
1

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Formalism for Explaining Concepts through
Examples based on a Source Code Abstraction

Mirco Schindler∗, Christian Schindler† and Andreas Rausch‡
Institute for Software and Systems Engineering

Clausthal University of Technology
Clausthal, Germany

∗ Email: mirco.schindler@tu-clausthal.de
† Email: christian.schindler@tu-clausthal.de
‡ Email: andreas.rausch@tu-clausthal.de

Abstract—Design and architecture patterns are proven
domain-independent solution approaches for common problems
occurring in the development of software systems. Correct
implementation of the design pattern is essential to guarantee
the problem-solving capabilities of patterns. As the developers
need to perform a context-specific adoption of the design pattern
to the software system, we argue that their comprehension
plays a crucial role in creating and maintaining such correct
implementations over the system’s lifespan. Even with migration
and integration of legacy components into an adaptive System,
where other paradigms are used, for example, must be compatible
on a conceptual level. Given a set of implementation samples,
this paper intends to separate essential syntactic information
from varying aspects. We introduce an approach that abstracts
given object-oriented implementations by semantically resolving
and splitting an Abstract Syntax Tree into small paths. The
contribution this paper provides is composed of two parts. First,
we introduce an approach to extract negligible details of given
concept examples to distill the essence of concepts, and the second
part presents a formal foundation to describe and interact with
concepts. Based on this foundation, we derive several underlying
problem statements.

Index Terms—Software Architecture; Architectural Concepts;
Design Pattern; Concept Extraction; Source Code Comprehension.

I. INTRODUCTION

This is an extended journal paper extending the work
presented in [1]. Design patterns have been established for
reusing proven solutions to a class of problems. Nevertheless,
especially for a dynamic adaptive system, the correct imple-
mentation of adaptation mechanisms is essential for the quality
of the overall system. Patterns are described informally or
semi-formally as context-independent solution concepts. As a
consequence, in order to apply a design pattern, it is necessary
to embed it into the actual implementation context; to do so, a
common understanding of the concept provided by the pattern
had to be established [2] [3].

To relate implementation and architecture, the Unified Mod-
eling Language (UML), for example, offers the mechanism of
collaborations within the context of a composition structure
diagram and the context-specific embedding in a given domain.
Here, the description is separated from the actual application
in modeling. Collaborations describe the composition of roles,

which must be linked to specific parts of the application [4]
[5].

Faulty implementations of patterns may produce function-
ally correct solutions but may lack the (mainly) non-functional
properties provided by the pattern, such as specific modularity
goals or specifications from the software architecture [6].
Inaccurate implementations can emerge not only in the initial
implementation of the pattern but also from side effects
introduced with changes, even elsewhere in the codebase
[7] [8]. In particular, in a scenario where system parts and
components are implemented and maintained heterogeneously
and by different companies and development teams, as is
unavoidable in an adaptive Software Ecosystem, for example
[9].

If a legacy system or component is to be migrated and
integrated, for example, to satisfy a specific adaptation mech-
anism, it is necessary to check the current implementation’s
compatibility. For this, it is helpful to find design patterns
in existing code to comprehend the whole system better.
Especially if it is written by other developers or not further
documented. With a focus on code comprehension, it is
necessary to extract more complex architectural patterns from
simple code patterns iteratively. As a starting point, this paper
contributes to recognizing design patterns by generating a
data-driven interpretable representation of the design pattern
from a set of implementation examples and counterexamples.
No formal specification of the design pattern beforehand is
needed. This paper addresses the following Research Ques-
tions (RQs): RQ1: Is it possible to abstract different concrete
implementations of the same architectural design pattern so
that the abstractions show a similarity? RQ2: Is it possible to
formulate what the shared concept consists of across multiple
samples? RQ3: Is it possible to classify unseen samples using
the introduced formulation mechanism?

The contribution of the extension is the provided formal
context on top of the introduced approach. On the one hand,
this is necessary to work out the underlying problems and,
on the other hand, to provide a formal foundation for further
work. First, we introduce the terms and understanding of a
Concept (Definition 1) and Context (Definition 2) in general.
Then, based on the extensional description of sets, we define

2

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

an Architecture Concept (Definition 5) as a named Set of
semantic equivalent examples. We introduce the Abstract
Syntax Graph (ASG) (Definition 6) as an extension of the
Abstract Syntax Tree (AST). Further on, we derive the term of
an Atomic Concept (Definition 7) and a Minimal Example
(Definition 10). Concerning the compositional characteristic
of a concept, we propose a Role pattern (Definition 9). We
close by introducing a concept for instanziation (Definition
11).

Furthermore, we have derived challenges from the proposed
theory. We have outlined possible solutions to address them by
introducing the so-called Concept-Graph (Definition 14) and
deal with similarity instead of equality by defining the Fuzzy-
Hypergraph (Definition 16) as an extension of the underlying
graph representation.

Section II gives foundations on programming languages and
the construction of the ASTs. Section III introduces the source
code abstraction approach alongside two different levels of
abstraction. Section IV is the evaluation of the stated RQs with
a discussion of the results and limitations. Section V gives a
formal approach for describing concepts. Section VI presents
an overview of related work. Section VII opens challenges of
extracting architectural concepts from given implementations.
Finally, the conclusion and an outline of future work are given
in Section VIII.

II. FOUNDATION

This paper investigates the compositionality of abstract con-
cepts. The inputs for the presented approach are syntactically
correct but not executable source code artifacts. The focus is,
therefore, on the static structure of a program. This structure is
defined by the syntactic and semantic rules of a programming
language. Each programming language consists of a set of
programming concepts and specified paradigms, applying to
modern programming languages that do not strictly follow one
paradigm [10].

These concepts, defined by the programming language, are
called atomic concepts (see Definition 7) in the following
and manifest themselves in the source code by the language’s
keywords. Programming languages are formal languages be-
cause they consist of words over a given and finite alphabet
[11]. Thus, the words are well-formed concerning a fixed and
finite set of formal production rules [12]. Moreover, the lexical
grammar of a programming language is usually context-free
[13].

A grammar G consists of a four-tuple.

G(N,Σ, R, S) (1)

with N : finite set of nonterminal symbols,
disjoint with the strings produced from G.
Σ : finite set of terminal symbols, disjoint from N .
R : finite set of production rules: N → (Σ ∪N)∗

where * is the kleene star operator.
S : distinguished start symbol, S ∈ N .

We focus on object-oriented programming languages. Con-
sequently, the type-system plays an important role and can be
understood as an assurance to operations and documentation
that can not be outdated. Types predefined by the programming
language are so-called atomic types. Out of these atomic
types, abstract types are constructed. The step of abstraction,
which is also the foundation of the principle of information
hiding, of abstract types is the structure defined by fields and
an interface specified by the operations.

Since the languages considered here are formal, an au-
tomaton can be specified, which can process the character
stream of the source code artifact. This is also the first step in
compiling a program. Figure 1 shows the steps relevant to this
paper of analyzing a program by a compiler. First, a scanner
transforms the input stream into a language-specific token
stream during lexical analysis. The tokens are also significant
parts of a program, as they contain the atomic concepts of
the programming language. This step reduces complexity,
aggregates character, and identifies keywords. Then, a tree is
generated from the token stream during syntactic analysis. A
tree is a recursive data structure and a particular type of graph
structure (a formal definition can be found in Section III-D)
with a dedicated root node containing no cycles. Finally, each
recognized token is converted to a node in the tree. Then, a
semantic analysis is performed since not all rules, especially
context-dependent ones, can be checked during derivation.
This step also resolves the types, and names and annotates the
tree’s nodes to reflect this. Therefore, a symbol table is used
to map each symbol with associated information like type and
scope.

Through the instantiation of types, another kind of context-
dependencies arises, which leads to the fact that the semantic
meaning of a word derived by the grammar is no longer
unique.

The challenge in extracting higher-level concepts up to
architectural concepts is that these concepts are not included
as concepts in the programming language. Instead, these can
be understood as the composition of atomic concepts within a
respective context. For program comprehension, it is essential
to get a precise understanding of the concepts used in the
implementation. Therefore with the increasing complexity and
evolution of the program describing the essence of a concept
in a comprehensible way to humans is a critical task.

It follows directly from the chosen class of language type
that the set of generated concepts is countably infinite. Also,
the set of reference implementations is infinite, with the dif-
ficulty that the same concept can be implemented in different
ways. Thus, similarity could not be detected with a simple
comparison of source code snippets.

III. SOURCE CODE REPRESENTATION

The main objective is a way to represent object-oriented
source code samples on an abstract level compared to the raw
source code files to enable interpretability on common parts
and differences. Reducing information such as the naming
of elements (e.g., methods, variables) or the order in which

3

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Programming

Character Stream
int foo(int x)
{

return x + 1;
}

Lexical Analysis

Token Stream

<int> <foo> <(> <int> <x> <)>
…

Syntactic Analysis

Concrete Syntax Tree (CST)

compilation unit

“foo” params

param

int {}

int“x”

return

+

“x” 1

compilation unit

“foo” params

param

int {}

int“x”

return

+

“x” 1

int

int -> int

int

int

int

int

int

Semantic Analysis

Abstract Syntax Tree (AST)

…

Symbol Table

Fig. 1: First steps of a compilation process [13]

parts of the snippet (methods, variables) are declared or logic
is handled (e.g., cases in a switch statement) help in this
approach as it distracts from syntactical similarities.

We introduce two different levels of abstraction that both al-
low the expression of smaller parts reoccurring across different
valid code snippets following the language’s grammar rules.
The abstraction level High (Section III-B) is more abstract
than level Low (Section III-C). The more concrete level of
abstraction has superior expressiveness as it adds constraints
across multiple reoccurring parts and allows for the distinction
of elements (e.g., methods, variables).

We will elaborate on our general approach (Section III-A),
being identical for both levels of abstraction first, then elabo-
rating on High (Section III-B), and adding in how we use the
concept of uniquely identifying parts in Low. In Section III-C
we explain how such constraints are added. In Section III-D
we address how abstractions of different samples can be
compared. Section III-E introduces the shared concept and how
to construct it based on given code samples.

A. Source code abstraction approach

The approach, as illustrated in Figure 2, takes source code of
arbitrary size as an input to generate an abstract representation
in the form of a set of Strings that represent its syntax
with additional information from the semantic analysis and
aggregation. The Strings are sequences of tokens retrieved
while processing the input that does not need to be exact
sequences of the Lexical Analysis, as shown in Figure 1. A
detailed walk-through example can be found in Sections III-B
and III-C, Figure 1 contains only an illustrative one.

We analyze the code snippets AST to get a syntactic repre-
sentation of the sample. The AST tokens get resolved during
the aggregation phase constructing an Aggregated Graph. By
combining the ASTs paths and the Aggregated Graph, we
create the flattened Abstraction.

Subsequently, we formalize the required representations
(AST, Graph, and the Abstraction) and concepts (path, ag-
gregation function). Based on these definitions, we introduce
the idea of a shared concept.

We define the graph g ∈ GRAPH by the following
signature:

g(V,E) := {V = {v1, v2, . . . , vn} , E ⊆ V × V } (2)

with V : finite indexed set of nodes.
E : finite indexed and ordered set

of directed edges {vi, vj}

and a tree t ∈ GRAPH being a special cycle-free graph
with a root node vroot and a set of leaf nodes Vleaf

t(V,E, vroot, Vleaf) := {g(V,E), vroot, Vleaf} (3)

with Vleaf ⊂ V ∧ vroot ∈ V

∀v ∈ V ∄v | {vroot, v} ∈ E

∀vleaf ∈ Vleaf ∄v | {v, vleaf} ∈ E

A path p in a tree t is a sequence of nodes V connected by
edges E. The first node needs to be a leaf node and the final
node needs to be the root node vroot of t.

p(V,E) := {V,E} (4)

with V := {vi | 1 ≤ i ≤ n}
v1 ∈ t(Vleaf) ∧ vn = t(vroot)

E := {{vj−1, vj} | 2 ≤ j ≤ n}

In the Aggregation step, the nodes of the AST get mapped
to nodes of a resulting Aggregated Graph, by an aggregation
function faggregate(t) := Vt → Vg .

To construct the abstract representation a a concrete aggre-
gation function combines the information of all paths P of the
tree and the graph g itself. P is the set of paths containing
each path from every leaf node of Vleaf to the root node vroot.
It is defined by the following signature:

4

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

{
…
…

}

10

74 5

8

6

32

1

9

10

7

4

5 6

32

1

9

{
4_2_1
5_2_1,
4_6_3_1,
10_9_6_3_1,
7_3_1

}

Path information

Source Code Abstract Syntax Tree (AST) Aggregated Graph Abstraction

Parsing Aggregation Flattening

Fig. 2: Overall approach of the source code abstraction

1 public class FooBar {
2 public void foo() {…}
3 public void bar() {…}
4 }

Fig. 3: Java implementation of a class with two methods -
program 1

P :={p | p(v1) ∈ t(Vleaf) ∧ p(vn) = t(vroot)∧ (5)
∀vleaf ∈ t(Vleaf)∃!p | vleaf ∈ p(V)}

An abstraction is defined by the function fabstract :

fabstract(t, faggregate(t)) := (Vt, Et)× (Vg, Eg) → P (6)

To obtain the flattened abstraction, we combine the path
information from the tree and the node information from the
aggregated graph. The structure of the flattened Strings in
the abstraction comes from the Paths P in the AST. The
information of the relevant nodes results from applying the
faggregate function to the nodes of the paths p ∈ P . The final
abstraction is a set of all distinct flattened Strings. In the
example Figure 2, the aggregation merges the nodes 4 and
8 (from the AST). Those nodes represent the same semantic
unit (e.g., the same literal) In this case p is ”8 6 3 1”, after
applying faggregate the flattened String is ”4 6 3 1”.

B. Abstraction level High

The nodes (tokens) in an AST have additional traits. We
utilize the type of the node, which indicates what part of the
language the node reflects (e.g., the declaration of a class or
the call of a method). In addition, we use the information
of more basic nodes (e.g., keywords, primitive operators) to
represent individual nodes per manifestation (e.g., TRUE and
FALSE for Boolean values) and one node per Modifier (e.g.,
PRIVATE, PUBLIC, and STATIC). On High, the aggregation
step summarizes all nodes of the same type (e.g., all nodes
that declare methods) into a single node.

Figure 3 shows a short code snippet that we will use for both
abstraction levels to illustrate the approach and the resulting
representations. The sample consists of a public class FooBar

containing two methods (foo and bar). The content of the
methods is left out, as it would be hard to display the resulting
ASTs and graphs. As illustrated in Figure 2, we start with
traversing the AST. The resulting tree is shown in Figure 4.
In the tree, we can see the individual statements reflected
by nodes and corresponding edges. Each node contains the
information of the type of the node (e.g., ClassDeclaration
for the root element) and, if available additional information
such as the reflecting values associated with the nodes (e.g.,
SimpleNames reflecting the name of the class FooBar and the
names of the methods foo and bar) or the proper modifier (in
this case PUBLIC in all instances).

The higher-level aggregation rules of nodes are: (i) resolve
keywords from the language. This includes Primitive Opera-
tors, Primitive Types, Modifiers, TRUE, FALSE, and (ii) reduce
other nodes to the assigned types.

Figure 6a shows the resulting graph by applying the aggre-
gation rules. Our abstraction aims to (i) consist of multiple
small parts (ii) likely to be contained in multiple samples.
From the tree (Figure 4), the graph (Figure 6a), and the aggre-
gation rules , it is possible to construct the paths in Figure 5.
Here underscore separates the nodes in a flattened path.

Carried information High: The paths extracted carry
certain information enabling reasoning about the original
program. For example, the second path states that there is
a PUBLIC ClassDeclaration (line 1 of the code sample in
Figure 3). The third path states a PUBLIC MethodDeclaration
in a ClassDeclaration. From the information contained in the
abstraction, we cannot tell which methods foo or bar this
particular path represents.

On High, we cannot conclude across multiple paths. For
example, it is impossible to state that the MethodDeclaration
from paths 3 and 4 are part of the same Method. On the
one hand, this shows that the abstraction level is capable of
reflecting the general structures of the original code while
being able to ignore the order of appearance in the original
implementation. On the other hand, the abstraction lacks the
distinction of different elements and the ability to connect
multiple paths related to each other.

5

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ClassDeclaration

SimpleName Modifier MethodDeclaration

ReturnType

MethodDeclaration

Modifier SimpleName ReturnTypeModifier SimpleName

“FooBar”

PUBLIC

PUBLIC

PUBLIC“foo” “bar”VOID VOID

Fig. 4: AST of program 1

1 SimpleName_ClassDeclaration
2 PUBLIC_ClassDeclaration
3 PUBLIC_MethodDeclaration_ClassDeclaration
4 VOID_MethodDeclaration_ClassDeclaration
5 SimpleName_MethodDeclaration_ClassDeclaration

Fig. 5: Abstraction High of program 1

C. Abstraction level Low

The stated drawbacks of High get addressed at Low,
containing more information from the original sample. The
overall approach (Figure 2) still holds, with different steps in
the aggregation phase. Semantic analysis of the AST is utilized
to resolve elements. We introduce indices to those resolved
elements, allowing the distinction of multiple nodes (of the
same type and even across multiple types). The aggregation
rules are as follows: (i) exactly as the first rule on High; (ii)
identification of Classes and Methods by their signature; and
(iii) resolution (Simple)Names with an index per unique name.

According to the stated rules, aggregation of the AST leads
to the graph illustrated in Figure 6b. The indices allow the
identification of elements. For example, we can still refer to
the methods using index 1 and 2. The index is attached in the
flat representation of the paths, separated by a hash symbol.
The resulting paths of the code sample on Low are given in
Figure 7. All the information of High is still contained in this
representation, as it is possible to remove all the indices and
remove the duplicated paths resulting in Figure 5.

Carried information Low: The indices allow (i) to con-
clude across multiple paths, (ii) to distinguish multiple ele-
ments of the same type (e.g., the two Methods), and (iii)
to express constraints that join different types seen in the
aggregation process to superior entities (e.g., using one index
for a specific MethodDeclaration and MethodCallExpression).

In Figure 7, all the paths are in the context of the
same ClassDeclaration(#1). We can draw conclusions about
MethodDeclaration(#1) from paths 3 and 4 and state that it is
PUBLIC and has the return type (VOID). The same holds for
paths (6 and 7 respectively for the second MethodDeclaration).
To distinguish elements across multiple paths the indices can
be used similarly. We can tell that paths 5 and 6 are not
belonging to the same MethodDeclaration.

D. Abstraction alignment

In the sections above, we introduced abstraction levels High
and Low for one single code snippet, both providing a set
of paths representing the snippet. We showed how to reason
across multiple paths of one abstraction. The next step in
making use of the representation is to reason across multiple
abstractions of different snippets x and y, by considering the
sets of paths Px and Py , respectively, that they generate. We
propose a Jaccard Similarity (Formula 7) based measurement,
leading to a high similarity if a lot of paths are in both sets
Px and Py , and little paths only in either set Px or Py .

jaccardSim(Px, Py) :=
| Px ∩ Py |
| Px ∪ Py |

(7)

On High it is easy to be calculated without further steps
needed, as no instance (e.g., multiple methods) are distin-
guished. On Low, the calculated similarity will depend on
the indices assigned to the individual parts in the aggregation
step, as the following example in Table I illustrates. The table
is two parts, with the upper part containing different paths
(left-hand side) and three abstractions (Pa, Pb1, and Pb2). An
x in the respective cell means that the path is part of the
abstraction. The lower part of the table contains the pairwise
Jaccard similarity. The similarity calculated differs between
jaccardSim(Pa, Pb1) and jaccardSim(Pa, Pb2) regardless of
both Pb1 and Pb2 being equally valid representations of a Class
having one PRIVATE and one PUBLIC Method.

In the presented approach (Figure 2) the indices get assigned
in order of node processing. If a node (e.g., a Method-
Declaration) has been seen before, the assigned index is
reused, otherwise, the next available index (per node type)
gets assigned. This could lead to Pb1 or Pb2 for the same
code sample, that are equally valid abstractions.

The idea to counteract this is by aligning the samples
to improve the similarity measured without alternating the
information contained in the abstractions. We achieve this
by looking for (sub)graph isomorphism and corresponding
permutations. In this example, a similarity-maximizing permu-
tation of Pb2 regarding Pa would be to swap the indices of the
two MethodDeclarations. An important remark is that such a
swap of indices needs to conform to the permutation rules (i)
the swap of indices needs to be done for all occurrences to not
invalidate a constraint and (ii) entities need to be respected, so
the index of such related types need to be aligned uniformly.

6

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ClassDeclaration

MethodDeclaration

VOIDPUBLIC SimpleName

(a) Abstraction level High

ClassDeclaration#1

MethodDeclaration#1

VOID

PUBLIC

SimpleName#1

SimpleName#2 SimpleName#3

MethodDeclaration#2

(b) Abstraction level Low

Fig. 6: Resulting graphs by aggregating nodes and edges of the example AST

TABLE I: SAMPLE ABSTRACTIONS AND CORRESPONDING PAIR-WISE JACCARD SIMILARITIES

paths on low abstraction level Pa Pb1 Pb2

PUBLIC ClassDeclaration#1 x x x
PUBLIC MethodDeclaration#1 ClassDeclaration#1 x x

VOID MethodDeclaration#1 ClassDeclaration#1 x x x
PRIVATE MethodDeclaration#1 ClassDeclaration#1 x
PUBLIC MethodDeclaration#2 ClassDeclaration#1 x

VOID MethodDeclaration#2 ClassDeclaration#1 x x
PRIVATE MethodDeclaration#2 ClassDeclaration#1 x

jaccardSim with Pa 1 0.6 0.33
jaccardSim with Pb1 0.6 1 0.429
jaccardSim with Pb2 0.33 0.429 1

1 SimpleName#1_ClassDeclaration#1
2 PUBLIC_ClassDeclaration#1
3 PUBLIC_MethodDeclaration#1_ClassDeclaration#1
4 VOID_MethodDeclaration#1_ClassDeclaration#1
5 SimpleName#2_MethodDeclaration#1_ClassDeclaration#1
6 PUBLIC_MethodDeclaration#2_ClassDeclaration#1
7 VOID_MethodDeclaration#2_ClassDeclaration#1
8 SimpleName#3_MethodDeclaration#2_ClassDeclaration#1

Fig. 7: Abstraction Low of program 1

The isomorphism between two graphs is a bijection (one-
to-one correspondence) between the nodes of the given graphs.
As the graphs in our case are not guaranteed to be of the same
size, we need to look into subgraph isomorphisms of the size
of the smaller graph. A subgraph m of a graph g is denoted
by:

m ⊂ g ⇐⇒ Vm ⊂ Vs ∧ Em ⊂ Es (8)

Finding such a bijection (candidate) of a subgraph consists
of two steps, (i) fixing a suitable subgraph and the (ii) one-to-
one correspondence. The verification of such a candidate can
be done with Formula 9. The graphs q and m are converted
to adjacency matrices (see Formula 10), and the bijection is
formulated as a permutation matrix Q. Q is constructed with
the nodes of one graph as rows, and nodes of the other graph
as columns, the cells representing a correspondence are filled
with 1, all others with 0. An adjacency matrix Dm contains a
row and column for each node of the graph m, the respective
cell is filled with 1 if there is an edge between those nodes,
with 0 otherwise.

Let q be a graph isomorphic to m, for some permutation

matrix Q:

q ∼= m ⇐⇒ ∃Q,Dm = Q×Dq ×QT (9)

Let Dm be the adjacency matrix of m, with:

Dmij :=

{
1 if {i, j} ∈ Em

0 otherwise
(10)

After an isomorphism has been found, the indices can be
aligned according to the permutation, allowing for the final
check to see if the resulting paths match. This is needed as g
(and Dm) do not contain the information of the original paths,
so the graph will accept possible paths not contained in the
abstraction.

E. Shared concept
We define a shared concept cshared as the set of similarities

and differences between a set of code snippets. The abstrac-
tions of code snippets, which contain the concepts cshared are
elements of the set Ain and code snippets, which are not an
implementation of the concept cshared, represent an element of
the set Aex.

Out of these two sets of abstractions of examples and
counterexamples, the representation of the shared concept is
derived as follows:

c(Ain, Aex) := {Pin, Pex} (11)

with Pin ∩ Pex = ∅
∀pin ∈ Pin ∧ ∀ain ∈ Ain | pin ∈ ain

∀pex ∈ Pex∃aex ∈ Aex | pex ∈ aex

∀pex ∈ Pex∄ain ∈ Ain | pex ∈ ain

7

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

MethodDeclaration

STATIC

ClassDeclaration

CompilationUnit

FieldDeclaration

VariableDeclaration

SimpleName
ClassOrInterfaceType

ConstructorDeclaration

PRIVATEPUBLIC

Fig. 8: Graph reconstructed from the Pin paths

Related to the above definition, a shared concept is de-
scribed by two sets of paths Pin and Pex. Each path pin ∈ Pin

is included in every single abstraction of Ain. Pex consists
of paths pex retrieved by the set of abstractions Aex. For
a path to be included in Pex it needs to be in at least one
abstraction of Aex and must not be in any abstraction of Ain.
The idea of those exclusion paths is to handle paths seen in
the programming language that have never been seen in a
positive example that is expected to include the shared concept.
By including samples from different repositories and business
domains into the sets Ain and Aex we hypothesize that
the shared concept is containing business-domain-independent
overlap.

After defining the shared concept in terms of Pin and Pex,
we can now reconstruct a graph based on the set of examples.
We could obtain different graphs containing details of (i) all
examples, (ii) only the examples Ain, or (iii) only examples
Aex, or even more fine-grained graphs. To construct the graph,
we reverse the flattening step shown in Figure 2 in the overall
approach. Note, that we are now working on the common paths
of multiple examples and are constructing a graph that is not
based on a single source code sample anymore. Figure 8 shows
the newly constructed graph primarily based on Pin (Figure
9). Containing all the nodes and (solid) edges. In addition, the
graph contains (dotted) edges coming from Pex (Figure 10),
which are between nodes that are present from Pin and not
already present through Pin.

We hypothesize that the resulting graph contains the com-
mon entities and their syntactic relationships and other known
syntactic relationships of the programming language that are
not part of any example of the concept.

IV. EVALUATION

The evaluation starts with describing the data set, which
was collected and annotated by the authors. The second part
introduces the singleton design pattern, as this is the case study
through the evaluation of the paper. The rest of the section
addresses the stated RQs. We start by finding similarities
on the abstraction levels (RQ1), calculating pair-wise Jaccard

TABLE II: ANALYSIS OF THE AMOUNTS OF PATHS IN
THE ABSTRACTIONS

min # of paths max # of paths avg. # of paths
low high low high low high

singleton 17 17 2379 646 247.26 88.61
non singleton 6 4 2856 983 421.16 157.37
all samples 6 4 2856 983 334.21 122.99

similarities on the abstraction levels, and analyze how the
similarity compares on pairs that are both singletons, one of
the samples being a singleton and non of the samples being
a singleton. We formulate the shared concept as RQ2, by
including all paths Pin we have seen in all samples (of the
singleton), in addition, we formulated an exclusion set of paths
Pex, by specifically excluding paths that we have only seen in
non-singleton samples.

Classifying new samples on the abstraction levels using the
formulated shared concept (RQ3) is done as the last part of
the evaluation.

A. Results

1) Preprocessing of the data set: The data set (java-
singleton) collected and used to evaluate the abstraction ap-
proach consists of 230 java code samples labeled as part of
this paper, containing the singleton design pattern and 230
additional samples that do not implement the singleton design
pattern. The classes originate from different projects. The
labels were applied by two authors, only containing samples
confirmed by both authors. We chose the singleton pattern
as a concept to evaluate as it combines a few criteria we
consider beneficial as a showcase in this paper. The purpose
of the pattern is widely understood and used in practice.
The implementation is all in one place (the singleton class),
leaving aside large search spaces [14]. Making it reasonable
to identify samples in existing code but leaving room for the
implementation to vary. It introduces manageable complexity
to the task at hand while enabling us to collect a data
set to evaluate the presented work, although the presented
abstraction approach is not limited to the scope of a single
class, file, or pattern. We abstracted all the samples on both
levels of abstraction. Table II gives insights into the resulting
abstractions. The table contains the minimum, maximum, and
average amount of paths for all abstractions of a given set of
abstractions. The sets show that the range of how many paths
are in the samples varies a lot for each given set inspected. The
average is also significantly higher than the minimum amount
of paths. This indicates an overlap exists, and the samples have
something to do with each other.

2) Results RQ1: As described in Section III-D we are going
to measure similarity using the Jaccard Similarity (Formula 7).
Table III summarizes details on the calculated similarities.
Each row represents ten percent incremental thresholds, with
the corresponding amount of sample pairs that are at least as
similar as the threshold requires. The reported numbers are
broken down into how many pairs are (i) both singletons, (ii)
one of them is a singleton and, (iii) none of them is a singleton.

8

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE III: NUMBER OF SIMILAR PAIRS ABOVE 10 PERCENT INCREMENTAL THRESHOLDS

Low High
threshold both singleton one singleton none singleton both singleton one singleton none singleton

0.0 26335 52900 26335 26335 52900 26335
0.1 4843 389 31 22628 21859 7950
0.2 1444 4 4 10395 1630 600
0.3 372 0 1 3737 118 73
0.4 135 0 1 1589 9 28
0.5 73 0 0 669 0 16
0.6 43 0 0 289 0 8
0.7 32 0 0 153 0 1
0.8 28 0 0 95 0 1
0.9 27 0 0 63 0 0
1.0 25 0 0 30 0 0

This is done for both abstraction levels. The comparison of the
samples with themselves is excluded from the table.

The data shown in the table support the assumption that the
abstractions embody similarities related to the singleton design
pattern. From the columns both singleton on both abstraction
levels, we take that the stated RQ1 holds and that it is possible
to abstract different concrete implementations of the same
design pattern to show a similarity. As the similarity observed
is significantly higher compared to the other columns in the
table.

3) Results RQ2: We built a shared concept as introduced
in our Definition 11. This part of the evaluation is limited
to High as no complete alignment of all samples has been
calculated, leading to inaccurate results on Low. More on this
is addressed in the limitations and future work section of the
paper.

We follow common practice in Natural Language Process-
ing (NLP) (compare stop word removal [15]) and trim the
data so that we do not rely on too (un)common paths. We
only keep paths in at least 5 percent and at most 95 percent
of the samples of the dataset.

Table IV distinguishes the (non-)trimmed abstractions. It
displays the number of paths belonging to specific subsets
of the data set. For the non-trimmed row, many paths are
exclusive to (non-)singletons (4644 + 12813) compared to
the 1996 paths shared. As the collected data set is small,
contributing to infrequently observed paths, we focus on the
trimmed column of the table. There are no paths left that
are exclusive to the singleton samples. This allows us to
ascertain, that there are no language constructs exclusively
used to implement the singletons. In addition, eight paths
are exclusive to non-singleton samples, which indicates that
they are part of the programming language but not used to
implement the singleton design pattern. No paths are seen
across all non-singleton samples. The majority of paths are
seen across both singletons and non-singletons. The shared
concept retrieved from the data set java-singleton consists of
twelve paths in Pin and eight paths in Pex.

4) Results RQ3: To evaluate if it is possible to use the
shared concept for classification of unseen code, we use a
dataset [16] providing annotations of used design patterns.
The dataset contains annotations for the following nine java

1 STATIC_MethodDeclaration_ClassDeclaration_CompilationUnit
2 PUBLIC_MethodDeclaration_ClassDeclaration_CompilationUnit
3 SimpleName_VariableDeclarator_FieldDeclaration
 _ClassDeclaration_CompilationUnit
4 SimpleName_ClassOrInterfaceType_VariableDeclarator_FieldDeclaration
 _ClassDeclaration_CompilationUnit
5 SimpleName_MethodDeclaration_ClassDeclaration_CompilationUnit
6 SimpleName_ConstructorDeclaration_ClassDeclaration_CompilationUnit
7 PRIVATE_ConstructorDeclaration_ClassDeclaration_CompilationUnit
8 SimpleName_ClassOrInterfaceType_MethodDeclaration
 _ClassDeclaration_CompilationUnit
9 STATIC_FieldDeclaration_ClassDeclaration_CompilationUnit
10 SimpleName_ClassDeclaration_CompilationUnit
11 PRIVATE_FieldDeclaration_ClassDeclaration_CompilationUnit
12 PUBLIC_ClassDeclaration_CompilationUnit

Fig. 9: Pin paths on abstraction High as shown in Table IV

1 SimpleName_NameExpr_MethodCallExpr_ObjectCreationExpr_ReturnStmt
 _BlockStmt_MethodDeclaration_ClassDeclaration_CompilationUnit
2 SimpleName_ClassOrInterfaceType_ClassOrInterfaceType
 _ClassDeclaration_ClassDeclaration_CompilationUnit
3 SimpleName_ClassOrInterfaceType_ObjectCreationExpr_ReturnStmt
 _BlockStmt_MethodDeclaration_ClassDeclaration
 _ClassDeclaration_CompilationUnit
4 SimpleName_MethodCallExpr_MethodCallExpr_MethodCallExpr
 _MethodCallExpr_ExpressionStmt_BlockStmt_MethodDeclaration
 _ClassDeclaration_CompilationUnit
5 SimpleName_NameExpr_MethodCallExpr_MethodCallExpr
 _MethodCallExpr_MethodCallExpr_ExpressionStmt_BlockStmt
 _MethodDeclaration_ClassDeclaration_CompilationUnit
6 PUBLIC_ConstructorDeclaration_ClassDeclaration_CompilationUnit
7 PUBLIC_ConstructorDeclaration_ClassDeclaration
 _ClassDeclaration_CompilationUnit
8 SimpleName_MethodCallExpr_ObjectCreationExpr_ReturnStmt
 _BlockStmt_MethodDeclaration_ClassDeclaration_CompilationUnit

Fig. 10: Pex paths on abstraction High (trimmed) as shown
in Table IV

projects: QuickUML 2001, Lexi, JRefactory, Netbeans, JUnit,
MapperXML, Nutch, PMD, and JHotDraw.

The authors of this paper validated the annotations. From
the 13 annotations, we rejected seven, finding six additional
singleton implementations that were not annotated as such
before. Resulting in a total of 12 instances.

We conducted three experiments (Table. V)(i) High incl.
only looking to include all the Pin paths, (ii) High refers to
in addition looking that none of the exclusion paths Pex are
present, and (iii) Low we used the inclusion paths Pin and

9

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV: SUB SETS OF THE DATA SET AND THE AMOUNT OF THEIR EXCLUSIVE PATHS

paths only in # paths in all # paths seen
singletons non-singletons (Pex) singletons (Pin) non-singletons in both sets

trimmed 0 8 12 0 279
not trimmed 4644 12813 12 0 1996

associated indices that conform to the singleton pattern. Here
we then aligned the indices of the samples (using subgraph
isomorphism).

As a given sample can be classified containing a singleton
(Positive) or not (Negative) and the ground truth label can
tell if it is a singleton or not, we end up with the resulting
combinations True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). In our context, the
classes mean: TP: prediction and ground truth agree on single-
ton; TN: prediction and ground truth agree on non-singleton;
FP: prediction says singleton but it is not a singleton; and FN:
predict says non-singleton but it is a singleton. To evaluate the
performance of our classification of unseen samples we stick
to the metrics of a confusion matrix used for the evaluation
of Machine Learning (ML) models. Table V shows the results
of the conducted experiments. Calculations of Precision also
known as Positive Predictive Value (PPV), Recall also known
as True Positive Rate (TPR), Accuracy (ACC), and F1 are
also calculated. A general remark is that the files were not
changed or preprocessed. In the case of data set java-singleton,
we isolated one class per code sample, contrarily those files
used for the prediction are still untouched and possibly contain
multiple classes.

B. Discussion

We have seen that abstractions produced by samples of
various origins (different projects) carrying the same design
pattern still carry a certain degree of similarity on the different
levels of abstraction introduced in this paper. In terms of
formulating the shared concepts, we were able to formulate a
set of paths included in all samples and exclude a set of paths
that we have only seen in other implementations that do not
contain the same design pattern in the first place. The inclusion
set Pin contains twelve paths, and the minimum number of
paths seen in the set of singletons (see Table II) is only 17. This
allows drawing the conclusion that at least one sample contains
almost the bare minimum needed to implement a singleton in
Java.

The exclusion set Pex serves another important purpose,
as it helps to explicitly describe what should not be part
of the concept. In the case of the conducted evaluation, we
reduced the exclusion set by trimming all paths that were in
less than five percent of the samples, which allowed us to

TABLE V: RESULTS OF THE PREDICTION TASKS

TP TN FP FN TPR PPV ACC F1
High incl. 12 1914 13 0 1.0 .48 .993 .649
High 8 1919 8 4 .6 .5 .994 .571
Low 12 13 0 0 1.0 1.0 1.0 1.0

reduce the set from 12813 to only eight paths. We argue that
this is useful because of the rather small sample size. We have
not found another approach that similarly describes a concept
by explicitly stating what is not part of the desired concept.
Paths contained in Pex were contrary to the definition of a
singleton, as they contain paths for Public Constructors, and
paths for creating new objects in the return statement of a
method (which would bypass the singleton object, if it would
be the getInstance method).

Also, the approach of the formulation of such a shared
concept is flexible and adapts to the considered samples, and
the more the samples share, the more is included. As the paths
are interpretable, the abstraction levels introduced in this work
also allow a formulation of such shared concepts from scratch,
or to use only one example as a template to start with.

Both run on High have a PPV around 0.5, while the TPR is
higher, not making use of the exclusion paths Pex. The ACC
of both approaches is also nearly identical at 0.99. Caused
by the data having a lot of Negative cases, in which both
approaches are good at predicting. By comparing both runs, it
is indicated that High lowers the prediction of singleton (TP
and FP) while introducing FN. The last part of the evaluation
has been performed on Low. In this case, we introduced
indices to the paths in Pin. We then aligned the indices of the
samples, according to a valid permutation. The results have a
PPV, TPR, and ACC of 1. This classification task was only
performed on the 25 samples predicted as TRUE on the most
permissive other approach (High incl.). For two main reasons,
(i) the computation needed to find a subgraph isomorphism is
NP-complete [17], and (ii) the previous check on High for
all Pin excludes all the other samples for not having all the
needed paths. By knowing not all paths are present in the other
samples (regardless of indices) it is not possible to find indices
for those samples so that all paths are included afterward.

In terms of the classification performed, we have shown
predictions with simple models, checking the exact inclusion
and exclusion of specific paths on the High and the same
thing (after the computational intense subgraph isomorphism
checking) on Low, with a perfect result as a reward. The
prediction on High is prone to overestimate the concept to be
included, which is indicated by a precision around 0.5 for the
not preprocessed unseen samples. Nevertheless, High serves
a valuable purpose in filtering the relevant samples to further
look at Low.

C. Limitations

Although the approach introduced gives promising results in
terms of the stated RQs, we have encountered some limitations
on which we want to elaborate.

10

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The design pattern chosen is rather simple in terms of the
variety the implementation offers. Looking at more complex
structures (e.g., using general parts and specific refined parts
could implement those as interfaces or (abstract) classes), in
terms of the shown abstraction levels this would lead to not
being reflected in Pin as of the current approach on building
the inclusion set.

Assigning index-values to the shared concept Low was the
only time (except the labeling) we relied on understanding the
concept (of the singleton). To address that, the indexing can be
seen as the maximum common subgraph problem [18] (being
NP-Hard [17]). We do not have an implementation of this in
our prototype.

V. A FORMAL APPROCH FOR DESCRIBING CONCEPTS

In this section, we discuss the term concept in general, and
then a definition is derived for an architectural concept, which
forms the foundation for this paper. The ”correct” naming of
concepts is a very critical aspect. Therefore, first, the difficulty
of naming ”things” from the perspective of natural language
is discussed. Finally, the relation between the challenges of
natural language, set theory, and graph theory is established.

A. Introduction of Concepts

The word concept is part of everyday language usage. It is
applied in different contexts and domains. The term concept is
generally defined as ”An idea or a principle that is connected
with something abstract” [19]. The term concept comes from
the Latin word concipere: to put together, to formulate, to
comprehend. From these definitions, essential characteristics
that make up a concept can be derived.

The essential characteristic properties of a concept are:
1) made by people for people.
2) does not have to be realizable.
3) describes something abstract with the aim of compre-

hending a fact.
4) is context-independent and can therefore be applied in

different contexts.
5) can be described in different ways.
6) can arise from concepts by hierarchical composition.
7) does not have to be explicit.
A concept has in common with a software architecture that

people set it up as a communication instrument to create a
shared understanding. Abstraction is an essential characteristic
of a concept, as it is for software architectures. A realization,
an example existing in reality, does not have to be present. A
concept description is incomplete and limited to the essential
elements of the concept. Whereby a concept, in contrast to the
architecture of a software system, can be considered context-
independent and has, therefore, more of the character of a
reusable pattern. Although concepts can be applied in different
contexts/architectures, they must be refined and adapted to the
context.

Another common feature between architecture and a con-
cept is the variety of description techniques. Everything is

present, from natural language texts to complex, even exe-
cutable description techniques. In the Latin origin of the word,
it is already clear that a concept is something composed.
Accordingly, the components of a concept play an essential
role in the description and creation of shared knowledge. If
a concept is compositional, it follows that there are different
levels of abstraction, which have no global but only a relative
reference. Implicit in the word definition, expressed by the
synonyms plan, sketch, and draft is the intention to accomplish
a task or solve a problem. Detached from any domain and
referring to the previously listed characteristics, the term
concept is defined as follows:

Definition 1 (Concept): A concept is a context-independent,
abstract description of a schematic solution to a class of
problems generated by people for people.

A concept can be described in two ways. On the one hand,
by the description of the partial concepts and their composition
or on the other hand by giving an example in the form of a
sketch or an exemplary structure for concepts, which have
an implementation in the real world. Both approaches have
advantages and disadvantages and a direct correspondence to
the extensional and the intensional definition of mathematical
sets [20]. Describing by example is generally easier to un-
derstand but does not guarantee that the concepts’ intention
in all its manifestations has also emerged. However, a concept
specification may result in a lack of reference to the real world
and make it challenging to apply the concept. To understand
the concept, an awareness of how it ”works” must be created.
This can be done either through a clever selection of examples
or an appropriate specification. Generally, these properties
only come into play during composition and application in
a concrete system (cf. [21] [22]).

In mathematics, the underlying principle is called concep-
tualism. According to this, mathematical terms are not fixed;
they develop. The handling of the definitions in practice,
the interaction with other mathematical concepts, and the
exchange between people influence this development. This
evolution of terms and mathematical concepts can lead to an
increasingly uniform usage and, as in the case of set theory,
to axiom systems. (cf. [23])

The definition and thus also its representatives can therefore
change over time. How does a concept arise? – According
to the identified characteristics, it arises by an extensional or
intensional set definition, exactly when elements are composed
in such a way that they contribute in at least one context to
a problem solution. A set is intensionally described by the
specification of a property that can be assigned to that set.
An intensional definition in the context of free and arbitrary
choice of property, antinomies, can be induced; an example
is Russel’s antinomy [24]. Such antinomies are met with an
appropriate axiomatization so that the underlying universe
is well-defined. An axiomatization for sets is the Zermelo-
Fraenkel set theory [20]. In this, predicates are represented
by sets, namely subsets of the powerset, constructed via the
scheme of the axiom of elimination. If properties construct sets
and concepts can be defined over sets, then properties must

11

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

exist which represent concepts. Consequently, subsets of the
power set exist with elements that fulfill a specific property
and represent a concept.

It is easy to see that the essence of the concept must result
from the semantic interpretation of its elements. Regarding the
definition, a characteristic feature of a concept is schematic
problem-solving. This is something that is not fundamentally
true for properties. For a property, according to Platonic logic
and as for the symbol ∈, it is true that any object of a well-
defined universe has a property or not. Additionally, the nature
of a property does not change over time. From an epistemolog-
ical point of view, this does not apply to concepts, as described
earlier, for the principle of conceptualism. Because of this and
the problem-oriented character, a concept can be understood
as an embedding in an element to fulfill a particular property.

If elements are related to other elements, new properties can
arise through emergence, attributed to the composed element.
If a property becomes significant, then a property becomes
a concept exactly if this property is additionally attributed
to a problem-solving character. Both the significance and the
solution of a problem are in the eye of the beholder and thus
depend not only on the individual but also on the context.

According to the definition, a concept is a context-
independent description. Thus, the application of a concept is
its embedding in a concrete context. The word context comes
from the Latin word contextus, close linkage, and relationship
and can be generally defined as follows.

Definition 2 (Context): A context represents a technical
or situational setting that is meaningful for purposes and
comprehension.

B. The Difficulty of Naming Things

Another aspect that comes into effect when people interact
with each other is verbalization, which becomes even more
critical through context-sensitive embedding. This section
explains why it is difficult to name things unambiguously
so that communication partners have a shared, and equal
understanding. It also discusses the differences and similarities
between natural and formal languages, such as programming
languages.

In linguistics, the term concept is used as the cognitive
representation of an object or a cognitive category and is
closely related to the meaning of a word [25]. This often makes
it difficult to separate the concept from the context. It is not
uncommon for words in a natural language to have different
meanings. The meaning of a word arises from the context
in which it is used. From this context, not only the meaning
arises, but consequences are also connected, which are valid
only in this context. In linguistics, the context is understood
as the surrounding text of a linguistic unit, although it is not
excluded that certain meanings remain open.

For most natural languages, words are formed by con-
catenation over an alphabet, given the construction rules of
a concrete grammar. In a formal language, the language is
entirely described by the grammar. However, natural languages
are generally not formal languages. In this case, meaning is

created only by combining letters to form words. Hence words
are also referred to in linguistics as the atomic concepts of a
language [26]–[28].

Definition 3 (Atomic Concept): An atomic concept is a
concept that is part of the language used to name realizations
of the concept.

It follows that atomic concepts can be clearly identified as
part of language, as they can occur directly in the rules of
grammar but are defined in dictionaries, especially in the case
of natural languages. In linguistics and psychology, the mean-
ing of complex expressions is attributed to the compositional-
ity of concepts of language [28]. Thomas Ede Zimmermann
describes the ordinary principle of compositionality as follows:
”The meaning of a complex expression functionally depends
on the meanings of its immediate parts and the way in which
they are combined.” from [29], p. 3 This definition goes back
to the teachings of Aristotle and is known as the semantic
compositionality principle (Frege principle). Named after the
German mathematician Gottlob Frege (after [30] [31]).

The only fundamental assumption underlying this principle
is that the atomic parts, which cannot be further decomposed,
have a lexical meaning. Atomic concepts, like properties, have
a stable meaning. For complex, i.e., composed concepts, the
mere naming of real existing things or those of the imagination
is sufficient to produce a lexical meaning.

In practice, this has its limitations, at least the same or
similar naming, as Martin Fowler expresses in his article on
the role pattern [32], which can lead to misunderstandings and
misinterpretations. In the article Dealing with Roles, Fowler
addresses the fact that just because a pattern is called a role
pattern, this does not translate into the exact implementation
and certainly does not intend the same semantics. However, if
these implementations are conceptual, i.e., semantically identi-
cal, then the implementations can be substituted for each other.
But he identifies about ten different patterns that are similar
but not semantically identical. Furthermore, he lists the various
advantages and disadvantages of these patterns, provided that it
finally becomes apparent that a clear distinction of the pattern
is necessary at the latest during the implementation.

What is the reason for the misinterpretation? – The cognitive
scientist Lera Boroditsky investigated these phenomena and
continued the theory about the relativity of language [33].
Boroditsky studied the influence of atomic concepts of a
language on people’s understanding and behavior in [34] [35].
She found in various experiments that different concepts of
numbers, time, space, or of objects result in a generally
different understanding of these concepts.

These and other experiments support the hypothesis that
even the most basic concepts of human experiences, such as
space, time, causality, and related objects, influence language
and the nature of communication. The atomic concepts of
language, its use, specific technical language, regional and
even local differences, and the experience an individual has
cause ways of thinking to be shaped by communication.
This was investigated experimentally by selectively using
metaphors that did not match the concepts of the language.

12

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

After multiple repetitions, corresponding changes in thinking
styles were observed in non-linguistic implicit association
tasks [36].

One challenge of software engineering is the duality be-
tween understanding programming as creative creation on the
one hand and the structured approach on the other. Suppose
this is viewed from the perspective of linguistics and cognitive
science. In that case, this explains the choice of variable names
and identifiers and the phenomenon observed by Dahl, Dijk-
stra, and Hoare. They describe in [37] that with experienced
programmers, a programming style similar to a style with
artists in a painting is to be recognized, and the higher the
understanding of the structured programming is, the more
clearly higher-level structures are formed.

The aspects considered so far are mainly reflected in the
identifiers and the more abstract structures, wherein a simi-
larity between formal and natural languages exists. What is
the practical difference between a formal and a natural lan-
guage, except for the complete mapping in the corresponding
grammar? – Marcus Kracht investigated the emergence of
syntactic structures [31] [38], for which he used concepts of
programming languages and set theory in particular. His work
is based on a well-founded theory, which he summarized in the
monograph, The Mathematics of Language [39]. He also con-
cludes that the following three features are underrepresented
in any semantics of a natural language: Indexing, Multiplicity,
and Order.

To pick out just one aspect, we take a look at the concept
of indexing. The idea behind it is the well-ordering of a set.
This exists according to Cantor’s well-ordering theorem for
any set [40]. Although the ordering is not always obvious,
the distinction between two objects is essential if they are,
in fact, different. This becomes clear when we look at the
AST. Each use of a variable is linked to the declaration
of that variable via the symbol table. In a specific program
context (visibility), a variable name always designates the
same variable. Therefore, a new name and an index must
be assigned when a new variable is declared. So, in a ”text”
written in a formal language, we know about the identity of
each object.

As essential for formalism, the meaning must be indepen-
dent of the naming. By indexing and distinguishing multiplici-
ties, as is necessary for programming languages, the semantics
result from the fact that different things can be identified.
Kracht’s motivation for his work stems from understanding
the notion of compositionality. For natural language texts,
almost everyone has an intuition about which constructs are
compositional and which are not. The mother tongue can be
mentioned here as an example. Children do not use complex
composition operators to determine which words should be
combined in which way. Instead, they develop a sense for this
over time, which results in an intuition for new compositions.
However, these notions are based on something other than
a formal foundation. He, therefore, calls for meaning to be
defined without mention of syntax. From his point of view, it
is not part of semantics to specify how things are composed in

syntax [38]. This follows from the fact that the functionality of
a program does not change if variables are named differently.

Kracht therefore defines a concept as described in Definition
4 as set R≈ of semantic equivalent relations. By a relation we
understand in the mathematical sense a set of ordered pairs. We
write if it holds that the relation R1 and R2 are semantically
identical: R1 ≈ R2

Two relations are considered semantically identical if they
can be transformed into each other by the operations given
in Definition 3. The operation OPL-1 is also called type
extension because a new element of the universe is added to
the relation. On the other hand, with the operation OPL-4, the
relation is extended by an argument already contained. Even
if after the operation always, only the last one is appended,
the operation OPL-3 can be applied before in such a way
permuted as long as the desired argument stands in the last
place.

Definition 4, relations and thus orderings are described, but
the definition of the concept itself is independent of it and,
therefore, its semantics. According to Kracht, a concept is
defined by a set of relations. This means that the order is
only reflected in the concrete realization, which corresponds
to the intuitive understanding. It is also easy to regard an active
and passive sentence construction as semantically equivalent,
although the order is fundamentally different. On the semantic
level, concepts thus describe a linkage. Concepts can therefore
be regarded as equivalent, even if they use different relations
for representation.

Kracht, in his article Using Each Other’s Words [41] states,
similar to Boroditsky’s findings, that for any two people,
even if they use syntactically exact words, they do not assign
the same meaning to them. In summary, naming things,
especially complex composed constructs, is difficult because
the composed meaning is derived from how certain parts are
put together and the individual meanings of those same parts.
The meaning of the atomic parts is learned individually and
is thus preassigned an individual understanding. Based on
this learned understanding, emergent meaning is composed.
In other words, a shared understanding of a complex concept
can only emerge if a shared understanding of its parts exists.
If there is none or if there is a different one, misunderstanding
is inevitable.

C. The Description of Concepts through Examples

If we take realizable concepts to be sets of implementations
of that concept, they can be described in two ways, intensional
and extensional. We refer to the exemplars of these sets as
Examples. Under the term architecture concept, we subsume
architecture patterns as well as design and implementation
patterns. In this paper, we concentrate on the extensional
description of concepts. However, even if concepts cannot
be described thoroughly, it is nevertheless the better choice,
related to the use case of the detection and extraction of so
far unknown concepts.

1) The Concept as a Set of Examples: The definition
of the architecture concept described as a named set (see

13

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 4 (Concept (Linguistics), after ([31]p. 17 and [38], p. 65)): A concept is a set of relations R≈ with

R≈ := {R′ | R ≈ R′} (12)

Let Ω be the universe of a structure of first level predicate logic, then a relation R is a subset of Ωn, R ⊆ Ωn. R ≈ R′ then means that R′ can be derived
from R by any number of the following operations. Let a⃗ := (a0, a1, . . . , an) and a⃗ ∈ R, that is, an element from the relation R.

• (OPL-1) Addition of an element from the basic set R 7→ R′ × Ω = {(a⃗,m) | a⃗ ∈ P, ω ∈ Ω}
• (OPL-2) Removing an element R×R′ 7→ R
• (OPL-3) Permuting the arguments R 7→ π(R)
• (OPL-4) Extension R 7→ {(a⃗, a) | a⃗ ∈ R} = {(a0, a1, . . . , an, an+1) | (a0, a1, . . . , an) ∈ R, an+1 = an}

Definition 5 (Architecture Concept C (as named set)): Let CONCEPT be the universe of all known concepts. An architectural concept C is a named set of
examples of the form

C := (id , R)

id a finite string for which an injective mapping f exists,
with id ∈ CONCEPT and f : CONCEPT → N
it applies ∀Ci, Cj , f(Ci) = f(Cj) ⇒ Ci = Cj

R a finite indexed set of semantically identical examples of the concept C

R := {ri | ∀rj ∈ R it follows ri
C
≈ rj}

(13)

As short notation it is defined Cid := R = {ri | ∀rj ∈ R gilt ri
cid≈ rj}. The notation ri

Cid≈ rj means that the two examples ri ans rj are semantically
identical with respect to the concept Cid .

Definition 5), is done via the duple (id , R) and not directly by
a typical set-notation, to account for the special meaning of
the id , i.e., the name of the concept. By naming the set and
choosing an identifier from the words of a natural language,
this set, and thus the concept, acquires an induced meaning
for humans. However, this simplicity is countered by the com-
plexity and diversity of the descriptive examples, which are
context dependent. This means that each example represents
the concept within its own context. A (shared) understanding
exists when the context-free identifier and the set of contextual
examples have generated a context-independent understanding
in the observer.

The context, therefore, reflects the area of application in
which the concept is embedded. It describes a refinement and
concretization of the concept within this context. At this point,
a further principle of software engineering comes into action
– the principle of domain orientation. With the application of
a concept, a mixture and a fusion with elements of the domain
inevitably occur.

Similar to a design pattern, a concept can be described by
the triplet of problem, context, and solution. As introduced
in the section before (Section V-B) the name is not a unique
identifier for the equality of two concepts. In general, two
sets are equal if they contain the same elements. Though,
under what criteria are two elements, i.e., examples? – This
depends on the way the examples are represented. At this
point, therefore, we can only refer to semantic equality, but not
to structural equality. The semantic equality of two concepts is
given as. If C1 and C2 are each concepts, and if RC1∩RC2 = ∅
holds, which means that the set of examples of the two
concepts is disjoint, then these two concepts are semantically
identical, iff.

∀ri ∈ RC1 ∧ ∀rj ∈ RC2 | ri
C1≈ rj (14)

This leads directly to the following equivalences:

ri
C1≈ rj ⇔ rj

C1≈ ri ⇔ ri
C2≈ rj ⇔ C1 ≈ C2 ⇔ RC1

∪RC2

It must be remarked that this form of equality cannot be
used to make a statement about the structural equality of two
examples of a concept. In linguistics, two concepts that are
equal in this sense would be called synonymous.

Suppose the examples are concrete implementations, i.e.,
idioms, so programming language-dependent descriptions. In
that case, the context consists of the specific language and the
parts of the business logic contained in the respective example.
In addition, for more complex concepts, the locality principle
does not apply. Instead, the pattern, more precisely, the roles
of the pattern, are distributed among different system artifacts.
It follows that it is legitimate for concrete source code excerpts
to appear in examples of different concepts.

2) Example Representation and Atomic Concepts: In Sec-
tion III, an example of a concept – the Singelton pattern – was
examined. As a representation, a graph representation based
on the AST was introduced. In this case, it was used to provide
concrete instances of an example. Since this representation is
a semantically identical model transformation, no abstraction
occurs.

But is the structure of a graph suitable to represent higher-
level concepts? – Basically, such a structure is suitable to
represent any objects and their relations among each other.
Moreover, the set of elements (nodes) and the set of relations
(edges) can be extended freely, including aspects that cannot
be extracted directly from the source code. The subject of
this work is the semantic relations, not the syntactic ones.
This means that a back transformation into source code is not
required. Therefore, any extension of the graph is also allowed
at this point. In the previous section, linguistic concepts were
assumed to be understood as a set of semantically equivalent
relations. In principle, however, only two-digit relations are
represented by edges in a graph. However, David Hilbert and

14

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Wilhelm Ackermann found that any n-digit predicate can also
be reduced to a less-digit one [42].

Generally, it is up to the modeling and thus the intended
semantics of how the predicates are defined, thus also their
rarity. This applies in this form only to the calculus of first-
level predicate logic, but this is the object of investigation
of Hilbert and Ackermann as well as of Kracht [31] [38].
A model based exclusively on triples, thus equivalent to a
representation by a graph, is exemplified by the ontology [43].

We introduce the ASG to describe a more general formal-
ism. In contrast to the concrete syntax tree, in which the nodes
represent symbols of the grammar, the abstract syntax tree
nodes represent concepts of the programming language and
their hierarchical relationships. The structure is a simplification
of the underlying grammar of the programming language. The
edges represented in the AST are called syntactic edges ESyn
because they represent the syntax of the language. The edges
constructed in the semantic analysis using the symbol table
are called semantic edges ESem. By unifying these two sets
of edges (ESyn ∪ESem), the AST is extended from a tree to a
directed graph, while it cannot be excluded that it is cycle-free.

The combination of syntactic and semantic edges is called
Abstract Syntax Graph [44] and is specified in Definition 6. At
this point, however, we must emphasize that this term is not a
fixed term. The same applies to labeled AST, extended AST,
or attributed AST, and it must also not be mixed up with the
so-called term graph. Term graphs are often used in rewriting
and automated refactoring and are often acyclic [45] [46].

The aggregated graph described in Section III-A and vi-
sualized in Figure 2 can be understood as a method-specific
graph. The ASG here would be an intermediate representation
between AST and aggregated graph. Compared to the ASG,
the aggregated graph additionally has a node fusion operation
performed. Like natural languages, atomic concepts exist for
formal languages (cf. Definition 3). With respect to the rep-
resentation of ASG, the notion of atomic concept is extended
as follows:

Definition 7 (Atomic Concept): An atomic concept is
a concept defined by the syntax, i.e., by terminal or non-
terminal symbols of the programming language grammar, and
represented by a node or edge type in ASG.

3) The Minimal Example: In this section, the reduction
aspect of an example is discussed. From the definition for
graphs, the following can be said in general about the features
of a graph g.

1) It is directed,
2) can be a multi-graph (A multi-graph is a graph with

more than one edge between two nodes),
3) has in general cycles (Cycle-free minimal examples

exist, but they are trivial examples of atomic concepts)
and

4) is connected.
In the previous sections, any graph was considered an

example of a concept. It was only required that in the graph,
at least once in the underlying program code, the named
concept was applied. If several examples of a concept are

compared, these may have a different number of nodes and
edges. Therefore, it is not only possible to determine a minimal
example among the existing ones, but a minimal example
exists for each example. To illustrate this, the atomic concept
Class is considered. If a method is added to a class, it remains
an example of a class; even if this is repeated several times,
the truth of the statement does not change. Even a class that
has no methods can be considered an example of a class.
This example illustrates two perspectives. From the context-
sensitive view of the respective example, it can be examined
which elements are not essential for the concept. From the
context-independent view of the concept, the requirements
for the example can be defined. If, for example, the concept
ClassWithMethod is described, we expect at least one class
with one method. The so-called minimum concept can be
described as follows.

Definition 8 (Minimal Example of an Architectural Con-
cept):

A minimal example of an architectural concept is an ex-
ample, i.e., a piece of program code for which holds: if any
character is removed from this piece of program code, then
this is no longer an element of the set of examples of the
respective concept.

What results for the ASG of a minimal example? – For
an atomic concept, as in the example of the Class, this is
defined by the programming language, namely by the minimal
syntactically correct root tree where the root is of type class
declaration. In this concrete case, it depends on the parser
and grammar, different designations of the type are very
likely. For non-atomic concepts, i.e., those that satisfy the
compositionality principle, structures must exist that allow this
concept to be decomposed. In the context of design patterns,
which are widely accepted as architectural concepts, proven
description templates have been discussed, as exemplified in
[2] and [47].

One aspect of these description templates are the partici-
pants, also roles, of which the pattern is composed. Complex
composed concepts are thus ascribed the existence of roles.

Definition 9 (Role (according to [48])): A role is a observ-
able behavioral aspect of an object in a concrete context.

For a graph g(V,E) representing an example of the concept
C, it follows from conclusion 2 that there can be nodes that
are not elements of a role, and thus not part of a behavioral
aspect of the concept.

If we consider the collaborations of the UML as a descrip-
tion technique, then the parts, which are named collaboration
roles, serve as a structural element [49]. In addition, other
elements in UML are called roles in simple association, for
example, as in the class diagram. In Figure 11, two classes
and a binary association are shown. In such an association,
the association ends are called roles. Here, the name of the
association describes the semantics of the association, and the
name of the role describes the meaning of the class related
to this association [50]. We claim that a formalism should
be independent of naming. This holds also for the naming of
associations if we understand them as concepts. Moreover, we

15

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 6 (Abstract Syntax Graph gASG

(
tAST(VSyn, ESyn), ESem, P, τ

)
): Let tAST(VSyn, ESyn) be the AST (see Section III) of a program, then the abstract

syntax graph is the extension corresponding to a tuple with the following signature:
gASG(V,E) :=

(
tAST(VSyn, Eyn), ESem, P, τ

)
VSyn a finite Set of nodes.
ESyn a set of syntactic edges.
ESem a set of semantic edges.
P a finite set of edge-terminals
τ a relation that maps each edge from Esem maps to an edge terminal.

τ := Eem → P

∀e ∈ ESem | !∃p ∈ P ∧ τ(e) = p

(15)

It holds that the node set of the ASG is equal to that of the AST:

V := VSyn = Λ ∪ T ∪ Σ (16)

Only the set of edges is extended, so that the following is true:

E := ESyn ∪ Eem = γ ∪ ω ∪ τ (17)

speak in this case about associations, which are an object of
subjective consideration since they no longer belong to the
atomic concepts of the language; instead, they are composed
concepts.

Fig. 11: Elements of a binary association according to [49],
p. 135

Transferred to concepts according to Definition 5 results:
Conclusion 1 (Roles in Concepts):
A concept consists of a finite non-empty set of roles mani-

fested in the examples or an atomic concept.
This conclusion is consistent with the role pattern, a widely

used pattern of object-oriented analysis (OOA) [50] [51] [32].
A description of this pattern is given in the Figure 12. Three
main features emerge from this description.

1) The item is role independent. In [47] this is also called
the core class. It contains static, immutable functionality.

2) The item can take on different roles in any number of
contexts.

3) The assignment can change dynamically and the item
thereby aggregates the contexts to itself and thus dy-
namically receives its role-dependent properties and
functionalities via the roles, which are described as
association classes.

At this point, the variant Role-Relationship according to
[32] was selected on purpose. According to the same paper,
this variant is suggested if an item-object can take more than
one role concerning another object, as is the case in this work
if the system is chosen as context. However, this can also be
true for an example of a concept. In the further course, this
notion of role is further restricted to minimal examples.

The choice of modeling the role as an association class
is also made on purpose. Other variants and especially per-
spectives in which the context is not explicitly modeled are
given in [47] and [50]. The association class clarifies the mem-
bership of role-specific attributes and operations. It describes

Fig. 12: The role pattern as UML class diagram and modeled
as association class

properties that result from the relationship between the object
and the context and cannot be meaningfully assigned to either
class. The property of whether an object fills a particular role
is no longer well-defined because the same class can occupy
different roles in different contexts. The application of the role
pattern destroys the well-definedness of the concept.

Conclusion 2 (Roles as Subgraphs):
With respect to the chosen representation, roles manifest

themselves in subgraphs of a graph g of the conceptual
example. Let h1 and h2 be roles, thus two real subgraphs
of g, h1, h2 ⊂ g, then the following statements follow from
the definition of role (Definition 9): (i)

1) h1, h2 ⊂ g ⇏ h1 ∩ h2 = ∅
2) g \ g′ ̸= ∅ mit g′ :=

⋂
hi⊂g

Roles do not define an equivalence relation on a concept.
In general, a complex concept consists of more than one

behavioral aspect; at this particular step, only their existence
is assured. The concrete roles are assumed to be unknown in
the paper if not stated otherwise.

Therefore, for a minimal example, each node of the asso-
ciated graph belongs to at least one role. All other nodes can
therefore be removed from the graph. Furthermore, all nodes
not essential for the concept can be removed; the same applies
to the edges.

16

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This results in a minimal example of architectural concept
defined in Definition 10.

Conclusion 3 (Connection of minimal Examples):
However, deletion operations may cause a minimal example

to no longer be connected. For an example, since it is
constructed from the ASG, it follows that it is connected. There
may be dependencies which only arise dynamically at runtime,
if such a link is the only one connecting two nodes, then this
link is a bridge in the sense of graph theory and the graph
decomposes into more than one component.

Another case represents the removal of the root element
when the AST is considered as the spanning tree of the ASG.
In many compilers, a parent node describing the combining
unit is introduced as the root node, and in most cases, this is
not essential to the concept and can therefore be removed.

In addition to removing, adding a node or an edge in an
example is possible, also. The above example with the atomic
concept of the Class could lead to the impression that these
operations are possible without any problems. This is not
true in general. For example, there are concepts where these
operations can be repeated any number of times for particular
nodes or edges, but there are also those for which this is not
true. In the later part of the paper, the singleton pattern will
be examined. If a public constructor is added to some variants
of this pattern, it is no longer a valid example of this concept.
This addition has destroyed the concept.

However, by introducing the minimal example, the instance
term can be defined.

Definition 11 (Instance of a Concept):
Let S ∈ SYSTEM be any system, g the associated ASG, then

the subgraph h ⊆ g is an instance of the concept C(id , R)
iff. h is a minimal example of C, so h ∈ R̂ holds.

This also corresponds to the instance concept of object ori-
entation. The correct formulation for a non-minimal example
is that it contains an instance and does not represent it directly.

If an architectural concept C contains only minimal ex-
amples in its set of examples, then this is called a minimal
architectural concept Ĉ as described in Definition 12.

Furthermore, it follows directly from Definitions 5 and 12
for architecture concepts:

Ĉid ⊂ Cid | id = id (19)

This means that there is a real subset relationship between
the set of examples of an architectural concept and the set
of examples of the associated minimal example. The size of
the set of examples of a concept is countably infinite. A real
subset of this set is formed by the minimal examples. Also for
natural language concepts Kracht describes, relations which
are minimal with respect to their length and thus in a certain
sense even special. If R̂i and R̂j are two minimal relations of
a linguistic concept (Definition 4), then R̂j is a permutation of
R̂i and it holds [38]:

π(R̂j) = R̂i (20)

Applied to architectural concepts, this would mean that two
minimal examples r̂i and r̂j of a concept are isomorphic

to each other, r̂i ∼= r̂j . As a result, not only would there
be a bijective mapping between these graphs, but the graph
invariants, such as the number of edges or nodes, should not
change. Nevertheless, this cannot be guaranteed in general.
This is caused by operations such as fusion and contraction. As
a result, the problem can be written as a partial graphisomophy
problem Subgraph-Isomorphism (SGI) [52] [17], which is
assigned to the complexity class of NP-complete problems.
These aspects are discussed in more detail in the following
chapter, where identification and extraction use cases are
examined.

VI. RELATED WORK

A similar approach to the one we propose is code2vec [53]
[54], also working with an abstraction based on a set of paths.
The main difference is the structure of the extracted path.
All pairwise paths between the leaf nodes are examined and
limited to a maximum number and length. They define the
path-context by a triplet < xs, p, xt >, where xs is the start
leaf, xt is the target leaf, and p the path between these nodes
with the additional information whether a traversal takes place
upwards towards the root element or downwards in the tree.
The approach is presented here all paths from each leaf to the
root are taken into account. Another limitation of code2vec
is the abstraction context, which is one method. They argue
that the order of source code statements is not relevant, or
valid for this scope and the defined task. But as shown in [55],
the relation between source code elements for higher concepts
(like classes) is essential to perform structural or behavioral
related tasks. As shown in [56] another limitation of code2vec
is its sensitivity to naming. For tasks like those described in
code2vec, where names of methods are predicted, names are
of course essential, but for the extraction of abstract concepts,
the uncertainty of the correct name is too high.

Yarahmadi et al. [55] have conducted an extensive and
systematic literature review on how design patterns can be
detected in code and therefore abstract the code to perform this
task. The main findings of this study relevant to this paper are:
Many of the approaches have been tested and evaluated only
on small data sets or on limited code samples. The principle
in almost all approaches that were reviewed is to reduce the
search space by abstraction. Most approaches were limited in
their ability to recognize different types of patterns. Another
problem of many approaches is detecting different variants
of a pattern. To make this possible, ML methods are often
used. However, these methods require good data preprocessing
because it is not possible to decide in a general way which
parts should be selected for learning. A common approach
to this problem is, as implemented in [57], a semi-automatic
approach in which a human takes over feedback or labeling.

Another principle often used in addition to using the syn-
tactic concepts of programming languages is to analyze the
identifiers (e.g., classes, methods, or variable names) using
natural language processing techniques [58] [59]. Schindler et
al. [59] demonstrated that these methods are well suited for
project-specific domain models but not for identifying general

17

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 10 (Minimum Example r̂ (formal)): Let C be a concept and r an example in which it is applied, then this is called minimal, written r̂,iff. r̂ is a
minimal subgraph of r satisfying the following conditions. (i)

1) g \ g′ = ∅ with g′ :=
⋂

hi⊂g
with H := {h1, . . . , hn} the set of all roles of C

2) ∀v ∈ Vr̂ | Vr̂ \ {v} ⇒ r̂ /∈ Rc

3) ∀e ∈ Er̂ | Er̂ \ {e} ⇒ r̂ /∈ Rc

4) ∀v ∈ Vr̂, ∀m ∈ N | 1 ≤ m ≤| Pc | ∧ fv(v)− (⃗pi,j)m ⇒ r̂ /∈ Rc

5) ∀e ∈ Er̂, ∀m ∈ N | 1 ≤ m ≤| Pc | ∧ fe(e)− (⃗pi,j)m ⇒ r̂ /∈ Rc

Definition 12 (Architecture Concept Ĉ (minimal)):
Let CONCEPT be the universe of all known concepts. By Definition 5, an architecture concept C is a named set of examples. If all examples of this set are
minimal, then this is denoted by the notation Ĉ and is defined as:

Ĉ := (id , R̂)

id a finite string for which an injective mapping f exists,
with id ∈ CONCEPT and f : CONCEPT → N
it holds ∀Ci, Cj , f(Ci) = f(Cj) ⇒ Ci = Cj

R̂ a finite indexed set of semantically identical minimal examples with respect to the concept C.

R̂ := {r̂i | ∀r̂j ∈ R̂ gilt r̂i
C
≈ r̂j ∧ r̂i is minimal}

(18)

patterns. Natural language identifiers can be an indication but
not a robust criterion. An example of how the AST is able
to be enriched by additional features, e.g., by using ML, is
described in [60] and [61].

In addition, tools and frameworks should also be mentioned,
which could also be applied, though in part with restrictions.
For example, jQAssistent [62] is a tool that transfers the AST
into a Neo4j graph database, offers the possibility of manually
enriching this graph with further information, and then using
the query-language Cypher to define concepts and identify
them in the graph. In contrast to the approach presented in this
paper, a query needs to be formulated covering the concept for
which the sample should be retrieved.

ArchUnit [63], Structure101 [64], and Dependometer [65]
are based on the same principle of formulating rules that are
checked automatically afterward. However, the creation and
management of rules is costly with the increasing complexity
of the concept, and require substantial expert knowledge. All
of the mentioned approaches do not assist in expressing rules
applying to a given set of samples.

The major problem in this kind of approach and any other
approach based on a specific formal language is that it is
difficult to define the concrete rules describing a pattern
correctly. Rasool et al. [66] describe it as a lack of standard
specification for design patterns.

The field of code clone detection is related to the approach
presented in this paper since the input data is identical. In
[67], four types of code clone detection are characterized,
(i) syntactically identical code fragments, (ii) syntactically
identical except names and literal values, (iii) syntactically
similar fragments that differ in some statements but can
be transformed to each other by simple operations and (iv)
syntactically dissimilar code fragments but sharing the same
functionality. In contrast to code clone detection, we do neither
want to find syntactically identical fragments (i)-(iii) nor
functionally identical ones (iv). Because of the domain-specific
adaptation, we are not interested in finding direct copies.

VII. CHALLENGES OF EXTRACTING ARCHITECTURAL
CONCEPTS

In Section V, a formal description of general concepts was
derived based on set theory, graph theory, and linguistics. This
description can only be understood as part of a higher-level
methodical approach, described in, for example, in [61] [68]
[69]. In this context, we are confronted with practical applica-
tion challenges which arise in the exchange between program-
mer and architect. The cause of this tension is based on the
different perspectives on the system, i.e., the architecture de-
scription on the one hand and the implementation on the other
hand. The following four aspects are examples of this: (I.) How
can a continuous mapping between an architectural concept
as part of an architectural description and its implementation
be created? (II.) How to ensure semantic correctness between
concepts in the architectural description and concepts in
the implementation? (III.) How can the completeness of the
concepts in the architecture documentation be ensured with
respect to the concepts implemented in the implementation?
(IV.) How can the maximum possible conceptual knowledge
be extracted from minimal data?

A. Continuous Mapping

Due to the selection of the considered challenges, marking
arbitrary concepts in the ASGs is necessary. The highlighting
must be possible so that different instances of the same concept
and parts of the concept that do not manifest themselves
according to the locality principle can be mapped, and the
compositionality of concepts is considered.

A metaphor introduced for this purpose is the concept of
Color. In graph theory, the concept of coloration is used for
various questions [70]. Nevertheless, Color is also suitable as
a metaphor independently of any mathematical structure since
aspects such as nuances in the form of brightness and satu-
ration, or even the creation of new colors by mixing primary
colors, for example, can be easily imagined. Moreover, it can
be applied to the composition of concepts. Color highlighting
is also a very well-understood concept in different contexts.

18

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 13 (Color p): Let COLOR be the universe of all
known colors. A color p ∈ COLOR is a label which a node or
an edge of a graph may possess. A color is uniquely identified
by its name, that is, there exists an injective mapping f :
COLOR → N, where holds.

∀p1, p2 ∈ COLOR | f(p1) = f(p2) ⇒ p1 = p2 (21)

If colors are to be used to mark both atomic and complex
concepts, then it is easy to see that not only nodes and edges
must be marked, but also entire subgraphs must be able to be
assigned a color. In order to allow multiple applications of a
concept as well, a mechanism of instantiation of colors con-
cerning a concrete graph must be introduced. A corresponding
indexing of colors in the following implements this.

Let g be a graph and P ⊆ COLOR where P := {p1, p2, p3}
is the finite set of colors to be used for marking in the graph
and

Pg := p1,1, p1,2, p1,3, p2,1p2,2, p3,1}

the concrete instances of the colors.
Conclusion 4 (System Boundary of Instances): The graph

is a system boundary with regard to the instances of a color.
Given two color instances pi,n ∈ Pg and pj,m ∈ Ph, then
holds: (i)

1) pi, pj ∈ COLOR | pi = pj ⇒ i = j
2) pi,n ∈ Pg, pj,m ∈ Ph | i = j ∧ n = m ⇏ pi,n = pj,m
As a result of the described gap between implementation

and architecture, there is no direct injective mapping between
these two artifacts. The implementation always represents a
contextual application of architectural concepts. This makes
setting up this mapping in particular difficult. Related to the
coloring of the abstract syntax graph, continuous mapping
exists precisely when all nodes and edges belonging to an
instance of a concept are marked. Of course, this also assumes
that if the example is according to Definition 5, all aspects
of the concept have already been fully implemented in the
implementation. Otherwise, it is possible to speak of a marking
of the concept but not of an example.

The labeling principle is formulated in such a general way
that even new concepts can be mapped intuitively in the
sense of previously unknown. According to the definition of
an architectural concept (Definition 5) and that of a color
(Definition 13), a bijective mapping can be formulated between
concepts and colors. In the form that the concept which is
mapped to n ∈ N is represented by the color, which is
also mapped to n. Defining a new concept is equivalent to
creating a new color. However, what does it mean that a new
color/concept is created? – Two cases must be distinguished:
(i.) introduction of a new atomic concept and (ii.) introduction
of a new composed concept.

The universe of colors is extended in both cases. One
difference is that in case (i.) an extension of the underlying
programming language takes place and is a cross-system
concern. This is not true for case (ii.). The trigger for case
(ii.) consists of the fact that a concept is to be selected,
which is not yet named in the form. Accordingly, there is

no color and no example yet for this concept. This labeling of
a concept instance has the character of an annotation and is
initially only valid for the system under consideration. Thus
the ASG is extended by information that cannot be derived
directly from the program code. For this reason, the so-called
Concept-Graph is introduced for a conceptual separation. We
define that an abstract syntax graph (Definition 6), which is
colored accordingly, is called Concept-Graph. This graph
may furthermore be extended by so-called Concept-Nodes
VConcept / Concept-Edges EConcept. A concept graph is thus
defined as follows.

Definition 14 (Concept-Graph): Let gASG(V,E) be
an abstract syntax graph of a program with node set
V = VSyn of AST and edge set E := ESyn ∪ ESem

of ASG). A colored directed Concept-Graph
g ∈ GRAPH is represented by the following signature:
g(gASG,PATOM, VConcept, EConcept,PConcept, fV , fE)

V a finite indexed set of nodes.
V = VASG ∪ VConcept, V := {v1, v2, . . . , vn}

E a finite indexed set of directed edges
E ⊆ V × V, E := {e1, e2, . . . , em} mit ei = (vj , vk)

E = EASG ∪ EConcept

P a finite indexed set of color instances
P = PATOM ∪PConcept

P := {p1,1, p1,2, . . . , p1,i, . . . , pn,1, . . . , pn,j}
mit {p1, p2, . . . , pn} ⊆ COLOR

fV Coloring function for nodes fV : V → Z|P|
2

fE Coloring function for edges fE : V → Z|P|
2

(22)
Even if the node types are represented by colors concerning

the programming language’s grammar, in general, we should
no longer speak of typed nodes and edges, only of colored
ones, because it is now possible to assign several colors to
each node or edge. However, this is contrary to the definition
of the type. On this basis, now arbitrary architecture concepts
can be represented, and further operations on these can be
defined.

B. Semantic Correctness

Suppose a named set of examples exists, validated in that the
contained examples are semantically equivalent. In that case,
it holds that the given examples are context-independent, as
well as an interpretation of the name in the form of these
examples is possible. Nevertheless, no complete description
of the concept exists in the form of a specification. Further-
more, the examples are semantically equivalent but structurally
different. This is caused by the embedding in an application
context. In the Limitations (see Section IV-C), the maximum
common subgraph problem has already been pointed out. One
is confronted with the same NP-hard problem if we want to
answer the question of whether a graph g should be included

19

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as an example in the set of examples of a concrete concept
C(id , R)?

g ∈ R or g /∈ R

We can define the concept of a Dector as follows:
Definition 15 (Detector dC): A detector dC ∈ DETECTOR

classifies a graph g if the graph is an example of a given
concept C(id , R) or not.

dC : g → [true, false]

dci(G) :=

{
true, g ∈ R

false, g /∈ R

The goal is to develop a methodology to identify known
concepts (identified by identifiers and described by examples)
in a given program using a heuristic to derive suggestions for
new concepts from the extracted information. Since this is an
NP-hard or partly an NP-complete problem, it is reasonable
to modify the concept of semantic correctness so that we
can refer to a semantic similarity instead. The consequence
of this is that there must be an expert who takes over the
validation related to the correctness. However, this can also be
an advantage, as it makes it possible to create specific concept
variants, including project or domain-specific implementations
of a concept.

A corresponding adaptation can be achieved by fuzzifying
the edges to hyperedges and the coloring functions of the
concept graph. If these are fuzzified, then the binary vector
becomes real in the interval 0 to 1. In this case, it is a
so-called Fuzzy-Hypergraph as described in Definition 16
and would have to be considered accordingly in the example
representation.

The idea behind the Fuzzy-Hypergraph is that nodes can be
grouped with a given membership function σ, µ, and a given
degree α. Each hyperedge here represents exactly one aspect
or parts of a hierarchical aspect. This allows us to express for
a concrete instance which influences specific nodes have in
this context. Fuzzy-Hypergraphs are suitable for partitioning
tasks and pattern recognition, among other things. Since this
is an analytical approach, the quality of the results is strongly
dependent on the modeling of the membership functions.

C. Complettness of Extraction

The documentation of a system’s architecture is always an
incomplete system description. This is, on the one hand, be-
cause only those aspects are listed which have relevance from
the point of view of the architect and, on the other hand, due
to the fact that programmers establish concepts during their
development but do not communicate this. The completeness
concept is dependent on the extraction of subjective feeling.
We can say, therefore: The list of the implemented concepts
is complete if the architect sees all the concepts known to him
or concepts, which are already present in the knowledge base,
are not proposed anymore and validated as positive. If other
concepts are present in the implementation, and they will be,

then they are not significant at the current time or dedicated
as such.

The more interesting case, however, is the one where the
programmer implements concepts that are not known to the ar-
chitect. A case in extracting new concepts is when the previous
knowledge consists only of atomic concepts. Here, no other
coloring can be performed. Finding new concepts (colors)
for nodes and edges can be traced to a clustering problem.
Outlier detection, i.e., frequencies, outliers, or neighboring /
overlapping graphs, must be searched for. Here, methods can
be used as described in Section III-A. Given the formalization,
it can be assumed that different methods must be combined
for different aspects.

Having a procedure that is open to new concepts means
that an integration mechanism must exist to incorporate them
into a knowledge base. For example, higher-level concepts
are formed from the programming language’s atomic language
concepts (colors) and their relationships to each other. In other
words, relationships exist between the colors, and precisely
these relationships must now be extracted. Thus also, the
integration mechanism can be specified in the introduction of
new colors as well as the way of assigning colors to nodes,
edges, and graphs. This poses particular challenges to the
methodology, not only for the one-time extraction but also
for the evolution of the system under investigation over time.

This question highlights once again that the architecture of
a system cannot be considered invariant, even if an archi-
tecture should rather be stable over the system’s life cycle
and represent a default for the implementation [72]. During
implementation, situations may arise that require a change
of concept. But such an architectural decision must be made
consciously for all and ideally documented and justified.

D. Data Challenge

The more complex a concept grows, the fewer examples
exist for this concept; as an example for the evaluation of the
presented method (see Section III-A and IV), the Singelton
pattern was used. With this pattern, it was possible to build
up a corresponding dataset. However, this had to be validated
manually because in the result set, despite the name Singel-
ton pattern, there were examples that were not semantically
equivalent to the chosen specification. The reason for this is
explained in detail in Section V-B. Therefore, expert checking
should always be considered.

Considering patterns that are more system-wide concepts,
such as Pipes-And-Filters [73] or a Layered architecture, it
is common for this concept to manifest itself only once in
the system. This means that hundreds of systems with this
corresponding architecture are needed for a similar number of
examples as the extraction was performed for the Singelton
pattern. On the other hand, the concept behind layered archi-
tecture, for example, can be described in a fraction of the size
of the examples.

As a result, methods must be constructed that can work
with a small amount of data, address the compositional aspect
of a concept, and construct results that humans can easily

20

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 16 (Fuzzy-Hypergraph
≃
h (V, E, α, σ, µ), see [71]): A Fuzzy-Hypergraph

≃
h is represented by the following signature:

≃
h (V, E, α, σ, µ)

V a finite indexed set of nodes, V := {v1, v2, . . . , vn}
E a finite indexed set of Hyper-Edges. E ⊂ P(V) \ ∅
E := {Ẽ1, Ẽ2, . . . , Ẽn}

σ a Fuzzy-Set Vα, σ : V → [0, 1]

Vα := {vi ∈ V | σ(vi) ≥ α ∧ α ̸= 0}
µ a set of membership functions µ := {µ1, µ2, . . . , µ|E|}

Ẽi = {vj ∈ V | (vj , µi(vj)) ≥ α ∧ α ̸= 0}
|E|⋃
i=1

supp(Ẽi) = V

(23)

Where supp(A) is the support of the set and is defined as:

supp(A) := {x ∈ A | µA(x) ≥ 0} (24)

interpret. For example, the approach described in this article.
Moreover, a possible approach could be to investigate logic-
based representations as described in Herold [74] and Deiters
[21] [22]. In this way, an approach could be developed based
on extensional and intensional concept descriptions.

VIII. CONCLUSION AND FUTURE WORK

Starting from the approach, which was introduced in [1], an
extension was made in this article. We derived a comprehen-
sive theory and formalism, which makes it possible to establish
holistic approaches as they are described in Herold et al. [75],
Knieke et al. [68] and Schindler [61]. All of these approaches
try to mitigate architecture degradation using ML. Focusing
on extracting concepts from existing implementations, most
common approaches like code2vec, for example, rely on large
amounts of data, so they are unsuitable for this kind of
problem. Because, on the one hand, these data have to be
acquired and validated, and on the other hand, the results have
to be interpretable by humans.

We have shown an approach to extract the essence of
a shared concept driven by available implementations so
that the formulation is interpretable by humans. Moreover,
we formulate expressions that explicitly be not part of an
implementation of the concept. In other words, if such a path
were added to any concept example, it would destroy it.

Future work planned includes two directions, on the one
hand addressing the way the semantics of a concept is de-
scribed and, on the other hand, using the introduced repre-
sentation and abstraction technique as a preprocessing step
in the direction of ML techniques. For example, to train
a classifier or cluster samples to identify variants or the
inner parts of a pattern, e.g., roles. Including the addressed
limitations and collecting a high quality and high quantity data
set of different design patterns, including different variants
of a pattern. We choose an extensional description for the
semantics. Experiments have shown that if a set of examples
of a concept is known and validated, describing them inten-
sionally using predicate logic formulas could be possible. The
question of describing and interpreting a composition operator

for architectural concepts can be seen as essential and still
open at the current research stage.

REFERENCES

[1] C. Schindler, M. Schindler, and A. Rausch, “Negligible details -
towards abstracting source code to distill the essence of concepts,” in
ADAPTIVE 2022, M. Kurz, Ed. Wilmington, DE, USA: IARIA, 2022,
pp. 22–31. [Online]. Available: https://www.thinkmind.org/index.php?
view=article&articleid=adaptive 2022 2 20 50009

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
Elements of reusable object-oriented software, 2nd ed., ser. Addison-
Wesley professional computing series. Boston: Addison-Wesley, 1997.

[3] J. Coplien, Software Patterns. SIGS Books & Multimedia, 1996.
[4] K. Bergner, A. Rausch, and M. Sihling, Using UML for Modeling

a Distributed Java Application. TUM, 1997. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.6797

[5] G. Sunyé, A. Le Guennec, and J.-M. Jézéquel, “Design patterns applica-
tion in uml,” in European Conference on Object-Oriented Programming,
2000, pp. 44–62.

[6] S. Hussain, J. Keung, and A. A. Khan, “The effect of gang-of-four design
patterns usage on design quality attributes,” in 2017 IEEE International
Conference on Software Quality, Reliability and Security (QRS). IEEE,
2017, pp. 263–273.

[7] C. Deiters and A. Rausch, “Assuring architectural properties during com-
positional architecture design,” in International Conference on Software
Composition. Springer, 2011, pp. 141–148.

[8] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman,
“Are developers aware of the architectural impact of their changes?” in
2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2017, pp. 95–105.

[9] M. Schindler and S. Lawrenz, “Community-driven design in software
engineering,” in Proceedings of the 19th International Conference on
Software Engineering Research & Practice, Las Vegas, NV, USA, 2021.

[10] M. L. Scott, Programming language pragmatics, 4th ed. Amsterdam
and Boston and Heidelberg and London and New York and Oxford and
Paris and San Diego and San Francisco and Singapore and Sydney and
Tokyo: Morgan Kaufmann/Elsevier, 2016.

[11] N. Chomsky and D. Lightfoot, Syntactic structures, 2nd ed., ser. A
Mouton classic. Berlin: Mouton de Gruyter, 2002.

[12] N. Chomsky, “Three models for the description of language,” IEEE
Transactions on Information Theory, vol. 2, no. 3, pp. 113–124, 1956.

[13] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
techniques, & tools, 2nd ed. Boston: Pearson Addison Wesley, 2007.

[14] J. Niere, J. P. Wadsack, and L. Wendehals, “Handling large search
space in pattern-based reverse engineering,” in 11th IEEE International
Workshop on Program Comprehension, 2003. IEEE, 2003, pp. 274–
279.

[15] A. Rajaraman and J. D. Ullman, “Data mining,” in Mining of Massive
Datasets, A. Rajaraman and J. D. Ullman, Eds. Cambridge: Cambridge
University Press, 2011, pp. 1–17.

21

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[16] P-mart pattern-like micro-architecture repository. [retrieved: 03, 2023].
[Online]. Available: https://www.ptidej.net/tools/designpatterns/index
html

[17] M. R. Garey and D. S. Johnson, Computers and intractability: A
guide to the theory of NP-completeness, ser. A series of books in the
mathematical sciences. New York u.a: Freeman, 1979.

[18] V. Kann, “On the approximability of the maximum common subgraph
problem,” in Annual Symposium on Theoretical Aspects of Computer
Science. Springer, 1992, pp. 375–388.

[19] “Concept,” 2022, [retrieved: 03, 2023]. [Online]. Available: https://www.
oxfordlearnersdictionaries.com/definition/english/concept?q=concept

[20] E. Zermelo, “Über grenzzahlen und mengenbereiche,” Fundamenta
Mathematicae, vol. 16, no. 1, pp. 29–47, 1930. [Online]. Available:
https://eudml.org/doc/212506

[21] C. Deiters and A. Rausch, “Assuring architectural properties during
compositional architecture design,” in Software composition, ser. Lecture
Notes in Computer Science / Programming and Software Engineering,
S. Apel, Ed. Berlin and Heidelberg: Springer, 2011, vol. 6708, pp.
141–148.

[22] C. Deiters, Beschreibung und konsistente Komposition von Bausteinen
für den Architekturentwurf von Softwaresystemen, 1st ed., ser. SSE-
Dissertation. München: Dr. Hut, 2015, vol. 11.

[23] H.-D. Ebbinghaus, Einführung in die Mengenlehre, 5th ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2021. [Online]. Available:
http://nbn-resolving.org/urn:nbn:de:bsz:31-epflicht-1878742

[24] B. Russell, The philosophy of logical atomism, ser. Routledge
Classics. Abingdon, Oxon: Routledge, 2009. [Online]. Available:
http://site.ebrary.com/lib/alltitles/docDetail.action?docID=10330922

[25] D. Gutzmann, Semantik: Eine Einführung, ser. Lehrbuch J.B. Metzler.
Berlin and Heidelberg: J.B. Metzler Verlag, 2020.

[26] W. Hodges, “Formalizing the relationship between meaning and syntax,”
in The Oxford handbook of compositionality, ser. Oxford handbooks in
linguistics, M. Werning, W. Hinzen, and E. Machery, Eds. Oxford:
Oxford Univ. Press, 2012.

[27] D. Hillert, Ed., Die Natur der Sprache: Evolution, Paradigmen und
Schaltkreise. Wiesbaden: Springer, 2017.

[28] J. A. Hampton and Y. Winter, Eds., Compositionality and Concepts
in Linguistics and Psychology, ser. Language, Cognition, and Mind.
Cham: Springer International Publishing, 2017, vol. 3.

[29] T. E. Zimmermann, “Compositionality problems and how to solve them,”
in The Oxford handbook of compositionality, ser. Oxford handbooks in
linguistics, M. Werning, W. Hinzen, and E. Machery, Eds. Oxford:
Oxford Univ. Press, 2012.

[30] B. H. Partee, A. T. Meulen, and R. E. Wall, Mathematical Methods
in Linguistics, 1st ed., ser. Studies in Linguistics and Philosophy Ser.
Dordrecht: Springer Netherlands, 1990, vol. v.30.

[31] M. Kracht, “Compositionality: The very idea,” Research on Language
and Computation, vol. 5, no. 3, pp. 287–308, 2007.

[32] M. Fowler, “Dealing with roles.”
[33] B. L. Whorf and P. Krausser, Eds., Sprache, Denken, Wirklichkeit:

Beiträge zur Metalinguistik und Sprachphilosophie, 25th ed., ser.
Rowohlts Enzyklopädie. Reinbek bei Hamburg: Rowohlt, 2008, vol.
55403.

[34] L. Boroditsky, “Linguistic relativity,” in Encyclopedia of cognitive
science, L. Nadel, Ed. Chichester, West Sussex Eng. and Hoboken,
N.J: Wiley, 2005.

[35] ——, “How language shapes thought,” Scientific American, vol. 304,
no. 2, pp. 62–65, 2011.

[36] R. K. Hendricks and L. Boroditsky, “New space-time metaphors
foster new nonlinguistic representations,” Topics in Cognitive Science,
vol. 9, no. 3, pp. 800–818, 2017. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/full/10.1111/tops.12279

[37] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Structured programming,
11th ed., ser. APIC studies in data processing. London: Academic Press,
1972, vol. 8.

[38] M. Kracht, “The emergence of syntactic structure,” Linguistics and
Philosophy, vol. 30, no. 1, pp. 47–95, 2007.

[39] ——, The Mathematics of Language. UCLA, 2003. [Online]. Avail-
able: https://linguistics.ucla.edu/people/Kracht/courses/compling2-2007/
formal.pdf

[40] Cantor, “Ueber unendliche, lineare punktmannichfaltigkeiten. 5.
fortsetzung: Fortsetzung des artikels in bd. xxi, pag 51.”
Mathematische Annalen, vol. 21, pp. 545–591, 1883. [Online].
Available: https://eudml.org/doc/157080

[41] M. Kracht, “Using each other’s words,” in The Road to Universal
Logic. Birkhäuser, Cham, 2015, pp. 341–349. [Online]. Available:
https://rd.springer.com/chapter/10.1007/978-3-319-10193-4 15

[42] D. Hilbert and W. Ackermann, Grundzüge der Theoretischen Logik,
6th ed., ser. Grundlehren der Mathematischen Wissenschaften Ser.
Berlin, Heidelberg: Springer Berlin / Heidelberg, 1972, vol. v.27.

[43] T. Berners-Lee and M. Fischetti, Weaving the Web: The original design
and ultimate destiny of the World Wide Web by its inventor, 1st ed. San
Francisco, Calif.: HarperCollins, 2000.

[44] R. Koschke, J.-F. Girard, and M. Wurthner, “An intermediate representa-
tion for integrating reverse engineering analyses,” in Proceedings / Fifth
Working Conference on Reverse Engineering. Los Alamitos, Calif.:
IEEE Computer Society Press, 1998, pp. 241–250.

[45] H. P. Barendregt, M. C. J. D. van Eekelen, J. R. W. Glauert, J. R.
Kennaway, M. J. Plasmeijer, and M. R. Sleep, “Term graph rewriting,”
in PARLE, ser. Lecture Notes in Computer Science, J. W. de Bakker,
A. J. Nijman, P. C. Treleaven, and J. W. de Bakker, Eds. Berlin:
Springer, 1987, pp. 141–158.

[46] D. Plump, “Term graph rewriting,” in Applications, languages and
tools, ser. Handbook of graph grammars and computing by graph
transformation / /managing ed, H. Ehrig, G. Engels, H.-J. Kreowski,
G. Rozenberg, H. Ehrig, and G. Rozenberg, Eds. Singapore: WORLD
SCIENTIFIC, 1999, pp. 3–61.

[47] J. Goll, Architektur- und Entwurfsmuster der Softwaretechnik: Mit
lauffähigen Beispielen in Java, 2nd ed. Wiesbaden: Springer Vieweg,
2014.

[48] D. Bäumer, D. Riehle, W. Siberski, and M. Wulf, “The role object
pattern,” in Washington University Dept. of Computer Science, 1998.

[49] C. Rupp and S. Queins, UML2 glasklar: Praxiswissen für
die UML-Modellierung, 4th ed. München: Hanser, 2012.
[Online]. Available: http://www.hanser-elibrary.com/action/showBook?
doi=10.3139/9783446431973

[50] H. Balzert, Lehrbuch der Objektmodellierung: Analyse und Entwurf ;
mit CD-ROM, ser. Lehrbücher der Informatik. Heidelberg and Berlin:
Spektrum Akad. Verl., 1999.

[51] P. Coad, “Object-oriented patterns,” Communications of the ACM,
vol. 35, no. 9, pp. 152–159, 1992.

[52] S. A. Cook, “The complexity of theorem-proving procedures,” in Pro-
ceedings of the third annual ACM symposium on Theory of computing -
STOC ’71, M. A. Harrison, R. B. Banerji, and J. D. Ullman, Eds. New
York, New York, USA: ACM Press, 1971, pp. 151–158.

[53] U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “A general path-based
representation for predicting program properties,” in Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2018. New York, NY, USA: Association
for Computing Machinery, 2018, p. 404–419.

[54] ——, “code2vec: Learning distributed representations of code,” Pro-
ceedings of the ACM on Programming Languages, vol. 3, no. POPL,
pp. 1–29, 2019.

[55] H. Yarahmadi and S. M. H. Hasheminejad, “Design pattern detection
approaches: a systematic review of the literature,” Artificial Intelligence
Review, vol. 53, no. 8, pp. 5789–5846, 2020.

[56] R. Compton, E. Frank, P. Patros, and A. Koay, “Embedding java
classes with code2vec: Improvements from variable obfuscation,” in
Proceedings of the 17th International Conference on Mining Software
Repositories, 2020, pp. 243–253.

[57] G. Rasool, I. Philippow, and P. Mäder, “Design pattern recovery based
on annotations,” Advances in Engineering Software, vol. 41, no. 4, pp.
519–526, 2010.

[58] P. Warintarawej, M. Huchard, M. Lafourcade, A. Laurent, and P. Pom-
pidor, “Software understanding: Automatic classification of software
identifiers,” Intelligent Data Analysis, vol. 19, no. 4, pp. 761–778, 2015.

[59] M. Schindler, A. Rausch, and O. Fox, “Clustering source code ele-
ments by semantic similarity using wikipedia,” in Proceedings of 4th
International Workshop on Realizing Artificial Intelligence Synergies in
Software Engineering (RAISE), 2015, pp. 13–18.

[60] J. He, C.-C. Lee, V. Raychev, and M. Vechev, “Learning to find
naming issues with big code and small supervision,” in 2021 42nd ACM
SIGPLAN International Conference on Programming Language Design
and Implementation (PLDI ’21). ACM, 2021, pp. 1–16.

[61] M. Schindler and A. Rausch, “Architectural concepts and their evolu-
tion made explicit by examples,” in ADAPTIVE 2019, The Eleventh
International Conference on Adaptive and Self-Adaptive Systems and
Applications, vol. 11, 2019, pp. 38–43.

22

International Journal on Advances in Software, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/software/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[62] jqassistant — your software . your structures . your rules. [retrieved:
03, 2023]. [Online]. Available: https://jqassistant.org

[63] Unit test your java architecture - archunit. [retrieved: 03, 2023].
[Online]. Available: https://www.archunit.org

[64] Structure101 software architecture development environment (ade).
[retrieved: 03, 2023]. [Online]. Available: https://structure101.com

[65] Dependometer. [retrieved: 03, 2023]. [Online]. Available: https:
//github.com/dheraclio/dependometer

[66] G. Rasool and D. Streitfdert, “A survey on design pattern recovery
techniques,” International Journal of Computer Science Issues (IJCSI),
vol. 8, no. 6, p. 251, 2011.

[67] W. Wang, G. Li, B. Ma, X. Xia, and Z. Jin, “Detecting code clones with
graph neural network and flow-augmented abstract syntax tree,” in 2020
IEEE 27th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2020, pp. 261–271.

[68] C. Knieke, A. Rausch, and M. Schindler, “Tackling software architecture
erosion: Joint architecture and implementation repairing by a knowledge-
based approach,” in 2021 IEEE/ACM International Workshop on Auto-
mated Program Repair (APR). IEEE, 6/1/2021 - 6/1/2021, pp. 19–20.

[69] C. Knieke, K. Marco, A. Rausch, M. Schindler, A. Strasser, and
M. Vogel, “A holistic approach for managed evolution of automotive
software product line architectures,” in ADAPTIVE 2017, A. A. Enescu
and A. Rausch, Eds. Wilmington, DE, USA: IARIA, 2017, pp. 43–52.

[70] B. Bollobás, Modern Graph Theory. New York, NY: Springer New
York, 1998, vol. 184.

[71] H. Lee-Kwang and K.-M. Lee, “Fuzzy hypergraph and fuzzy partition,”
IEEE Transactions on Systems, Man, and Cybernetics, vol. 25, no. 1,
pp. 196–201, 1995.

[72] L. Bass, P. Clements, and R. Kazman, Software architecture in practice,
3rd ed., ser. Safari Tech Books Online. Upper Saddle River, NJ:
Addison-Wesley, 2013.

[73] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented
Software Architecture, Patterns for Concurrent and Networked Objects,
1st ed., ser. Wiley Software Patterns Series. s.l.: Wiley, 2013. [Online].
Available: http://gbv.eblib.com/patron/FullRecord.aspx?p=699910

[74] S. Herold, Architectural compliance in component-based systems: Foun-
dations, specification, and checking of architectural rules, 1st ed., ser.
SSE-Dissertation. München: Verl. Dr. Hut, 2011, vol. 5.

[75] S. Herold, C. Knieke, M. Schindler, and A. Rausch, “Towards improving
software architecture degradation mitigation by machine learning,” in
ADAPTIVE 2020, The Twelfth International Conference on Adaptive
and Self-Adaptive Systems and Applications, 2020, pp. 36–39.

