
Designing Context-aware Data Plausibility
Automation Using Machine Learning

1st Mohaddeseh Basiri
KTH Royal Institute

of Technology
Stockholm, Sweden

mbasiri@kth.se

2nd Johannes Himmelbauer
Software Competence Center

Hagenberg GmbH
Hagenberg, Austria

johannes.himmelbauer@scch.at

3rd Lisa Ehrlinger
Software Competence Center

Hagenberg GmbH
Hagenberg, Austria

lisa.ehrlinger@scch.at

4th Mihhail Matskin
KTH Royal Institute

of Technology
Stockholm, Sweden

misha@kth.se

Abstract—In the last two decades, computing and storage
technologies have experienced enormous advances. Leveraging
these recent advances, Artificial Intelligence (AI) is making
the leap from traditional classification use cases to automation
of complex systems through advanced machine learning and
reasoning algorithms. While the literature on AI algorithms
and applications of these algorithms in automation is mature,
there is a lack of research on trustworthy AI, i.e., how different
industries can trust the developed AI modules. AI algorithms
are data-driven, i.e., they learn based on the received data,
and also act based on the received status data. Then, an initial
step in addressing trustworthy AI is investigating the plausibility
of the data that is fed to the system. In this work, we study
the state-of-the-art data plausibility check approaches. Then, we
propose a novel approach that leverages machine learning for
an automated data plausibility check. This novel approach is
context-aware, i.e., it leverages potential contextual data related
to the dataset under investigation for a plausibility check.
We investigate three machine learning solutions that leverage
auto-correlation in each feature of dataset, correlation between
features, and hidden statistics of each feature for generating
the checkpoints. Performance evaluation results indicated the
outstanding performance of the proposed scheme in the detection
of noisy data in order to do the data plausibility check.

Index Terms—Artificial intelligence; Machine learning; Au-
tomation; Plausibility check; Anomaly detection; Ontology;
Context-aware.

I. INTRODUCTION

Due to the rapid development of information technology and
manufacturing process, traditional manufacturing enterprises
have been transformed to the digital and smart factories [1],
[2]. This improvement leads to the emerging complex systems
with thousands of components and sub-systems, in which con-
tinuous monitoring of these systems is of crucial importance.
From the data analytic point of view, this means surveillance
of large amounts of time series data in order to ensure the
correctness of the data and run data plausibility checks. So,
regarding the huge amounts of data, human monitoring of
data is not feasible, which conducts us to the automated
plausibility check using Machine Learning (ML) and data
mining approaches [3].

Data plausibility describes the state when data seems rea-
sonable. Conversely, an anomaly or outlier is a data point that
is remarkably different from the remaining data. A possible
approach for implementing outlier detection is to run plausibil-

ity checks [4]. Rapid and efficient outlier detection is critical
for many applications including intrusion detection systems,
credit card fraud, sensor events, medical recognition, law en-
forcement, etc. [5]. Although outlier detection is an intensively
researched topic in the machine learning and statistics com-
munity [6], there are still many open challenges in practice.
The first challenge is context dependence. For example, a very
high fluctuation rate in a company dataset might be reasonable
for a catering service, but not for a construction company.
Thus, the decision of whether a data sample seems reasonable
(i.e., it is not an outlier) often depends on the context within it
appears. Second, the high dimensionality of the dataset creates
difficulties for data plausibility check [7]. Since the number of
features increases in a high-dimensional dataset, the amount
of data for accurate generalization also raises, which results in
data sparsity and scattering. This data sparsity is because of
inessential features or irrelevant attributes that hide the correct
anomalies. So, anomaly detection is becoming a challenging
task by increasing the number of features and attributes in
large datasets. In addition to these challenges, there are some
inherent issues such as difficulties in the design of threshold
between normal and anomalous data, and much noise existence
due to incorrect measurements or sensor malfunctioning that
may cause the false notifications. On the other hand, data
imbalance as the common problem in anomaly detection
approaches affects the robustness of models, as very few
outlier samples are available.

In order to address the aforementioned challenges, we
present a novel context-aware approach for an automated data
plausibility check, where there is a lack of research in the
literature. In this approach, machine learning techniques are
leveraged on top of semantic models, e.g., ontology, and
benefited from side information in the datasets. Semantic
data models like ontology [8] facilitate the incorporation of
semantic information into the data. This work is the extended
version of [1]. The focus of this paper is on multivariate outlier
detection on the level of records (i.e., samples, rows) instead
of single values. In this regard, the main contributions of this
work include:

1) Presenting a data plausibility check framework; including
test ontology, test data generator, checkpoint, and their



message exchanges.
2) Disclosing three types of tests, to be deployed in the

test ontology, executed in the test generator, and used in
decision making in the checkpoint module. These tests
include:

a) Inter-feature check, checking features based on their
relations leveraging an machine learning module for
prediction of a feature from some related features
(list of neighbors is given by the test ontology from
training)

b) Intra-feature check (1), checking a feature based on
its lags (previous values) using an ML module for
prediction based on the lags (number of lags is given
by the test ontology from training),

c) Intra-feature check (2), checking a feature leveraging
metadata and its long-term statistics (the type of needed
metadata and action on them are given by the test
ontology)

3) Presenting a comprehensive analysis of the performance
of the proposed solution on a propriety dataset and
drawing insights and conclusions from the analyses.

The rest of this paper is organized as follows: Section II
presents state-of-the-art anomaly detection techniques. Sec-
tion III describes the needed background for the work in more
details. Section IV presents the data and models used to solve
the problem. Section V describes our solution for solving
the problem. Simulation results and discussion are presented
in Section VI. In Section VII, the findings of this work are
presented in a brief but succinct manner.

II. RELATED WORK

Anomaly detection, as the concept of identifying patterns
or data points that are significantly different from the ex-
pected behavior, has been widely studied. State-of-the-art
using anomaly detection algorithms can be categorized as
following [9]:

Classification Based: This algorithm strives to discern nor-
mal data instances from the abnormal ones in the given dataset
space by using a trained model. It is categorized into one-
class and multi-class models. In one-class models, a distin-
guished threshold is learned to label data points outside of this
threshold as anomalies instances [10]. In multi-class models,
multiple classifiers are trained. A data point is recognized as
an anomaly if none of the classifiers can label it as the normal
instance [11]. Various anomaly detection techniques such as
neural networks, Bayesian networks, support vector machines,
and rule-based utilize different classification algorithms to
build their classifiers.

Nearest Neighbor Based: In this technique, normal data
points are in compact neighborhoods, while anomalous data
points are far from their nearest neighbors. This technique
needs a distance or similarity measurement between two data
points in order to recognize which data points are far from
or different from other points. For continuous features, Eu-
clidean distance is used, and for categorical features, a simple

matching coefficient is a common option. In multivariate
data points, the combination of computed distance for each
feature is usually leveraged. The nearest neighbor technique
is categorized into two groups regarding how they compute
the anomaly score: 1) The distance of a data point to its kth

nearest neighbor is used as the anomaly score, e.g., k-nearest
neighbor approach [12]. 2) The relative density of each data
point is computed as the anomaly score, e.g., Local Outlier
Factor (LOF) [13].

Clustering Based: In this algorithm, similar data instances
are grouped into clusters. There are three categories of
clustering-based anomaly detection techniques. First, tech-
niques that suppose normal data instances belong to a cluster,
while abnormal data points do not belong to any cluster,
e.g., SNN clustering [14]. Second, algorithms that consider
normal data instances are near to the closest cluster centroid,
while outliers are far from their closest cluster centroid, e.g.,
Self-Organizing Maps [15]. Third, those assume normal data
instances create large and dense clusters, while anomalous data
points create small or scattered clusters, e.g., Cluster-Based
Local Outlier Factor (CBLOF) [16].

Statistical: Regarding the basic assumption of statistical
anomaly detection techniques, a data point is anomaly if it
is not generated by the stochastic model. In other words,
normal data points happen in high probability areas of a
stochastic model, while outliers happen in the low proba-
bility areas of the stochastic model. In these approaches, a
statistical model (usually for normal patterns) is applied to
the dataset and then a statistical inference test is utilized to
identify whether a data point fits well to this model or not.
Regarding the applied test statistic, data instances that there
are low probability to be created from the learn model are
considered as anomalous data. Parametric and non-parametric
techniques are two approaches that can be leveraged to fit a
statistical model. Parametric techniques benefit the distribution
knowledge and compute parameters from the given data,
while non-parametric techniques do not. Gaussian model based
algorithms like Maximum Likelihood Estimation (MLE) [17],
regression model based like Auto-regressive Integrated Mov-
ing Average (ARIMA) [18], and combination of parametric
distribution based algorithms like Expectation Maximization
(EM) [19] are instances of parametric techniques. Histogram
based such as Intrusion-Detection Expert System (IDES) [20],
and kernel function based like parzen windows estimation [21]
are samples of non-parametric techniques.

Information Theoretic: In this approach, the information
content of the dataset is analyzed. The purpose of this tech-
nique is to solve a double optimization problem in order to
determine the minimized subset that maximizes the complexity
reduction of the dataset, and finally label that subset as the
outlier. Entropy and Kolmogorov Complexity [22] are two
examples of this category.

Spectral: This technique tries to find a lower-dimensional
subspace in such a way that outliers and normal data points
are remarkably different. Hence, anomalies can be easily
distinguished. Principal Component Analysis (PCA) is used in



many techniques in order to project data points into a lower
dimensional space [23].

In order to have better overview of different techniques
and their algorithms, advantages and disadvantages of each
techniques are summarized in Figure 1.

III. BACKGROUND

In this section, ARIMA, decision tree, and random forest
as machine learning algorithms and ontology are described in
more details.

A. ARIMA

ARIMA (Auto-Regressive Integrated Moving Average) is
an extension of an auto-regressive moving average (ARMA)
model. Both of these models are utilized in order to have
better understanding of time series data or predict future
values of an attribute [18]. The AR part of ARIMA shows
that the attribute of interest is regressed on its own lagged
(i.e., on its prior values). The MA part is representation
of the regression error, which is the linear combination of
contemporaneous error values and errors at various times in
the past. The I (for ”integrated”) shows that the data values
have been substituted with the discrepancy between their
values and the previous values. ARIMA model is denoted by
ARIMA(P, I,Q), where P is the order of auto-regressive
model (number of time lags), I is the degree of differencing,
and Q is the order of moving-average model. The aim of each
of these features is to make the model fit well with the data.

B. Decision Tree and Random Forest

Decision tree as a rule-based classifier corresponds each
internal node of the tree to an attribute. Each branch of the
tree represents a condition (rule) on the related attribute. The
result of the condition on the related attribute can be binary,
categorical, or real-valued. Depending on the result of the
condition, a test example pursues the related branches starting
from the root node and moves down to a leaf node. Leaf nodes
represent the labels, which are the results of classification.
The basic idea of a single decision tree is leveraged for
random forests (RF)s and ensemble learning. Regarding the
main principle, utilizing an ensemble of several naive weak
classifiers can cause to a much more powerful classifier, such
that each of this unique weak classifier can perform rather
more powerful than random estimation and independent of all
other classifiers [24].

As shown in Figure 2, random forest works based on the
bagging algorithm and uses ensemble learning technique. It
builds as several trees as possible on the subset of data and
merges the results of all the trees together. In this way, it
decreases overfitting problem and also reduces the variance
and hence improves the accuracy. This classifier can handle
missing values and does not need feature scaling. Random
forest is usually stable to outliers. Even if a new data instance
is inserted in the dataset, the entire algorithm is not affected
much. Since only one tree might be impacted by the new data,

it is difficult to impact all the trees. Moreover, random forest
is comparatively less impacted by noise.

Fig. 2. How random forest algorithm works. (Source: [25])

C. Ontology

Ontology is utilized to obtain knowledge about some
domain of interest. An ontology defines the concepts in the
domain and also the relationships that exist between these
concepts, i.e., an ontology defines common words in order to
share common understanding of the structure of information in
a domain [26]. Various ontology languages provide different
possibilities. Our focus is on introducing the components of
OWL ontology as the most recent development in standard
ontology languages [27]. An OWL ontology consists of
Individuals, Properties, and Classes as the components. In the
following, each of these components is introduced.

Individuals: Individuals expose objects in the domain of
interest. OWL does not use the Unique Name Assumption
(UNA). This implies that two different names could refer
to the same individual. For instance, ’Queen Elizabeth’,
’The Queen’, and ’Elizabeth Windsor’, all of them might
refer to the identical individual. In OWL, individuals must
be explicitly declared that they refer to the same object or
they are different. Figure 3 depicts a demonstration of some
individuals in various domain.

Properties: Properties are relations that connect two
individuals together. As shown in Figure 4, the property
livesIn connects the individual Matthew to the individual
England, or the property hasSibling links the individual
Matthew to the individual Gemma. Properties could be
inverted. For instance, the inverse of hasOwener property
is isOwnedBy property. Also, properties could be either
transitive or symmetric.

Classes: OWL classes behave like sets that contain individu-
als. They precisely declare the needs of the class memberships.
For example, the class Person would contain all the individuals
that are persons in the domain of interest. Classes might have
superclass-subclass taxonomy. For instance, assume the classes
Animal and Dog - Dog is the subclass of Animal. So, Animal
is the superclass of Dog. This means that all dogs are animals



Fig. 1. Advantage and disadvantages of various anomaly detection techniques [9]



Fig. 3. Demonstration of individuals. (Source: [27])

Fig. 4. Demonstration of properties. (Source: [27])

and all members of class Dog are members of class Animal.
Figure 5 depicts a demonstration of some classes, which are
containing some individuals. Classes are shown as circles or
ovals and individuals are as the instances of classes.

IV. DATA AND MODELS FOR EXPERIMENTS

This section sheds light on the data under investigation.
Furthermore, it provides details on the pre-processing per-
formed on the received data, and the planned data analytics
and verification procedures.

A. Data Collection

The relation of data to AI is as food to the human being.
In other words, there is no artificial intelligence in isolation,
and any AI approach needs corresponding data for learning.
For this project, we receive the dataset through our industrial
partner, from a third-party company. While the data itself is
confidential and could not be shared open access on the web,
in this section we try to provide insights into the data, in order

Fig. 5. Demonstration of classes, containing individuals and properties
between them. (Source: [27])

to make the reader familiar with the approaches that will be
presented in the next section.

1) A deep Look into the Dataset: Our dataset contains 18
unique test runs for produced machine parts. Each of these
tests has been run for a different period of time, i.e., there are
different reported cycles per test.

2) Features available per test: The first dataset
(testoverview.csv) provides a comprehensive list of features
available per test (out of 18 tests). These features include the
type of material used in the experiments, e.g., the oil, and the
setting that has been applied in the experiment, e.g., distance
between disks. This metadata has been collected to be used
for verification of dataset and its reproducibility, as we will
see in the next section (Section V-C).

3) Features available per test cycle: For each of the tests
mentioned above, measurements have been done for different
periods of time, and a number of features have been recorded
per time cycle in the second dataset (tests.csv). In other words,
this dataset presents a comprehensive list of features available
per time cycle for each test. In contrast to the first dataset,
most of the features of the second dataset are unknown to the
reader and have not been revealed by the third company to us.

B. Pre-processing of Data

For pre-processing of data, we investigate NaN values and
missing entries in the dataset. Then, we start plotting the data
to see trends in the results from each test. Figure 6 represents
two features of a specific test across time. It is interesting to
see that the features represent 3 trends in 3 different phases,
including (a) an increasing trend at the start phase (up to 600
cycles, with a return to 50 periodically for the second feature),
(b) a semi-constant trend from 600 cycles until the end cycle
-600 cycles, and (c) an increasing trend in the last 600 cycles
(with a return to 50 periodically for the second feature). In
order to see if it is a recurring trend, we investigate the same
thing for other tests. For example, Figure 7 represents the
same phenomena for another test. Here, the start and end
phases show a decreasing trend, while the middle phase is
semi-constant with low variations. The increasing/decreasing
trend at the start/end phases and the semi-constant trend in the
middle phase are observed in all tests unless one test (depicted
in Figure 8), and this test is excluded from our analysis based
on the human expert information, as it does not show the
standard behavior.

C. Planned Data Analysis

Figure 9 represents the plausibility check problem and the
planned analysis for dealing with this problem. Based on this
figure, we receive the data per test per time cycle (as the
data pipeline from the bottom of the blue box), and also
some metadata per test (as the left data pipeline), and aim
at investigating if each test data is plausible or not. The focus
of this work is on the design of the plausibility check module
and the design of an ontology for the generation of the check
data to be used in the plausibility checker module.



Fig. 6. Description of subset-1 of data versus cycle index

Fig. 7. Description of subset-2 of data versus cycle index

Fig. 8. Description of subset-3 of data versus cycle index

1) Evaluation Metric: In this work, we focus on predicting
the test values and comparing them with the real values for
detection of a potential anomaly, i.e., performing regression
analysis. Regression refers to predictive modeling, and in-
volves predicting a numeric value, and is different from the
classification that involves predicting the label of a class
of data. In regression analysis, we use Mean Squared Error
(MSE), as an error metric designed for evaluating predictions
made on regression problems. The MSE metric is derived as
the mean or average of the squared differences between real
and predicted values, i.e., MSE = 1

N

∑N
i=1(X[i] − X̃[i])2,

in which, X[i] is the i’th real value in the dataset and X̃[i] is
the i’th predicted value. The difference is squared, which has
the effect of resulting in a positive error value and inflating or
magnifying the large errors.

2) Evaluation Framework: Figure 9 represents the evalua-
tion framework for performance assessment of the proposed
plausibility check solution. Based on this figure, we will
add two types of error, including constant bias noise and
random noise, to the test data per cycle, and will check if the
plausibility check module is capable of finding inconsistency
in the data.

Fig. 9. Planned evaluation framework

V. THE PROPOSED SOLUTION

This section aims at presenting contributions of the work.
Our contributions include the design of a data analytics unit
for plausibility check of data. The schema of the proposed
solution has been depicted in Figure 10. This proposed unit
includes two novel functions: (a) the test data generator
function and (b) the plausibility check function. The former
one collects further information about the test and generates
checkpoints (contextual data) to be evaluated by the checker
function. The checker function compares the checkpoints with
the threshold values and makes the plausibility decision. Then,
before storing data in the database or actuating based on the
received data, the customer can pass the data through the
data analytics unit and check whether this data is plausible
or not. As we will see in detail of the proposed approaches,
the test data generator function includes an intelligent agent
for generating the test data.

Implementation of the proposed solution requires contextual
data to be collected. Contextual data is test data, which is



Fig. 10. The proposed solution

related to the dataset to be checked at the plausibility check
function. Also, the contextual data should be contributory in
the plausibility check of the dataset. In the following, three
ideas are presented for generating contextual data:

1) Cross-correlation between columns of the dataset is used
for prediction of the column of interest. The performance
of prediction (MSE) is reported as a property of column
of interest for a plausibility check.

2) Prediction of future values of each column based on
the previous values of that column and comparison with
the received data (Auto-regression). The performance in
terms of MSE is used for a plausibility check.

3) Finding rules and statistics for each column based on
metadata and configuration available for the test, e.g.,
type of oil used at the machine part.

A. Design of contextual information for plausibility check: The
first solution

In tests.csv dataset, there are 18 unique tests with 29 data
columns, unique hash codes, and different cycles. The columns
of the dataset could be correlated together. Then, one can use
some columns to check the plausibility of other columns.

For testing the hypothesis of mutual correlation between
different columns, we consider one unique test and find the
correlation between each column with itself and with 28 other
columns, by using the built-in correlation function of Python.
As shown in Figure 11, the correlation results of each test are
stored in a matrix of 29 ∗ 29. The correlation number in each
cell ci,j of this matrix is an amount between -1 and 1 and this
number states that how much the column i is correlated to the
column j. The higher the absolute value of each cell ci,j , the
more correlated the column i to the column j.

Since the correlations between columns in one test might
randomly be high or low, the correlation matrix is calculated
for each 18 unique tests, and 18 correlation matrices of 29 ∗
29 are obtained. Then, each cell of correlation matrices is
averaged over all 18 tests. Figure 12 refers to the result of
averaged correlation matrices over 18 tests. This correlation
matrix is for the starting phase. Since the behavior of features
in the various phases is different, the correlation matrix for
the steady-state and ending phase are calculated separately.

As the absolute value of the correlation matrix is of impor-
tance, the features with the hottest and coldest colors are more

Fig. 11. The correlation matrix for one test before averaging

Fig. 12. The correlation matrix after averaging over all available tests

correlated together. As shown in Figure 12, the results confirm
the existence of strongly related features for plausibility check
of each feature.

Having access to the m most related columns for each
column, we can train a machine-learning algorithm to predict
the value of feature of interest (FoI) based on the selected
features. Here, we select the three most related features for
prediction. If the prediction based on the selected features
matches the recorded data, there is a low probability of
implausibility. If the predicted and recorded values do not
match, an alarm could be raised. For deploying this idea,
we need an ML agent. Figure 13 depicts the check data
generation and decision-making procedures in more detail. In
this figure, the FoI is X1, and the subset of features related
to it is X2. Then, X2 is fed to the test generator node, and a
prediction of X1 based on X2 is generated (call it X̃1). The
predicted value, X̃1 along with X1 are fed to the comparator



Fig. 13. Feature selection and decision making procedure in more details for
the first solution.

node, and from the comparison, the system can carry out
the validation process. Finally, the X1 data will be accepted
or an alarm will be triggered. One must note that the test
ontology can trigger generating any kind of test data for X1

based on X2. For example, after setting the ontology by a
human expert, the ML agent in the test generator node takes
ontology and customer dataset as inputs. Ontology determines
what contextual information should be collected. In the above
example, ML agent understands from the ontology that MSE
is required to be collected for the FoI. So, the ML agent, by
applying an appropriate algorithm, generates the MSE in the
prediction of feature-1 using the three most related features to
it. In the decision-making step, this MSE is compared with the
ground-truth value. If the value of MSE is less than or equal to
the ground-truth value, then the customer data is plausible and
can be stored in the database, otherwise, the data is implausible
and an alarm is raised.

Towards deploying the ML agent, we need to select an ML
algorithm, prepare a train and test dataset, train it over train
dataset, and test it over test dataset. To select an ML algorithm,
we need to consider some points such as simplicity in usage,
scalability, being model-free, explainability, resistance against
overfitting and noise, resistance against non-available values in
measurements, and working with categorical and continuous
values. Regarding these tips, a random forest (RF) algorithm
for regression is selected to be implemented in the ML agent.
Investigation of the RF algorithm on our dataset for configu-
ration of its parameter, i.e., number of estimator trees, showed
us that the best performance, in terms of speed and overfitting,
is achieved by 50 trees. Performance of the RF algorithms for
plausibility check is investigated in subsection VI-A of the
next section. Towards using RF algorithm, we train an RF
agent based on several tests (out of 18 as described in the
previous section), and then test this agent on a test dataset
(excluding the training datasets).

B. Design of contextual information for plausibility check: The
second solution

Not only does cross-correlation exists between columns of
the dataset, but also auto-correlation among values of one
column could be considered. It means that one can utilize
the previous values of a column to check the plausibility of a
specific value in this column.

Fig. 14. Auto-correlation of feature 1 in the starting phase of test A

Fig. 15. Auto-correlation of feature 1 in the starting phase of test B

To see if auto-correlation could be used for the prediction
of a feature from its lags, we consider one unique test and
find the auto-correlation for each feature of this test. By using
auto-correlation, we can find how a value of a feature in time
t is related to the previous values of this feature at time t− 1,
t − 2, t − 3, ..., t − n. Figure 14 and Figure 15 depict the
auto-correlation of E-spec in starting phase of test A and B
respectively.

Since the values of auto-correlation for a specific feature
of one test could randomly be high or low, we repeat auto-
correlation for this feature over the 18 tests and average the

Fig. 16. Average of auto-correlation for feature 1 over different tests in the
starting phase



Fig. 17. Auto-correlation of feature 2 in the steady phase of test C

Fig. 18. Auto-correlation of feature 1 in the end phase of test C

values of these tests. So, Figure 16 is resulted. Then, among
these averaged values, previous m recent values are selected
for use in the ML agent. Since the behavior of features in the
various phases follows different models, the auto-correlation
function is calculated for each phase of a feature separately.
Figure 17 and Figure 18 refer to the auto-correlation functions
in the steady phase and end phase of feature 1 and 2 for the
same test. Figure 19 and Figure 20 show the average of auto-
correlation function over different tests in the steady phase of
feature 2 and ending phase of feature 1.

Having access to the previous m recent values of a feature,
we can train a machine-learning algorithm to predict the value
of FoI at time t based on the previous values of the feature at
time t−1, t−2, ..., and t−n. If the prediction value at time t
based on the previous m recent values match the recorded data,
there is low probability of implausibility, otherwise because of
mismatch of prediction data and recorded one, an alarm could
be raised. Figure 21 depicts the overall architecture of the
second solution in more detail. In this figure, part of X1[0 :
N2], e.g., X1[0 : N1] in which N1 < N2, is fed to the test
data generator (Note: X1 is the FoI. ). Then, based on the test
ontology, e.g., time series forecasting of X1 using ARIMA,
test data for the validity of X1[0 : N2] will be generated, e.g.,
X̃1. Finally, at the comparator node, the real value of X1 will
be compared against X̃1. Based on this comparison, X1 data
will be accepted or an alarm will be triggered.

Fig. 19. Average of auto-correlation for feature 2 over different tests in the
steady phase

Fig. 20. Average of auto-correlation for feature 1 over different tests in the
end phase

Toward deploying an ML agent for the second hypothesis,
Random Forest (RF) and ARIMA algorithms are implemented.
As mentioned in subsection V-A, we use the RF algorithm with
50 estimators for our test purpose. For the RF algorithm, the
plausibility of each data point is checked based on the 10 lags
of the data, i.e., x[n] is checked based on x[n-10]:x[n-1]. For
ease of notation, we call this RF algorithm as RF(50,10). For
the ARIMA approach, the investigation of parameters on our
dataset showed that P=3, Q=I=0, i.e., ARIMA(3,0,0) matches
our dataset. Performance of ARIMA and RF algorithms for

Fig. 21. Feature selection and decision making procedure in more details for
the second solution.



plausibility check is investigated in subsection VI-B of the
next section. Towards using ARIMA and RF algorithms, we
train the ML agent based on several datasets (out of 18 tests),
and then test these agents on a test dataset (excluding training
tests).

C. Design of contextual information for plausibility check:
The third solution

In the previous sections, we have leveraged the information
in the features, either in the FoI or a combination of features,
for plausibility check. In other words, the other contextual data
gathered by the test maker related to the overall test have not
been considered. In this section, we aim at investigating the
impact of such contextual data on the statistics of FoI, and the
potential application of such connection in plausibility check
for the dataset. Figure 22 represents the overall structure of the
proposed solution. In this figure, the metadata about X1, which
is the FoI, is fed to the test data generator along with X1.
Then, based on the test ontology, e.g., partitioning Cumulative
Distribution Function (CDF) of X1 based on states of the
metadata, test data for the validity of X1 will be generated,
e.g., S̃X1

. Finally, at the comparator node, the real value of
SX1

from received X1, e.g., the average value of X1 will be
compared against the S̃X1

. Based on this comparison, X1 data
will be accepted or an alarm will be triggered.

In our dataset, there are several contextual information
corresponding to each unique test that potentially have impacts
on the statistics of features. Examples of such contextual
data include type of the oil and separator metal used in the
experiment. Let us focus on oil. The initial hypothesis is that
there is a connection between the type of oil used in a test
and the statistics of measurements in this test. For example,
the min, max, variance, median, mean values of distribution
for Oil-A have considerable differences from the ones of Oil-
B. Figure 23 and Figure 24 show the statistics for feature-2.
One can observe that the Probability Density Function (PDF)
and Cumulative Distribution Function (CDF) of this feature
are different for various oil types. Furthermore, the min and
max values of this feature for type-A oil differ from type-B oil.
So, using these explored statistics, we can add some rules to
the ontology to discover the implausibility of the data. If the
data would be implausible, the related statistics will change in
comparison with the normal ones.

We train the metrics of decision-making using statistics
of feature-2. If statistics of the test dataset comply with the
statistics of the trained dataset, i.e., metrics like min, median,
and variance are within the accepted bound found in the
training, the decision-maker accepts the test data as plausible.
Performance of plausibility check by using statistics of the
data is investigated in subsection VI-C of the next section.

VI. RESULTS AND DISCUSSION

A. Performance test for the first solution

Recall the first proposed solution in Figure 13. In this
solution, the test ontology mandates predicting FoI for validity
check based on the three most-related features. It also proposes

Fig. 22. Feature selection and decision making procedure in more details for
the third solution.

Fig. 23. PDF of feature-2

MSE as the prediction analysis metric. Then, the three most
related features to the FoI are fed to the test data generator
and are used for predicting the FoI. Figure 25 shows the
performance test results such that the prediction values are
fitted well with the real values of FoI (here, feature-1).

In this figure, along with the test data and predicted data,
the three most related features to feature-1 can be seen as well.
One can observe that these three features have almost either
direct or inverse (because of negative values of correlation)
relationship with the feature of interest (feature-1). The above
tests have been repeated for the steady phase and ending phase,
and the same behavior has been almost observed for tests in
these phases. We aim at leveraging the proposed ML agent

Fig. 24. CDF of feature-2



Fig. 25. Testing agent for predicting feature-1 with more details of 3 most
related features

Fig. 26. Testing agent for predicting feature-1 based on 3 most related feature.
No noise has been applied, MSE=0.0002= MSE (ground truth). (Blue: real
data, Orange: predicted data)

for carrying plausibility checks out. So, seven test cases are
presented based on applying bias measurement errors, and
random measurement errors to the column of interest, and
most related columns. The first plausibility check is related
to the state that there is no noise in the data. As shown in
Figure 26, plausibility of data has been confirmed. In second
plausibility test, bias noise is added on the feature of interest
(E-spec). From results of Figure 27, it can be observed that
the predicted values are not the same as real values. So, the
ML agent can detect the error on the data and conclude the
implausibility of data. The third plausibility test, as shown in
Figure 28, is related to the adding bias noise to the least related
feature. In forth plausibility check, bias noise is added to the
most related feature. The result is depicted in Figure 29. The
same plausibility tests are done by adding random noise on
the feature of interest, least related feature, and most related
feature. The results of these tests are shown in Figure 30,
Figure 31, and Figure 32, respectively.

B. Performance test for the second solution

Recall the second proposed solution in Figure 21. In this
solution, the test ontology mandates predicting FoI for validity
check based on its lags. It also proposes MSE as the prediction

Fig. 27. Testing agent for predicting feature-1 based on 3 most related
features. Bias noise on the feature of interest, MSE=0.068 (340 times more
than ground truth). (Blue: real data, Orange: predicted data)

Fig. 28. Testing agent for predicting feature-1 based on 3 most related feature.
Bias noise on the least related feature, MSE=0.0034 (16.5 times more than
the ground truth). (Blue: real data, Orange: predicted data)

analysis metric. Then, the lags of FoI are fed to the test
data generator, and are used for predicting the FoI. Figure 33
shows the performance test result using random forest for
predicting feature-1 (FoI). In the random forest algorithm, we
used 10 recent values of feature-1 for prediction. Figure 34
depicts the performance test result for predicting feature-1
using auto-correlation and ARIMA. In our implementation,
ARIMA works with three recent values of feature-1. Both
Figure 33 and Figure 34 confirm that the prediction values fit
well with the real values of feature-1. We do the performance

Fig. 29. Testing agent for predicting feature-1 based on 3 most related feature.
Bias noise on the most related feature, MSE=0.0421 (210 times more than
the ground truth). (Blue: real data, Orange: predicted data)



Fig. 30. Testing agent for predicting feature-1 based on 3 most related feature.
Random noise on the feature of interest, MSE =0.01 (50 times higher than
the ground truth). (Blue: real data, Orange: predicted data)

Fig. 31. Testing agent for predicting E-spec based on 3 most related feature.
Random noise on the least related feature, MSE=0.0012 (6 times more than
the ground truth).

test for the steady phase and ending phase of feature-1 using
random forest and ARIMA algorithms and the results for these
phases also follow the same trend.

For plausibility check using the auto-correlation contex-
tual data, we apply bias measurement errors and random
measurement errors to the FoI, and examine if the proposed
solution can assess the incorrectness of data. Towards this end,
we leverage the FoI’s forecasting results using ARIMA and
random forest methods. From Figure 35, Figure 36, Figure 37,
and Figure 38 with random and bias noises, one can observe

Fig. 32. Testing agent for predicting feature-1 based on 3 most related feature.
Random noise on the most related feature, MSE= 0.00068 (34 times more
than the ground truth). (Blue: real data, Orange: predicted data)

Fig. 33. Testing agent for predicting feature-1 using auto-correlation and
random forest.

Fig. 34. Testing agent for predicting feature-1 using auto-correlation and
ARIMA.

that the predicted values are not the same as real values of
FoI. So, the ML agent can detect the error on the data and
conclude the implausibility of the data. Table II summarizes
the results of plausibility tests for the second solution.

C. Performance test for the third solution

Recall the third proposed solution in Figure 22. In this
solution, the test ontology collects metadata about FoI for
validity check. Then, the past values of this feature are fed to
the test data generator, and are used for extraction of statistics
of this feature, and predicting the validity of the feature based
on the extracted statistics. Here, we focus on the oil data and
try to partition the PDF of FoI based on the type of oil used

Fig. 35. Plausibility check for predicting feature-1 using auto-correlation,
Random forest, and bias noise.



Fig. 36. Plausibility check for predicting feature-1 using auto-correlation,
ARIMA, and bias noise.

Fig. 37. Plausibility check for predicting feature-1 using auto-correlation,
random forest, and random noise.

in the experiment. Figure 39 represents the partitioned PDF
of the feature-2 (FoI) based on the type of oil used in the
experiment. One observes the same trend from the test data
and train data when there is no noise added to data (plausible
test dataset).

In this section, we apply bias noise and random noise on
the test data to check if our designed solution can detect the
implausible data. Figure 40 and Figure 41 show the results of
performance analysis for bias and random noise respectively.
One observes in Figure 40 that adding the noise to the test
data (red one) clearly shifts the plot to the right. Figure 41
represents the dataset with random noise. One can observe that

Fig. 38. Plausibility check for predicting feature-1 using auto-correlation,
ARIMA, and random noise.

Fig. 39. Comparison of PDF of FoI in two tests

Fig. 40. Comparison of PDF of FoI with and w/o bias noise

the noise added to the data has changed the shape of PDF in
both cases of bias and random noise, e.g., the mean and median
have changed in Figure 40 and Figure 41 in comparison with
the original data without noise shown in Figure 39.

D. Discussion

In Table I, the results of plausibility test for the first solution
(subsection VI-B) have been summarized in more details.
Table II summarizes the performance results for the second
solution (subsection VI-B). Table III summarizes the results
of Figures 39, 40, and 41 in subsection VI-B.

Fig. 41. Comparison of PDF of FoI with and w/o random noise



TABLE I
SUMMARY OF PLAUSIBILITY CHECK USING SOLUTION 1

Test description MSE MSEratio :
MSE

MSEtrue

Check:
MSEratio <
Ratioth;
Ratioth =
1.5

True data 0.0002 1 Y
Bias error on column of
interest (feature-1)

0.068 360 N

Bias error on least related
feature

0033 16.5 N

Bias error on most related
feature

0.0420 210 N

Random error on feature of
interest (feature-1)

0.010 50 N

Random error on least re-
lated feature

0.0012 6 N

Random error on most re-
lated feature

0.0068 34 N

TABLE III
SUMMARY OF PLAUSIBILITY CHECK USING SOLUTION 3

Test description Mean Mean-
ratio

Median Median
-ratio

Plaus.
check

Train data (base
measurement)

22.8 1 18.2 1 -

Test data w/o noise 24.6 1.08 20.4 1.12 Y
Test data with bias
error

47.42 2.08 43.4 2.38 N

Test data with ran-
dom error

35.8 1.57 31.7 1.74 N

From Table I, it is clear that the plausibility check solution,
which is powered by the prediction of FoI based on the most
related features, performs well against the bias noise. In other
words, when a constant value, i.e., a measurement error, is
added to the reading of a sensor, the plausibility check module
can easily detect that data is inconsistent with the past learning
(from 16.5 to 360 times more MSE has been reported). For the
random noise, when the amount of the added noise to the data
could vary, the performance is lower than the bias noise, but
still completely acceptable (from 6 to 50 times more MSE has
been reported). For example, one observes that the plausibility
test has been shown 6 times more MSE in the prediction of
FoI when random noise on the least relevant feature to the FoI
has been added. Furthermore, Table II showed that the second
solution (using RF) is not vulnerable to the random noise,
and it performs equivalently for the bias and random noises
(7 times more MSE in prediction of FoI). In the same time,
we observe that the ARIMA has a poor performance as an ML
agent for this solution, and it misses the alarm for the test-
case with bias noise on the the FoI (the corresponding MSE-
ratio is 1.125, which is lower than the threshold value, i.e.,
1.5). Finally, the third approach shows a weaker performance
than the previous ones (around two times more MSE has been
reported). One must note that the stronger performance of the
first approach and relatively the second approach is achieved
at the cost of further computing required for them. In other

words, there is a hidden reliability-complexity trade-off here,
where going from solution 1 to 3, complexity is reduced and
the probability of error in plausibility check is increased.

VII. CONCLUSIONS

In this work, we investigated data plausibility automation
for a given dataset from a smart factory. Towards this end,
a data analytics framework, consisting of a contextual data
generation function (which generates checkpoints based on a
given ontology) and a plausibility check function (which works
based on the designed checkpoints), was proposed. For the
implementation of the first function, we have investigated three
machine learning approaches that leverage auto-correlation in
each feature, correlation between features, and hidden statistics
of each feature for generating the checkpoints. Performance
evaluation results indicated the outstanding performance of
the proposed schemes in the detection of noisy data. The
main concluding remarks of this work include: (i) This study
indicated that each feature of the dataset, or a collection of
features, could be used without any other data for plausibility
check leveraging machine learning. (ii) Metadata about the
test, including conditions in which the test has been carried
out, could be an important part of the design of the plausibility
check. (iii) Checking of plausibility for a dataset that may
contain random noise on some features (or some cycles) is
much harder than checking the presence of static noise on
the data. (iv) Performances of different checkpoint generation
functions (using different ML approaches) are not the same.
The ones based on the investigation of each cycle of the
test, solutions 1 and 2, are more complex and provide a
better distinction between noisy and healthy data. While the
third solution is a lightweight solution with a lower reliability
performance.

ACKNOWLEDGEMENT

The research reported in this paper has been partially
funded by BMK, BMDW, the State of Upper Austria in the
frame of the COMET Programme managed by FFG and by
the EC H2020 project ”DataCloud: Enabling the Big Data
Pipeline Lifecycle on the Computing Continuum” (Grant nr.
101016835).

REFERENCES

[1] M. Basiri, J. Himmelbauer, L. Ehrlinger, and M. Matskin, “Context-
aware data plausibility check using machine learning,” in The Fourteenth
International Conference on Advances in Databases, Knowledge, and
Data Applications. DBKDA, 2022.

[2] V. Q. Nguyen, L. Van Ma, and J. Kim, “Lstm-based anomaly detection
on big data for smart factory monitoring,” Journal of Digital Contents
Society, vol. 19, no. 4, pp. 789–799, 2018.

[3] N. Laptev, S. Amizadeh, and I. Flint, “Generic and scalable framework
for automated time-series anomaly detection,” in Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and
data mining, 2015, pp. 1939–1947.

[4] S. So, J. Petit, and D. Starobinski, “Physical layer plausibility checks
for misbehavior detection in v2x networks,” in Proceedings of the 12th
Conference on Security and Privacy in Wireless and Mobile Networks,
2019, pp. 84–93.

[5] C. C. Aggarwal, “Outlier analysis,” in Data mining. Springer, 2015,
pp. 237–263.



TABLE II
SUMMARY OF PLAUSIBILITY CHECK USING SOLUTION 2

Test description MSE in prediction
of FoI using itself by
ARIMA

MSEratio
for ARIMA:

MSE
MSEtrue-AR

Plausibility
for ARIMA:
MSEratio <
Ratioth;
Ratioth = 1.5

MSE in prediction of
FoI using itself by RF

MSEratio
for RF:

MSE
MSEtrue-RF

Plausibility
for RF:
MSEratio <
Ratioth;
Ratioth = 1.5

True data (feature-1) 0.0024 =
MSEtrue-AR

1 Y 0.0012 = MSEtrue-RF 1 Y

Bias error on feature of in-
terest (feature-1)

0.0027 1.125 Y 0.0046 7.8 N

Random error on feature of
interest (feature-1)

0.0063 2.8 N 0.0088 7.3 N

[6] C. C. Aggarwal and S. Sathe, Outlier ensembles: An introduction.
Springer, 2017.

[7] S. Thudumu, P. Branch, J. Jin, and J. J. Singh, “A comprehensive survey
of anomaly detection techniques for high dimensional big data,” Journal
of Big Data, vol. 7, no. 1, pp. 1–30, 2020.

[8] L. Ehrlinger and W. Wöß, “Towards a definition of knowledge graphs.”
SEMANTiCS (Posters, Demos, SuCCESS), vol. 48, pp. 1–4, 2016.

[9] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009.

[10] V. Roth, “Kernel fisher discriminants for outlier detection,” Neural
computation, vol. 18, no. 4, pp. 942–960, 2006.

[11] D. Barbara, N. Wu, and S. Jajodia, “Detecting novel network intrusions
using bayes estimators,” in Proceedings of the 2001 SIAM International
Conference on Data Mining. SIAM, 2001, pp. 1–17.

[12] Y. Song, J. Huang, D. Zhou, H. Zha, and C. L. Giles, “Iknn: Informative
k-nearest neighbor pattern classification,” in European Conference on
Principles of Data Mining and Knowledge Discovery. Springer, 2007,
pp. 248–264.

[13] A. H. Abuzaid, “Identifying density-based local outliers in medical
multivariate circular data,” Statistics in Medicine, vol. 39, no. 21, pp.
2793–2798, 2020.

[14] G. Moreira, M. Y. Santos, J. M. Pires, and J. Galvão, “Understanding
the snn input parameters and how they affect the clustering results,”
International Journal of Data Warehousing and Mining (IJDWM),
vol. 11, no. 3, pp. 26–48, 2015.

[15] R. Smith, A. Bivens, M. Embrechts, C. Palagiri, and B. Szymanski,
“Clustering approaches for anomaly based intrusion detection,” Proceed-
ings of intelligent engineering systems through artificial neural networks,
vol. 9, 2002.

[16] S. Ali, G. Wang, R. L. Cottrell, and T. Anwar, “Detecting anomalies from
end-to-end internet performance measurements (pinger) using cluster
based local outlier factor,” in 2017 IEEE International Symposium on
Parallel and Distributed Processing with Applications and 2017 IEEE
International Conference on Ubiquitous Computing and Communica-
tions (ISPA/IUCC). IEEE, 2017, pp. 982–989.

[17] F. W. Scholz, “Maximum likelihood estimation,” Wiley StatsRef: Statis-
tics Reference Online, 2014.

[18] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “A comparison of arima
and lstm in forecasting time series,” in 2018 17th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE,
2018, pp. 1394–1401.

[19] G. E. Box and G. C. Tiao, “A bayesian approach to some outlier
problems,” Biometrika, vol. 55, no. 1, pp. 119–129, 1968.

[20] Y. Xiao, C. Xing, T. Zhang, and Z. Zhao, “An intrusion detection model
based on feature reduction and convolutional neural networks,” IEEE
Access, vol. 7, pp. 42 210–42 219, 2019.

[21] E. Parzen, “On estimation of a probability density function and mode,”
The annals of mathematical statistics, vol. 33, no. 3, pp. 1065–1076,
1962.

[22] P. Vitányi, “How incomputable is kolmogorov complexity?” Entropy,
vol. 22, no. 4, p. 408, 2020.

[23] L. Parra, G. Deco, and S. Miesbach, “Statistical independence and
novelty detection with information preserving nonlinear maps,” Neural
Computation, vol. 8, no. 2, pp. 260–269, 1996.

[24] A. Azari, P. Papapetrou, S. Denic, and G. Peters, “User traffic prediction
for proactive resource management: learning-powered approaches,” in

2019 IEEE Global Communications Conference (GLOBECOM). IEEE,
2019, pp. 1–6.

[25] A. Sharma. (2020) Decision tree vs. random forest –
which algorithm should you use? Accessed: 2022-12-15.
[Online]. Available: https://www.analyticsvidhya.com/blog/2020/05/
decision-tree-vs-random-forest-algorithm

[26] N. F. Noy, D. L. McGuinness et al., “Ontology development 101: A
guide to creating your first ontology,” 2001.

[27] M. Horridge, S. Jupp, G. Moulton, A. Rector, R. Stevens, and C. Wroe,
“A practical guide to building owl ontologies using protégé 4 and co-ode
tools edition1. 2,” The university of Manchester, vol. 107, 2009.

https://www.analyticsvidhya.com/blog/2020/05/decision-tree-vs-random-forest-algorithm
https://www.analyticsvidhya.com/blog/2020/05/decision-tree-vs-random-forest-algorithm

