
59

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Graph Matching Algorithm to Extend Software
Wise Systems with Human Semantic

Abdelhafid Dahhani
LISTIC

Université Savoie Mont Blanc
Annecy, France

email: abdelhafid.dahhani@univ-smb.fr
0000-0001-6314-662X

Ilham Alloui
LISTIC

Université Savoie Mont Blanc
Annecy, France

email: ilham.alloui@univ-smb.fr
0000-0002-3713-0592

Sébastien Monnet
LISTIC

Université Savoie Mont Blanc
Annecy, France

email: sebastien.monnet@univ-smb.fr
0000-0002-6036-3060

Flavien Vernier
LISTIC

Université Savoie Mont Blanc
Annecy, France

email: flavien.vernier@univ-smb.fr
0000-0001-7684-6502

Abstract—Wise systems refer to distributed communicating
software objects, which we termed Wise Objects, able to au-
tonomously learn how they are expected to behave and how
they are used. Wise Objects are designed to be associated either
with software or physical objects (e.g., home automation) to
adapt to end users while demanding little attention from them.
This last requirement obeys to the principle of calm technology
introduced by Mark Weiser and John Seely Brown in 1995. Wise
Objects are endowed with autonomous computing capabilities
as they implement the notion of IBM’s 4 state loop Monitor-
Analyze-Plan-Execute over a shared Knowledge. However, they
suffer from a lack of semantic, which prevents them from
communicating effectively with a human. The work presented
in this paper aims at extending Wise Objects with the ability to
use human semantic to communicate with a user. Construction
of such systems requires at least two views: (i) a conceptual view
relying on knowledge given by developers to either control or
specify the expected system behavior; and (ii) an auto-generated
view acquired by wise systems during their learning process.
The problem is that, while a conceptual view is understandable
by humans (i.e., developers, experts, etc.), a view generated by
a software system contains mainly numerical information with
mostly no meaning for humans. In this paper, we address the issue
of how to relate both views using two state-based formalisms:
Input Output Symbolic Transition Systems for conceptual views
and State Transition Graphs for views generated by the wise
systems. Our proposal is to extend the generated knowledge with
the conceptual knowledge using a matching algorithm founded
on graph morphism. Target results are twofold: (i) make wise
systems’ generated knowledge understandable by humans, (ii)
enable human evaluation of wise systems’ outputs. To illustrate
the overall process, the construction of two samples of graph
matching on a roller shutter and a light bulb are considered.

Keywords—statecharts; monitoring systems; adaptive system and
control; knowledge-based systems; discrete-event systems; graph
matching; semantic.

I. INTRODUCTION

In recent years, software technology has exponentially un-
dergone a huge evolution increasing the development of intelli-
gent applications using AI models and techniques, in particular

machine learning techniques. Examples of AI-based systems
are home-automation and software network traffic analysis.
Artificial intelligence (AI) and software engineering (SE) are
old interdependent and mutually beneficial fields that came
into the spotlight with the advent of deep learning. The chal-
lenges for SE are linked to modeling, implementing and testing
software and systems that integrate AI. When AI provides soft-
ware with ability to adapt to their environment, designing such
software requires dedicated approaches and tools to manage
this ability leading to a non predictable software behavior.
Hence, the idea underlying the Wise Systems (WS) [1] is
to provide developers with software support, to help them
design and build intelligent systems and applications. Indeed
the availability of machine learning libraries and off-the-shelf
solutions sometimes gives the illusion that developing AI-
based software applications is easy, but the reality is that
developing viable and trusted AI systems requires significant
effort [2]–[5] and combination of AI and SE.

Wise systems refer to distributed communicating software
objects, which we termed Wise Objects (WOs), able to au-
tonomously learn how they are expected to behave and how
they are used. A desirable feature of a WS is self-adaptation:
the WS should be able to autonomously adapt according
to their use. It can be seen as a particular Multi-Agent
System [6][7] that monitors only its internal changes and does
not directly observe its external environment. Concretely, a
WO is a piece of software able to monitor itself: the way it is
used and the way it could be used (through introspection). The
main specificity of a WO is that it is able to learn about itself
in an autonomous way: it monitors its method invocations
and their impact, it can also simulate method invocations
to envision possible use and explore/discover new states. A
method implements a service or functionality to be provided
by a WO Then, the collected monitoring data can feed a
learning process to be able to determine usual and unusual

60

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

behavior (for instance), this learning process is implemented
by experts through plugins [8]. Let us note that a plugin
is software that adds new abilities or extends existing ones.
We have developed several plugins for WOs, e.g., Analyzers,
Planners, Graph Matchers, AI Models, etc. An example is
a home-automation system that collects someone’s behavior
within a place and analyzes it to be able to act “silently” when
necessary. Such systems should require the minimum attention
from their end users while being able to adapt to changes in
their behavior.

To meet those requirements and as the development of
such systems is non-trivial, we developed an object based
framework named Wise Object Framework [9] (WOF) to
help developers design, deploy and evolve WSs. Generally,
knowledge in AI-enabled systems can be provided according
to two ways: describing a priori the arrangement of activities
to be performed by the system, or, letting the system acquire
the required knowledge using learning mechanisms.

In the former case, ontologies and/or scenarios are usually
used to describe the arrangement of activities to achieve a goal
as in [10][11]. In [10], functional behavior as well as inter-
operation of system entities are described a priori using state-
diagrams. Reference [11] goes a step forward by combining
ontologies to design ambient assisted living systems with
specifications based on logic and analyzers to check in logic
clauses before system deployment to create relevant scenarios.
In those approaches, the end user is at the heart of the
scenario creation process, as described in [12][13]. In the
second case, knowledge is provided by the AI-enabled system
in representations and views not necessarily understandable by
humans. This relates to the wide problem of comprehensibility
of AI and to the distance between the business domain and
technological domain views [14].

In this context, the WO acquires by itself knowledge about
its capabilities – services to be provided – and its use to
moderate attention from the end-users [15] (Calm technol-
ogy [16]). Mark Weiser and John Seely Brown [17] describe
calm technology as “that which informs but does not demand
our(users) focus or attention”. The WO also analyzes this
knowledge to generate new one. As a result, it produces a State
Transition Graph (STG) of the WO behavior. We consider
STGs as the most natural way to model system dynamics.
More precisely, this graph is built by iteration, i.e., step-
wise construction, during a process called introspection. This
process is launched during a phase called dream phase in
which the WO discovers all its states (configurations) [18]. The
downside of an STG generated by a WO is that numeric data
provided has no meaning for humans. In the literature [19][20],
other graphs like Input Output Symbolic Transition Systems
(IOSTSs) are often used by developers/experts to model the
behavior of systems to manage them using oracle or controller
synthesis. Since this type of graph enables conceptual models
understandable by humans, it can increase the knowledge of
WOs and bring semantic to STGs.

This paper extends [1], which consists in enhancing the
generated knowledge with the conceptual knowledge using

a matching algorithm based on graph morphism [21][22].
This provides the ability to make WSs’ generated knowledge
understandable by humans and to enable human evaluation
of WSs’ outputs. Explicitly, the contribution presented in this
paper attempts to relate both views, consequently enabling
machine-human communication: (a) a conceptual view relying
on knowledge given by developers to either describe or control
the system behavior, and, (b) behavior-related knowledge
acquired during WS’s learning process. In this way, we use
two state-based formalisms:

• STGs for representing behavior-related knowledge gen-
erated by the WSs.

• IOSTSs for modelling conceptual views of develop-
ers/experts,

The rest of the paper is organized as follows. Section II is
dedicated to the context, it presents the basic idea, describes
the architectural overview and gives the definition of important
terms. Section III presents STG and IOSTS formalisms and
illustrates them through examples. Finally, Section IV presents
our graph matching algorithm and the construction of two
samples of graph matching, one on a roller shutter and the
other one on a light bulb to illustrate the algorithm. Section V
is devoted to related work before concluding the paper in
Section VI.

II. CONTEXT & PROBLEMATIC

Reusability and evolution in a wide architectures are two
major problems faced when developing applications based
on AI. The main challenge is then to provide support for
the development of AI-based applications in a way similar
to the development of “classical” software using software
engineering methods [23][24], tools and languages [25]. We
sketch in this section an overall view of how we designed the
WO concept and the WOF to support such evolution.

As software systems play an important role in our daily
life, their usage may vary depending on the end user and
may evolve in time. Our research work is centred on AI-
based applications, which are able to acquire data from their
environment, to manipulate and to analyze them either to help
users take decisions or to autonomously adapt their behavior
to users’ needs resulting the WOs concept.

A. Basic idea & definitions

The basic idea underlying the WO concept is to give
a software entity (object, component, subsystem, etc.) the
core mechanisms for learning behavior through introspection
and analysis. Our aim is to go further by enabling software
to execute “Monitoring”, “Analyze”, “Plan” and “Execute”
loops based on “Knowledge”, called MAPE-K [9]. Around
this concept, we built the WOF [26] with design decisions
mainly guided by reusability and genericity requirements:
the framework should be maintainable and used in different
application domains with different strategies (e.g., analysis
approaches).

Seeking clarity, we have adopted some terms used for
humans to refer to abilities a WO possesses. Awareness

61

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and wisdom both rely on knowledge. Inspired by [27], we
give some definitions of those terms commonly used for
humans [28] and present those we chose for WOs.

Data, it is a raw measurement, typed or not. The data
are values obtained from a device or a software component.
They represent a quantifiable observation. Generally, collected,
stored, processed, transmitted and analyzed, the data have
no meaning taken individually. To be relevant, they must be
associated with a specific context. In this case, they become
information [29].

Information The information provides the data with its con-
text for analysis and processing. The information then becomes
understandable by both humans and machines and gives a
particular meaning to each data. Information is meaningful
and allows us to better answer the questions When? Where?
Who? What? etc. The answers to these simple questions do
not allow us to make deductions. To do so, it is necessary to
go up in abstraction towards knowledge [29]. i.e., placing your
hand on a hot stove.

Knowledge: refers to information, inference rules and infor-
mation deduced from them, for instance: “Turning on a heater
will cause temperature change”.

Awareness: represents the ability to collect - to provide
internal data - on itself by itself. For instance, when an
entity/object/device collects information and data about its
capabilities (what is intended to do) and its use (what it is
asked to do). Capabilities are the services/functionalities the
WO may render. They are implemented by methods that are
invoked by the WO itself during the “dream” phase or from
outside during the “awake” phase.

Wisdom: is the ability of WOs to analyze collected infor-
mation and stored knowledge related to their capabilities and
usage to output useful information. It is worth noticing that
a WO is highly aware, while the converse is false (an aware
object is not necessarily wise).

Semantic: is the subtle shades of meaning given to some-
thing so that it can be understood by humans as mentioned
in [28]. This definition also applies to objects/devices, as
semantic is used to communicate with humans. The value
“100” of a variable “data” means nothing to an end user if
we do not give her/him the information that it represents a
percentage of humidity.

B. WO from an architectural view

From an architectural perspective, according to the target
application, a WO may be considered as [9]:

• a stand-alone software entity (object, component, etc.),
• a software avatar designed to be a proxy for physical

devices (e.g., a heater, vacuum cleaner, light bulb) [30],
• a software avatar designed to be a proxy for an existing

software entity (object, component, etc.).
A WO is characterized by its:
• autonomy: it is able to operate with no human interven-

tion,
• adaptability: it changes its behavior when its environment

evolves,

• ability to communicate: with its environment according
to a publish-subscribe paradigm.

In addition to the implementation of the MAPE-K loop,
another concept, “phase transition”, is used to separate the
actions performed with a real-world impact (awake phase)
from those without (dream phase). As illustrated in Figure 1,
three different phases/super-states [8] of the WO [30][26] are
defined, the “awake phase”, the “dream phase” and the “idle
phase”.

During the awake phase, a WO responds to different ser-
vices and requests, i.e., executes its methods called by other
objects, monitors its execution and its usages (MAPE-K). Once
the WO has finished, it switches to the idle phase. If a part
of WO knowledge (e.g., a generated STG: Figure 2) requires
analysis or if an AI plugin (see Figure 3) wants to analyze the
WO itself, the WO can switch to dream phase. This phase is
actually defined as a sub-phase of the idle phase, pushing the
WO closer to the human, in other words, when it has nothing
to do, it can dream.

Throughout this dream phase, a WO introspects its behavior
and analyzes its knowledge without any effect on other objects
of the system/real world. The ability of WOs to disconnect
from the real world is a strong feature that distinguishes WSs
from other self-adaptive systems such as multi-agent systems
(MASs) [6]. Furthermore, within this phase, the WO switches
from the MAPE-K feedback loop to IAPE-K feedback loop,
this latter is nothing more than a technical adaptation of the
MAPE-K feedback loop. Thus, rather than monitoring (M) its
activity, the WO uses the “introspection” (I) mechanism to
discover its behavior and any unusual operation of its use. We
will not go into further detail as this topic is beyond the scope
of this article.

C. Wise system & the framework
A WS is a set of WOs that communicate their states to the

system as illustrated in Figure 3. It highlights a classical WS: a
set of instantiated WOs (i.e., Application features, Managers,
AIs at the system level) that contains the core (Figure 2) where
the basic mechanisms for monitoring are defined. Each WO
has three associated components:

• an event communication medium to publish its state to
the system,

• a data Logger to log every interaction in/with the object,
• one or more AI plugins to provide the developer with the

ability to add objects with different policies of introspec-
tion, monitoring, decision and action.

In addition, two kinds of WOs are defined in the system:
• manager: the WS may hold one or more managers (in

Orange) that store the peering action/reaction among
WOs, using for example Event-Condition-Action (ECA)
rules,

• system AI: it manages the whole AI of the system,
provided through WOs’ AI plugins. AI denotes all ac-
tivities needed for problem resolution, supervision, learn-
ing, analysis. We refer to those activities as Introspect-
Monitor-Analyze-Decide-Act (IMADA-activities).

62

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Three different phases/super-states of a WO. Figure 2. Generic functional architecture of a WO and its relation with an
STG.

Regarding the core of the WO, it is designed to be connected
to physical devices (e.g., heater, vacuum cleaner, light bulb)
or logical entities [9]. It also contains an advanced mechanism
to proxify each software entity to make it wise. In addition,
the core contains the basic code expressing the two feedback
loops (MAKE-k and IAPE-K) accessible to extend by experts
depending on the domain/case in which the WO is used.

Figure 3. Global view of a WO system composed of a set of WOs, a manager
and a system AI.

In order to build WSs, we developed in Java the WOF that
provides all the WO mechanisms [31]. It provides the devel-
opers with “awareness”, “knowledge” and “wisdom” concepts,
that are the core. From a system development perspective, the
design behind WOF is driven by the following requirements:

• the separation of concerns between the business and AI
features,

• minimum intrusion in the business code.
More specifically, the WOF separates the business logic layer
from the AI layer, without change in the business layer. Thus,
the designers and developers can focus on one hand on the
business logic and on the other hand on the AI logic. Details
about the WOF is beyond the scope of this article, for more
details on the architecture used within the WOF, see [8].

D. The target problem

When designing a WS, developers provide a conceptual
model describing, specifying the way they view the behavior
of the system’s entities associated to WOs. Such models are
represented using IOSTS and contain the semantic given by
developers to WOs (Section III-B). The IOSTS formalism is
mostly known in simplifying system modelling by allowing
symbolic representation of parameters and variable values
instead of concrete data values enumeration [32]. In addition,
and as mentioned in Section II-B, the introspection mechanism
helps the WO discover its behavior by using awareness to
collect data about itself. These data will be used by the
analyzers, for example by the STG generator plugin to build
the STG that is a new WO knowledge. This new knowledge
can be used by other analyzers like a graph matcher plugin that
improves the STG through semantic, using the IOSTS given
by an expert or a developer to the WO. This enhancement is
based on the graph matching algorithm (Section IV), which
will be the main focus of this paper.

This subsection is an implicit description of what is illus-
trated in Figure 4.

III. BEHAVIORAL MODELS, DEFINITIONS AND
ILLUSTRATIONS

Modeling the behavior of a system is enabled by tools and
languages that result in informal, semi-formal (e.g., UML) or
formal representations based on already proven theories [33]
like graph theory. We have chosen STG and IOSTS graph-
based theories to WO’s behavior representation, respectively

63

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. The matching algorithm and the WOF.

at the WO level (i.e., WO’s generated view) and the conceptual
level (i.e., developer’s view).

A. Definition of an STG

An STG is a directed graph where vertices represent the
states of an object and transitions represent the execution of
its methods. Let us consider an object defined by its set of
attributes A and its set of methods M . According to this
information (A and M) on the object, the STG definition is
given in Definition 1.

Definition 1: An STG is defined by the triplet G(V,E,L)
where V and E are, respectively, the sets of vertices and edges,
and L a set of labels.

• V is the set of vertices, with |V | = n where each vertex
represents a unique state of the object, and conversely,
each state of the object is represented by a unique vertex.
Therefore vi = vj ⇔ i = j with vi, vj ∈ V and i, j ∈
[0, n[.

• E is the set of directed edges where ∀e ∈ E, e is defined
by the triplet e = (vi, vj ,mk), such that vi, vj ∈ V and
mk ∈ M . This triplet is called a transition labeled by
mk. The invocation of method mk from state vi switches
the object to state vj .

• L is a set of vertex labels where any label li ∈ L is
associated to vi.
A label li is the set of pairs (attj , valuei,j) ∀attj ∈ A,
with valuei,j the value of attj in the state vi and
Dom(attj) the value domain of attj , i.e., the set of
valuei,j for all i. By definition, 2 states vi and vj are
different vi ̸= vj , iff ∃attk ∈ A, such that valuei,k ̸=
valuej,k. Conversely, if ∀k ∈ [0, |A|[valuei,k =
valuej,k, the states vi and vj are considered the same,
i.e., vi = vj , thus i = j.

The matching algorithm we propose in Section IV takes as
input an STG with a specific property we name exhaustiveness.
The definition of “exhaustive STG” is given in Definition 2.

Definition 2: An exhaustive STG is an STG such that from
each vertex vi there exist |M | transitions, each labeled by a
method mk in M :

∀vi ∈ V,∀mk ∈M,∃vj ∈ V |(vi, vj ,mk) ∈ E.

It is worth noting that vi and vj may be different or same
states (vi ̸= vj or vi = vj).

Consequently, an exhaustive STG is deterministic, i.e., from
any state, on any method invocation, the destination state
is known. Moreover, the number of transitions |E| in an
exhaustive STG depends on the number of vertices |V | and
methods |M | such that:

|V | × |M | = |E|.

0

2

level = 0

1
close()

ope
n()

open()

level = 50

level = 100

op
en

()clo
se(

)close()

Figure 5. Example of an exhaustive STG.

Figure 5 illustrates an exhaustive STG for an object’s
behavior, defined by the attribute “level” (A = {level}) and
2 methods “open” and “close” (M = {open(), close()}).
The methods “open” and “close” increase and decrease the
level by 50, respectively. In the STG generated by an object
for the shutter, except the methods that give semantic to the
transitions, the states have no semantic. Considering the level
is initialized to 0, the corresponding STG has 3 states and its
exhaustive form has 6 transitions.

B. Definition of an IOSTS

An IOSTS is a directed graph whose vertices, called local-
ities, represent different states of the system (in our case, the
system is a software object) and whose edges are transitions.
The localities are connected by transitions triggered by actions.
In graph theory, an IOSTS allows us the definition of an
infinite state transition system in a finite way, contrary to
an STG where states are defined by discrete values. IOSTS
are used to verify, test and control systems. Verification and
testing are formal techniques for validating and comparing two
views of a system while control is used to constrain the system
behavior [20].

The definition of IOSTS given in Definition 3 is taken
from [34][20] and especially from the use case given in [32].

64

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 3: An IOSTS is a sixfold ⟨D,Θ, Q, q0, Σ, T ⟩
such as:

• D is a finite set of typed data consisting of two disjoint
sets of: variables X and action parameters P . The value
domain of d ∈ D is determined by Dom(d).

• Θ : an initial condition expressed as a predicate on
variables X .

• Q is a non-empty finite set of localities with q0 ∈ Q being
the initial locality. A locality q is a set of states such that
q ∈ Dom(X), with Dom(X) being the cartesian product
of the domains of each x ∈ X:

Dom(X) =

X∏
∀x∈X

Dom(x).

A state is defined by a tuple of values for the whole
variables.

• Σ is the alphabet, a finite, non-empty set of actions.
It consists of the disjoint union of the set Σ? of input
actions, the set Σ! of output actions, and the set ΣT

of internal actions. For each action a in Σ, its signature
sig(a) = ⟨p1, . . . , pk⟩|pi ∈ P is a tuple of parameters.
The signature of internal actions is always an empty tuple.

• T is a finite set of transitions, such that each transition
is a tuple t = ⟨qo, a,G,A, qd⟩ defined by:

– a locality qo ∈ Q, called the origin of the transition,
– an action a ∈ Σ, called the action of the transition,
– a boolean expression G on X ∪ sig(a) related to

the variables and the parameters of the action, called
the transition guard. Transition guards allow us to
distinguish transitions that have the same origin and
action but disjoint conditions to their triggering.

– An assignment of the set of variables, of the form
(x := Ax)x∈X such that for each x ∈ X , Ax is an
expression on X ∪sig(a). It defines the evolution of
variable values during the transition,

– a locality qd, called the transition destination.
According to Definition 3, each variable has a subdomain

in each locality. Thus, let us define the function dom(q, x)
that returns the definition domain of the variable x ∈ X in the
locality q ∈ Q; consequently dom(q, x) ⊆ Dom(x).

Figure 6 shows an example of an IOSTS given by a
developer to control a roller shutter. This IOSTS expresses
that the roller shutter expects an input up?/down? ∈ Σ?

carrying the parameter step ∈]0, 100], the relative elevation
to respectively increase or decrease the shutter level. Let us
note that the shutter elevation is between 0 and 100.

There are 2 localities:
• The locality where the system is closed (i.e., height =

0). If the system receives the up?(step) command, the
transition will be made from the Closed to Open locality
by increasing the value of the height variable by step,
but if the system receives the down?(step) action, it will
not perform any operation (NOP).

• The locality where the system is open (i.e., height ∈
]0, 100]). If the system receives the action up?(step), the

transition will be reflexive from Open to itself and will
compute the value of the variable height by executing
this assignment height = min(height + step, 100),
the shutter elevation cannot be increased more than the
maximum of elevation. If it receives the down?(step)
action and the action closes the shutter less than it is
open (step < height), height is decreased by step,
otherwise the transition will be from the locality Open to
the locality Close by assigning 0 to the variable height.

According to Definition 3, this IOSTS is composed of the
sets of variables X = {height} with Dom(height) ∈ [0, 100]
and parameters P = {step} with Dom(step) ∈]0, 100], the
set of localities Q = {Open,Closed} and the set of actions
Σ = {up?, down?} where the signatures of the actions are
sig(up?) = sig(down?) = ⟨step⟩. This IOSTS models an
infinite state system based on 5 guarded transitions in T :

T = ⟨ tClose−Open,
tOpen−Close,
t1Open−Open,

t2Open−Open,

tClose−Close ⟩

such as:

tClose−Open = ⟨ Open, up?(step),
T rue, height := height+ step,
Open⟩

tOpen−Close = ⟨ Open, down?(step),
step ≥ height, height := 0,
Close⟩

t1Open−Open = ⟨ Open, down?(step),

step < height, height := height
−step,Open⟩,

t2Open−Open = ⟨ Open, up?(step),

T rue,min(height+ step, 100),
Open⟩,

tClose−Close = ⟨ Close, down?(step),
T rue,NOP,
Close⟩.

As can be noticed, there exists an infinity of paths and states
represented by the variable height since its domain is the
interval [0, 100].

IV. GRAPH MATCHING ALGORITHM

In this section, we introduce the matching algorithm we
propose to relate WO’s generated STG to developers’ semantic
expressed in an IOSTS. In the example of Figure 5, the
generated STG is composed of states automatically labelled
by the object: 0, 1 and 2 according to the value of attribute
level: 0, 50, 100. The main challenge is how to match states
0, 1 and 2 to the localities defined by developers in the IOSTS
of Figure 6.

A. Matching algorithm

Constraint: The STG and IOSTS must meet certain criteria
to properly apply the algorithm.

65

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

〈 Closed,up?(step),True,height:=height+step,Open 〉
up?(step)

True
height := height + step

down?(step)
True
NOP

up?(step)
True

height := min(height + step, 100)
down?(step)
step ≥ height
height := 0

Closed Open

IOSTS

down?(step)
step < height

height := height - step

step]0,100]ϵ

height [0, 100]ϵ

height = 0 height]0, 100]ϵ

Figure 6. IOSTS representation of a roller shutter.

1) There are two equivalent characteristics: a variable xe

belonging to the set of variables X of the IOSTS and
an attribute atte belongs to the set of STG attributes A.
Moreover, to simplify the problem in this paper, let us
consider they are unique:

∃!xe ∈ X,∃!atte ∈ A|xe ≡ atte, (1)

xe ≡ atte means that both represent the same informa-
tion, thus:

Dom(atte) ⊆ Dom(xe). (2)

Let us note that Dom(atte) is a subset of Dom(xe) due
to the fact that xe is theoretically defined into the IOSTS
and atte is partially discovered by the WO at runtime.

2) The domains of xe in the different localities in the
IOSTS are disjoint:

∀q, q′ ∈ Q, q ̸= q′

⇔
dom(q, xe) ∩ dom(q′, xe) = ∅

Algorithm: According to the definitions of STG and IOSTS,
and both constraints, a vertex vi ∈ V matches a locality qj ∈
Q (noted vi =⇒ qj) if and only if valuei,e ∈ dom(qj , xe),
with valuei,e the value of atte in the vertex vi:

∀vi ∈ V,∃!qj ∈ Q
valuei,e ∈ dom(qj , xe)⇔ vi =⇒ qj .

(3)

As the matching algorithm is a graph morphism, this latter
needs to respect the structure of the matched graphs [35]. In
our context, each vertex matches one locality and a locality
is matched by at least one vertex. Moreover, the adjacency
relations must be respected by the matching; if 2 vertices are
linked by a transition in the STG, their matched localities
are the same or linked by an equivalent transition in the
IOSTS. The STG → IOSTS matching is a surjective S
homomorphism, i.e., epimorphism [35] as illustrated in the
formulas below:

S : STG → IOSTS
V ↠ S(V) = Q,

(4)

implies:

SE : E → T, SE((vi, vj)) = (S(vi),S(vj)) ⊂ T. (5)

For any transition (vi, vj) ∈ E of STG, then (S(ui),S(vj)) ∈
T is a transition of the IOSTS.

B. Stepwise matching algorithm

In this section, the matching algorithm will be presented
step by step, as illustrated in Figure 7, to understand deeply
how it works. The algorithm is divided into two steps, the
first matches the attribute-variable according to their domain
definition and defined by Function “compatibleDomain”.
The second step is devoted to compute the matching between
states and localities, which implementation is described in
Algorithm 1 (main algorithm). Furthermore, Algorithm 2 is the
implementation details of the “compatibleDomain” function
whose result will be part of the inputs to the main algorithm.

In detail, equations (1) and (2) are developed in the
“compatibleDomain” function, which is exposed in algo-
rithm 2. And Equation (3) is exposed in algorithm 1. This
pseudo-code is the first version of the matching algorithm
we have developed and tested as a first step towards human
semantic.

C. First matching illustration

In the previous examples: the STG in Figure 5 is auto-
matically generated by a WO and the IOSTS in Figure 6 is
provided by a developer. Both represent the same roller shutter
behavior. The STG uses discrete values with a level of opening
of 50%, while the IOSTS uses continuous intervals, without
any constraint on the step that is a real value.

Figure 8 illustrates the result of matching both graphs using
our graph matcher implemented with Python. Localities in
the IOSTS are Closed and Open, each containing variables
with disjoint domains, in our example, a single variable named
height that takes different values depending on its locality.

According to the constraints of the matching algorithm:

66

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

GMA

Conceptual
Model (IOSTS)

Knowledge WO
(STG)

Matching
attribute-variable

Compatible domaine
function

Compatible
attribute-variable

pair

Matching
states-localities

Generate OutputInputs

Step 1 Step 2

Algorithm result of the
graph matching (GMA)

Figure 7. Illustration of stepwise matching algorithm applied on roller shutter (output in Figure 8).

1) there are equivalent characteristics between the STG
and the IOSTS, the attribute “level” and the variable
“height”, respectively,

2) the domains of “height” in the different localities are
disjoint from the others: in Closed locality, the variable
can only take the value 0 and in Open locality, the
variable can take any value in the range]0, 100].

On the STG side, there are three vertices, each one labeled
with a set of attribute-value pairs (att, value). In our case, the
unique attribute level takes the values (0, 50, 100) respectively
for (v0, v1, v2). Therefore, to establish a correspondence be-
tween the two graphs, a comparison between the definition
domain of the attribute level in each vertex of the STG with
the definition domain of the variable height in each locality
of the IOSTS must be done.

Those comparisons lead us to a correspondence of state v0
with locality Closed meaning that the roller shutter is closed,
and a correspondence of states v1 and v2 with locality Open
meaning that the roller shutter is open.

D. Second matching illustration

The second illustration concerns a connected light bulb
with RGB colours. To simplify the illustration, only two
colors are considered and the off state of the light bulb is
not considered. Figure 9 shows both simplified behavioural
graphs of the light bulb: STG and IOSTS. The former is
defined by the attribute “specter” (A = {specter}) and
2 methods “upFrequence” and “downFrequence” (M =
{upFrequence(), downFrequence()}). The “upFrequence”
and “downFrequency” methods increase and decrease the
specter by 40nm, respectively. The second graph contains
two localities Green and Blue, each containing variables
with disjoint domains, in our example, a single variable
named wavelength that takes different values depending on
its locality.

The constraints of the matching algorithm are respected:

1) there are equivalent characteristics between the STG
and the IOSTS, the attribute “specter” and the variable
“wavelength”, respectively,

2) the domains of “wavelength” in the different localities
are disjoint from the others: in Green locality, the
variable can take any value in the range]495, 570] and
in Blue locality, the variable can take any value in the
range [450, 495].

The algorithm lead us to a correspondence of states v0, v1
with locality Blue meaning that the bulb is in blue color, and
a correspondence of states v2, v3 with locality Green meaning
that the bulb is in green color.

V. RELATED WORK

For many years, graphs have been used in several fields
to represent complex problems in a descriptive way (e.g.,
maps, relationships between people profiles, public trans-
portation, scene analysis, chemistry, molecular biology, and
so on) for various purposes: analysis, operation, knowledge
modeling, pattern detection, etc. Although initiated in the
18th century with Euler’s work on the famous problem of
Königsberg bridges [36], graph theory remains a powerful tool
for software-intensive system development and an effective
way of representing objects as proved in [37]. Since then,
several approaches of graph matching have been developed
and the first formulation of the graph matching problem was
proposed by [38] and dates back to 1979. Several formulations
appeared afterwards like convex-concave programming formu-
lation, maximum common subgraph (MCS), the use of the
Frobenius norm based on graph adjacency matrices to express
the maximization or the minimization of non-overlapping
edges between two graphs. In general, there exist two major
formulations for the graph matching problem [39][40]:

67

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

up?(step)
True

height := height + step
down?(step)

True
NOP

up?(step)
True

height := min(height + step, 100)

down?(step)
step ≥ height
height := 0

Closed Open

IOSTS

down?(step)
step < height

height := height - step

step]0,100]ϵ

height [0, 100]ϵ

height = 0 height]0, 100]ϵ

0

2

level = 0

1

close()

ope
n()

open()
level = 50

level = 100

open()

clo
se(

)

close()

: Match to

STG

Figure 8. Algorithm result of the graph matching (roller shutter) [1].

• Exact Matching which is divided into two categories,
(a) graph isomorphism, checks whether two graphs are
the same. (b) subgraph isomorphism, checks whether the
smallest graph is a subgraph of the biggest one. Both
techniques are overly complex whether or not they check
the one-to-one or many-to-one matching.

• Inexact Matching which is a term used in the case
where it is impossible to find an isomorphism between
two graphs. This form of matching is based on several
approaches:

– the maximum common subgraph, used in searching
the similarity between graphs to know how different
they are instead of a binary answer [41].

– least-squares formulation, used in the case of
weighted graphs to search for a matching that
minimizes the total difference between all aligned

edges through the use of the Frobenius norm for
instance [41].

– graph edit distance, used to find in a low cost the
sequence of operations (i.e., deletion, insertion and
substitution of vertices and edges) that transform
one graph into another [42]. As this procedure is
a hard combinatorial problem, another alternative
called “beam search” is explained in details in [43].

In real applications, we often wish to match graphs of
different sizes, which results in new techniques and norms as
depicted in [39]. Moreover, as many formalisms have emerged
so far, the correspondence between different representations of
knowledge such as STGs and IOSTSs, has not been addressed
yet at the best of our knowledge. Until now, the most well-
known operation on graphs is the comparison of two or
more graph representations that requires many theoretical

68

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

12 specter = 490

0

up
Fre

qu
en

ce(
)

do
wn

Fre
qu

en
ce(

)

spe
cte

r =
 45

0specter = 570

upFrequence()

downFrequence()

downFrequence()

: Match to

STG

change?(length)
(length ∉]495, 570])∧(length ϵ]450, 495])

wavelength := length

Green Blue

IOSTS length [495,570]ϵ

wavelength [495,570]ϵ

wavelength
]495, 570]ϵ

wavelength
 [450, 495]ϵ

change?(length)
(length ∉]450, 495])∧(length ϵ]495, 570])

wavelength := length

change?(length)
length]495, 570]ϵ

wavelength := length

change?(length)
length]450, 495]ϵ

wavelength := length

change?(length)
length ∉]495, 570]

NOP

change?(length)
length ∉]450, 495]

NOP

specter = 530

3

upF
req

uen
ce(

)

do
wn

Fre
qu

en
ce

()

upFrequence()

Figure 9. Algorithm result of graph matching (light bulb).

and complex concepts [21], like graph matching, a noisy
version of graph isomorphism that is at the basis of our
proposal in this paper. Finally, we mention that graph/sub-
graph isomorphism is considered the most complex problem
in graph matching as it has been proven to be NP-complete
in [44][45][46] Moreover, for certain types of graphs under
given constraints, the complexity of the isomorphism has been
proven of polynomial type with a huge cost [47].

Using the constraints presented in Section IV to match
two knowledge representations (STG - IOSTS) lead us to the
exact matching problem. To understand the situation, we need
to consider the matching from both perspectives: software
(i.e., numerical and structural) and human (i.e., semantic).
According to the software, and since the matching preserves
the structure and the transitions between both formalisms, the
matching is always exact between “states” and “localities”,
which gives an epimorphism (Equations (4) and (5)). From a
human perspective, we will always have an exact matching

based on semantic as illustrated in Figures 8 and 9. The
question is how to match STGs and IOSTs when constraints
are expanded to include more than one equivalent attribute-
variable. In this case, we should adopt an inexact matching
approach so that the algorithm generates more than one result
(see future work for more details).

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of relating numeri-
cal representations generated by WSs to developers’ semantic.
The contribution is a matching algorithm that computes a
morphism between two behavioral graphs:

1) an STG generated by a WO along its learning process,
2) an IOSTS representing a developer conceptual view.

The algorithm extends a WO’s view with semantic that al-
lows it to communicate with humans. From the developer’s
perspective, the resulted matching may help him/her discover
errors and/or inconsistencies between the conceptual view and

69

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Algorithm 1 Main algorithm: Graph matching algorithm
1: Inputs:

iosts: IOSTS,
stg: Exhaustive STG

2: Outputs:
match: Dictionary<state, locality>

3: Locales:
Set of possible attribute/variable pairs
E: Set Of Tuples< (attribute, variable) >
Possible matches for each possible
equivalent pair
M : Dictionary< (attribute, variable), <state,
locality>>

4: Initialize:
Build possible equivalent attribute/variable
pairs, such that dom(a) ⊆ dom(x)
(Algorithm 2)
E ← compatibleDomain(stg.A, iosts.X)

5: for (a, x) ∈ E do
6: for vi ∈ stg.V do
7: # Get the locality where the domain of variable x contains

the value of a in vi, according to the second constraint,
qi is unique

8: qi ← iosts.getLocality(x, vi.getV alue(a))
9: M((a, x))(vi)← qi

10: end for
11: # As the matching is a surjective application, remove the

pair if it does not generate surjective matching
12: if M((a, x)).getKeys() ̸= stg.V
13: or M((a, x)).getV aluesAsSet() ̸= iosts.Q then
14: E.remove((a,x))
15: M.remove((a,x))
16: else
17: # If the application is surjective (Equation (4)), check the

transitions’ consistency (Equation (5))
18: for e ∈ stg.E do
19: v1 ← e.getSource()
20: v2 ← e.getDestination()
21: q1 = M((a, x))(v1)
22: q2 = M((a, x))(v2)
23: if iosts.getTransition(q1, q2) is null then
24: E.remove((a,x))
25: M.remove((a,x))
26: end if
27: end for
28: end if
29: end for
30: # Checking that just only one matching exists according

to constraints defined in Section IV-A
31: if M.getKeys().size() == 1 then
32: match←M.getV alues()[1]
33: else
34: exception(“Required conditions not satisfied”)
35: end if
36: return match

Algorithm 2 Variable matching algorithm (“compatibleDo-
main” function)

1: Inputs:
iosts: IOSTS,
stg: Exhaustive STG

2: Outputs:
Set of possible attribute/variable pairs such
that Dom(attribute) ⊆ Dom(variable)
E: Set Of Tuples< (attribute, variable) >

3: # Build all possible equivalent attributes-variables using
the cartesian product between A and X

4: for cartesian ∈ product(stg.A, iosts.X) do
5: # Keep attribute-variable pairs, such that Dom(a) ⊆

Dom(x)
6: if Dom(cartesian.getAttribute()) ⊆

Dom(cartesian.getV ariable()) then
7: E.add(cartesian)
8: end if
9: end for

10: return E

the system implementation. In its first version, the algorithm
has obviously several limitations, the strongest being over
the number of equivalent attributes/variables in STG/IOSTS.
Another limitation is the constraint on the existence of only
one matching between an STG and an IOSTS, without omit-
ting the problem of inexact matching. Ongoing work is being
done to gradually generalize the algorithm and raise those
restrictions. The graph matching algorithm being an NP-
complete problem, we envisage the use of ontologies in a
matrix form through two main matrices, termed “Semantic
Matrix” and “Graph Matching Matrix”. Moreover, we initiated
a France-Canada innovation project to apply our approach to
help create assistive scenarios [10][11] for elderly people, in
the context of smart home.

ACKNOWLEDGMENT

This research was supported by French National Research
Agency (ANR), AI Ph.D funding project.

REFERENCES

[1] A. Dahhani, I. Alloui, S. Monnet, and F. Vernier, “Towards a semantic
model for wise systems: A graph matching algorithm,” Proceedings
of the Sixteenth International Conference on Advanced Engineering
Computing and Applications in Sciences (ADVCOMP 2022), IARIA,
2023, pp. 27–34.

[2] E. Nascimento, A. Nguyen-Duc, I. Sundbø, and T. Conte, “Software
engineering for artificial intelligence and machine learning software: A
systematic literature review,” 2020.

[3] R. Feldt, F. G. D. O. Neto, and R. Torkar, “Ways of applying artificial
intelligence in software engineering,” 2018 IEEE/ACM 6th International
Workshop on Realizing Artificial Intelligence Synergies in Software
Engineering (RAISE), pp. 35–41, 2018.

[4] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagap-
pan, B. Nushi, and T. Zimmermann, “Software engineering for machine
learning: A case study,” in International Conference on Software
Engineering (ICSE 2019) - Software Engineering in Practice track, May
2019. ICSE 2019 Best Paper Award.

70

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[5] E. Kusmenko, S. Pavlitskaya, B. Rumpe, and S. Stüber, “On the engi-
neering of ai-powered systems,” in 2019 34th IEEE/ACM International
Conference on Automated Software Engineering Workshop (ASEW),
pp. 126–133, 2019.

[6] R. A. Flores-Mendez, “Towards a standardization of multi-agent system
framework,” XRDS, vol. 5, pp. 18–24, jun 1999.

[7] A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,”
IEEE Access, vol. 6, pp. 28573–28593, 2018.

[8] S. Lejamble., I. Alloui., S. Monnet., and F. Vernier., “A new software
architecture for the wise object framework: Multidimensional separation
of concerns,” in Proceedings of the 17th International Conference on
Software Technologies - ICSOFT, pp. 567–574, INSTICC, SciTePress,
2022.

[9] I. Alloui and F. Vernier, “WOF: Towards Behavior Analysis and Rep-
resentation of Emotions in Adaptive Systems,” Communications in
Computer and Information Science, vol. 868, pp. 244–267, 2018.

[10] D. Bonino and F. Corno, “Dogont - ontology modeling for intelligent
domotic environments,” in The Semantic Web - ISWC 2008, pp. 790–
803, Springer Berlin Heidelberg, 2008.

[11] H. Kenfack Ngankam, H. Pigot, M. Frappier, C. H. Souza Oliveira, and
S. Giroux, “Formal specification for ambient assisted living scenarios,”
UCAmI, pp. 508–519, 2017.

[12] J.-B. Woo and Y.-K. Lim, “User experience in do-it-yourself-style smart
homes,” in Proceedings of the 2015 ACM International Joint Conference
on Pervasive and Ubiquitous Computing, pp. 779–790, 2015.

[13] R. Radziszewski, H. Ngankam, H. Pigot, V. Grégoire, D. Lorrain, and
S. Giroux, “An ambient assisted living nighttime wandering system
for elderly,” in Proceedings of the 18th International Conference
on Information Integration and Web-Based Applications and Services,
iiWAS ’16, pp. 368–374, Association for Computing Machinery, 2016.

[14] R. S. Michalski, “A theory and methodology of inductive learning,”
in Machine Learning: An Artificial Intelligence Approach, pp. 83–134,
Springer Berlin Heidelberg, 1983.

[15] M. Weiser, “The computer for the 21st century,” Scientific American,
vol. 265, no. 3, pp. 66–75, 1991.

[16] M. Weiser and J. S. Brown, “Designing calm technology,” PowerGrid
Journal, vol. 1, pp. 75–85, 1996.

[17] A. Tugui, “Calm technologies in a multimedia world,” Ubiquity,
vol. 2004, pp. 1–5, 2004.

[18] I. Alloui and F. Vernier, “A Wise Object Framework for Distributed
Intelligent Adaptive Systems,” in ICSOFT 2017, the 12th International
Conference on Software Technologies, pp. 95–104, 2017.

[19] C. Constant, T. Jéron, H. Marchand, and V. Rusu, “Validation of Reactive
Systems,” in Modeling and Verification of Real-TIME Systems -
Formalisms and software Tools, pp. 51–76, Hermès Science, 2008.

[20] C. Constant, T. Jéron, H. Marchand, and V. Rusu, “Integrating Formal
Verification and Conformance Testing for Reactive Systems,” IEEE
Transactions on Software Engineering, vol. 33, no. 8, pp. 558–574, 2007.

[21] M. R. Garey and D. S. Johnson, “Computers and intractability. a guide
to the theory of np-completeness.,” Journal of Symbolic Logic, vol. 48,
no. 2, pp. 498–500, 1983.

[22] V. A. Cicirello, “Survey of graph matching algorithms,” technical report,
Geometric and Intelligent Computing Laboratory, Drexel University,
1999.

[23] B. Kitchenham, “A methodology for evaluating software engineering
methods and tools,” in Experimental Software Engineering Issues:
Critical Assessment and Future Directions (H. D. Rombach, V. R. Basili,
and R. W. Selby, eds.), (Berlin, Heidelberg), pp. 121–124, Springer
Berlin Heidelberg, 1993.

[24] B. W. Boehm, “Software engineering - as it is,” IEEE Trans. Computers,
vol. 25, no. 12, pp. 1226–1241, 1976.

[25] D. Torre, M. Genero, Y. Labiche, and M. Elaasar, “How consistency
is handled in model-driven software engineering and UML: an expert
opinion survey,” Software Quality Journal, pp. 1–53, Apr. 2022.

[26] I. Alloui, D. Esale, and F. Vernier, “Wise objects for calm technology,”
in Proceedings of the 10th International Conference on Software
Engineering and Applications - ICSOFT-EA, (ICSOFT 2015), pp. 468–
471, INSTICC, SciTePress, 2015.

[27] T. Davenport and L. Prusak, Working Knowledge: How Organizations
Manage What They Know, vol. 1. Harvard Business School Press, 1998.

[28] “Cambridge Dictionary Online,” 2022.
[29] H. K. Ngankam, Modèle Sémantique d’Intelligence Ambiante pour le

Développement Do-It-Yourself d’Habitats Intelligents. Theses, Faculté
des sciences, université de sherbrooke, 2019.

[30] I. Alloui, E. Benoit, S. Perrin, and F. Vernier, “Wise objects for IoT
(WIoT): Software framework and experimentation,” Communications
in Computer and Information Science, pp. 349–371, 2019.

[31] I. Alloui, E. Benoit, S. Perrin, and F. Vernier, “Wiot: Interconnection
between wise objects and iot,” in ICSOFT 2018, the 13th International
Conference on Software Technologies, 2018.

[32] P. Moreaux, F. Sartor, and F. Vernier, “An effective approach for home
services management,” in 20th Euromicro International Conference on
Parallel, Distributed and Network-based Processing, pp. 47–51, 2012.

[33] M. N. Nicolescu and M. J. Matarić, “Extending behavior-based systems
capabilities using an abstract behavior representation,” in AAAI 2000,
pp. 27–34, 2000.

[34] V. Rusu, H. Marchand, and T. Jéron, “Automatic verification and
conformance testing for validating safety properties of reactive systems,”
in Formal Methods 2005 (FM05), vol. 3582 of Lecture Notes in
Computer Science, pp. 189–204, Springer-Verlag, 2005.

[35] G. Hahn and C. Tardif, “Graph homomorphisms: structure and symme-
try,” in Graph Symmetry: Algebraic Methods and Applications, pp. 107–
166, Springer Netherlands, 1997.

[36] H. Sachs, M. Stiebitz, and R. Wilson, “An historical note: Euler’s
königsberg letters,” Journal of Graph Theory, vol. 12, pp. 133 – 139,
2006.

[37] M. A. Eshera and K.-S. Fu, “An image understanding system using
attributed symbolic representation and inexact graph-matching,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-
8, pp. 604–618, 1986.

[38] W.-H. Tsai and K.-S. Fu, “Error-correcting isomorphisms of attributed
relational graphs for pattern analysis,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 9, no. 12, pp. 757–768, 1979.

[39] M. Zaslavskiy, L’alignement de graphes : applications en bioinforma-
tique et vision par ordinateur. Theses, École Nationale Supérieure des
Mines de Paris, Jan. 2010.

[40] E. Bengoetxea, Inexact Graph Matching Using Estimation of Dis-
tribution Algorithms. PhD thesis, Ecole Nationale Supérieure des
Télécommunications, Paris, France, Dec 2002.

[41] J. R. Ullmann, “An algorithm for subgraph isomorphism,” J. ACM,
vol. 23, pp. 31–42, jan 1976.

[42] H. Bunke and G. Allermann, “Inexact graph matching for structural
pattern recognition,” Pattern Recognition Letters, vol. 1, no. 4, pp. 245–
253, 1983.

[43] M. Neuhaus, K. Riesen, and H. Bunke, “Fast suboptimal algorithms
for the computation of graph edit distance,” in Structural, Syntactic,
and Statistical Pattern Recognition, (Berlin, Heidelberg), pp. 163–172,
Springer Berlin Heidelberg, 2006.

[44] D. A. Basin, “A term equality problem equivalent to graph isomor-
phism,” Information Processing Letters, vol. 51, no. 2, pp. 61–66, 1994.

[45] M. R. Garey and D. S. Johnson, Computers and intractability: A guide
to the theory of NP - completeness. W.H. Freeman and Co., 1979.

[46] M. A. Abdulrahim, Parallel algorithms for labeled graph matching.
Colorado School of Mines1500 Illinois St. Golden, CO, 1998.

[47] J. E. Hopcroft and J. K. Wong, “Linear time algorithm for isomorphism
of planar graphs (preliminary report),” in Proceedings of the Sixth
Annual ACM Symposium on Theory of Computing, STOC ’74, (New
York, NY, USA), pp. 172–184, Association for Computing Machinery,
1974.

