
Toward Leveraging Code Generation Architectures
for the Creation of Evolvable Documents and Runtime Artifacts

Herwig Mannaert, Gilles Oorts, Jan Verelst

Normalized Systems Institute
University of Antwerp, Belgium

Email: herwig.mannaert@uantwerp.be

Koen De Cock and Jeroen Faes

Research and Development
NSX bv, Belgium

Email: koen.de.cock@nsx.normalizedsystems.org

Abstract—Many organizations are often required to produce
large amounts of documents in various versions and variants.
Though many solutions for document management and creation
exist, the streamlined automatic generation of modular and
evolvable documents remains challenging. The challenges are
to some extent similar to the automatic generation of modular
and evolvable software, which has been the subject of previous
work on metaprogramming. In this contribution, a proof of
concept architecture is presented to generate modular documents
from runtime information systems through the use of a reduced
runtime version of this metaprogramming environment. The con-
figuration and integration of this expansion kernel into regular
applications, and its use to generate some basic administrative
document sources are explained. Based on this architecture,
several use case scenarios are explored to generate other types
of documents and artifacts using live runtime data.

Index Terms—Evolvability; Normalized Systems Theory;
Metaprogramming; Document Creation; Single Sourcing

I. INTRODUCTION

This paper extends a previous paper, which was originally
presented at the Thirteenth International Conference on Per-
vasive Patterns and Applications (PATTERNS) 2021 [1].

Organizations are often required to produce large amounts
of versions and variants of certain documents. While they have
traditionally focused their efforts into streamlining technical
product documentation [2], they are now also looking to build
business value by creating personalized customer-faced docu-
ments [3]. At the same time, current information systems are
producing massive amounts of relatively simple documents,
e.g., invoices and timesheets, based on corporate data.

The streamlined and possibly automatic generation of such
documents has been associated with concepts like modular-
ization and single sourcing [2], both reminiscent of similar
techniques used in the creation of software. Similar to software
development, dealing with versions and variants of modules
may lead to so-called ripple effects, i.e., changes in certain
versions or variants of modules may require changes in other
modules. To facilitate such often necessary changes and to
provide a desired level of evolvability, document structures
need to be designed that deplete this rippling of changes [4].
Moreover, the use of parameter data during the instantiation
of document variants seems similar to the inner workings of
code generation environments.

In our previous work, we have presented a meta-circular
implementation of a metaprogramming environment [5], and
have argued that this architecture enables a scalable collab-
oration between various metaprogramming projects featuring
different meta-models [6][7]. In this contribution, we inves-
tigate the use of a reduced version or runtime kernel of
this code generation environment within the generated soft-
ware applications. More specifically, we present a prototype
implementation for the creation of evolvable artifacts, such
as documents, where runtime data of the generated software
application is used to instantiate the artifacts. The presented
approach is neither confined to a specific domain, nor to a
specialized type of software. However, the implementation is
currently limited to the generation of relatively simple and
straightforward documents.

The remainder of this paper is structured as follows. In
Section II, we briefly discuss some aspects and terminology
related to the creation and single sourcing of documents, an
important class of artifacts created by information systems at
runtime. In Section III-A, we explain the basic concept of Nor-
malized Systems Theory with regard to the design of evolvable
artifacts. Section III-B recapitulates the architecture of our
meta-circular code generation environment, and explains that
this expansion of source code artifacts is not limited to pro-
gramming code. Section IV presents how a runtime kernel of
this generation environment can be configured, and integrated
into regular applications, to instantiate and expand runtime
artifacts such as documents based on live data. Section V
explores some use case scenarios to leverage this runtime
expansion environment for the automated generation of various
document types. Finally, we present some reflections and
conclusions in Section VI, and discuss future work.

II. MODULAR AND EVOLVABLE DOCUMENT CREATION

While organizations have traditionally focused their efforts
in document management into streamlining product docu-
mentation [2], there is a widespread belief that personalized
customer-faced documents can build business value by enhanc-
ing customer loyalty [3]. However, repurposing internal docu-
ments to be used for online purposes, such as sales, marketing,
product documentation and customer support has proven to

132

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be diffcult. Moreover, it is hard to find any best practices or
repeatable models developed that address this challenge [2].
In this section, we briefly discuss some techniques and issues
regarding the creation of evolvable documents.

A. Document Creation and Single Sourcing

A successful approach to handle any complex system or
problem is modularization [8][9]. An example of such an
approach in the area of document management is Component
Content Management (CCM), defined as a set of methodolo-
gies, processes, and technologies that rely on the principles
of reuse, granularity, and structure to allow writers to author,
review, and repurpose organizational content as small compo-
nents [2]. One of the fundamental ideas of component content
management is the separation of content and layout [10]. The
granularity of a component in CCM is defined by the smallest
unit of usable information [11]. Several standards exist that
define practical and technical implementation guidelines for
creating modular and reusable content. According to Andersen
and Batova [2], the most widely implemented standard is the
Darwin Information Typing Architecture (DITA).

Originally regarded as the broader discipline of CCM in
the early 2000s, single sourcing has been defined as one of
the fundamental aspects of CCM concerned with the design
and production of modular, structured content. An elaborate
description of single sourcing and its concepts, advantages,
methodology, guidelines and practical examples, can be found
in [12]. There are three fundamental aspects to single sourcing.
First, content is made reusable by separating content from
format. A second aspect is modular writing. Content is written
in stand-alone modules instead of whole documents. This
allows content to be assembled into documents from singular
source files that contain unique content, the third aspect
of single sourcing. Besides assembling the content modules
into documents, i.e., combining source files in a hierarchical
and sequential way with a distinct combination of audience,
purpose and format, the modules need to be linked, i.e.,
connected to make them into coherent documents.

Enabling the content creators to focus on the actual sub-
stance of documents instead of having to deal with layout and
publishing technologies, should lead to various advantages:
saving time and money, improving document usability, and
increasing team synergy [12]. Single sourcing recognizes
two types of document creation. Repurposing entails merely
reusing content modules for a different output format. Re-
assembly on the other hand, is a more impactful way of reusing
modules to develop documents for different purposes or au-
diences. Contrary to repurposing, re-assembly also includes
changing the sequence of modules, the conditional inclusion,
and the hierarchical level of inclusion.

B. Modular and Parametrized Document Generation

The emergence of concepts like modularization, CCM, and
single sourcing regarding the management of certain classes of

documents, e.g., technical documentation or personalized doc-
uments, is highly reminiscent of similar concepts in software
codebases. Indeed, software developers have been striving for
decades to modularize codebases, to separate concerns into
singular source files, and to assemble source code modules
into software applications, in a continuous effort — or quest —
to reuse and repurpose these source modules. The component
in CCM, defined by the smallest unit of usable information
[11], seems to be consistent with the concept of a module in
a software source base.

Both documents and software source bases can have suc-
cessive versions in time that contain additions, corrections or
omissions to its content, and can be branched into concurrent
variants when variations in content and/or purpose occur.
Just like in software, dealing with versions and variants of
a document requires the design of document structures to
provide a desired level of evolvability. Evolvable documents
are documents that do not hinder or limit the application of
changes made to their structure or content. They are free from
ripple effects that would cause changes to the documents to
be highly difficult and costly [4].

Documents, such as technical and/or personalized docu-
ments, can have many concurrent variants. In technical docu-
ments, these variants range from the variation or even condi-
tional presence of entire technical descriptions and procedures
due to differences in the components of various installations,
to simple parameter values like the serial number, color, or
location of the documented installation or product. But short
and simple documents, like letters, invoices or timesheets, can
also be considered to have many variants due to different
parameter values. This aspect of parameter-based or model-
based instantiation of document variants, is highly reminiscent
of environments for code generation in software development.

III. EXPANSION OF EVOLVABLE MODULAR STRUCTURES

In this section, we discuss the expansion and assembly
of evolvable modular structures. We introduce Normalized
Systems Theory (NST) as a theoretical basis to design infor-
mation systems —and conceptually other kinds of modular
structures— with higher levels of evolvability, and its realiza-
tion in a framework to generate and assemble programming
code, and possibly other types of source artifacts.

A. Normalized Systems Theory and Evolvable Structures

NST was proposed to provide an ex-ante proven approach
to build evolvable software [13][14][15]. It is theoretically
founded on the concept of systems theoretic stability, a well-
known systems property demanding that a bounded input
should result in a bounded output. In the context of information
systems, this implies that a bounded set of changes should
only result in a bounded impact to the software. This implies
that the impact of changes to an information system should
only depend on the size of the changes to be performed, and
not on the size of the system to which they are applied.
Changes causing an impact dependent on the size of the

133

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

system are called combinatorial effects, and considered to be a
major factor limiting the evolvability of information systems.
The theory prescribes a set of theorems, and formally proves
that any violation of any of the following theorems will re-
sult in combinatorial effects (thereby hampering evolvability)
[13][14][15]:

• Separation of Concerns
• Action Version Transparency
• Data Version Transparency
• Separation of States

Applying the theorems in practice results in very fine-grained
modular structures in software applications, which are in gen-
eral difficult to achieve by manual programming. Therefore,
the theory also proposes a set of patterns to generate significant
parts of software systems that comply with these theorems.
More specifically, NST proposes five elements that serve as
design patterns for information systems [14][15]:

• data element
• action element
• workflow element
• connector element
• trigger element

Based on these elements, NST software is generated in a rela-
tively straightforward way. Due to this simple and determinis-
tic nature of the code generation mechanism, i.e., instantiating
parametrized copies, it is referred to as NS expansion and the
generators creating the individual coding artifacts are called
NS expanders. This generated code can be complemented with
custom code or craftings at well specified places (anchors)
within the skeletons or boiler plate code. This results in the
structural separation of four dimensions of variability [15][7]:

1) Mirrors representing data and flow models, using stan-
dard techniques like Entity Relationship Diagram (ERD)
and Business Process Model and Notation (BPMN).

2) Skeletons expanded by instantiating the parametrized
templates of the various element patterns.

3) Utilities corresponding to the various technology frame-
works that take care of the cross-cutting concerns.

4) Craftings or custom code to add non-standard function-
ality that is not provided by the skeletons.

It has been extensively argued that the design theorems and
structures of NST are applicable to all hierarchical modular
architectures that exhibit cross-cutting concerns [16]. More
specifically related to documents, the software theorems and
element patterns of NST are very similar to the principles of
CCM that rely on reuse and fine-grained modular structures to
allow writers to author, review, and repurpose organizational
content as small components, and to the concept of single
sourcing, demanding the separation of content and layout.
Moreover, it has been shown that the application of NST to
the design of evolvable document management systems leads
to architectures that are in accordance with the principles of
CCM and single sourcing [4][17][18].

Figure 1. The meta-circular architecture for NS expanders and
meta-application.

B. Meta-Circular Code Generation or Artifact Expansion

NST has been realized in software through a code gener-
ation environment to instantiate instances of the various ele-
ments or design patterns. Due to the simple and deterministic
nature of this code generation, i.e., instantiating parametrized
copies, it is referred to as NS expansion. We have also argued
that nearly all metaprogramming or code generation environ-
ments exhibit a rather similar and straightforward internal
structure [6][7], distinguishing:

• model files containing the model parameters.
• reader classes to read the model parameter files.
• model classes to represent the model parameters.
• control classes to select and invoke the generator classes.
• generator classes instantiating the source templates, and

feeding the model parameters to the source templates.
• source templates containing the parametrized code.

As the NST metaprogramming environment was developed
for the creation of web information systems, it has always
included the generation of various building blocks, e.g., reader
and model classes, which are similar to those of the code gen-
eration environment itself. This has made it possible to merge
those generated code modules with the corresponding code
generation modules, thereby evolving the metaprogramming
environment into a meta-circular architecture [5]. This meta-
circular architecture, described in [5][6][7], is schematically
represented in Figure 1 and entails several advantages. First,
this architecture enables the regeneration of the metaprogram-
ming code itself, thereby avoiding the growing burden of
maintaining the often complex meta-code, such as adapting
it to new technologies. Second, it allows for a structural
decoupling between the two sides of the code generation trans-
formation, i.e., the domain models and the code generating
templates. This also removes the need for contributors to get
acquainted with the — basically non-existing —internal code
structure of the metaprogramming environment, as additional

134

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

expanders with corresponding coding templates can be defined
and activated using a declarative control mechanism.

We have argued in previous work that the meta-circular
architecture presented in Figure 1 enables what we call two-
sided collaboration [7]. By allowing the definition of interfaces
at both ends of the code generation transformation, different
groups of developers can collaborate simultaneously on the
models and on the implementation templates. At the template
side of the interface, templates are not limited to programming
code containing statements and commands of programming
languages like Java or JavaScript. Analogous to programming
code, templates may be defined that contain commands and
settings of markup languages and/or typesetting systems like
Markdown or LATEX, leading to the generation of non-code
artifacts such as document sources. At the meta-model side
of the interface, the definition of additional meta-models
is not limited to programming structures either. Instead of
representing software components, data and task elements,
the meta-models may just as well correspond to hierarchical
document modules such as chapters and sections, that will be
realized by the corresponding commands and settings of the
typesetting systems like Markdown or LATEX.

Therefore, any model representing parameter data and/or
small content components, may serve as a meta-model and
drive the expansion or instantiation of the document. The
meta-circular architecture does not require any explicit pro-
gramming to support the new model entities representing the
document. As we have seen, the various classes corresponding
to the new model entities (XML readers and writers, model
classes, control and generator classes) will be automatically
generated. Analogous to the meta-circular Prime Radiant, the
meta-application of the NST metaprogramming environment,
a generated application that is based on such a new meta-
model and allows the expansion of artifacts based on this meta-
model, was originally called a Secondary Radiant. However, as
the need for the creation of documents is nearly omnipresent
in information systems, it is desirable to enable the creation
of artifacts such as documents for all information systems
and their models. Therefore, an architecture was designed to
support the expansion of artifacts in every regular normalized
systems application, treating every model as a meta-model.
We refer to this architecture as the Runtime Radiant.

It should be noted that a meta-circular code generation
environment is not necessarily complex. For instance, we
have presented in detail how an elementary meta-circular code
generation environment can be bootstrapped [19]. During this
bootstrapping process, it is also shown how the generated code
itself becomes able to generate other artifacts.

IV. TOWARD A SYSTEMATIC IMPLEMENTATION FOR THE
RUNTIME EXPANSION OF DOCUMENTS

In this section, we present a prototype implementation
of the Runtime Radiant architecture for the expansion of
parametrized documents using the NST meta-circular code
generation or metaprogramming environment.

A. Document Creation and Information Systems

As explained in Section II, an interesting duality exists
between information systems and document creation. Informa-
tion systems often support the creation of simple documents,
such as invoices or timesheets, incorporating data that is
entered and managed within the information system. At the
same time, the streamlined creation of large amounts of
document variants, for instance in the case of technical product
documentation, requires some tooling to specify and manage
the various parameters that drive the creation of the document
variants. In other words, information systems often create
documents, and document creation systems usually require a
supporting information system.

For the prototype implementation targeted at the creation of
documents using the NST meta-circular code generation envi-
ronment, we have opted for the first scenario. The streamlined
creation of variants of complex documents would require the
definition of an elaborate meta-model describing the structure
and domain parameters of the documents. The creation of such
a model is out of scope of this contribution. However, as the
creation of such a meta-model corresponds essentially to the
design of a suitable data model or ontology, we feel that this
does not pose a significant technological risk. Therefore, we
decided to explore the generation of rather simple documents
based on common data entities like invoices or timesheets.
Nevertheless, this prototype implementation of the Runtime
Radiant architecture does address a possible and important
technological hurdle. As these documents need to incorporate
runtime data from the live information systems, e.g., the actual
details of the various invoices. Therefore, this proof of concept
validates the expansion of artifacts based on runtime data from
any information system expanded by the NST metaprogram-
ming environment. In this way, the implementation can also
serve as a validation for the expansion of other source artifacts
based on live runtime data of information systems, such as
marketing emails or sensor configuration files.

B. Declarative Control and Runtime Expansion

Consider two typical samples of a simplified data model for
an administrative information system as presented in Figure 2.

• An invoice with some attributes, e.g., an invoice number
and reference, containing a reference to a client, and
consisting of several invoice lines.

• A timesheet with some attributes, e.g., the month and em-
ployee, containing a reference to a project, and consisting
of several timesheet entries.

These data entities are expanded into data elements, collec-
tions of software classes as described in [7], by the NST
metaprogramming environment, and incorporated in a web-
based information system. The expanded data elements or
collections of classes include:

• Reader and writer classes to read and write the XML
data files, e.g., InvoiceXmlReader and InvoiceXmlWriter,
TimesheetXmlReader and TimesheetXmlWriter.

135

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 2. Samples of a simplified data model for an administrative system.

<expander name="TexInvoiceExpander"
xmlns="http://normalizedsystems.org/expander">
<packageName>net.palver.tex.invoice</packageName>
<layerType name="ROOT"/>
<technology name="COMMON"/>
<sourceType name="TEX"/>
<elementTypeName>Invoice</elementTypeName>
<artifact>Invoice-$invoice.number$.tex</artifact>
<artifactPath>$expansion.directory$/

$artifactSubFolders$</artifactPath>
<isApplicable>true</isApplicable>
<active value="true"/>

</expander>

Figure 3. Declaration document of a TexInvoiceExpander.

• Model classes to represent and transfer the various enti-
ties, and to make them available as an object graph, e.g.,
InvoiceDetails and InvoiceComposite, TimesheetDetails
and TimesheetComposite.

• View and control classes to perform CRUDS (create,
retrieve, update, delete, search) operations in a generated
table-based user interface.

In the same way that the instances of the NST meta-model
data elements are read and made available as an object
graph at the time of code generation, the instances of the
data elements represented in Figure 2 can be made available
as an object graph at runtime in a generated information
system. Incorporating the core templating engine of the NST
metaprogramming environment, as described in the following
subsection, allows to evaluate the various attributes of the
administrative data entities using Object-Graph Navigation
Language (OGNL) expressions, and to feed them to the text
templates, e.g., in LaTeX, that are used to create the invoice
and timesheet documents.

As explained in [7], the expansion of artifacts, e.g., source
code or document files, is based on a generic ArtifactExpander
that uses declarative control to evaluate the model parameters
and insert them into the source templates. Every individual
expander generating a source artifact is defined in an Expander

<mapping
xmlns="https://schemas.normalizedsystems.org/

xsd/expanders/2021/0/0/mapping">
<value name="info" eval="invoice.info"/>
<value name="number" eval="invoice.number"/>
<value name="client" eval="invoice.client.name"/>
<value name="vatNr" eval="invoice.client.vatNr"/>
<value name="street" eval="invoice.client.street"/>
<value name="city" eval="invoice.client.city"/>
<value name="isForeign"
eval="!invoice.client.country.equals(’Belgium’)"/>
<list name="invoiceLines"

eval="invoice.invoiceLines"
param="invoiceLine">

<value name="info" eval="invoiceLine.info"/>
<value name="product" eval="invoiceLine.product"/>
<value name="amount" eval="invoiceLine.amount"/>
</list>
</mapping>

Figure 4. Mapping document of a TexInvoiceExpander.

XML document. An example of the definition of such an
individual expander to expand a LaTeX source file for an
invoice is shown in Figure 3. It is quite similar to the
declaration of an expander creating a Java source file during
code generation, but has a tex source type, and uses for
instance the runtime invoice number to construct the filename.

The evaluation of the various instance parameters or at-
tributes is based on OGNL expressions [20] and defined in
a separate ExpanderMapping XML document. This ensures
the separation of content from format, as required by [10]
to have reusable and evolvable documents. An example of
the definition of such an individual mapping document for
the invoice creation is shown in Figure 4. Besides simple
OGNL expressions, it allows to evaluate logical expressions,
e.g., whether the invoice client is foreign for VAT purposes,
and to define lists of linked objects, e.g., invoice lines, and to
loop through these lists and access the attribute values of the
members of the list.

The values as defined in the expander mapping document
are passed to the LaTeX templates. As described in [6],
the NST environment uses the StringTemplate (ST) engine
library [21]. This library supports the creation of a modular
document structure by providing subtemplate include state-
ments, enabling the document designers to adhere to the
principles of single sourcing [12]. For instance, we share the
declaration of various LaTeX packages and the definition of
some basic commands through the use of the subtemplates
<basePackages()> and <baseCommands()>. And the various
invoice lines of an invoice (or timesheet entries of a timesheet)
are created by instantiating a corresponding subtemplate for
every list item through <invoiceLines:invoiceTableLine()>

(or <timesheetEntrys:timesheetTableLine()>).

C. Integration in Normalized Systems Applications

A reduced version or kernel of the NST metaprogramming
environment, incorporating the core templating engine, was
packaged into a runtime installation that can be integrated

136

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

into every expanded normalized systems application. This
runtime installation provides an interface to invoke expanders
by passing instances of a tree of plain data classes, i.e., so-
called DTOs (Data Transfer Objects). The runtime kernel will
expand an artifact for every data tree instance that is passed
to an expander (template).

The expansion of an artifact by the runtime kernel of the
NST metaprogramming environment is schematically repre-
sented in Figure 5, both for expanding a Java software class
for an Invoice data entity (left side), and for expanding a Latex
document for an actual instance of an invoice (right side). In
both cases, the expansion basically intertwines —the process
is similar to a mathematical convolution— an instance of a
data entity (tree) with a source template.

• An instance of an agent interface class for the data
element Invoice, i.e., InvoiceAgentIf, is expanded
by combining the instance data tree (including linked
elements like fields) for the data element named Invoice

with the template of the Java interface class AgentIf.
• An instance of a Latex invoice for the invoice Inv-001,

i.e., Inv-001TexInvoice, is expanded by combining
the instance data tree (including linked elements like
invoice lines) for the invoice named Inv-001 with the
template of the Latex document TexInvoice.

Though the runtime expansion kernel can be used by any
application that is able to provide (trees of) data instance
classes, the integration in a normalized systems application is
particularly straightforward and economical. First, the required
(trees of) data transfer classes can be generated automatically
by the NST metaprogramming environment. Second, an option
has been introduced to generate a specific implementation
class for a task element, that automatically feeds an instance
of such a data class tree to a defined set of expanders. This
expander set merely needs to be defined in a configuration file
in the expansion resource. Such a resource is a standard library
archive that contains the actual expanders, i.e., the triplets
consisting of an expander definition, an OGNL mapping file,
and a template. This task element can be invoked in a line
of code, by a button in the user interface, but can also be
embedded in a workflow driven by an NST flow element.
In the latter case, the expansion of the document can be
automatically performed for every instance of the target data
entity for which a dedicated field has a specific value.

The integration of this runtime expansion kernel, the so-
called Runtime Radiant, has been tested in a normalized
systems business application that included (a more elaborated
version of) the data elements represented in Figure 2. Based on
live data from this operational production environment, many
hundreds of LaTeX sources for invoices and timesheets were
successfully generated through the use of the expander decla-
rations and OGNL parameter evaluations as presented above.
The processing of the Latex sources into PDF documents was
integrated by embedding an additional task element in the
workflow of the NST flow element.

It is clear that this expansion architecture allows information
systems to create other type of document source artifacts based
on live runtime data. Indeed, as the NST expansion environ-
ment is agnostic with respect to the source type, e.g., able to
create LaTeX source documents in exactly the same way as
Java source files, the generation of other types of document
source modules is basically reduced to creating other types
of templates and defining them in expander declarations. It is
worth noting that such generated documents can have multiple
remote impacts in our networked world. For instance, HTML
documents generated by the runtime expansion kernel can
be sent out immediately to large amounts of users through
email or direct messaging. Or generated XML configuration
documents can be uploaded automatically to remote Internet
of Things (IoT) sensors or controllers, resulting in the flexible
configuration of those devices.

V. EXPLORING SOME TARGET DOCUMENT TYPES FOR
THE RUNTIME ARTIFACT EXPANSION

In this section, we explore the feasibility of several use case
scenarios to apply and leverage the proposed architecture for
the runtime expansion of various document types.

A. Typical Information Systems Documents

Though the automated creation of various small documents
and reports is nearly omnipresent in contemporary information
systems, we nevertheless believe that the additional possibil-
ities and/or advantages of the proposed runtime expansion
architecture can be significant.

First, the runtime expansion architecture brings a built-in
capability for document creation to every piece of data of
every information system that is able to provide (trees of) data
transfer objects. Such a capability could enable end-users to
define and author various classes of documents to be created,
as opposed to the current situation where they have to either
rely on specific types of documents that are supported by
the information system, or use a dedicated application for
document authoring and creation. While the former case could
be limiting, the latter case could lead to consistency issues.

Second, the deep integration of the document expansion
kernel into the information system, enables easy and structured
access to possibly large areas of the data model. Consider for
instance the generation of Curriculum Vitae (CV) documents.
Though an enormous amount of applications exist to manage
and generate employee CVs, the use of the runtime expansion
architecture could give the document creation engine immedi-
ate access to a wide variety of personnel data, such as project
involvement, completed training programs, and even perfor-
mance appraisals. Moreover, it would intrinsically support the
introduction of dedicated query logic, like the selection of
the most relevant experiences for a target customer, based for
instance on the industry sector and the project team size of
past project involvements.

Third, the proposed architecture could provide a unified
way to create a whole range of document artifacts. Besides

137

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Schematic representation of an expansion of software class (left) and text document (right).

traditional documents like invoices and timesheets, we men-
tion XML messages for financial reporting purposes or e-
commerce transactions, and HTML documents for announce-
ments and marketing campaigns. While these types of docu-
ments or messages are typically generated by other subsys-
tems, a unified architecture could not only entail economies
of scale, but would also contribute to consistency and single
sourcing [2]. For instance, both the PDF invoice and the
XML version based on the Universal Business Language
(UBL) standard [22], could be based on the same data entries.
Moreover, the proposed architecture could not only establish
single sourcing across different types of content, but extend
it to integration architectures between different information
systems. Revisiting the CV example, one could for instance
imagine to exchange CV data through machine readable struc-
tured document formats such as XML or JSON.

B. More Complex Hierarchical Documents

The advanced capabilities of a code generation environment
with respect to hierarchical modular structures could be bene-
ficial for certain types of more complex documents. The built-
in hierarchical structure of the metaprogramming environment
could enable the automated generation of documents with an
elaborate and/or complex hierarchical structure, that require
both different versions over time, and multiple variations for
a given version, for instance depending on the profile of the
target audience. In accordance with the detailed analysis of
such documents with a complex hierarchical structure in [4],
we mention the following examples.

• Detailed technical documentation of modular artifacts
such as heat transformers or compressors, where different

instances of the artifact may contain different (versions
of) individual parts, and different descriptions and/or
sections are appropriate depending on the target audience.

• Detailed security rules and guidelines for technical in-
stallations such as power plants, where guidelines often
depend on regulations and legislation that evolve over
time, and where specific instructions need to be tailored
to individual installations and staff profiles.

• Elaborate assessment documents as required for self-
assessments and external audits, where (versions of)
various descriptions and/or sections, and even whether
they need to be present at all, are in general dependent
on the target audience and/or the scope of the assessment.
A case related to such self-assessment documents for the
evaluation of study programs is described in detail in [18].

For these types of documents, the proposed runtime expansion
architecture could be an enabler for the structured hierarchical
approach toward document creation described in [17][18].

C. Toward Integrating Multimedia Content

The integration of the document creation kernel in any
information system could also facilitate the introduction of
multimedia content. Having for instance such a system for the
generation of CVs, would simply require the definition of one
or more video clip data element(s) to enable the uploading
of multiple types of personal message clips into the system.
Such clips could both be bundled or integrated with the CV,
and integrated through embedded links to the clips.

As discussed in a case study on a video learning channel
[23], multimedia content itself could be hierarchically struc-
tured with different versions and variations. One could imagine

138

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a runtime expansion environment to aggregate video lectures
based on an hierarchical modular structure, selecting the
appropriate content modules, language tracks and background
themes. Provided the integration of some technical utilities, the
runtime expansion system could combine the various modules
and aspects into an integrated video lecture. Once again,
this could foster collaboration between lecturers and content
providers, while respecting the concept of single sourcing.

VI. CONCLUSION AND FUTURE WORK

Many organizations are often required to produce large
amounts of versions and variants of documents in areas
like technical documentation and accreditation. At the same
time, corporate information systems are producing massive
amounts of relatively simple documents based on corporate
data. The streamlined and possibly automatic generation of
such documents has been associated with concepts like modu-
larization and single sourcing, which are similar to techniques
used in code generation software. As in software, dealing
simultaneously with different versions and variants requires
the design of document structures to deplete the rippling of
changes in order to provide a desired level of evolvability.

In our previous work, we have presented a meta-circular
implementation of a metaprogramming environment, and have
argued that this architecture can be used for code generation
based on different and even newly defined meta-models. In this
contribution, we have investigated the use of this code genera-
tion environment within the generated information systems at
runtime. More specifically, we have explored the creation of
evolvable artifacts, such as simple administrative documents,
where live runtime data of the generated software application
is used to instantiate the artifacts.

To this purpose, we have packaged a reduced version or
runtime kernel of the NST metaprogramming environment,
and presented an architecture to integrate this expansion kernel
into the runtime environment of every expanded information
system. More specifically, we have shown how (trees of)
instances of data transfer objects, containing runtime data,
can be passed to source templates to generate artifacts such as
document sources. The usage of this runtime expansion kernel
in information systems to generate sources for administrative
documents based on templates, only requires declarative def-
initions and OGNL evaluation mappings, and does not imply
any dedicated software programming.

This paper provides different contributions. First, we val-
idate that it is possible to use the NST metaprogramming
environment to create another type of source code artifacts,
e.g., document sources in some typesetting system. Moreover,
we have explained that this implementation adheres to sev-
eral fundamental concepts regarding modular and evolvable
document creation, like CCM and single sourcing. Second,
we validate that we can integrate a reduced kernel version
of the NST metaprogramming environment into a runtime
information system expanded by the NST metaprogramming

environment, and to generate source artifacts from live data
within this running information system.

Next to these contributions, it is clear that this paper is
also subject to a number of limitations. First, we have only
demonstrated the integration of the runtime expansion kernel
into information systems generated by the NST metaprogram-
ming environment. Second, the generated documents are quite
simple, and in line with documents that are currently generated
by mainstream information systems.

Nevertheless, this explorative proof of concept can be seen
as an executable architecture, and we are planning future work
to extend both the scope and the use of this environment in sev-
eral ways. First, we intend to generate more types of document
sources. We mention for instance XML-UBL documents for
electronic invoices, Fast Healthcare Interoperability Resources
(FIHR) for healthcare information exchange, and various XML
documents to automatically configure sensors and controllers
in energy monitoring and management systems. Second, we
plan to significantly increase the use of this document gen-
eration environment. Besides the current production use for
invoices and timesheets, we are considering its use for car
policy documents, CVs, training certificates, meeting notes, et
cetera. This usage would not only be confined to applications
expanded by our NST metaprogramming environment, but will
also be made available to other applications. Third, we intend
to start addressing more complex hierarchical documents such
as technical manuals and audit reports. To facilitate this use
case, we have introduced in our tooling the possibility to
define meta-models as ontologies, independent from our web
application models. This will enable users to create document
generation applications based on the structural models of
their manual or reports, without having to deal with the
technicalities of the traditional NST web information systems.

REFERENCES

[1] H. Mannaert, G. Oorts, K. De Cock, and S. Gallant, “Exploring the
use of code generation patterns for the creation of evolvable documents
and runtime artifacts,” in Proceedings of the Thirteenth International
Conference on Pervasive Patterns and Applications (PATTERNS), April
2021, pp. 17–22.

[2] R. Andersen and T. Batova, “The current state of component content
management: An integrative literature review,” IEEE Transactions on
Professional Communication, vol. 58, no. 3, 2015, pp. 247–270.

[3] S. Abel and R. A. Bailie, The Language of Content Strategy. Laguna
Hills, CA, USA: XML Press, 2014.

[4] G. Oorts, Design of modular structures for evolvable and versatile
document management based on normalized systems theory. Antwerp,
Belgium: University of Antwerp, 2019.

[5] H. Mannaert, K. De Cock, and P. Uhnák, “On the realization of meta-
circular code generation: The case of the normalized systems expanders,”
in Proceedings of the Fourteenth International Conference on Software
Engineering Advances (ICSEA), November 2019, pp. 171–176.

[6] H. Mannaert, C. McGroarty, K. De Cock, and S. Gallant, “Integrating
two metaprogramming environments : an explorative case study,” in
Proceedings of the Fifteenth International Conference on Software
Engineering Advances (ICSEA), October 2020, pp. 166–172.

[7] H. Mannaert, K. De Cock, P. Uhnák, and J. Verelst, “On the realization
of meta-circular code generation and two-sided collaborative metapro-
gramming,” International journal on advances in software, vol. 13, no.
3-4, 2020, pp. 149–159.

[8] H. Simon, The Sciences of the Artificial. MIT Press, 1996.

139

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[9] C. Y. Baldwin and K. B. Clark, Design Rules: The Power of Modularity.
Cambridge, MA, USA: MIT Press, 2000.

[10] D. Clark, “Content management and the separation of presentation and
content,” Technical Communication Quarterly, vol. 17, no. 1, 2007, pp.
35–60.

[11] F. Sapienza, “A rhetorical approach to single-sourcing via intertextu-
ality,” Technical Communication Quarterly, vol. 16, no. 1, 2007, pp.
83–101.

[12] K. Ament, Single Sourcing: Building Modular Documentation. Nor-
wich, NY, USA: William Andrew Publishing, 2003.

[13] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, special Issue on Software Evolution, Adaptability
and Variability.

[14] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
2012, pp. 89–116.

[15] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

[16] H. Mannaert, P. De Bruyn, and J. Verelst, “On the interconnection of
cross-cutting concerns within hierarchical modular architectures,” IEEE
Transactions on Engineering Management, vol. 69, no. 6, 2022, pp.
3276–3291.

[17] G. Oorts, H. Mannaert, and P. De Bruyn, “Exploring design aspects
of modular and evolvable document management,” in Proceedings of
the Seventh Enterprise Engineering Working Conference (EEWC), May
2017, pp. 126–140.

[18] G. Oorts, H. Mannaert, and I. Franquet, “Toward evolvable document
management for study programs based on modular aggregation patterns,”
in Proceedings of the Ninth International Conferences on Pervasive
Patterns and Applications (PATTERNS), February 2017, pp. 34–39.

[19] H. Mannaert and K. De Cock, “Bootstrapping meta-circular and autoge-
nous code generation,” in Proceedings of the Seventeenth International
Conference on Software Engineering Advances (ICSEA), October 2022,
pp. 87–92.

[20] “OGNL,” URL: https://en.wikipedia.org/wiki/OGNL, 2022, [accessed:
2022-06-15].

[21] “StringTemplate,” URL: https://www.stringtemplate.org/, 2022, [ac-
cessed: 2022-06-15].

[22] “Universal Business Language (UBL),” URL:
https://en.wikipedia.org/wiki/Universal Business Language, 2023,
[accessed: 2023-02-01].

[23] H. Mannaert, I. Franquet, C. Lippens, and K. Martens, “Exploring
various aspects of a video learning channel : the educational case study
of eclips,” International Journal On Advances in Intelligent Systems,
vol. 12, no. 13-4, 2019, pp. 169–176.

140

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

