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Abstract—Our paper proposes an optimal trading algorithm
based on a novel application of the conventional Control En-
gineering (CE) to Algorithmic Trading (AT). We consider a
fundamental CE concept, namely, the feedback control and
apply it to the algorithmic trading (algo trading). The con-
crete feedback control strategy is designed here in a form
of the celebrated Proportional-Integral-Derivative (PID) model.
The highly frequent nature of the modern financial markets
motivates the using of a model-free realisation of the generic
PID framework. The control theoretical methodology we propose
is additionally combined with some advanced statistical results
for the historical market data. We obtain a specific log-normal
probability distribution function (pdf) associated with the specific
relative characteristics of the available stock data. This empirical
pdf mentioned above provides a novel computational technique
for the necessary PID gains optimization. For this aim we apply
a suitable data driven optimization problem and also consider
an alternative stochastic programming framework. The stochas-
tic optimization naturally involves the Monte Carlo solution
procedure. The optimized PID trading algorithm we propose
is next represented in the frequency domain. This equivalent
representation makes it possible to introduce a new concept in
the financial engineering, namely, the ”stock market energy”
concept. Finally, we implement the resulting PID optimal trading
algorithm and develop a Python based prototype software. We
apply the corresponding prototype software to the Binance stock
market. This practical example illustrates the proposed optimal
PID trading scheme and also shows the effectiveness of the CE
methods in the modern AT.

Index Terms—financial engineering; feedback algorithmic trad-
ing; model-free PID control; PID gains tuning; data driven
optimization; forward testing; stochastic optimization; prototype
software

I. INTRODUCTION AND MOTIVATION

Optimal design of profitable trading algorithms for finan-
cial markets constitutes a very challenging and technically
sophisticated problem of the modern financial engineering (see
e.g., [1],[3],[4],[5],[7],[8],[9],[10],[11],[31],[38],[41]). In this
contribution, we study an idealized stock market and apply
the CE based PID control design in the development of an
optimization based trading algorithm. Recall that the PID

synthesis constitutes one of the most powerful and successful
real-world control algorithms (see e.g., [2],[27],[28],[34],[36]).
The conventional model-based PID control implements a fun-
damental idea of the feedback action and is widely used in
various engineering and applications.

The stock market idealization we follow in this paper
usually involves some generic technical assumptions. We con-
sider the situation characterized by ”no transaction costs” and
also assume the condition of ”one stock portfolio”. We also
consider some further simplifying hypothesises, namely, the
assumption of the ”zero interest” and the ”continuous trading”
condition. Let us refer to [7],[8],[9] for the necessary technical
details on the existing abstractions in the modelling of stock
markets. Our paper deals with the discrete-time dynamics of
the financial markets under consideration. This assumption is
motivated by the generic stock tick dynamics and also by the
corresponding decision making process. Recall that a tick is a
measurement of the minimum upward or downward movement
in the price of a security (see e.g., [24],[32] and the references
therein). The given discrete dynamics of the stock market ticks
naturally implies the discrete-time decision making in trading.
We next use the generic notation of the stock ticks t = 1, ...,
and the corresponding semi-open time-intervals of the trading
buckets [t, t +1).

The advanced financial engineering and financial economics
constitute nowadays a powerful theoretical tool of the modern
financial science (see [15],[16],[23],[40]). On the other hand,
the mathematically rigorous time-series based financial theo-
ries can not be directly applied to an algorithmic generation of
a profitable trading decision. This fact is a simple consequence
of the highly frequent stock price dynamics that makes it
impossible any adequate price forecasting. This fundamental
property of the modern financial markets implies the so called
High-Frequency Trading (HFT) approach. We refer to [16]
for the corresponding concepts and useful information. A
successful HFT strategy development is a very sophisticated
challenging task. In this paper, we propose to use some
fundamental aspects of the conventional CE design for this
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purpose. More specifically, we propose to use an optimized
PID type control strategy for a profitable trading algorithm.
The optimization techniques for this PID trading algorithm
involve some novel optimal PID gains tuning strategies.

Recall that the control theoretic approach to the modern
AT was originated in [7],[8],[9],[10],[11],[19],[31]. Let us
also refer to [3],[4] for some novel PID related trading
algorithms with a switched structure. Since the non-regular,
highly frequent bid-ask spread behaviour on a stock does
not admit a realistic forecasting model, we examine here a
specific model-free version of the classic PID control. Our
algorithmic approach proposes to react to the stock price
variations instead of modeling them. We next combine the
conventional PID control approach to AT with an advanced
statistical characterization of some historical market data sets.
We next identify a log-normal type probability distribution
function (pdf) for some concrete quantities related to the data
sets under consideration.

It is common knowledge that a classic and advanced
PID control design incorporates a very important technical
step, namely, the PID gains tuning [2],[27],[28],[34]. The
established log-normal pdf for some market characteristics
can next be used in the optimal PID gains tuning pro-
cedure. Note that various optimization techniques play an
important role in the modern financial engineering (see e.g.,
[1],[4],[5],[14],[22],[26],[29],[30],[33],[42],[43],[44] and ref-
erences therein). For the concrete PID gains optimization we
use here two conceptually different approaches. The first ap-
proach constitutes a data driven regression based optimization.
This useful approach can be combined with the well-known
Forward Testing methodology and with the consideration of
the corresponding In-Sample and Out-of-Sample concepts for
the data sets. The second optimization approach we use is
the classic stochastic optimization framework. This approach
uses the established log-normal distribution of some market
related quantities. It finally leads to the celebrated Monte Carlo
solution technique (see e.g., [22],[39] and references therein).

The resulting PID trading algorithm with the optimized
gains tuning procedure was applied to some concrete real-
world examples. We illustrate the efficiency, profitability and
practical implementability of the proposed algorithm and
consider a trading application on the Binance BTC/USDT
spot market. We also discuss shortly the necessary prototype
software for implementation of the proposed optimal PID
trading algorithm.

The remainder of our paper is organized as follows: Section
II contains a formal AT problem statement. This section
includes a mathematical description of the conceptually novel
model-free PID trading algorithm. In Section III we perform
an advanced statistical analysis of the stock market data. We
establish some log-normal probability distribution properties
for some specific subsequential market characteristics. Sec-
tion IV deals with the main problem of the PID trading,
namely, with the optimal PID gains tuning. We consider the
data driven optimization involving the historical data and the
corresponding backtesting procedure. The corresponding re-

gression analysis is considered in the general Forward Testing
framework. In this section we also propose an alternative
PID gains selection and use the scenario based stochastic
optimization problem for this purpose. The resulting stochastic
program is next solved by the classic Monte Carlo approach.
In Section V we discuss a novel frequency domain interpre-
tation of the proposed PID trading strategy. We apply the
conventional z-transformation and the Fourier transformation
for the constructive characterization of the PID trading scheme
in the frequency space. Section VI contains a practically
motivated application of the developed PID trading algorithm
to a specific stock market, namely, to the Binance BTC/USDT
futures stock. This section is also devoted to the prototype
software design. Section VII summarizes our paper.

II. MODEL-FREE PID BASED TRADING ALGORITHM

Consider a trading on an idealized stock market with an
initial deposit (initial investment) I(1) = I1 and introduce the
current return

∆g(t), t = 1, ..., .

The current investment level at a time instant t is denoted
by ∆I(t). In parallel with the current values introduced above
we also consider the cumulative return and the cumulative
investment g(t) and I(t), respectively. The nonlinear discrete-
time PID trading strategy can be formalized as follows:

δ I(t +1) = KP(t +1)∆g(t)+KD(t +1)∆̇g(t)+

KI(t +1)
∫ t

t−T
h(τ)∆g(τ)dτ,

∆I(t +1) = χ(δ I(t +1)), for t = 1, ....

(1)

By KP(·), KD(·) and KI(·) we denote here the necessary PID
gains for the proportional, integral, and derivative terms of the
classic regulator scheme (see [2],[27],[28]). Let us introduce
the vector of these PID gains:

K(·) := (KP(·), KD(·), KI(·))T .

Note that the integral term in (1) incorporates the ”process
memory” on a given time interval [t−T, t]. The integral kernel
h(·) in (1) is defined by a suitable ”memory loss” function. We
consider an exponentially weighted ”memory loss” function
h(·) with h(t)= 1. Note that the proposed scheme (1) is similar
to the classic PID control design (see e.g., [28],[34]). The
nonlinear function χ(·) in 1 constitutes a ”control saturation”
and can naturally be defined as follows:

χ(δ I) :=

 δ I, if δ Imin ≤ |δ I| ≤ δ Imax;
±δ Imax, if |δ I|> δ Imax;
0, if |δ I|< δ Imin.

(2)

Here
δ Imax, δ Imin

are prescribed maximal and minimal current investment levels,
respectively. The above ”saturated” investment model consti-
tutes a formal mathematical condition and serves as a natural
restriction for the investment volume.
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Assuming the investment decision ∆I(t + 1) in (2) and
taking into consideration the stock price p(ω, t +1), we next
calculate the current return g(t +1):

∆g(t +1) =
(p(·, t +1)− p(·, t))

p(·, t)
∆I(t +1) (3)

If we use the CE analogy, we conclude that the proposed
investment level ∆I(t + 1) in (1) plays a role of a ”control
input”. We next call it ”investment decision”. Note that the
current investment decision is deployed at a present time
instant t under the condition of a natural unknownness of the
market price

p(ω, t +1).

By ω ∈Ω and Ω we denote here a probability state space with
a unknown probability measure. This stock price

p : Ω×Z+ → R

is assumed to be a measurable stochastic function. Note that
the current return ∆g(t+1) is calculated an a posteriori value,
where p(·, t + 1) in (3) denotes a concrete realization of the
stochastic price p(ω, t +1).

Since we have a CE analogy, we also can represent the
above PID trading algorithm (1)-(3) using the block diagram.
The corresponding block scheme of the proposed model-free
PID trading strategy (1)-(3) is presented in Figure 1.

Profit / Loss

Decision

Time
Delays

Time 
Delays

Market

Fig. 1. Model-free PID based trading algorithm

Note that the feedback channel in (1)-(3) is implemented
by the current return ∆g(t +1) in (3). In fact, the PID trading
algorithm (1)-(3) and the corresponding block diagram (Figure
1) represent the so-called ”delayed PID” scheme. We refer to
[28] for details.

The general integral formula for

δ I(t +1)

in (1) can be concretized in the discrete-time:

δ I(t +1) = (KP(t +1)+KI(t +1)+KD(t +1))∆g(t)+

(KI(t +1)h(t −1)−KD(t +1))∆g(t −1)+

KI(t +1)
t−2

∑
τ=t−T

h(τ)∆g(τ).

(4)

Recall that the main CE problem of the conventional PID
control approach consists in defining the adequate PID gains
tuning rules (see e.g., [27],[28] and references therein). In
the generic real-world application fields of the classic PID
controllers the tuning techniques are well established [2],[34].
For the conceptually sophisticated model-free PID algorithm
under consideration, an adequate design of the PID gains
tuning schemes constitutes a challenging theoretic problem.
The suitable PID gains selection immediately determines the
main trading signal by the rule (4). In fact, an adequate
(optimal) PID gains tuning scheme development is a key
problem of a profitable PID based investment decision.

Let us also note that the model-free character of the pro-
posed PID scheme (1)-(3) and (4) indicates the application
possibility of the modern ML approaches to an optimal PID
gains tuning problem. We refer to [12],[13],[26] for the techni-
cal details related to the RL approach and to some applications
of the ML techniques in AT.

III. ADVANCED STATISTICAL DESCRIPTION OF THE
STOCK MARKET DATA

We now study the important PID gains tuning problem and
apply an additional statistical information related to the stock
market. Introduce the following ”price/volume” ratio:

θ(ω, t +1) :=
p(ω, t +1)

v(t +1)
. (5)

Here p(ω, t +1) is an unknown (stochastic) price at the time
instant t +1 and v(t +1) is an investment volume to the same
time:

v(t +1) :=
∆I(t +1)

p(·, t)
. (6)

Note that (6) expresses the entities number of a traded financial
instrument (for example, futures trading). The comprehensive
(a posteriori) statistical analysis of a wide spectrum of stock
instruments demonstrates that the pdf of the above value

θ(ω, t)

constitutes a specific log-normal distribution (see e.g.,
[18],[20],[35],[44] and references therein). Clearly, the real
investment volume of a hedge fund, a private trader or of
a bank is usually a restricted. In the case of the PID trading
algorithm (1)-(3), the maximal investment volume is a direct
consequence of the boundedness of ∆I(t +1) in (1) and (6).

The log-normal pdf related to the financial markets has
mainly been studied for option prices. In this connection we
also refer to the celebrated Black and Scholes model [15]. A
useful discussion on this subject can also be found in [40].
Let us also mention the log-normal pdf’s of some volatility
involved quotients and other stock market parameters and
indices (see e.g., [1],[5],[18],[23]). We next analyze the sta-
tionary statistical distribution ρ1(·) of the quantity θ(ω, t +1)
introduced in (5):

ρ1(θ) =
a√

2πσ(θ − s)
×

exp−(0.5σ
2)× (ln(θ − s)−µ)2.

(7)
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Here µ ∈R denotes a statistical mean, σ ∈R+ is a dispersion
and s ∈ R denotes a shifting. Note that (7) is often called
”three-parameters”

{µ,σ ,s}

log-normal distribution (see e.g., [1],[18]). The concrete pa-
rameter values of the log-normal pdf ρ(θ) can be calculated
using the backtesting on the historical stock market data. As
mentioned above, (7) constitutes an adequate model distribu-
tion for the introduced price/volume ratio θ(ω, t + 1). The
quality of this statistic model can be established by application
of the Chi-Quadrat test for distributions qualification. We refer
to [35] for necessary technical details. For example, one can
consider the normalized value

χ
2/q

for the above test. Here q is the number of degrees of
freedom. The concrete stock market histogram for a monthly
Binance BTC/USDT price/volume ratio θ(ω, t+1) is depicted
in Figure 2.

Fig. 2. The log-normal like histogram of the ratio θ(·, t) for Binance BTC /
USDT spot market

In parallel to (7) we also consider the log-normal pdf for
the following price/price ratio:

ϑ(ω, t +1) :=
( p(ω, t +1)

p(·, t)
)
, (8)

where
{p(1), ..., p(T )}, {v(1), ...,v(T )}.

are the stock prices and investment volumes data for the time
instants t = 1, ...,T . The log-normal probability distribution for
the value

ϑ(ω, t +1)

in (8) was established in [1]. We denote this pdf by ρ2(·).
We also refer to [5],[16] for the necessary statistical and
econometrical details.

We next obtain

ln(θ(ω, t +1)/θ(·, t)) = ln
( p(ω, t +1)

p(·, t)
)
−

ln
(v(t +1)

v(t)

)
.

(9)

and

ln
(v(t +1)

v(t)

)
= ln

( p(ω, t +1)
p(·, t)

)
+ lnθ(·, t)−

lnθ(ω, t +1).
(10)

Expressions (9)-(10) make it possible to generate a part of the
complete investment decision, namely, the decision about the
investment volume v(t +1) to the time instant t +1:

v(t +1) = exp
[

ln
( p(ω, t +1)

p(·, t)
)
+ lnθ(·, t)−

lnθ(ω, t +1)+ lnv(t)
]
.

(11)

Observe that θ(·, t) and v(t) in (11) are known values. Addi-
tionally, the price/volume ration θ(ω, t+1) and the price/price
ratio

p(ω, t +1)
p(·, t)

can effectively be simulated using the corresponding log-
normal probability distribution functions. We next can also
forecast the value

ln
(

p(ω, t +1)/p(·, t)
)

in (11) using the corresponding log-normal distribution (see
[1],[5],[18]). We assume here that the necessary parameters
of the log-normal distributions of the values θ(ω, t +1) and

p(ω, t +1)/p(·, t)

are previously determined by the generic backtesting tech-
nique. For example, for (7) we need to identify a,µ,σ ,s.
This identification procedure is performed using the available
statistics in form of a histogram (see e.g., Figure 2).

Assuming the investment volume decision (11), we imme-
diately get a tuning scheme for the PID gains K(·). Combining
(6) and (11) we finally obtain

χ(KP(t +1)∆g(t)+KD(t +1)∆̇g(t)+

KI(t +1)
∫ t

t−T
h(τ)∆g(τ)dτ) =

p(·, t)exp
[

ln
( p(ω, t +1)

p(·, t)
)
+ lnθ(·, t)−

lnθ(ω, t +1)+ lnv(t)
]
.

(12)

Since the investment decision ∆I(t + 1) is designed by the
PID rule (1)-(2), the obtained formulae (12) constitutes a
specific tuning restriction for the PID gains K(·). This novel
tuning approach involves the advanced statistical (log-normal)
analysis of the financial market behaviour.

IV. OPTIMIZATION APPROACHES TO THE PID GAINS
TUNING

A credible anticipating strategy for the behaviour of stock
markets (using a certain amount of historical data) constitutes
the main conceptual problem of the algorithmic trading. In
the framework of the proposed PID trading algorithm (1)-
(3), we have to incorporate into the PID methodology an
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additional optimization procedure for a ”best choice” of the
PID gains. In this section, we describe two advanced opti-
mization approaches to the optimal PID gains tuning. The
resulting PID based strategies (1)-(3) with an optimal gain
selection are next called optimal PID trading algorithms. Let
us note that the ”advanced” character of the optimal tuning
mentioned above corresponds to the model-free structure of
the proposed PID trading scheme. The model-free nature of an
optimal PID implementation (1)-(3) also indicates the usability
of the modern ML and RL approaches for optimal PID gains
selection problems. Let us refer to [12],[13],[26] for some
technical results and novel ideas.

A. Data Driven Gains Optimization

In this section we use a conventional regression based
optimization framework applied to the historical stock data.
Our aim is to combine the least square optimization with the
generic Forward Testing (FT). Note that the FT technique is a
common methodology of the modern AT (see e.g., [23],[26]).
It includes the so called In-Sample and Out-of-Sample data
subsets of the initially given historical data set. The In-Sample
data set is part of historical data on which the optimization is
performed. The subset of historical data that has been reserved
for a possible validation of the optimized trading algorithm is
known as an Out-of-Sample data set.

We now choose a number M1 ∈ N as a cardinal number of
the In-Sample set and consider the corresponding investment
volumes:

v j(t +1), j = 1, ...,M1 −1.

Let M2 denotes a cardinal number of the Out-of-Sample sat
such that the complete historical data set under consideration
has

M := M1 +M2

elements. Using the given (nonlinear) structure of the PID
trading algorithm (1)-(3), we next introduce the following
main optimization problem

J1(K(t +1)) :=
M1

∑
j=1

(
χ(δ I(t +1))−

v j(t +1)p(·, t +1)
)2 → min

K(t+1)

subject to (1)− (3),(12)

(13)

Evidently, (13) constitutes a specific nonlinear regression de-
termined on the In-Sample data set. Note that problem (13) in-
volves the previously obtained statistical characterisation (12).
This statistical result for the PID gains constitutes a natural
restriction in the minimization problem (13). The optimization
problem (13) can be solved by some known numerical methods
(see e.g., [3],[21],[29] and references therein). It finally leads
to the optimal PID gains

Kopt(t +1) := {Kopt
P (t +1), Kopt

D (t +1), Kopt
I (t +1)}.

The Out-of-Sample data set can next be used for the validation
procedure of optimal solution K(t +1) obtained using the In-
Sample set. This validation is based on the comparison of two
values of the same objective functional from (13), namely the
In-Sample optimal value

J1(Kopt(t +1))

and the following Out-of-Sample optimal value

J2(Kopt(t +1)) :=
M2

∑
j=1

(
χ(δ Iopt(t +1))−

v j(t +1)p(·, t +1)
)2
.

(14)

Note that the Out-of-Sample optimal investment

δ Iopt(t +1))

in (14) is calculated using the optimal gains Kopt(t + 1)
(obtained on the In-Sample data set) and the basic expression
from (1). Moreover, the set of investment volumes v j(t + 1)
in (14) corresponds to the Out-of-Sample set:

v j(t +1), j = 1, ...,M2 −1.

The above optimization problem (13) will be considered as a
consistent (optimal) PID gains selection procedure if

|J1(Kopt(t +1))− J2(Kopt(t +1))| ≤ ε

for a sufficiently small prescribed ε > 0. Let us note that an
alternative validation procedure for the PID gains optimization
can involve the celebrated Monte Carlo approach (see e.g.,
[22],[37]).

We now apply the validated optimal gains vector

Kopt(t +1)

for defining the deployed (optimal) investment level

∆Iopt(t +1)

using the PID algorithm (1)-(3). The resulting optimal invest-
ment volume

vopt(t +1)

for the time instant (t +1) has the following expression:

vopt(t +1) :=
∆Iopt(t +1)
p(·, t +1)

.

Note that the complete trading decision at the time instant
(t+1) generated by the proposed algorithm can be formalized
using the following signal / volume pair:

{trading− signal, trading−volume} :=
{sign[∆Iopt(t +1)], |vopt(t +1)|}.

Here sign[·] is the signum function. Moreover,

trading− signal := sign[∆Iopt(t +1)]

denotes the optimal trading signal and

trading−volume := |vopt(t +1)|
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is the absolute value of the optimal investment volume. The
above trading signal / trading volume pair definitively de-
termines a (t + 1)-trading decision of proposed PID trading
algorithm. The proposed nonlinear optimization approach (13)
implies that the optimal investment decision

∆Iopt(t +1)

constitutes an a priori optimized value in the above sig-
nal/volume pair. The corresponding optimal volume vopt(t+1)
is in fact an a posteriori value that can be computed after the
stock prise p(·, t +1) is known.

B. Stochastic Optimal Gains Tuning

The optimal gains selection problem (13) from the previous
section constitutes a data driven regression-like approach. This
generic optimization approach leads to the constrained nonlin-
ear optimization and is based on the given historical stock
market data. The additional FT technique discussed in the
previous section is in fact an adequate expert driven clustering
of the complete historical data set. Note that this separation
of the data set is methodologically similar to the main idea
of the celebrated Monte Carlo method (see [14],[22],[37] and
references therein). Let us recall that the classic Monte Carlo
method contains the so called ”training” and ”validation” steps
(see [14],[17],[42] and references therein).

In this section we will formulate the stochastic optimization
problem for an adequate gains selection in the proposed PID
trading algorithm (1)-(3). The stochastic programming prob-
lem we consider is conceptually different to the regression-like
problem (13). It involves the advanced statistical description
of stock markets discussed in Section III. Using (11), we next
introduce the following minimization problem:

J(ω,K(t +1)) :=
M

∑
j=1

(
χ(δ I(t +1))−

exp
[

ln
( p(ω, t +1)

p(·, t)
)
+ lnθ(·, t)−

lnθ(ω, t +1)+ lnv(t)
]
× p(ω, t +1)

)2 → min
K(t+1)

subject to (1)− (3),(12)

(15)

The above optimization problem constitutes a nonlinear
stochastic program (see e.g., [14],[42]). Clearly, problem (15)
now contains a probabilistic costs functional

J(ω,K(t +1)).

The stochastic program (15) can be interpreted as a two stage
or a multi stage problem. However, we consider here the
scenarios based Monte Carlo optimization approach (see e.g.,
[14]). In this section, we study this problem only from a
conceptual point of view and discuss the corresponding Monte
Carlo sampling solution scheme.

Taking into consideration the mean approach we replace
(15) by the following deterministic program:

JE(K(t +1)) :=
M

∑
j=1

Eρ1(·),ρ2(·)
(
χ(δ I(t +1))−

exp
[

ln
( p(ω, t +1)

p(·, t)
)
+ lnθ(·, t)−

lnθ(ω, t +1)+ lnv(t)
]
× p(ω, t +1)

)2 → min
K(t+1)

subject to (1)− (3),

χ(KP(t +1)∆g(t)+KD(t +1)∆̇g(t)+

KI(t +1)
∫ t

t−T
h(τ)∆g(τ)dτ) =

Eρ1(·),ρ2(·)
(

p(·, t)exp
[

ln
( p(ω, t +1)

p(·, t)
)
+ lnθ(·, t)−

lnθ(ω, t +1)+ lnv(t)
])
.

(16)

Here

Eρ1(·),ρ2(·)

is the mathematical expectation operator with respect to the
(joint) pdf for the pair

(θ(ω, t),ϑ(ω, t))

of quotients θ and ϑ introduced in Section III. Note that
the log-normal characterization of the probability distribution
functions ρ1(·) and ρ2(·) implies a specific insufficiency of
the use a mathematical expectation in (16). The mean value
optimization problem (16) does not possesses the necessary
robustness property. This fact can imply some losses of deposit
in the case problem (16) is directly applied to trading. In
this situation one can replace the mean Eρ1(·),ρ2(·) in (16)
by a known robust statistical characteristic (median and ctr.)
associated with the pdf of the pair (θ(ω, t),ϑ(ω, t)).

Let us also note that the initial stochastic problem (15) as
well as the auxiliary (deterministic) problem (16) constitute
non-data driven optimization. These abstract problems use the
model-based approach that involves the log-normal probability
distribution functions ρ1(·) and ρ2(·). This fact constitutes a
conceptual difference of between the data driven PID gains
optimization (13)-(14) and the alternative PID tuning strategy
based on the stochastic optimization problem (15).

The auxiliary problem (16) provides a possible approach for
the numerical treatment of the initial problem (16). Following
the Monte Carlo methodology, we define some probabilistic
scenarios

P(ω = ωi), i = 1., , ,N

for some probabilities P(·) associated with the realizations of
the stochastic variables (”events”)

Γ := {ω1, ...,ωN}.
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The celebrated scenarios based approximating problem for
(16) can now be formalized as follows:

JE(K(t +1)) :=
M

∑
j=1

N

∑
i=1

P(ω = ωi)
(
χ(δ I(t +1))−

exp
[

ln
( p(ωi, t +1)

p(·, t)
)
+ lnθ(·, t)−

lnθ(ωi, t +1)+ lnv(t)
]
× p(ωi, t +1)

)2 → min
K(t+1)

subject to (1)− (3),

χ(KP(t +1)∆g(t)+KD(t +1)∆̇g(t)+

KI(t +1)
∫ t

t−T
h(τ)∆g(τ)dτ) =

N

∑
i=1

P(ω = ωi)
(

p(·, t)exp
[

ln
( p(ωi, t +1)

p(·, t)
)
+ lnθ(·, t)−

lnθ(ωi, t +1)+ lnv(t)
])
.

(17)

Evidently, the finite sum in (17)
N

∑
i=1

P(ω = ωi)g(ωi, ·),

where g(ωi, ·) denotes the corresponding function in (17) for a
concrete event ωi, approximates the mathematical expectation
Eρ1(·),ρ2(·) in the auxiliary problem (16).

Similar to the FT methodology used in the previous section,
we now divide the above N-dimensional event set Γ into two
subsets and define a suitable N1-dimensional training set and
an additional N2-dimensional validation set

Γ1 := {ω1, ...,ωN1},
Γ2 := {ω1, ...,ωN2}.

Here
N1 +N2 = N.

with
N ≫ N1.

The above division of the initially given N-dimensional sce-
narios set Γ makes it possible to consider the basic Monte
Carlo approximating problem (17) on the training set Γ1 and
then on the full scenarios set Γ. In the case of an admissible
mismatch in the values of objective functionals of problem
(17) considered on Γ1 and on the full set Γ the optimization
procedure is successfully completed. Otherwise, one needs to
increase the dimensionality of the historical data set and repeat
the above training and validation steps in the Monte Carlo
framework.

V. FREQUENCY DOMAIN REPRESENTATION OF THE PID
TRADING ALGORITHM

A formal frequency domain involved description of the
feedback based trading approach can be found in [4]. Let
us recall that the frequency domain analysis constitutes a
generic approach of the classic CE. We refer to [34] for the
corresponding mathematical foundations and computational

details of the Laplace and Fourier transforms in the CE
framework.

In this section, we discuss the frequency domain analysis of
the proposed PID trading algorithm (1) - (3). Let us also ob-
serve that the above PID trading algorithm can be interpreted
as a control design with time delays. Taking into consideration
the main profit formulae (3), the linear expression δ I(t + 1)
in (1) can be considered as an ARMA-like formal model.
Hence the final expression for ∆I(t+1) in the PID structure (1)
constitutes in fact a nonlinear ARMA abstraction. Note that the
consideration of the classic PIDD regulator in the frequency
domain constitutes a standard approach of the conventional
control systems theory. Let us also observe that the discrete
time PID control (4) can be naturally interpreted as a delayed
proportional control.

We next apply the celebrated Discrete Signal Processing
(DSP) approach and interpret the linear expression for δ I(t +
1) in (1) as a linear filter. Application of the Z-transform to
the discrete PID (4) implies the following generic form of the
causal discrete-time Finite Impulsive Response (FIR) filter (see
[35]):

Y (z) = (KP(s+1)+KI(s+1)+KD(s+1))z+

[(KI(s+1)h(s)−KD(s+1))z−1+

KI(s+1)h(s−1)z−2 +KI(s+1)
s−2

∑
τ=s−T

h(τ)z−τ ].

(18)

Here Y (·) denotes the resulting Z-transform of the specific
output signal δ I(t + 1). Note that z is the proper variable in
(18) and s+ 1 indicates the current PID gains. We next can
easily obtain the Frequency Response (FR) function for the
above FIR filter (18). Recall that FR of the filter (18) is a
result of a the formal application of the DTFT (Discrete Time
Fourier Transform) to the FIR (18). Following [35] we put

z ≡ exp(− jω),

where j in (18) denotes the imaginary unit. The FR of the
PID trading algorithm (1)-(3) can now be written as follows:

FR( f ) = (KP(s+1)+KI(s+1)+KD(s+1))×
exp(− j f )+ [(KI(s+1)h(s)−
KD(s+1))× exp( j f )+

KI(s+1)h(s−1)× exp(2 j f )+

KI(s+1)
s−2

∑
τ=s−T

h(τ)× exp(τ j f )].

(19)

Here f denotes the frequency of a dynamic process. Note that
the obtained FR expression (19) for the proposed PID trading
algorithm makes it possible to apply the frequency domain
methodology for the necessary tuning of the PID gains. The
historical stock market data can be used here for an optimal
selection of the above gains.

Let us give an illustrative computational example of the
FR function. Consider an one day spot rate dynamics of the
Binance BTC/USDT exchange (Figure 3).
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Fig. 3. The one-day spot rate dynamics on the Binance BTC / USDT exchange

The corresponding DTFT of the one day FIR filter dynamics
(18), namely, the resulting FR (19) is presented on Figure 4.

Fig. 4. The FR characteristic of the Binance BTC / USDT spot rate

In fact, the resulting frequency diagram, namely, Figure
4 represents a specific ”market energy” distribution by the
corresponding frequencies. This energetic interpretation of
the presented DTFT is based ob the fundamental Parseval´s
theorem in from the classic Fourier analysis (see e.g., [35]).
Motivating from this consideration we introduce the following
price energy concept associated with the historical stock
market data:

E :=
N

∑
i=1

FR2( f ),

where N corresponds to the dimension of one day data set
under consideration and FR( f ) is the corresponding Frequency

response associated with this data set.
Finally, note that the proposed PID trading algorithm (1)-(3)

can also be combined with the several well-known momentum
trading strategies (see e.g., [31],[32]). In the framework of a
stock market we a are looking for a function

S : Ω×Z+ → R,

the trading strategy. For example, the celebrated fixed-mix
strategy Sconst(·, ·) that keeps the value fraction of a risky asset
constant has the following easy formalization:

S(ω, t +1) =
c

p(ω, t +1)
,

where c is a given constant. The celebrated (random) trend-
following momentum strategy S(·, ·) can also be easy repre-
sented:

S(ω, t +1) = tr{S}(t +1)+ζ (ω, t +1). (20)

Here
tr{S}(t +1)

denotes a trend of the stochastic process S(ω, t+1). By ζ (·, ·)
we denote here the stochastic nois model of the generic market
fluctuations. The trend following model (20) provides a future
promising tool for an optimal FR based PID gains selection
procedure. In fact, a frequency domain analysis provides a
natural analytic CE tool for the HFT algorithmic trading.

VI. PROTOTYPE SOFTWARE FOR IMPLEMENTATION OF
THE PID TRADING ALGORITHM

We now present an application of the developed PID based
AT technique to a real-world stock market data. Consider
the Binance Bitcoin/USDT futures stock and apply the pro-
posed optimal PID trading algorithm (1)-(3). Consider the
BTC/USDT futures price dynamics mentioned above as pre-
sented in Figure 5.

Fig. 5. Binance BTC / USD one day price index

We have applied the novel OPID trading algorithm to the
above example. The PID gains optimal tuning procedure for
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this example was determined as a data driven optimization dis-
cussed in Section IV. The corresponding (positive) dynamics
of the return is now presented in Figure 6.

Fig. 6. Binance BTC / USD one day price index

Note that the operation time for every subsequent trading
decision of the OPID in this example is timely restricted.
The stock market under consideration has an obvious high-
frequency behaviour. This fact naturally implies some expected
difficulties of the common trading algorithms. In particular,
this concerns the widely used moving average trading and
the general trend following trading strategies. As one can
see, the developed OPID constitutes an adequate approach
to the HFT. The time ticks in the above trading example
under consideration are significatively dense. The length of
the corresponding intervals of trading buckets is equal to 1.728
sec.

Let us also observe the typical ”hyperregulation and sta-
bilization” dynamics of the proposed PID trading algo-
rithm (see Figure 3). This dynamic behaviour is a charac-
teristic one for the conventional PID controller (see e.g.,
[1],[3],[27],[28],[34]). The presented practical example illus-
trates the implementability of the developed PID trading
algorithm AT. Moreover, as we can see the resulting financial
behaviour of the return is a profitable behaviour.

VII. CONCLUDING REMARKS

In this paper, we developed a novel trading algorithm
that involves the model-free PID control methodology and
some well established statistical characteristics of the stock
market data. The proposed analytic approach can naturally
be extended to the real-time multi-asset trading. Moreover,
it can also be efficiently combined with some classical trading
strategies. The main idea of the proposed PID control approach
to the algorithmic trading consists in modern data involved
optimization techniques. These advanced optimization proce-
dures determine an optimal calibration (optimal tuning) of
the main PID trading parameters, namely, of the PID gains.
The resulting optimal PID gains calculated for every stock

price tick define a current trading decision. The optimization
procedures mentioned above involve the conventional FT
techniques in combination with the regression analysis as well
as the Monte Carlo method from stochastic optimization.

The given historical stock market data, the statistical prop-
erties mentioned above and the data driven optimization
techniques are constructively used for an adequate calibration
(tuning) of the PID trading algorithm gains. This calibration
involves the advanced backtesting procedure. The resulting
optimal trading PID strategy generates at every subsequent
time instant a profitable decision of the ”buy/sell/hold” type for
the stock market orders. In fact, the proposed CE like approach
to the AT involves a combination of some mathematically
rigorous tools, namely, the classic PID control methodology,
applied statistics and computational optimization. This inter-
connected structure of the obtained trading algorithm and the
model-free character of the PID scheme indicate the applica-
tion possibility of the modern ML approaches to the design
of the PID type trading algorithms (see e.g., [12],[13],[26]).
The above combination of different mathematical tools finally
leads to a novel and very promising trading strategy. The
resulting implementable PID trading algorithm, the discussed
initial software prototypes and the corresponding real-world
scenario based simulations extend the family of the feedback
based trading algorithms. We also expect a profitable appli-
cation of the proposed optimized PID trading methodology
in the High-Frequency Trading. Note that the developed PID
based trading approach can also be involved (as an additional
tool) into the several mathematical concepts of the modern
financial engineering. For example, it can be considered in
the framework of the well established financial time series
analysis and Kalman filter techniques (see e.g., [3],[6],[29]).
The proposed PID trading algorithm is also compatible with
the generic price prediction and trend following techniques
(see e.g., [24]).

Finally note that the algorithmic trading strategy proposed
in our paper constitutes an initial theoretical development.
We are mostly concentrated here on the mathematical and
algorithmic aspects of the proposed technique. The prototypes
of the financial solutions for the stock market proposed in our
contribution need the comprehensive additional analytic de-
velopment, the corresponding simulations, further backtesting,
adequate optimization approaches and practical applications to
the real stock markets.

REFERENCES

[1] V. Azhmyakov, I. Shirokov, Yu Dernov and L. A. Guzman
Trujillo, On the Proportional-Integral-Derivative based trading
algorithm under the condition of the log-normal distribution
of stock market data, in: Proceedings of the The Sixteenth
International Conference on Advanced Engineering Computing
and Applications in Sciences (ADVCOMP 2022), 2022, pp. 17
– 21.

[2] I. Antonioua, V. V. Ivanova, V. V. Ivanov and P. V. Zrelova,
On the log-normal distribution of stock market data, Physica
A, vol. 331, 2004, pp. 617 – 638.



131

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] V. Azhmyakov, A Relaxation Based Approach to Optimal
Control of Switched Systems, Elsevier, Oxford, UK, 2019.

[4] V. Azhmyakov, J. Pereira Arango, M. Bonilla, R. Juarez del
Torro and St. Pickl, Robust state estimations in controlled
ARMA processes with the non-Gaussian noises: applications
to the delayed dynamics, IFAC PapersOnline, vol. 54, 2021,
pp. 334 – 339.

[5] V. Azhmyakov, I. Shirokov and L. A. Guzman Trujillo, Appli-
cation of a switched PIDD control strategy to the model-free
algorithmic trading, IFAC PapersOnline, vol. 55, 2022, pp. 145
– 150.

[6] O. Bahmani and B. Ford, Kalman Filter approach to estimate
the demand for international reserves, Applied Economics,
2004, vol. 36, pp. 1655 – 1668.

[7] B. R. Barmish, On trading of equities: a robust control
paradigm, IFAC Proceedings Volumes, vol. 41, 2008, pp. 1621
-– 1626.

[8] B. R. Barmish and J. A. Primbs, On market-neutral stock
trading arbitrage via linear feedback, in: Proceedings of the
American Control Conference, Montreal, Canada, 2012, pp.
3693 – 3698.

[9] B. R. Barmish and J. A. Primbs, On a new paradigm for stock
trading via a model-free feedback controller, IEEE Transactions
on Automatic Control, vol. 61, 2016, pp. 662 -– 676.

[10] M. H. Baumann, On stock trading via feedback control when
underlying stock returns are discontinuous, IEEE Transactions
on Automatic Control, vol. 62, 2017, pp. 2987 -– 2992.

[11] A. Bemporad, T. Gabbriellini, L. Puglia and L. Bellucci,
Scenario-based stochastic model predictive control for dynamic
option hedging, in: Proceedings of the IEEE Conference on
Decision and Control, Atlanta, USA, 2010, pp. 3216 -– 3221.

[12] D. Bertsekas, Reinforcement Learning and Optimal Control,
Athena Scientific, Nashua, USA, 2019.

[13] D. Bertsimas and A. W. Lo, Optimal control of execution costs,
Journal of Financial Markets, vol. 1, 1998, pp. 1 -– 50.

[14] J.R. Birge and F. Louveaux, Introduction to Stochastic Pro-
gramming, Springer, New York, USA, 2011.

[15] F. Black and M. Scholes, The pricing of options and corporate
liabilities, Journal of Political Economy, vol. 81, 1973, pp. 637
— 659.

[16] C. Brooks, Introductory Econometcs for Finance, Cambridge
University Press, Glasgow, UK, 2015.

[17] G. Cornuejols and J. Pena, R. Tutuncu, Optimization Methods
in Finance, Cambridge University Press, Cambridge, UK, 2018.

[18] E. L. Crow and K. Shimizu (Eds.), Lognormal Distributions,
Theory and Applications, Marcel Dekker, Inc., New York, 1988.

[19] S. Formentin, F. Previdi, G. Maroni and C. Cantaro, Stock
trading via feedback control: an extremum seeking approach,
in: Proceedings of the Mediterranean Conference on Control
and Automation, Zadar, Croatia, 2018, pp. 523 – 528.

[20] R.G. Gallager, Stochastic Processes, Cambridge University
Press, NY, USA, 2013.

[21] P.E. Gill, W. Murray and M.H. Wright, Practical Optimization,
Academic Press, New York, USA, 1981.

[22] C. Hammel and W. B. Paul, Monte Carlo simulations of a
trader-based market model, Physica A, vol. 313, 2002, pp. 640
– 650.

[23] T. Hens and M. O. Rieger, Financial Economics, Springer,
Berlin, Germany, 2010.

[24] S. Huang, Online option price forecasting by using unscented
Kalman filters and support vector machines, Journal of Expert
Systems with Applications, vol. 34 , 2008, pp. 2819 -– 2825.

[25] P.J. Huber and E.M. Ronchetti, Robust Statistics, Wiley, New
York, USA, 2005.

[26] St. Jansen, Machine Learning for Algorithmic Trading, Packt,
Birmingham, UK, 2020.

[27] A. Issidori, Nonlinear Control Systems, Springer, London, UK,

1995.
[28] H. K. Khalil, Nonlinear Control, Pearson, Boston, USA, 2015.
[29] F. L. Lewis, Optimal Estimation, Wiley, New York, USA, 1986.
[30] J, Liu and S.J. Wright, Asynchronous stochastic coordinate

descent: Parallelism and convergence properties, SIAM Journal
on Optimization, vol. 25, 2015, pp. 351 – 376.

[31] S. Malekpour, J. A. Primbs and B. R. Barmish, On stock trading
using a PI controller in an idealized market: the robust positive
expectation property, in: Proceedings of the IEEE Conference
on Decision and Control, Florence, Italy, 2013, pp. 1210 –
1216.

[32] R. Michaud, Efficient Asset Management, Oxford University
Press, UK, 2008.

[33] A. Nemirovski, A. Juditsky, G. Lan and A. Shapiro, Robust
stochastic approximation approach to stochastic programming,
SIAM Journal on Optimization, vol. 19, 2009, pp. 1574 – 1609.

[34] A. Poznyak, Advanced Mathematical Tools for Automatic Con-
trol Engineers: Deterministic Technique, Elsevier, NY, USA,
2008.

[35] A. Poznyak, Advanced Mathematical Tools for Automatic
Control Engineers: Stochastic Tools, Elsevier, NY, USA, 2009.

[36] J. Prakash and K. Srinivasan, Design of nonlinear PID con-
troller and nonlinear model predictive controller for a contin-
uous stirred tank reactor, ISA Transactions, 2009, vol. 48, pp.
273 – 282.

[37] R.Y. Rubinstein, Simulation and the Monte Carlo Method, John
Wiley Inc., New York, USA, 1981. 1981).

[38] M.B. Rudoy and C.E. Rohrs, A dynamic programming ap-
proach to two-stage mean-variance portfolio selection in coin-
tegrated vector autoregressive systems, in: Proceedings of the
IEEE Conference on Decision and Control, Cancun, Mexico,
2008, pp. 4280 – 4285.

[39] A. Shapiro and T. Homem-de-Mello, On the rate of conver-
gence of optimal solutions of Monte Carlo approximations of
stochastic programs, SIAM Journal on Optimization vol. 11,
2000, pp. 70–86.

[40] S. Taylor, Modeling Financial Time Series, Wiley, Chichester,
UK, 1986.

[41] N. Vo and R. Slepaczuk, Applying hybrid ARIMA-SGARCH in
algorithmic investment strategies on S&P500 index, Entropy,
vol. 24, 2022.

[42] R.J-B Wets, Stochastic programming. in: G.L. Nemhauser,
A.H.G. Rinnooy Kan, and M.J. Todd, Eds., Optimization,
Handbooks in Operations Research and Management Science
vol. 1, North–Holland, Amsterdam, Netherlands, 1990.

[43] S.A. Zenios, Financial Optimization, Cambridge University
Press, Cambridge, UK, 1993.

[44] W.T. Ziemba and R.G. Vickson, Stochastic Optimization Mod-
els in Finance, Academic Press, New York, USA, 1975.


