, 2020. [Online]. Available:

https://www.tensorflow.org/. [Accessed: 2022.08.16].

[42] “tensorflow/tensorflow,” GitHub, 2020. [Online]. Available:

https://github.com/tensorflow/tensorflow. [Accessed:

2022.08.16].

[43] M. Ahsan, N. Rifat, M. Chowdhury, and R. Gomes,

“Detecting Cyber Attacks: A Reinforcement Learning Based

Intrusion Detection System,” In 2022 IEEE International

Conference on Electro Information Technology (eIT), IEEE,

pp. 461-466, 2022.

[44] M. Ahsan, K. E. Nygard, R. Gomes, M . M . Chowdhury, N.

Rifat, and J. F. Connolly, “Cybersecurity Threats and Their

Mitigation Approaches Using Machine Learning—A

Review,” In Journal of Cybersecurity and Privacy, vol. 2, no.

3, pp. 527-555, 2022.

[45] N. I. Rifat, “Feature Engineering on the Cybersecurity Dataset

for Deployment on Software Defined Network,” 2020.

[46] Y. Berra, “A Quote By Yogi Berra,” 2022. [Online].

Available: https://www.goodreads.com/quotes/261863-it-s-

tough-to-make-predictions-especially-about-the-

future. [Accessed: 2022.08.22].

[47] M. Ahsan, N. Rifat, M. Chowdhury, and R. Gomes,

“Intrusion Detection for IoT Network Security with Deep

Neural Network,” In 2022 IEEE International Conference on

Electro Information Technology (eIT), IEEE, pp. 467-472,

2022.

[48] P. Sajda, A. Gerson, K. R. Muller, B. Blankertz, and L. Parra,

“A data analysis competition to evaluate machine learning

algorithms for use in brain-computer interfaces,” In IEEE

Transactions on neural systems and rehabilitation

engineering, 11(2), pp. 184-185, 2003.

[49] A. Fleury-Charles, M. M. Chowdhury, and N. Rifat, “Data

Breaches: Vulnerable Privacy,” In 2022 IEEE International

Conference on Electro Information Technology (eIT),

Mankato, MN, USA, pp. 538-543, 2022.

[50] Z. Li, X. Ma, and H. Xin, “Feature engineering of machine-

learning chemisorption models for catalyst design,” Catalysis

today, vol. 280, pp. 232-238, 2017.

[51] D. K. Davis, M. M. Chowdhury, and N. Rifat, “Password

Security: What Are We Doing Wrong?,” In 2022 IEEE

International Conference on Electro Information Technology

(eIT), Mankato, MN, USA, 2022, pp. 562-567.

[52] R. Vanness, M. M. Chowdhury, and N. Rifat, “Malware: A

Software for Cybercrime,” In 2022 IEEE International

Conference on Electro Information Technology (eIT),

Mankato, MN, USA, pp. 513-518, 2022.

[53] Y. Xu, K. Hong, J. Tsujii, and E.I.C. Chang, “Feature

engineering combined with machine learning and rule-based

methods for structured information extraction from narrative

clinical discharge summaries,” In Journal of the American

Medical Informatics Association, vol. 19, no. 5, pp. 824-832,

2012.

[54] M.Ahsan, R. Gomes, M.M. Chowdhury, and K. E. Nygard,

“Enhancing machine learning prediction in cybersecurity using

dynamic feature selector,” In Journal of Cybersecurity and

Privacy, vol. 1, no. 1, pp. 199-218, 2021.

[55] M.K. Ahsan, “Increasing the Predictive Potential of Machine

Learning Models for Enhancing Cybersecurity,” Order No.

28416096, North Dakota State University, Ann Arbor, 2021.

[56] M. K. Dahouda and I. Joe, “A deep-learned embedding

technique for categorical features encoding,” In IEEE Access,

vol. 9, pp. 114381-114391, 2021.

[57] B. Gu and Y. Sung, “Enhanced reinforcement learning method

combining one-hot encoding-based vectors for CNN-based

alternative high-level decisions,” In Applied Sciences, vol. 11,

no.3, p. 1291, 2021.

[58] I. Mukherjee, N.K. Sahu, and S.K. Sahana, “Simulation and

modeling for anomaly detection in IoT network using machine

learning,” In International Journal of Wireless Information

Networks, pp. 1-17, 2022.

[59] J.M. Jerez, I. Molina, P.J. García-Laencina, E. Alba, N.

Ribelles, M. Martín, and L. Franco, “Missing data imputation

using statistical and machine learning methods in a real breast

cancer problem,” In Artificial intelligence in medicine, vol. 50,

no.2, pp. 105-115, 2010.

[60] R.S. Sutton, “Generalization in reinforcement learning:

Successful examples using sparse coarse coding,” In Advances

in neural information processing systems, vol. 8, 1995.

[61] C.H. Chien, C.C. Chang, S.H. Lin, C.W. Chen, Z.H. Chang,

and Y.W. Chu, “N-GlycoGo: predicting protein N-

glycosylation sites on imbalanced data sets by using

heterogeneous and comprehensive strategy,” In IEEE Access,

vol. 8, pp. 165944-165950, 2020.

[62] Z. Cao, M. Long, J. Wang, and P.S. Yu, “Hashnet: Deep

learning to hash by continuation,” In Proceedings of the IEEE

international conference on computer vision, pp. 5608-5617,

2017.

[63] I. Lopez-Arevalo, E. Aldana-Bobadilla, A. Molina-Villegas, H.

Galeana-Zapién, V. Muñiz-Sanchez, and S. Gausin-Valle, “A

memory-efficient encoding method for processing mixed-type

data on machine learning,” In Entropy, vol. 22, no.12, p. 1391,

2020.

[64] J.M Springer, C.S. Strauss, A.M. Thresher, E. Kim, and G.T.

Kenyon, “Classifiers based on deep sparse coding architectures

96

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are robust to deep learning transferable examples,” In arXiv

preprint arXiv:1811.07211, 2018.

[65] S. Naseer, Y. Saleem, S. Khalid, M.K. Bashir, J. Han, M.M.

Iqbal, and K. Han, “Enhanced network anomaly detection

based on deep neural networks,” In IEEE Access, vol. 6, pp.

48231-48246, 2018.

[66] N. Nazyrova, T.J. Chaussalet, and S.Chahed, “Machine

Learning models for predicting 30-day readmission of elderly

patients using custom target encoding approach,” In

Computational Science–ICCS 2022: 22nd International

Conference Proceedings, vol. III, pp. 122-136, June 2022.

[67] D. Silhavy, C. Krauss, A. Chen, A.T. Nguyen, C. Müller, S.

Arbanowski, S. Steglich, and L. Bassbouss, “Machine learning

for per-title encoding,” In SMPTE Motion Imaging Journal,

vol. 131, no.3, pp. 42-50, 2022.

[68] A. Mottini and R. Acuna-Agost, “Relative label encoding for

the prediction of airline passenger nationality,” In 2016 IEEE

16th International Conference on Data Mining Workshops

(ICDMW), pp. 671-676, 2016.

[69] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning

models that remember too much,” In Proceedings of the 2017

ACM SIGSAC Conference on computer and communications

security, pp. 587-601, 2017.

[70] S. Khalid, T. Khalil, and S. Nasreen, “A survey of feature

selection and feature extraction techniques in machine

learning,” In 2014 science and information conference, pp.

372-378, August 2014.

[71] A. Zheng and A. Casari, “Feature engineering for machine

learning: principles and techniques for data scientists,” In

O'Reilly Media, Inc., 2018.

[72] S.M. Kasongo and Y. Sun, “A deep learning method with

wrapper based feature extraction for wireless intrusion

detection system,” In Computers & Security, vol. 92, pp.

101752, 2020.

[73] M. F. Rafique, M. Ali, A. S. Qureshi, A. Khan, and A. M.

Mirza, “Malware classification using deep learning based

feature extraction and wrapper based feature selection

technique,” In arXiv preprint arXiv:1910.10958, 2019.

[74] J. Zhou, L. Liu, W. Wei, and J. Fan, “Network representation

learning: from preprocessing, feature extraction to node

embedding,” In ACM Computing Surveys (CSUR),vol. 55, no.

2, pp. 1-35, 2022.

[75] S. Wang, J. Arroyo, J.T. Vogelstein, and C. E. Priebe, “Joint

embedding of graphs,” In IEEE transactions on pattern

analysis and machine intelligence, vol. 43, no.4, pp. 1324-

1336, 2019.

[76] Introduction to Various Reinforcement Learning Algorithms.

Medium [Online]. Available from:

https://medium.com/towards-data-science/introduction-to-

various-reinforcement-learning-algorithms-i-q-learning-sarsa-

dqn-ddpg-72a5e0cb6287 [Accessed: 2023.03.05].

[77] A. Rastogi and K. E. Nygard, “Trust Issues in Cybersecurity

and Autonomy,” In 27th International Conference on Software

Engineering and Data Engineering, 2018.

[78] U. S. Shanthamallu, A. Spanias, C. Tepedelenlioglu, and M.

Stanley, “A brief survey of machine learning methods and their

sensor and IoT applications,” In 2017 8th International

Conference on Information, Intelligence, Systems &

Applications (IISA), pp. 1-8, 2017.

[79] S.M. Kasongo and Y. Sun, “A deep learning method with filter

based feature engineering for a wireless intrusion detection

system,” In IEEE Access, vol. 7, pp. 38597-38607, 2019.

