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Abstract—Machine learning is a subset of artificial intelligence 

in which a machine has an ability to learn and employ complex 

algorithms to impersonate human behavior. Development of a 

machine learning model involves careful preparation and 

management of data and selection and features to produce 

meaningful results. The data issues are often challenging due to 

availability, characteristics, properties, categorization, and 

balance.  We report on relevant literature, case studies and 

experiments surrounding the data issues. We describe 

alternative machine learning methodologies and emphasize 

supervised learning, including treatment of experimental 

procedures. Procedures and challenges in the collection, 

quantity, distribution, quality, sampling, of and relevancy of 

data are included. Applications of machine learning models are 

presented, including classification models for self-driving cars. 

These models introduce anti-autonomy trust modeling. We also 

describe intrusion detection models that can detect malicious 

activity in computing systems. These applications also provide 

insight into overfitting and underfitting training data. Feature 

engineering and feature selection issues are presented, including 

approaches to identifying, combining, and eliminating 

attributes and features to determine which are needed and their 

significance. Approaches for treating class imbalances in data 

management are discussed. Comparisons among categorical 

encoding techniques are presented. The work provides 

perspective and insight into resolving multiple issues that must 

be addressed in utilizing machine learning models in practice. 

Keywords- Machine Learning; Data Management; Feature 

Engineering; Feature Selection; Self-Driving Cars; Intrusion 

Detection. 

I. INTRODUCTION 

Machine Learning (ML) is a rapidly emerging area of 

artificial intelligence. Many types of applications have been 

successfully developed and new successes are regularly 

reported. The famous Turing award winner Jim Gray referred 

to data science as a “fourth paradigm,” taking a rightful place 

among empirical, theoretical, and computational sciences [2].  

Often viewed as interdisciplinary, data science involves 

mathematics, statistics, and computer science as well as other 

related areas. In many applications, the availability of large 

and relevant datasets, and the methods of data science 

provide the lifeblood of machine learning problem-solving 

approaches. Analyses and decision support in nearly every 

area of human endeavor today are related to machine 

learning. 

The example machine learning studies that we describe 

are in the areas of self-driving cars and intrusion detection [1] 

[3][34][37][38]. Self-driving cars are a real-world example of 

a system that requires machine learning, since they involve 

complex computations, algorithms, computing systems, 

mechanics, and behavioral aspects that endanger human life 

if automated decisions or controls go awry. Automated cars 

have features such as remote engine start, advanced 

information systems, moving object detection (MOD), lane 

change assist, anti-lock braking system (ABS), to name just 

a few. These systems can create vulnerabilities to cyber-

attacks from things like bugs introduced in their core software 

code, remote access to the onboard diagnostic system (OBD) 

of the vehicle, or controller area network (CAN) bus [77]. 

For a self-driving car study focused on classification, we 

utilized available multi-attribute data about specific 

collisions. The data contained many features and attributes of 

the vehicle itself, the damage incurred, roadway conditions, 

etc. The objective of the study was to build a classification 

model that could translate the detailed data into collision 

predictions and to drive an anti-autonomy trust model. There 

were several important and difficult choices made related to 

scale and balance within the available dataset, and in feature 

engineering. A linear sequential supervised machine learning 

model was employed. 

The intrusion detection study used supervised learning 

techniques to build a model for identifying outside threats 

initiated by malicious actors who wish to breach or 

compromise a system. Among other datasets, the study 

examined the famous dataset that originated in the KDD 

(Knowledge Discovery and Data Mining) competition and 

was later modified to form the now publicly available NSL 

(Network Security Laboratory) KDD dataset [7][8]. 

Data management and feature engineering are important 

steps in the cybersecurity domain to prepare data for machine 

learning algorithms and build effective models for detecting 

security threats and anomalies. Data analysis involves 

exploring, visualizing, and understanding the data to identify 

patterns, trends, and anomalies [48]. This may include 

statistical analysis, correlation analysis, time series analysis, 

and other techniques to gain insights into the data. In the 

cybersecurity domain, data analysis may also involve 

extracting features that are relevant to the security domain, 

such as network traffic flow, packet size and content, system 
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logs, user behavior, and other indicators of security threats 

[49]. Feature engineering is the process of selecting, 

transforming, and creating features that are relevant and 

informative for the machine learning model. This may 

involve selecting features that are correlated with the target 

variable, transforming features to make them more 

informative or meaningful, and to create new features from 

existing ones [50]. Feature engineering in the cybersecurity 

domain may also involve domain-specific knowledge and 

expertise to select and create features that capture the specific 

characteristics of security threats and anomalies [51][52]. 

Feature engineering techniques may also involve 

dimensionality reduction, feature scaling, and other 

preprocessing techniques to improve the performance of the 

machine learning model. All these methods have their 

strengths and weaknesses, and their effectiveness may 

depend on the specific dataset and classification problem at 

hand. In the cybersecurity domain, they can be useful to 

improve the performance of machine learning models that 

aim to detect and classify security threats, anomalies, or 

attacks [53]. We describe some of the data analysis and 

feature engineering techniques used in cybersecurity in the 

data management section of this paper. 

The rest of the paper is structured as follows. In Section 

II, we describe supervised machine learning with illustrations 

of the flow of a machine learning model and data splits for 

cross validation. In Section III, we present a self-driving cars 

example illustrating an implementation of a linear sequential 

supervised learning artificial neural network model utilizing 

multiple pre-processed complex attributes. In Section IV, we 

present the intrusion detection example, explaining how a 

machine learning model can be tuned to predict and identify 

attacks. In Section V, we describe data management and 

feature engineering issues that are ubiquitous in machine 

learning practice. This section also includes several 

categorical encoding techniques for preprocessing data for a 

machine learning algorithm. Finally, we conclude our work 

in Section VI. An abbreviated version of the work is available 

in [1]. 

II. MACHINE LEARNING EXPERIMENTS 

Machine learning methods are of four distinct types. 

Supervised learning models are trained using datasets with 

known labels, then used to make predictions on new data. 

Unsupervised learning models work with unlabeled data and 

seek clusters or patterns in the data. Semi-supervised learning 

is a hybrid approach that uses both unsupervised and 

supervised learning techniques. Reinforcement learning uses 

no labeled data, but instead is based upon evaluation of 

rewards or punishments of behaviors. We have conducted 

extensive experiments using supervised learning in 

applications concerning circumstances under which 

collisions occur in self-driving cars and in detecting 

intrusions into computer platforms.  

Supervised machine learning (SML) methods are very 

effective in addressing classification problems. When applied 

to classification tasks, a SML method has a set of available 

data for which their correct classifications are known. Such a   

data set can be represented as shown below. 

 

(𝒙1,𝑦1), (𝒙2,𝑦2), … (𝒙𝑛,𝑦𝑛)  
 

Here, the xi shown in bold are vectors that capture a data 

instance or situation, and the corresponding yi values are 

discrete labels for the available classifications.   

The initial task in a supervised learning experiment is to 

computationally train the machine learning model to accept 

the known data instances as input and to produce the correct 

target as output. Many types of SML methods can be used in 

training, including decision trees, neural networks, support 

vector machines, and logistic regressions [78]. For some 

methods, training can be a computationally intensive process. 

Once trained, the model is available to accept new data 

instances and predict their target classification. The model is 

successful if it has high values of performance measures such 

as percentage of accuracy in correctly classifying the new 

data instances, called the ability to generalize. There are 

multiple issues surrounding the characteristics of the 

available data, the classes into which they fall, their attributes 

and features, and the learning models charged with producing 

the predictions. Concerning baseball, Coach Yogi Berra 

famously said, “It's tough to make predictions, especially 

about the future.” This aphorism is equally true in machine 

learning [46]. 

Figure 1 illustrates the general flow of a machine learning 

technique. Several tasks are included. The overall task of the 

DEVELOP phase shown at the top is to produce a Final 

Model that is fully specified, trained and feeds into the 

PREDICT phase shown below the dotted line, where it is 

available for generalization use on new data. Starting from 

the top, the data is shown as partitioned into splits for 

Training, Validation and Test. The full data is divided into 

the Training Split and the Test Split. A good way to perform 

training is to withhold a portion of the data while training is 

done. It is viewed as a mistake to train and test a machine 

learning model on the same data. So, doing that would result 

in the model memorizing all the data/target pairs, resulting in 

the model perfectly knowing all of the answers, leaving no 

ability to generalize. The result is known as overfitting. For 

validation purposes, the Training Split is typically divided 

into pieces called folds. Called k-fold cross validation, Figure 

2 illustrates basic logic for splitting the data. In this example, 

k=5 so there are five equal parts. This corresponds to the 

Validation Split and Model Tuning blocks in Figure 1. In 

Figure 2, shown in bold italics on the diagonal, there is a 

designated fold in each row that is specified for testing, with 

the other four used for training. The key idea is to find the 

best set of meta-level parameters for a model being 

developed. All major machine learning models have 

parameters. For example, an ML that utilizes an Artificial 

Neural Network (ANN) in some way, will be parameterized 

with settings like Learning Rate (governs weight 

adjustments), topology (number of hidden layers, nodes 
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within layers, and interconnectedness), and activation 

functions.  

In cross validation, when a model is trained on the folds, 

a performance metric, such as classification accuracy, can be 

calculated on the testing fold. After all the fold splits are 

evaluated in this way, an average is calculated, which yields 

a score for the parameter settings. Various optimization 

methods can be employed to explore the parameter space in 

a quest to identify the best settings. Viewed more generally, 

the Model Tuning block can also be viewed as exploring 

various types of models in a quest to not only optimize the 

use of one type of model, but to also choose among 

competing models. 

In multiple places of the ML process, there is a need to 

evaluate the quality of the predictions using a metric. The 

empirical accuracy of a method is simply the percentage of 

the predictions made that are correct. Other metrics are 

available. More details are provided later in this paper.  

Raw data is rarely available in a form that is suitable for 

direct use by an ML model. Pre-processing of data is typically 

necessary to deal with such things as null or missing values, 

outliers, transforming or reconciling numeric and categorical 

values, rescaling, and standardizing. We expand on the data-

centric issues, for the example applications reported in this 

article.  

Feature Engineering also appears in Figure 1. Features 

are those characteristics that are present in the data that are 

potentially useful in predicting a target outcome. 

 

  

 
 

Figure 1. Flow of a Machine Learning Model [3]. 

 

 
Figure 2. Data Splits for Cross Validation. 

  

 It is often effective in ML to modify or combine features in 

some way to produce a new feature that can improve the 

prediction accuracy of the method. Called Feature 

Engineering, the operations that can be carried out include 

things like mathematically transforming a single feature or 

applying a functional calculation on multiple features. 

Feature Selection refers to reducing the number of features 

employed by the model while retaining acceptable results. 

Reducing the features needed can ease the data collection task 

and reduce the computational load of running the model. 

Feature Selection typically follows Feature Engineering. We 

provide details related to the examples discussed in this 

paper. 

Unsupervised Learning is different than supervised 

learning in many ways. Some of the most known algorithms 

are, k-means clustering, hierarchical clustering, principal 

component analysis, and a priori algorithm [45]. The need for 

unsupervised models is increasing in the cybersecurity 

domain since attacks are being modified every day [47].  

We have discussed multiple machine learning techniques 

in this section. The primary concern is to make proper choice 

of methods to optimize the solution of a problem. We discuss 

the criteria we need to adopt to address a machine leaning 

problem in the following sections. 

III. SELF-DRIVING CARS APPLICATIONS  

A self-driving car underway must adhere to laws and rules 

of the road, like adhering to speed limits, stopping at red 

traffic lights, turning from an appropriate lane, etc. In 

addition, the vehicle must carry out control actions in 

response to sensor and communication information that 

provides information regarding things like conditions of the 

roadway (such as snow, rain, deteriorated pavement); 

construction zones; presence of bicycles, pedestrians, other 

cars, or obstacles; or visibility issues like glare, fog, snow, 

rain, darkness, or any type of impaired lighting. 

 

When addressing how a self-driving car can be trained to 

carry out an appropriate action under circumstances that it 

encounters, we draw an analogy with how positive 
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reinforcement can work efficiently when a person or animal 

learns a new skill or behavior. This vehicle training need 

lends itself naturally to Reinforcement Learning (RL), a 

powerful machine learning technique that rewards good 

behaviors, and as needed, punishes bad behaviors.  A RL 

training method proceeds iteratively and is illustrated in 

Figure 3 [76]. While undergoing learning in a simulated 

environment, the vehicle is an agent that carries out actions, 

receives their consequences in the form of positive or 

negative feedback, and adjusts their model of actions 

accordingly. When complete, experience gained in this way 

can maximize rewards. With acceleration, deceleration and 

steering as the primary actions, a self-driving car (agent) aims 

at maximizing short-term rewards (like safe driving) and 

long-term rewards (like fast arrival at the destination) using 

the RL approach. 

 

 
Figure 3. Reinforcement Learning illustration.  

 

We carried out extensive experiments using supervised 

learning for analyses of collisions that occur with self-driving 

cars. Official collision reports basically map data items that 

describe driving conditions into a collision classification. We 

used these reports to help determine circumstances under 

which self-driving cars carry out actions that cause collisions 

or fail to avoid them. These harmful actions are referred to as 

anti-autonomy traits and factors on the part of the vehicle that 

cause collisions and diminish trust [3][39]. Data availability 

was a challenge since jurisdictions of different states, federal 

traffic agencies and motor vehicle departments often do not 

make their data publicly available. Data used in this study 

was submitted by the manufacturers of autonomous vehicles 

to the California Department of Motor Vehicles for collisions 

that occurred with other cars, pedestrians, bicyclists, and 

other objects during their test drives on roads and freeways in 

the state. All data applied to collisions that occurred while the 

cars were being driven in autonomous driving mode. The 

collisions occurred between October 2014 and March 2020 

[3][39]. The attributes of this dataset are listed in Table I 

below. All attribute names are feature type categorical and 

data type object. 

 
TABLE I.  COLLISION DATA ATTRIBUTES [3] 

Attribute Type Attribute Names 

Autonomous vehicle details Manufacturer Name, Business 
Name, Vehicle Year, Vehicle 

Make, Vehicle Model, Vehicle 

was (stopped in traffic/moving)  

Attribute Type Attribute Names 

Accident Details  Date of Accident, Time of 
Accident 

Involved in Autonomous vehicle 

accident 

Involved in Autonomous Vehicle 

Accident 
(Pedestrian/Bicyclist/Other), 

Number of vehicles involved with 

Autonomous Vehicle 

Autonomous vehicle damage Vehicle Damage, Damaged Area  

Details of other vehicle involved 

in accident 

Vehicle 2 Year, Vehicle 2 Make, 

Vehicle 2 Model, Vehicle 2 was 

(stopped in traffic/moving) 

Involved in other vehicle 

accident 

Involved in Vehicle 2 Accident 
Pedestrian, Involved in Vehicle 2 

Accident Bicyclist, Involved in 

Vehicle 2 Accident Other, 

Number of vehicles involved with 

Vehicle 2  

Injuries Injured, Injured Driver, Injured 
Passenger, Injured Bicyclist 

Vehicle driving mode Vehicle Driving Mode 

Weather conditions for both 

vehicles 

Clear, Cloudy, Raining, Snowing, 

Fog/Visibility, Other, Wind 

Lighting conditions for both 

vehicles 

Daylight, Dusk-Dawn, Dark 
Street Lights, Dark-No Street 

Lights, Dark-Street Lights Not 
Functioning 

Roadway surface for both 

vehicles 

Dry, Wet, Snowy-Icy, 

Slippery/Muddy/Oily/etc., Holes-

Deep-Rut, Loose Material on 
Roadway, Obstruction on 

Roadway, Construction/Repair 

Zone, Reduced Roadway Width, 

Flooded, Other, No Unusual 

Conditions 

Preceding Movement of 

Autonomous Vehicle before 

collision 

Stopped, Proceeding Straight, Ran 
Off Road, Making Right Turn, 

Making Left Turn, Making U 

Turn, Backing, Slowing/Stopping, 
Passing Other Vehicle, Changing 

Lanes, Parking Maneuver, 

Entering Traffic, Unsafe Turning, 
Xing into Opposing Lane, Parked, 

Merging, Travelling Wrong Way, 

Other 

Preceding Movement of Other 

Vehicle before collision 

Stopped, Proceeding Straight, Ran 
Off Road, Making Right Turn, 

Making Left Turn, Making U 

Turn, Backing, Slowing/Stopping, 

Passing Other Vehicle, Changing 

Lanes, Parking Maneuver, 
Entering Traffic, Unsafe Turning, 

Xing Into Opposing Lane, Parked, 

Merging, Travelling Wrong Way, 
Other 

Type of Collision Head On, Side Swipe, Rear End, 

Broadside, Hit Object, 

Overturned, Vehicle/Pedestrian, 
Other 

Other CVC Sections Violated Cited, 

Vision Obscurement, Inattention, 
Stop and Go Traffic, 

Entering/Leaving Ramp, Previous 

Collision, Unfamiliar with Road, 

Defective WEH Equip Cited,  

Uninvolved Vehicle, Other, Non-

Apparent, Runaway Vehicle 
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This data was extracted from PDF files and converted into 

CSV format with 256 rows of data in 140 columns. As is 

often the case in machine learning, data cleaning was a 

significant effort, and included pre-processing steps for 

augmenting, labeling, and classifying the data [3][39]. Data 

was augmented to 5256 rows with the goal of yielding a 

model with minimal noise. Details of data augmentation 

criteria is described in [3]. The core purpose of the study was 

to associate conditions into a level of trust that people had in 

a self-driving car. The values of attributes in the data that 

describe conditions and circumstances that are present when 

a collision occurs provide a handle to model a mapping 

between data and trust level. After pre-processing the data, a 

linear sequential supervised learning ANN model called 

NoTrust was devised, validated, and tested to classify the 

target data, using the basic approach illustrated in Figure 1.   

The model used the libraries provided by Keras with the 

Tensorflow backend [40][41][42]. Python was used for 

programming since it integrates with Keras to access the 

neural network Application Programming Interface. The 

deep learning libraries of Keras support fast prototyping, 

modularity, and smooth computation. 

There are multiple challenges concerning data, features, 

and metrics in applying the ML methodology to the self-

driving car application. First, there were only 256 collision 

reports available, which is arguably a small number to use in 

a ML method. This was mitigated by augmenting the data to 

produce a larger set to develop a model with higher accuracy. 

Also, in the context of alternative target value possibilities, 

the data is unbalanced in that the number of samples across 

the distinct classes differs widely. Section V describes 

methods, such as oversampling, to deal with unbalanced data. 

Second, there are 140 attributes, a large number relative to 

sample size, as shown in Table I. Thus, the possible 

permutations and combinations that could be evaluated in the 

ANN model are explosive. Fortunately, with initial analyses 

of the data and evaluation runs, it was possible to identify a 

subset of attributes and features that were mandatory to 

include. This analysis was done by systematically 

configuring sets with and without specific attributes, 

evaluating each combination, and comparing the outcomes. 

Using this search method, we identified certain categorial 

features that were closely correlated with the anti-

autonomous traits of the vehicles. This supported dropping 

the features related to date/time of accident, vehicle 

manufacturer, weather conditions, lighting conditions, 

roadway conditions, vehicle movement and type of collision. 

Ultimately, we arrived at the five attributes shown below to 

form the mandatory set.  

 

• Vehicle driving mode = autonomous 

• Vehicle damage = moderate and major 

• First vehicle involved = Pedestrians/Bicycle/Other 

• Second vehicle involved = Bicycle/Other  

• Injuries sustained = Pedestrians/Bicyclists/Others 

While keeping the model simple and still retaining 

accuracy, the mandatory feature set performed well in 

making trust and do not trust predictions for autonomous 

vehicles. However, when anti-autonomous traits of the self-

driving car itself were incorporated into the model it became 

apparent that more attributes had to be utilized. 

Anti-autonomy refers to decisions and actions taken by 

a self-driving car that are in some way inappropriate in terms 

of increasing risk, diminishing safety, causing potential harm, 

or lowering trust. It entails from an unexpected, 

unconventional, and abnormal decisions that self-driving car 

makes in the event of unfavorable surrounding driving 

conditions related to weather, roadway surface conditions, 

drivability of other vehicles and, pedestrians or bicyclists 

sharing the road. Autonomous vehicles have been known to 

have certain technological shortcomings in terms of Lidar 

failing when the weather conditions are rainy or foggy with 

limited visibility. Extensive study and analysis of the 

collision data revealed the following anti-autonomous 

behavior of self-driving cars [3]: 

• In 50.22% of collisions, a pedestrian was involved 

while the vehicle was driving autonomously. 

• In 52.08% of collisions, a pedestrian was involved 

while vehicle was driving autonomously and was 

moving in traffic. 

• In 55.13% of the collisions, a bicyclist was involved 

while the vehicle was driving autonomously and 

was about to slow down or stop. These statistics 

illustrate the confusing behavior of a self-driving 

car, its mechanical functioning and decision making 

at the second when a bicyclist appears in front of 

them. 

• In 55.84% of the collisions, a pedestrian was 

involved while the vehicle was driving 

autonomously and was attempting to make a parking 

maneuver. These statistics reveal a potential 

malfunction of vehicle operation in terms of gauging 

pedestrian behavior and hitting the breaks just in 

time. 

• 54.28% of the collisions happened when the vehicle 

was driving autonomously during foggy weather 

with limited visibility. These statistics depict the 

malfunctioning of the sensors, camera, and Lidar 

sensors. 

• In 51.71% of the collisions, a pedestrian was 

involved while the vehicle was driving 

autonomously during foggy weather with limited 

visibility. 

• In 50.68% of the collisions, a bicyclist was involved 

when the vehicle was driving autonomously at night 

when streetlights were on. 

• In 53.18% of the collisions, a pedestrian was 

involved when the vehicle was driving 

autonomously at night when streetlights were on. 
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The anti-autonomous traits that were incorporated into the 

model include vehicle driving mode, type of collision, 

weather conditions, roadway surface conditions and injuries 

sustained by pedestrian/bicyclists/others. In addition to the 

linear sequential ANN, evaluation of Recurrent Neural 

Networks (RNN) models with Long Short-Term Memory 

(LSTM) were available for possible comparison purposes. 

The primary reason for choosing a sequential ANN model 

was that the classification sought is binary, predicting 

whether the autonomous vehicles could be trusted. A 

sequential ANN model utilizes a stack of layers with each 

layer having exactly one input tensor and one output tensor. 

This contrasts with a Functional API with shared layers, non-

linear topology, and multiple inputs/outputs. This study uses 

an input stack of layers of selective features that have a single 

output to model affirmation or denial of trust.  Thus, we 

avoided layer sharing, non-linear topologies, multiple 

inputs/outputs, or creation of a directed acyclic graph or 

graph of layers. These properties favor the choice of 

sequential ANN. Also, this model was chosen over RNN 

because the data utilized for model processing was not a time 

series or natural language sequence data. When the additional 

attributes are included, along with measures of severity of 

damage sustained by vehicle, the imbalance of the data 

increases. More specifically, the larger number of predictors 

added more noise, redundancies, increased overfitting, and 

decreased the quality of the predictions. A related study by 

Meiri and Zahavi [4] used simulated annealing to search the 

attribute space.  

Combinatorial problems often have issues related to model 

accuracy, performance, and optimizer bias. Also, the model 

solutions offered by machine learning include approximation 

errors, which further exacerbates issues related to differences 

between training and validation data [5]. This can be solved 

by two approaches – active learning and passive learning. 

Active learning involves updating the model itself to assure a 

convergence between training and validation curves, in turn 

improving model accuracy and optimization bias. Passive 

learning involves the training set providing a uniform and 

sufficient coverage of the search space [5]. In a similar 

context, Charikar, Guruswami, Kumar, Rajagopalan, and 

Sahai [6] defined and studied combinatorial feature selection 

problems, presented a theoretical framework, and provided 

algorithms on approximation and hardness results of these 

combinatorial problems [6].   

IV. INTRUSION DETECTION APPLICATIONS 

In today’s world of connected devices, security of the 

network is of critical importance. Unauthorized access and 

malicious activities are a great threat to confidentiality, 

integrity, and availability that form the information security 

triad. The role of an Intrusion Detection System (IDS) is to 

detect abnormalities caused by an unauthorized reach into the 

network and send alerts. An IDS is an element of support for 

a wall of defense between cyber-attacks.  Supervised ML 

techniques in an IDS can provide high detection accuracy, 

particularly against known types of attacks.  

The NSL-KDD is an update and improvement to the 

KDD’99 dataset that was developed for the KDD Cup 

competition in 1999 [7]. These datasets are publicly available 

and are very widely used for IDS experiments. The data is 

primarily internet traffic consisting of 43 features per record, 

of which the last two are class (attack or normal) and score 

(severity of traffic input) [8]. The class column provides 

information on whether the record is considered normal or is 

a member of one of four attack classes - Denial of Service 

(DoS), Probe, Remote-to-Local (R2L) or User-to-Root 

(U2R). There are14 attack types under these 4 classes: 

Apache2, Smurf, Neptune, Back, Teardrop, Pod, Land, 

Mailbomb, Processtable, UDPstorm, WarezClient, 

Guess_Password, WarezMaster, Imap, Ftp_write, Named, 

Multihop, Phf, Spy, Sendmail, SmpGetAttack, AnmpGuess, 

Worm, Xsnoop, Xlock, Buffer_Overflow, Httptuned, 

Rootkit, LoadModule, Perl, Xterm, Ps, SQLattack, Satan, 

Saint, Ipsweep, Portsweep, Nmap, Mscan [43][44]. A 

mixture of categorical (nominal), binary and numeric 

variables are in the feature set. Each record has basic, 

content-related, time-related, and host-based features [9]. 

The attributes of this dataset are listed in Table II. 

 
TABLE II.  NSL-KDD DATASET ATTRIBUTES [9] 

Attribute Type Attribute Names 

Basic Duration, Protocol_type, Service, Flag, Src_bytes, 

Dst_bytes, Land, Wrong_fragment, Urgent 

Content 

related 

Hot, Num_failed_logins, Logged_in, 
Num_compromised, Root_shell, Su_attempted, 

Num_root, Num_file_creations, Num_shells, 

Num_access_files, Num_outbound_cmds, 
Is_hot_login, Is_guest_login 

Time related Count, Srv_count, Serror_rate, Srv_serror_rate, 

Rerror_rate, Srv_rerror_rate, Same_srv_rate, 

Diff_srv_rate, Srv_diff_host_rate 

   Host based 

traffic  

Dst_host_count, Dst_host_srv_count, 

Dst_host_same_srv_rate, Dst_host_diff_srv_rate, 

Dst_host_same_src_port_rate, 
Dst_host_srv_diff_host_rate, Dst_host_serror_rate, 

Dst_host_srv_serror_rate, Dst_host_rerror_rate, 

Dst_host_srv_rerror_rate 

 

The study also used the UNSW-NB15 dataset. This 

dataset has 49 features categorized into 6 groups: basic, flow, 

time, content, labelled and additional generated features [10]. 

There are 9 attack types: fuzzers, analysis, back-doors, DoS, 

exploits, generic, reconnaissance, shell code and worms [11]. 

This dataset has a mixture of categorical, binary, and 

numerical datatypes. The attributes of this dataset are listed 

in Table III below. 

 
TABLE III.  UNSW-NB15 DATASET ATTRIBUTES [16] 

Attribute Type Attribute Names 

Basic state, dur, sbytes, dbytes, sttl, dttl, sloss, dloss, 

service, sload, dload, spkts, dpkts 

Flow srcip, sport, dstip, dsport, proto 
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Content swin, dwin, stcpb, dtcpb, smeansz, dmeansz, 
trans_depth, res_bdy_len 

Time sjit, djit, stime, ltime, sintpkt, dintpkt, tcprtt, 

synack, ackdat  

Additional generated 

(general purpose) 

is_sm_ips_ports, ct_state_ttl, 
ct_flw_http_mthd, is_ftp_login, ct_ftp_cmd 

Additional generated 

(connection) 

ct_srv_src, ct_srv_dst, ct_dst_ltm, ct_src_ltm, 

ct_src_dport_ltm, ct_dst_sport_ltm, 

ct_dst_src_ltm 

Labelled attack_cat, attack_cat 

 

The target attribute either identifies records as ‘normal’ or 

‘attack’ or distinguishes the record as a particular attack type. 

Depending on the desired goal of an intrusion detection 

system, the machine learning model is tuned to identify a 

particular attack, which is a challenge. It is thus essential to 

understand the requirement thoroughly and preprocess input 

data accordingly. 

As an illustration of evaluation metrics, at a high level in 

the IDS study, for each input vector we have exactly one of 

the following outcomes: 

 

TP = True Positive = Correct predication that the input 

vector is an Attack 

TN = True Negative = Correct prediction that the input 

vector is not an Attack 

FN = False Negative = Incorrect prediction the input 

vector is not an Attack 

FP = False Positive = Incorrect prediction the input vector 

is an Attack 

 

The most widely reported metric is Basic Accuracy of the 

model, which simply reports the proportion of attack reports 

that are correct. 

 

Accuracy = (TP + TN)/(TP = TN = FP +FN) 

 

Basic Accuracy is notoriously deceptive when the classes are 

unbalanced, as in the case of intrusion detection studies, 

where most input vectors are not attacks. False reports are of 

interest. This gives rise to the need for metrics such as 

Precision and Recall, which can be calculated from 

information in the confusion matrix given below. 
 

 Prediction 

 

Actual 

 Attack Not an Attack 

Attack TP FN 

Not an Attack FP TN 

 

Precision = TP/(TP + FP) 

 

Recall = TP/(TP + FN) 

 

Precision measures the proportion of the vectors reported 

by the IDS as attacks that are real attacks. Recall measures 

the proportion of the vectors that are real attacks and do get 

reported as such. This means that when Recall is high the IDS 

does not misclassify many true attacks. 

In Intrusion Detection applications, false negatives can be 

very deadly, which favors high Recall. However, dealing 

with false positives also has a cost. Unfortunately, 

experiments that improve Precision typically reduce Recall. 

The reverse is also often true. For this reason, the harmonic 

mean of the two, called the F1 score is often calculated.  

 

F1 = (2*(Precision * Recall))/(Precision + Recall). 

 

The effect of the F1 score, which falls between 0 and 1, is to 

punish extreme values. 

The NSL-KDD and UNSW NB-15 datasets are used for 

training machine learning models by several researchers. In 

[34] researchers trained the KDD-99 dataset with a mutation 

of a convolutional neural network and Long Short Term 

Memory (LSTM) network. The machine learning algorithm 

test accuracy was 99.7% , which outperformed other models, 

including DenseNet, CNN (Convolutional Neural Network), 

GRU (Gated Recurrent Unit), BiLSTM, and Auto Encoder. 

The experiment was multilabel and nearly all the individual 

target variables had f1-score, precision and recall exceeding 

98%. Work reported in [54] and [55] took similar steps for 

setting up a machine learning model experimental design to 

train the NSL KDD and UNSW NB-15 datasets and were 

able to improve accuracy in both cases. 

The NSL-KDD data set has 49 attributes of 6 types and 9 

types of intrusions. We considered possibilities for reducing 

the number of attributes without eliminating information 

critical to the classifications. Principal Component Analysis 

(PCA) is a time-honored statistical method for identifying 

high correlations and ranking the relative importance of the 

attributes. Although we considered PCA, we alternatively 

chose to implement an autoencoder neural network. In brief, 

an autoencoder is a multiple layer neural network in which 

the input and output layers are identical, and a middle layer 

is of smaller dimensionality. An autoencoder is a deep 

learning unsupervised learning method in that the labels for 

the known data play no role, and after training, the middle 

layer becomes a compressed version of the input data. The 

middle layer serves as a pattern that is a discrete model of the 

data in a compact form. The approach requires 

experimentation that searches through alternative topologies 

and tuning parameters of the neural network, including 

number of layers, nodes within layers, learning rate, and 

number of epochs. Results of the autoencoder experimental 

work are given in Table IV below. 

   
TABLE IV.  PERFORMANCE EVALUATION OF IDS CLASSIFICATION 

Algorithm Accuracy 

(%) 

Precisio

n 

Recall F1_sc

ore 

Autoencoder 88.76 0.852 0.971 0.908 

SVM 86.54 0.824 0.913 0.901 

Logistic 

Regression 

82.12 0.808 0.921 0.893 
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The results show that the model performs well as a binary 

classifier for threat detection. After applying auto encoder, 

the accuracy reaches 88.76%, False positives occur at a low 

rate, so that the method flags only a few normal network 

inputs as attacks, , which is useful in keeping a focus on real 

threats. Importantly, recall at a high level of 97.1% means 

that nearly all real attacks are correctly identified and flagged. 

This is a must-have feature of an IDS since undetected attacks 

can be very damaging. SVM with RBF kernel (Radial Basis 

Function) competes with the Autoencoder with a good F1 

score. The simple logistic regression works well for binary 

classification but fails to achieve better results for the NSL 

KDD dataset. These experiments are a baseline for machine 

learning methodologies and their proper application. We did 

not perform any parameter tuning for this experiment, which 

might have improved the accuracy and performance metrics. 

V. DATA AND FEATURE ENGINEERING  

We provide descriptions of data management and feature 

engineering issues that are pervasive in ML practice and were 

of importance in our applied studies. 

A. Data Management 

Class imbalance in a dataset means that the relative 

numbers of instances within the classes vary significantly in 

number [17]. The magnitude of the discrepancies will also 

vary. Class imbalance is common in most important data 

domains, including detection of things like fraudulent 

activities, anomalies, oil spills, and in medical diagnoses. The 

imbalance of classes occurs in both binary class and multi-

class classification [18]. In binary classes, the smaller and 

larger cardinality classes are called minority and majority 

classes respectively [17][19]. Class imbalance can influence 

the training process of ML techniques and lead to ignoring 

the minority class entirely. We discuss some of the 

approaches to treat class imbalances. Figures 4 – 10 illustrate 

the results of applying each technique. 

Random oversampling of a minority class. In this approach 

data instances in minority classes are duplicated at random to 

induce a balance of membership between classes. Due to 

randomness of the oversampling, the method is naïve in that 

it makes no assumptions about the classes and their members 

[20][21]. Since exact copies of some data instances are 

included in training, there is a risk of overfitting. Classifier 

accuracy may also be influenced, and computational effort 

may be increased.  

Random undersampling of a majority class. This approach 

discards data instances from majority classes to induce 

balancing [22]. As in the case of the oversampling method, 

the discarded data is chosen randomly and naively. The 

method applies to both binary and multiclass data. The 

approach can make it difficult to distinguish boundaries 

between classes, with an inimical impact on performance 

measures [23]. 

Synthetic Minority Oversampling Technique (SMOTE). 

This technique was introduced in 2002 to address the 

shortcomings of the oversampling and undersampling 

approaches [24][25]. The technique generates synthetic data 

by calculating feature space similarities between minority 

class data instances. The K-nearest neighbors of each data 

instance in a minority class are calculated, then randomly 

selected one by one. The method then calculates linear 

interpolations among the data and uses them to create 

synthetic data instances. 

Borderline SMOTE. The SMOTE approach encounters 

issues when minority class data instances occur in the vicinity 

of majority class data instances, creating undesirable bridges. 

The Borderline SMOTE variation addresses this drawback by 

oversampling only minority class instances near the 

borderline. Data points are called border points if they are 

incident to both minority and majority classes and called 

noise points otherwise [26]. Border points are then utilized to 

balance the data between classes.  

K-Means SMOTE. This technique generates minority class 

samples in safe and crucial borders of input spaces and thus 

assists performance in classification. The method begins by 

clustering the dataset using the K-means procedure, then 

selects the clusters that have higher numbers of minority 

samples [27]. Additional synthetic samples are then assigned 

to clusters where minority class samples are sparsely 

distributed. No noise points are generated. 

SVM SMOTE. A variation of Borderline-SMOTE, the 

method finds misclassification points. The borderline points 

are approximated and classified with a Support Vector 

Machine (SVM) classifier [28]. Synthetic data points are 

created randomly around the lines joining each minority class 

support vector with its neighbors. 

Adaptive Synthetic Sampling – ADASYN. A limitation of 

Borderline SMOTE is that is utilizes only synthetic points 

generated from extreme observations and the borderline 

instances and neglects the rest of the points in minority 

classes. This issue is addressed by ADASYN by creating 

synthetic data using the density of the existing data [29]. The 

ratio of synthetically generated data is created in inverse 

relation to the minority class density. In this way, a less dense 

area creates more synthetic data. 

The Churn Modeling Data from Kaggle was applied to the 

methods [30]. Figure 4 shows the distribution of the data in 

the original classes, followed by the outcomes of the 

alternative methods in Figures 5 to 10. 



90

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 

Figure 4. Original Class Imbalance Illustration. 

 

Figure 5. Outcome of Random Oversampling. 

 

Figure 6. Outcome of SMOTE. 

 

Figure 7. Outcome of Borderline-SMOTE. 

 

Figure 8. Outcome of K-Means SMOTE. 

 

Figure 9. Outcome of SVM SMOTE. 

 

Figure 10. Outcome of ADASYN. 

B. Data Management and Feature Engineering 

 

There are multiple methods for feature engineering on 

categorical data. The inputs to ML algorithms must be 

numeric, but many applications have categorical data. In our 

work with ML methods for self-driving car collisions there 

are examples of ordinal categorical data, such as rating of 

severity of damages or a weather condition. The intrusion 

detection work examples include counts of file access 

attempts, session duration, or error rates. There are also 

examples of nominal data, such as a type of vehicle in our 

self-driving car work, or whether a flag is set in the intrusion 

detection work. Various encoding methods are used to 

convert the variables into a useful numerical representation 

[10]. Choosing an appropriate encoding scheme is an 

essential part of data preprocessing for a ML algorithm. Some 

of the categorical encoding techniques are described below. 
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B.1. One-hot encoding  

This method converts an attribute with N possible 

categories into N distinct features. In the NSL-KDD dataset, 

the protocol type attribute has 3 possible values - Internet 

Message Control Protocol (ICMP), Transmission Control 

Protocol (TCP) and User Datagram Protocol (UDP). One-hot 

encoding converts this attribute into three feature columns as 

shown in Figure 11. It follows a 0/1 representation to indicate 

presence (indicated by 1) or absence (indicated by 0) of a 

value. 

  

 

Figure 11. One-hot encoding used in Protocol Type attribute. 

 

One-hot encoding has the advantage that it can convert 

ordinal and categorical features into orthogonal vector space 

[56]. It is one of the most used feature transformation 

techniques in machine learning experiments. The 

disadvantage of one-hot encoding appears when features with 

high cardinality are transformed. It might have the curse of 

dimensionality, also leading to a very sparse matrix. Also, 

there is a possibility to introduce bias in case the feature is 

distributed in an orderly fashion [57]. 

B.2. Dummy coding  

Like one-hot encoding, dummy coding converts an 

attribute with N values to a feature set of N-1 values. The 

converted set of binary variables are called dummy variables. 

Figure 12 illustrates one-hot ending and dummy coding 

applied to the same set of categorical records.  

 

 

Figure 12. One-hot and dummy encoding used in the same dataset [12]. 

 

An advantage of dummy encoding is that it decreases the 

complexity and entropy complications. Dummy variable is of 

slightly better space complexity since it creates (k-1) dummy 

variables for k original variables. Whereas one hot encoding 

creates exactly k number of converted variables. The dummy 

variable trap is a camp term in machine learning 

preprocessing that refers to more than one independent 

categorical feature being multi-collinear [58][59]. 

 

B.3. Effect coding  

While one-hot encoding and dummy coding use only 0 

and 1 to encode categorical variables, effect coding sets 

values that sum to zero in the new feature set. As a result, 

negative values may also be generated in the encoded feature 

set. Effect coding is a preferred choice when there is an 

interaction of categorical variables in a dataset as it can 

provide reasonable estimates of main effect and of the 

interaction [13]. Effect coding has an advantage over dummy 

coding when there is an interaction between categorical 

variables [60]. The benefit is that the feature will achieve a 

reasonable estimate of both main effect and interaction using 

effect coding, which is efficient when training data is 

unbalanced [61].  

B.4. Hash encoding  

Hash encoding is appropriate for categorical variables that 

have many possible values. The method uses a hash function 

to map categorical values into numbers. Commonly used 

hash functions include Message Digest functions MD2, 

MD4, MD5 and Secure Hash Algorithms SHA0, SHA1, 

SHA2 and SHA3. The MD5 hash function is used by default 

[12]. Hash encoding returns a variable map with smaller 

dimensions than other encoding schemes, such as one-hot 

encoding or dummy coding. Figure 13 below illustrates the 

hash-encoding process: 

 

 

Figure 13. Hash Encoding Process [14]. 

 

Hash encoding is a fast and memory-efficient technique 

for categorical feature encoding. It has limitations such as 

inducing collisions and losing ordering information. Unlike 

the one-hot and dummy encoding, the method can handle 

unseen categorical values during interference by mapping 

them to a random numerical value [62]. Also, since it does 

not need a separate encoding dictionary, it is quite easy to 

deploy. Hash encoding can result in collisions, where 

different categorical values are mapped to the same 

numerical value. This can reduce the accuracy of the machine 

learning model and make it difficult to interpret the 
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importance of the feature. Hash encoding is considered 

unsuitable for categorical features with a small number of 

unique values, since the collision rate can be high, and the 

encoding may not be informative [63]. 

B.5. BaseN encoding  

BaseN encoding converts categorical variables into a 

consistently encoded feature set using a selected base, such 

as base 2 for binary encoding. The base or radix is the 

available number that can be used in different combinations 

to represent all values in a numbering system. A BaseN 

encoder encodes categorical values into arrays of their base-

n representation.  

BaseN encoding is a powerful technique for encoding 

categorical variables as numerical variables. BaseN encoding 

preserves ordinal relationships among categories, which can 

improve the interpretability and accuracy of the machine 

learning model [64]. It can reduce the number of features in 

the machine learning model,  which improves computational 

efficiency and reduces risk of overfitting. Limitations are 

potential for noise or sparsity, inability to capture complex 

relationships, and compatibility with specific machine 

learning models. The suitability of BaseN encoding depends 

on the specific dataset and machine learning task at hand [65]. 

B.6. Target encoding  

Target encoding (also known as mean encoding) replaces 

a variable with a mean of the target value for that variable. 

Figure 14 provides an illustration. When the values of a 

categorical variable are already of a high volume, target 

encoding provides an advantage over other methods as it does 

not add extra dimensions to the dataset. 

  

     

Figure 14. Target Encoding [15]. 

 

Target encoding can reduce the number of features in the 

machine learning model, which improves computational 

efficiency and reduces the risk of overfitting [66]. Target 

encoding is a powerful technique for encoding categorical 

variables as numerical variables based on the target variable. 

Limitations include potential for bias or overfitting, limited 

generalization to new data, and lack of compatibility with 

certain machine learning models. The suitability of Target 

encoding depends on the specific dataset and machine 

learning task. It is recommended to use cross-validation to 

avoid overfitting when using target encoding [67]. 

B.7. Label or ordinal encoding scheme 

Ordinal categorical variables require that the order of the 

variable be preserved. For example, a road surface when a 

collision occurs might be categorized as dry, somewhat wet, 

or very wet so that the 3 values have an order that might 

provide additional insights. Ordinal encoding scheme aims at 

preserving this order when mapping values to numeric form. 

The method simply assigns each label a number (for example 

dry=1, somewhat wet=2 and very wet=3). 

Label encoding preserves ordinal relationships among 

categories, which improves the interpretability and accuracy 

of the model [68]. It can reduce the number of features in the 

machine learning model, improving computational 

efficiency, and reducing risk of overfitting. Limitations are 

potential for bias or arbitrary ranking, inability to capture 

complex relationships, and lack of compatibility with specific 

machine learning models. The suitability of Label encoding 

depends on the specific dataset and machine learning task 

addressed. It is recommended to use label encoding only 

when the categorical variable has a meaningful order, or the 

number of categories is small [69]. 

C. Feature Selection 

The complexity of ML models increases with the 

dimensionality of the dataset. Predictive models often fail to 

achieve high accuracy because of inadequate analyses 

directed to feature selection. Selecting the most important and 

significant features reduces the complexity of the model and 

can also increase the prediction performance [37][38]. 

Multiple approaches are available and effective for reducing 

the feature set. Prominent ones are described below.  

Filter Methods. In our work, we choose feature selection 

methods that apply to situations with a categorical output, 

such as whether an input vector is an attack or not. The filter 

methods eliminate features independently of the ML method 

used. A univariate feature filter evaluates the importance of 

single features using univariate statistical tests. Each feature 

is paired with the target to evaluate statistical significance 

between them. The analysis of variance or ANOVA F-test is 

widely used. The F-test calculates the ratio between variance 

values [31]. The resultant measures of the relative importance 

of individual features provide a tool for determining features 

that are unnecessary or of little importance. 

The filter method is effective for scalability, especially for 

high-dimensional datasets with a large number of features 

[70]. It improves accuracy and interpretability by removing 

irrelevant and redundant features. It also helps to reduce 

overfitting and improve generalization. The disadvantages of 

the filter method are the lack of modeling interaction and/or 

non-linear relationships between features and the target 
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variables [79]. The method limits the accuracy and predictive 

power to a certain threshold [71]. 

Wrapper Methods. Wrapper methods directly evaluate 

combinations of features by running the ML model restricted 

to the set of candidate features. Taken to an extreme, all 

combinations would be evaluated, an impossible task in 

practice. Thus, various search space approaches are 

employed. Forward search iteratively adds promising feature 

vectors one by one to build a feature set. Backward search 

starts with all features and successively eliminates those that 

perform poorly. Many approaches based on optimization 

techniques are available [32][33]. The self-driving car work 

basically follows a forward selection approach based on both 

advance knowledge about the importance of certain features 

from analytics on the data itself along with test runs of the 

ML model. Heavy computational load and possibilities of 

overfitting are potential drawbacks [34]. 

The Wrapper method is efficient in capturing complex 

relationships and interactions between features and targets. It 

can handle non-linear relationships which is often impossible 

for other feature selection techniques [72]. Like the filter 

method, it improves the interpretability and generalization 

ability of the model. Wrapper methods are computationally 

expensive, especially for high dimensional data. Also, the 

wrapper method can overfit the model to the training data, 

especially if the search space of feature subsets is large or the 

evaluation metric is not carefully chosen [73]. 

Embedded Methods. Embedded methods utilize 

mathematical information that is available during the training 

of the model to determine the relative importance of features. 

In some sense embedded methods mitigate the drawbacks of 

the filter and wrapper methods but retain their strengths. 

When implemented carefully, they are not prone to 

overfitting [35]. The XGBoost technique produces an 

importance score for each attribute that is used to identify 

those that can be confidently eliminated [36]. In applications 

like intrusion detection, having many attributes presents a 

huge computational burden. The embedded methods are 

highly successful in greatly reducing the features needed in 

intrusion detection ML work.  

The Embedded method handles non-linear relationships 

and interactions among features and the target variable, a 

capability that may not possessed by the filter method or 

many other feature selection techniques [74]. The method is 

a powerful technique for feature selection that can capture 

complex relationships and interactions among features and 

the target variable. Limitations include high computational 

cost, lack of compatibility with certain models, and potential 

for overfitting or underfitting. The suitability of embedded 

method depends on the specific dataset, machine learning 

model, and optimization algorithm [75]. 

VI. CONCLUSION AND FUTURE WORK 

Machine learning is now a well-established and effective 

approach in many domains. When using machine learning 

approaches in practice, issues arise concerning choices for 

which type of model to use, parameters to choose and tune, 

data management, feature engineering and selection. We 

address many of these issues in the context of applications to 

self-driving cars and intrusion detection. The applications are 

of high importance in inter-related areas of cybersecurity, 

trust, risk, safety, reliability, autonomy, and anti-autonomy. 

For the studies concerning self-driving cars, we present uses 

for reinforcement learning and supervised learning that 

reveal circumstances under which the autonomous vehicle 

makes decisions to take actions that result in collisions. For 

intrusion detection, model choices and computational results 

are presented that result in excellent values for performance 

metrics. Included are reports of recall metrics that indicate 

that it is possible to use machine learning methods that flag 

nearly all potentially dangerous attack vectors. The data-

centric and feature engineering challenges are extensive and 

detailed, but addressable. We describe approaches to 

addressing these challenges. Results reveal several 

implications for needs for next steps in research. New 

frontiers include methods that can be deployed in real-time, 

automate feature engineering, choose, and extract features 

dynamically, and simultaneously support optimization of 

multiple performance evaluation metrics. 
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