International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

Simulation of Push- and Pull-Processes in Logistics

Usage, Limitations, and Result Presentation of Clock Pulse and Event Triggered Models

Carlo Simon, Stefan Haag, and Lara Zakfeld

Hochschule Worms
Erenburgerstr. 19, 67549 Worms, Germany
Email: {simon,haag,zakfeld} @hs-worms.de

Abstract—The change from a push to a pull strategy constitutes
a considerable intervention in the operational logistics and
has effects on procurement, the design of processes and the
evaluated, internal inventories. Simulation models that anticipate
the consequences of such a change need to fulfill two main
objectives: 1.) They have to represent the system behavior over
time, but in time lapse instead of real time. To achieve this,
two approaches can be used, the first of which is a clock pulse
simulation where the system’s state is calculated for every discrete
time step, e. g. each second. The second one is an event triggered
simulation where only those points in time are computed at
which an actual change occurs. Both methods have benefits and
drawbacks as is elaborated. 2.) They need to take into account
actual production data and, in order to use this data, implement
decision rules. These aspects can be realized with Petri nets that
the authors use as preferred modeling language for decades,
because Petri net models are illustrative and can be executed or
simulated, respectively. A novel, web-based Petri net modeling
and simulation environment - the Process-Simulation.Center -
allows for training modelers and testing different procedures and
techniques of model generation. Using a teaching laboratory for
logistics as a sample application, clock pulse and event triggered
simulation models are demonstrated, as well as how they can be
developed, how they have to be interpreted, and which possible
obstacles have to be considered. Concretely, the consequences
of switching logistics processes from push to pull principles are
regarded concerning the storage costs. This paper demonstrates
the interplay between new modeling approaches with the aid of
Petri nets and the novel tool without which these models would
not have been possible.

Keywords—Conceptual modeling of timed dynamic systems;
Clock Pulse Simulation; Event Triggered Simulation; Petri nets;
Logistics.

I. INTRODUCTION

This paper is a revised and extended version of a contribu-
tion to SIMUL 2020: The Twelfth International Conference on
Advances in System Simulation [1].

Change is an integral part in every organizational context.
One option to examine varying approaches and their differing
results is simulation. Depending on the circumstances there
may exist various foci. Hence, simulation models and their
implementation differ in accordance to these goals.

For example, reducing costs while at the same time increas-
ing the production’s flexibility is a combined goal for manu-
facturers. Beside an investment in better and faster machines,
rethinking production strategies and processes is also feasible.

Changing production from push to pull is one (possibly
cheap) option. The advantages have been demonstrated in
many production lines. Nonetheless, push strategies are still
widely in practical use. What is the reason for this? The
authors assume that producers are uncertain about the con-
sequences of such changes. In this case, conceptual and sim-
ulatable models of the current and intended production lines
could objectify decisions on the reorganization of production.
Depending on the objective, different information, models and
simulations are needed. How to choose between two modeling
methods is subject of Section VIII where usage and some
limitations of these methods are also discussed.

Petri nets are used to present two approaches for implement-
ing corresponding models. As examined in Section VII, one
is event triggered simulation that eventually leads to results
where the final outcome is more important than the path to
this outcome [1]. Demonstrated in Section VI is the other one,
namely clock pulse simulation whose results allow for closer
examination of the actual process execution [2]. Section V
outlines basic considerations for IT-based simulations.

The setting for these models is a training laboratory for lo-
gistics students at the Worms University of Applied Sciences.
The so-called Box Game, which is introduced in Section IV,
was developed to impart knowledge and practical experience
in highly relevant logistics processes while at the same time
maintaining a relatively simple structure. It is ideally suited
to explore different possibilities of conceptual modeling and
simulation. In Section III the methodological approach used
by the authors in the context of modeling and simulation with
the Process-Simulation.Center (P-S.C) is described. A part of
the directly following Section II about related work considers
the reasoning as to why the tool’s development cannot be sep-
arated from the modeling and simulation approach discussed.

II. RELATED WORK

Since this paper combines conceptual modeling with Petri
nets and the simulation of laboratory processes in logistics,
related work for both fields is considered.

A. Push, Pull and Kanban

In a push production, every workstation produces as soon
as being supplied sufficiently regardless of a given demand.
This leads to a steady production and a high utilization rate.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

88

In a pull production, the workstations only produce for a
given actual demand, resulting in lower stocks and a more
flexible production. Which of these paradigms is advantageous
over the other depends on the circumstances. Sometimes,
mixed solutions are best [3].

Kanban is a method to realize pull principles in logistics
and, hence, to lower unnecessary stocks by controlling the
replenishment of material to be processed. If a threshold is rec-
ognized, a kanban signal initiates a pull request that includes
information on the batch size, leading to stable production
sizes. Dependening on the used variant, the replenishment can
be controlled by cards, empty containers, via e-kanban or by
use of a supermarket system [4], [5].

As the pull requests establish an order chain starting at
the dispatch warehouse, information in kanban systems flows
upstream, while material flows downstream. Different types of
kanban may be used to account for the type of material, set
up times for production or relevant internal factors [6].

B. Petri Nets

Petri nets can be used to study the performance of push
and pull approaches. Practically highly relevant constraints like
manufacturing and setup times, vehicle routing or concurrent
processing become operational and, thus, flexible manufac-
turing systems can be examined [3]. Large and interlocked
systems can be modeled by expanding on local components;
applying different Petri net specifications suited for respective
tasks is beneficiary [7].

Originally, Petri nets are defined as Place/Transition nets
(P/T) with anonymous tokens indicating a system’s state [8].
Diverse concepts for representing high level information in
Petri nets exist, the most widely known being the following:

Predicate/Transition nets (Pr/T) omit anonymous tokens for
ones carrying data that can be processed and altered by
use of functions encoded on transitions. When firing,
these functions accept data from tokens on the preset.
Functions return their results by putting appropriate to-
kens on the postset. The places serve as predicates ac-
cording to which transitions may fire. Thus, it is possible
to model interactions of tokens according to real-world
influences or with each other [9].

Colored Petri Nets (CPN) integrate colors into Petri nets
such that tokens, places and transitions have an assigned
identity, their color. When determining if a transition is
enabled, the adjacent places and their tokens are exam-
ined by color separately. This allows for more compact
net representations under certain circumstances [10], [11].

C. Time Concepts in Petri Nets

Since time is an important dimension for the modeling of
processes and dynamic systems in general, there exist numer-
ous approaches for handling time aspects in Petri nets. They
differ concerning their expressiveness (discrete or continuous
time) and which Petri net elements are used to express time
constraints (places, transitions, arcs, or tokens).

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

One possible implementation puts one or two time values on
transitions, the lower being a delay up to which the transition
is not enabled while the higher presents the latest possible
moment of firing. This may lead either to a forced firing, the
reset of a clock (where the lower value describes a kind of
preparation time and the higher one an expiration time from
when a new preparation needs to be conducted) or even to
a dead net. Variations include time consuming firing [12] as
well as firing without time consumption [13].

Another obvious possibility is to assign time values to the
places, again representing lower and upper bounds. These
bounds represent the availability of tokens, either as delay until
a token becomes available [14] or as time windows in which
they are available [15], [16].

Yet another possible implementation is to define the perme-
ability of arcs relative to the moment an adjacent place was
marked or an adjacent transition was enabled. The cited con-
cepts are equivalent [17]. However, they have the disadvantage
that the state of such nets does not only rely on the respective
markings, but also on some kind of timer clocks.

D. Timestamps and Petri Nets

Timestamps are a means to encode time data in the marking.

Timestamp Nets introduce tokens with (only) timestamps as
information designating the moment the corresponding
token was placed. Transitions may fire in time windows
as given by two non-negative values on the transitions’
incoming arcs [18]. The permeability of arcs depends on
these timestamps [19].

Extended Timestamp Nets integrate the concepts of Pr/T
and Timestamp nets such that tokens carry timestamps
and any further information [20].

In (extended) timestamp nets, a separate clock becomes
unnecessary. Durations or important points in time can be
processed by means of simple algebraic operations.

A potential drawback of all described time-dependent Petri
net concepts could be a more complex situation of enablement
where a transition bearing a token can be enabled, but also
(depending on the arcs’ permeability) not yet or no longer.
This may possibly lead to a user’s perception of a quasi-
existence of different markings at the same time.

Some of the approaches presented in Sections II-C and
II-D may be transformed into each other quite effortlessly
[21], [22]. All of the presented Petri net formalisms, however,
use artificial, abstract time units. To model and simulate real-
world applications, real time values should be used. To this
end, actual date and time data types seem beneficial to be
included as possible information on tokens. Such nets can
be regarded as natural extension of Pr/T nets, allowing for
both time calculations inside the model and controlling the
execution.

E. Further Modeling Approaches

For reference, there are other modeling methods that were
developed to combine time and process structures.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

89

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

Production
Supplier «— Control - Customer
/ 15 sec/pc
I I
Preassembly BB
T 08B \ . '18 sec/pc 08B T T
Material I Finish Assembly Test
7588 0FB 0FB
75 SB w 2 sec/pc 25 sec/pc 7 sec/pc
I I\ W W/
Tawpl——————auww P
Preassembly SB
0SB w 9 sec/pc 0SB
A p——————Tuw P

Fig. 1. Value stream diagram of the Box Game.

Value Stream Diagrams (VSD) establish models of flows
of information and material in order to evaluate value
streams. To optimize the value streams, wait times (beside
other factors) need to be minimized. The value stream
method exposes such wait times. This concept became
widely known due to Toyotas Production System from
1930 and its advancements by Japanese engineers Taiichi
Ohno and FEiji Toyoda, but dates back as far as 1914
when graphical nets were used to examine routings and
other flows to help Installing Efficiency Methods in a
manufacturing company [23], [24].

Figure 1 shows the scenario explained in Section IV as
a VSD. It gives a suitable overview of the value stream
from customer to supplier, yet cannot be simulated.

Business Process Model and Notation (BPMN) is a nota-
tion and representation language for modeling business
processes. It is extensively used due to the relative ease of
both creating and understanding models. Using BPMN, it
is possible to create both high-level models of companies
and low-level models of single processes in a graphical
approach similar to flowcharts [25], [26].

Although there are similarities between BPMN and Petri
nets, the former lack the mathematical toolset that can be
used to analyze Petri nets in form of linear algebra.

FE. Process-Simulation.Center

To develop conceptual models for process simulation or
execution, tools are needed beside the formal mathematical
base. The P-S.C supports development of P/T and Pr/T nets
[27]. Tt is possible to assign data types to places and use these
in analogy to database tables. Own types for date and time are
substructures for the simulation of processes in production and
logistics and enhance the approaches to timed Petri nets.

In contrast to relational algebra and SQL where operations
like select or project are applied to the set of all affected tuples
and result in a set again, in P-S.C the tuples are processed
serially. This is since in business and production, work items
are also treated one after another.

Supporting high-level Petri nets, the P-S.C facilitates the
definition of individual data objects as tokens such that data-
driven process simulations can be conducted within the tool.
A decision on the concrete sequence is made locally by the
transitions of the net which also have the ability to aggregate
over tuple tokens on a place, a functionality know from
database systems.

Also, the P-S.C can be used to combine the process view on
a system with other views. Process maps can be used to collate
different processes with each other and to express the strategic
value of processes as primary, supportive or managing. The
organizational structure of an institution can be combined
with the Petri net view on the processes by assigning its
nodes to swim lanes for the responsible organizational units.
Organizational charts complete the functions of the P-S.C.

Contrary to most other conceptual modeling tools, espe-
cially those that have been designed for Petri nets, a specifi-
cation language has been developed for the P-S.C with which
all types of models are scripted. Due to strong algorithms
for automatic layout, modelers can concentrate purely on
structural aspects of the domain to be expressed.

The dearth of current Petri net tools, the quaint user ex-
perience of most of the still working ones and the unique
approach of using textual programming instead of drag-and-
drop modeling in combination with the added functionality are
the main reasons for the implementation of the P-S.C.

The models presented here could not have been imple-
mented without the P-S.C as no tool with comparable capa-
bilities is known to the authors. Also, the models cannot be
properly examined without (at least some) insights into the
tool. Thus, it is not sensible to separate the models from the
tool as is explained further in Sections V, VI and VII.

III. METHODOLOGY

Researching new and comparing different modeling tech-
niques for (high-level) Petri nets with individual tokens relies
on the existence of proper modeling and simulation tools.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

90

The P-S.C is in development for several years following the
guidelines for design science research according to [28] whose
main point is to create a feasible artifact. The following is a
brief outline of the thereby conducted research:

Design as an Artifact: The P-S.C is a web-based specifica-
tion and simulation software for processes encompassing
both user defined and primitive data types, organizational
structures and process maps. Process execution can be
controlled by business relevant data linked via an inter-
face. Also, sensors and actuators of a Raspberry Pi can
be used in case the tool is installed on such a device.
The established models are a second artifact, as they
are used in a teaching environment at university level
but also for vocational training. They aid in transferring
knowledge of modeling and simulation techniques.

Problem Relevance: Examining possible consequences of

change is a highly relevant task for every company. The
P-S.C provides practitioners with the means to model,
simulate, and optimize processes with high-level Petri
nets in a powerful and contemporary user experience.
A simulation permits the extension of real-world expe-
riences in a learning environment. It helps to overcome
typical limitations concerning time, resources, space, and
people. The simulation environment, however, must be
generic enough to assure the intended learning success.
From a conceptual modeling perspective, it must be
determined if all these aspects can be expressed and
simulated due to a formal, semantic base.

Design Evaluation: The P-S.C has already been used by
companies in logistics and trade. Students of an integrated
logistics degree program developed a simulation model
for the reorganization of a returns process [29]. The
tool is also used for problem-based and research-oriented
learning in bachelor and master degree programs [30].

Research Contribution: The P-S.C is a practical application
on the theoretical basis of high-level Petri nets combined
with views on organizational structures, process maps and
data types. The tool offers a novel user experience and
provides new insights in Petri net based modeling. As an
abstract concept Petri nets do not force specific modeling
approaches such as flow diagrams, value stream diagrams
or other pictorial modeling approaches.

Research Rigor: The benefits of a simulation approach in
opposite to pure visual methods is evaluated in mentioned
bachelor and master courses as well as in cooperation
with partner companies of integrated degree programs.

Design as a Search Process: Both presented prototype and
models are the latest in a series that starts from the initial
implementation of the underlying principles and ends in
a productive system. Each implementation step has been
evaluated and published (for instance, [31], [32], [33]).

Communication of Research: The results achieved so far
are relevant for both research and practice. They are pre-
sented on pertinent conferences but also, more eidetic, for
students and practitioners in advanced training programs.

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

IV. A SIMULATION LABORATORY
FOR PROCESSES IN LOGISTICS

The so-called Box Game has been developed by Prof.
Dr. Christian Reuter at the Worms University of Applied
Sciences to teach students in logistics and is used as a sample
application (cf. [1], [2]). Despite its simplicity, very different
kinds of processes that also have a high impact for practice
can be observed. It is, therefore, ideal for trying out different
ways of conceptual modeling and simulation.

The concrete example is a simple construction process
where students assemble small and large boxes, put the smaller
into the larger ones, and finally check the quality. Thus,
characteristics of push and pull systems are illustrated.

Training members are present during the game. Ideally, they
take part in the game in order to gain first hand experience
of motivation and work situations. Being engaged in the
training helps the students to recognize different types of waste
(so-called muda according to [24]), such as overproduction,
waiting, and motion, but also the transformation of waste
types. Finally, discussing the shared experiences is a major
part of the learning success. A complete simulation run of the
Box Game lasts approximately two to three hours.

Despite the simplicity of the used material and the low level
of technical requirements, the Box Game is easily transferable
to assembly work stations in a more generalized form and has
a highly practical impact. Mechanical production, however,
where schedules, shift patterns, changeover times or multiple
machine set-ups are of particular importance, is not an objec-
tive of this training.

Figure 2 shows the spatial organization of the Box Game
in the learning laboratory: five work tables are arranged in a
suitable location and standard positions like interim storages
are marked with adhesive tape. As can be surmised, the setting
can also be build up in locations such as conference rooms,
training rooms, Or even canteens.

Finished Items

Big Boxes Small Boxes

1

1] =), 8 8
Preassembly Preassembly <
Big Boxes Small Boxes
2
4
Buffer Buffer D Buffer

S —

Finish Assembly w Test W

Fig. 2. Layout design of the Box Game.

Beside the instructor, the following can partake in the game:

S participants who will occupy the work stations,

3 players who record the processing times,

1 observer who records inventories in the system,

1 observer who records productivity levels, and

2 further possible people who disassemble the boxes.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

91

Though technically possible, the working stations should not
be filled with more than one person. Thus, larger groups need
to be split. At the five stations or (transport-wise) between
them, the following activities have to be conducted:

1. Material storage Deliver unfolded boxes.

2. Preassemble big boxes Fold the big box, close its lid, and
pass the box on.

3. Preassemble small boxes Fold the small box, close its lid,
and pass the box on.

4. Finish assembly Open the big box, insert the small one,
label the small box with a post-it as ’package note”, close
and tape big box lid up, and pass the assembled box on.

5. Quality test Shake the box for an acoustic quality check,
apply a red dot as “passed” to the upper left corner of
the box, and place the finished box in the dispatch area.

The initial stock of the Box Game is 75 big and 75 small
boxes. However, it is not the primary aim to produce the entire
demand in the shortest possible time, but to produce them
according to the customer’s demand (in this case one part
every 15 seconds) without much inventory and with as few
employees as possible.

Recall that Figure 1 shows the value stream diagram of the
Box Game. Although the processing times can be annotated
in the diagram, it is hardly simulated due to a lacking mathe-
matical foundation. To the authors’ knowledge, even software
that replicates human intuition of value stream diagrams does
not exist. Nonetheless, the diagram helps to understand how
the Box Game is played in detail.

To experience the challenges that management faces with
regard to a possible strategic realignment, the box game is
typically meant to be played in four rounds of 5 or 8 minutes
each. During the simulation, two types of production principles
with two batch sizes are examined.

Batch size 3 - push principle: The products are passed on
in batches of size 3. Each process step works function-
ally independent from the other and the participants are
rewarded for the amount of pieces they work on. Hence,
it is the goal at each station to produce as much output
as possible.

Batch size 3 - pull principle: Stations produce and pass on
products in batches of size 3. Upstream stations have to
hold their pieces and stop production until it is demanded
by an internal or external customer. The capacity of a
station and its buffer is limited to 3 items and items can
only be replaced accordingly.

Batch size 1 - pull principle: The third round is played like
the second one, but the batch size is reduced to one.
Improvement - pull principle: The last round is used to find

improvements autonomously and to apply them as a team.

The advantage of this approach is that the participants gather
personal experiences. This can hardly be replaced by a com-
puter simulation. Yet, augmenting this hands-on experience by
such a simulation helps to scale up both range and complexity
of the considered process. This is partly due to the students’
attention levels diminishing after about 5 minutes of play.

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

V. BASIC CONSIDERATIONS
FOR AN IT-BASED SIMULATION

The authors’ decades of experience with Petri nets and the
availability of the P-S.C (which is freely usable for academic
purposes) resulted in the decision to implement the described
scenarios as Petri nets. However, this task turned out to be
more challenging than assumed beforehand [34]:

1. Models and simulations of pull processes must distinguish

between different customer orders. This can be expressed
in high-level Petri nets with individual tokens. But al-
though such Petri net classes have been known for many
years (e. g., [9], [10]), there are no modeling patterns that
can be used to build models.
This makes testing models step by step as they are created
even more important. Thus, new modeling techniques
can be developed incidentally. The experience gained is
therefore as much an artifact in the sense of [28] as the
P-S.C or the models themselves.

2. Without a suitable tool for modeling and simulating high-
level nets, however, this experience cannot be gained,
which is a hurdle for many modelers. Almost all Petri
net tools listed in [35] are either outdated, do not support
time aspects or Petri nets with individual tokens, and none
of them have a modern user interface. Therefore, they are
all but unusable for the task at hand.

The P-S.C, however, is well suited to be used for mod-
eling the described logistics laboratory.

Section II already examined related work in order to rule
out that only the authors’ personal preferences justified the
chosen modeling approach.

VI. CLOCK PULSE SIMULATION MODELS

Visualization-wise, the P-S.C draws nodes in a manner that
allows label and token quantity to be presented inside each
node. This is in contrast to the standard circles and squares
(or the original lines) but allows for easier interpretation as
such labels are often found in other modeling systems.

Clock pulse models evaluate every discrete time step and,
thus, can be used to study the change of the systems’ states.
Concretely, the presented models in this section allow for the
observation of fluctuating storage utilization.

Such an observation necessitates a constant flow of time.
To this end, the first step in modeling the Box Game is the
implementation of a clock that ticks every second, as depicted
in Figure 3 (a). A tiny Petri net consists of a time-typed place
clock, a corresponding transition pulse and two anti-parallel
arcs. One arc (bearing the label s) removes a time token from
the clock, while the other one adds one second to the received
value and puts a token back on the clock. Thus, each firing
increments the elapsed total time by one second.

The P-S.C allows for computations to be made on arcs
instead of only accessing token values as is the case for the
label s. However, when such calculations become too complex,
they also become increasingly unwieldy and obstruct much
space in the net’s visualization.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

92

Y deliver '\;J» oY In j (..)>iJ

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

build

stop J

OR

stocks n

) (>
/
ide)

Fig. 3. Modeling concepts: (a) simple Petri net clock - (b) preassembling as instance of a single working station - (c) observer net that evaluates the
upstream storage in (b).

Functions can be implemented in the net’s specification
and then be called from every arc - provided the passed
parameters are in order. The functions’ return values determine
the contents of the tokens to be put on the post set’s places.
In case of pulse(s), the function returns s.sec+700:01".

The basic model of a working station (here, folding of the
big boxes as shown in Figure 3 (b)) consists of one place in as
a buffer, one for the upstream stocks and one for the workplace
build itself. These places are typed as a user-defined record
set consisting of an integer as id, a character string as type
descriptor and a time-value as inStamp, denoting the time the
corresponding token was put on the place.

The transition deliver provides the inbound buffer in with
feedstock from the stocks (and possibly other associated
data) while the transition start connects this buffer with the
workplace build. Both transitions carry a select criterion to
choose the item with the minimal id according to the FIFO
principle and put it on the post set - other queueing principles
could be implemented just as well. The transition stop carries
a condition to wait for the item to be finished. This condition
is implemented as difference between the current times of the
clock and the inStamp as encoded on the token. The used times
are based on students’ experience. Conditions and selections
can be displayed in the model by clicking on the plus-symbol.

The transition stop is attached to an interim storage (as
shown later) that serves as buffer for the succeeding working
station. The (non-typed) place idle serves as a semaphore that
prohibits start from firing while the workplace is busy: Only
one box at a time can be processed. In the full model, it is
also used as a time-typed note for the workplace.

Though single transitions can be fired by clicking on them,
the P-S.C supports simultaneous firing of all enabled ones.
This is used to synchronize all transitions with the clock.

An observer net, as exemplarily shown in Figure 3 (c),
evaluates the costs associated with the storage. Each clock
pulse, the (integer) value of the place inEval is increased
by the amount of tokens on place in, thus indicating this
storage’s costs in this second. Again, this is implemented as
a combination of a token access v and a function call eval(v).

Combined, these three models allow for the observation of
fluctuating storage levels, of bottlenecks, and of storage cost.

In the initial marking of the working station net in Figure 3
(b), there is one token each on the places stocks and idle which
is indicated by their light green color. Additionally, stocks
shows one big blue circle containing the amount of actual
tokens on the place. This visual is omitted on idle as this
semaphore may not contain more than one token (as is also
the case for clock and inEval). The transition deliver is colored
in a darker green to show it is enabled, i. e., it is ready to fire.

Figure 4 shows the remaining reachable states of the work-
ing station net. The transition deliver chooses the (only) token
and puts it on in, enabling start as shown in Figure 4 (a). The
next pulse removes the semaphore token and the one from in,
preventing start from becoming enabled. This is reflected in
Figure 4 (b). The marking stays stable until the condition on
stop regarding the processing time evaluates to true.

s Q) Jom_ J
deliver (> In (.)p start (> build (> stop
- 4)
SN \ /
stocks e I
(@)
2 | C om !
deliver)» In 1S start (> build s ()> stop
. J Jj
ekl \ /
stocks idle
(b)
+Ho } 4 I_ iy e }
deliver)» In ()» start (> build ¢ s} (.)> stop
- = Jj
SN \ /
stocks idle
(©)
Y) e pom__ !
deliver (.)» In () start () build (.)» stop
- =4 J
RN \ /
stocks idle
@ Y

Fig. 4. Visualized states of the working station net in Figure 3 (b):
(a) after clock pulse one - (b) during the building phase - (c) after clock
pulse twenty - (d) after clock pulse twenty-one.

Now, the transition becomes enabled, leading to the net as
shown in Figure 4 (c). Figure 4 (d) depicts the net after the
item has been taken from build and the semaphore token has
returned, rendering the working place accessible again.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

93

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

TABLE 1. MARKINGS OF THE MODEL AS DEPICTED IN FIGURE 3

material
“clock | inkval | idle | id__type _inStamp
00:00 0 . big box 00:00
00:01 0 .
00:02 1
00:20 1
00:21 1 °

These state changes are reflected in Table I. The first row
shows the net’s initial marking. As each pulse evaluates to
one second, the box arrives at build after two seconds. There,
the box is processed for 18 seconds, then leaving for the next
buffer. The net reaches its final marking after 21 seconds.

All models presented here, being implemented for auto-
mated simulation, do not need any user interaction. In effect,
each state has a unambiguously defined subsequent state.

A. The Push Model

By expanding on the presented working station model and
using the mentioned concepts, the first iteration of the Box
Game (the push version as presented during a simulation run
in Figure 5) can be modeled. As the principle of the net can be
used for the other workplaces, they can be structurally copied
and then adapted with respect to the processing time.

Connected to the upstream buffer places inBB and inSB of
the big and small box assembly nets, there is the already men-
tioned place material for the main warehouse. The warehouse
is connected via the two delivery transitions deliverSB and
deliverBB. As all these places carry item representations for
tokens, they are typed with the user-defined record set RStock
that was introduced earlier. RStock consists of an integer id,
a character as type description and a time-value inStamp for
the moment the token was put on the place.

Initially, material bears 75 tokens each for unfolded big and
small boxes. The structure of this allocation can be seen in
Table II. BB and SB are short for big and small box.

TABLE II. INITIAL ALLOCATION OF TOKENS ON THE PLACE
material IN THE CLOCK PULSE PUSH MODEL AS DEPICTED IN

FIGURE 5
id type inStamp
1 BB 00:00
75 BB 00:00
76 SB 00:00
150 SB 00:00

Both sides are structured equally, so it is sufficient to only
explain one path in detail. The transition deliverBB carries
several criteria. First, conditions ensure that only correct items
(i.e., items designated BB) are chosen and that transportation
has a duration of 2 seconds (i.e., deliverBB is only enabled if
2 seconds have elapsed since the last transport). Second, the
select criterion chooses the item with the minimal id.

in build
id item inStamp | id type inStamp
1 big box 00:01
1 big box 00:02
1 big box 00:02
material g
/bOX/ bOX\
H eiverss Y H eiverss Y

pass(box) pass(box)

inBB inSB

t

box box

{@

v
ﬂ startBB ﬂ startSB
startB(box,i) (i (i startB(box,i)
v ~. — v
buildBB .:'9 idleBB) idlesB) buildSB -:'9
| — ~
box (SUM(clock.sec)) (SUM(clock.sec)) box

+
\

stopBB stopSB

{/

pass(box) pass(box)

inFBB inFSB

L

L

bBox sBox/
\ir startF
(i startF(bBox,sBox,i)
— v Dashboard
idleF z) finish)
R T
(SUM(clock.sec)) box
= L/ matEval ﬁ clock o
ij stopF))
X X
v/ s/
pass(box) evalMat(v) pulse(s)
v \ 4 A4
inT n) observeMA J pulse J
|
box
inBBEval (@R inFEval @R
ﬂ startT))
vl vl
(i startB(box,i) evalBB(v) evalF(v)
= v Y
idleT 2) test) observeBB ’ observeF ’
™~ |
(SUM(clock.sec)) box
= 2 inSBEval (@) inTEval @R
ﬂ stopT))
X X
v/ v/
pass(box) evalSB(v) evalT(v)
v A4 A4
goods e) observeSB ’ observeT ’

Fig. 5. Clock pulse push model after 96 clock pulses.

While the arc box takes one token from material, the
function pass(box) sets a new timestamp (according to the
elapsed time as provided by the clock) and puts it on inBB.

The transition startBB is enabled if there is at least one
token on inBB and the semaphore token is available. As is
the case for all semaphores, the initial token bears ~00:00” as
time value. Again, select criterion on startBB is the minimal
id. The transition receives a box and the semaphore token as
input data. Upon firing, the function startB(box,i) determines
the correct putting time and places the box on buildBB.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

94

Due to folding the big boxes taking 18 seconds, stopBB
only becomes enabled after this time has elapsed.

Note the difference between the (left) big box and the (right)
small box sides: Folding a small box only takes 9 seconds.
Thus, the condition on stopSB adheres to this value.

Upon firing, stopBB puts the folded box on the output buffer
inFBB that is named for its second purpose as input buffer for
the following subnet to finish the assembly. Additionally, the
semaphore token is put back on idleBB. The semaphores can
be used to determine machine processing (or idle) times.

The subnet for the final assembly differs in possessing a
second input buffer inFSB as both boxes are needed. This also
causes a slightly adapted function startF(bBox,sBox,i) because
the time-values of both incoming boxes must be considered.
Structurally fully equivalent to the first two subnets is the last
one for quality testing.

Like for conditions, functions and data accesses on arcs can
be shown or hidden, as needed. To further enhance the visual
understanding of their functionality, nodes can be provided
with (animated) symbols.

Tables III to IX are meant to examine the markings’
progression of the model as depicted in Figure 5.

The first row of Table IIl is a shorter version of Table
II: Before the initial pulse (i.e., “after pulse 0) the cell id
contains the full column id from Table II, the single elements
being separated by the pipe symbol. The same applies to the
cells type and inStamp of the first row. As we assume a
transportation time of 2 seconds from material to the buffers,
the first change occurs after pulse 2: The items (1, BB, 00:00)
and (76, SB, 00:00) are consumed from material and put on
their respective buffers. This is repeatedly shown for the first
10 pulses. The row for pulse 96 shows the tokens on material
for the system’s state in Figure 5. Pulses 150 and 151 contain
the allocations just before the last consumption from the place
and the final state of material.

As this concept also extends to all following tables, every
row in them can be expanded to an own table from which the
model’s state after the corresponding pulse can be explored.
The combination of all these tables into one huge table is the
result export from the P-S.C. In case of the clock pulse push
model, this table contains 44 columns with 1904 data sets as
rows each of which corresponds to one system state. Thus,
this export comprises the reachability set of the net.

On the other end of the model, the place goods contains
the finished boxes. Initially, this place is empty. In accordance
with Table IV, the first token creation takes place at pulse 53,
designating the first finished product (1, FB, 00:52). Thus, after
52 seconds, the first box is ready and put in the finished goods
warehouse. During the next 10 pulses, no change occurs: Only
after pulse 77 will the next item be ready. Pulse 96, again,
shows the allocation of tokens on goods at the state of the
model as shown in Figure 5: Two items are finished, the second
one being put there after 1:17 minutes. The last token creation
takes place at pulse 1903: the item (75, FB, 31:42) is finalized
after more than half an hour. Then, the allocation does not
change any more, indicating the end of the simulation run.

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

TABLE III. ALLOCATIONS OF TOKENS ON THE PLACE material IN
THE CLOCK PULSE PUSH MODEL AS DEPICTED IN FIGURE 5:
INITIALLY, AFTER THE FIRST 10 PULSES, AFTER PULSE 96, AND
AROUND THE LAST CONSUMPTION

material
m id type inStamp

0 1]...|150 BB|...|BB|SB|...[SB 00:00].../00:00
1 1]...]150 BB|...[BB|SB|...[SB 00:00]...|00:00
2 1]...]150 BB|...[BB|SB|...[SB 00:00...|00:00
3 2|...|75|77]...]150 BB|...[BB|SB|...[SB 00:00]...|00:00
4 2|...|75|77|...]150 BB|...[BB|SB|...[SB 00:00...|00:00
5 3|...|75|78]...]150 BB|...[BB|SB|...[SB 00:00]...|00:00
6 3|...|75|78]...|150 BB|...[BB|SB|...[SB 00:00]...|00:00
7 4]...|75|79]...]150 BB|....BB|SB|...[SB 00:00...|00:00
8 4|...|75]79]...|]150 BB|...|BB|SB|...[SB 00:00].../00:00
9 5|...]7580]...|150 BB|...|BB|SB|...|SB 00:00]...]00:00
10 5|...]75/80]...|150 BB|...|BB|SB|...[SB 00:00].../00:00
96 48|.../75|123|.../]150 BB|...|BB|SB|...[SB 00:00].../00:00
150 75|150 BB|SB 00:00]00:00

151

TABLE IV. ALLOCATIONS OF TOKENS ON THE PLACE goods IN
THE CLOCK PULSE PUSH MODEL AS DEPICTED IN FIGURE 5: AT
FIRST TOKEN CREATION AND THE FOLLOWING 10 PULSES,
AFTER PULSE 96, AND AROUND THE LAST TOKEN CREATION

goods
m id type inStamp
53 1 FB 00:52
54 1 FB 00:52
55 1 FB 00:52
56 1 FB 00:52
57 1 FB 00:52
58 1 FB 00:52
59 1 FB 00:52
60 1 FB 00:52
61 1 FB 00:52
62 1 FB 00:52
63 1 FB 00:52
96 12 FB|FB 00:52]01:17

1903 1]..[75 FB|..[FB 00:52|..|31:42

Between material and goods, a lot is happening that can be
deducted from the different tables.

Table V shows data for the inbound buffers inBB and
inSB. These places are initially empty. The first creation of
tokens occurs after transportation from material, thus, the
boxes are put with an inStamp of 2 seconds. Both boxes can
be transferred into the preassembly and, therefore, disappear
with the next pulse. After this, the buffer gets filled, because
transportation takes less time than folding. Again, pulse 96
shows the allocation for the shown model in Figure 5. Due to
folding of the small boxes being faster in comparison to the
big boxes, the last consumption from inSB takes place at pulse
670, while the last one from inBB happens at pulse 1336.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

95

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

TABLE V. ALLOCATIONS OF TOKENS ON THE PLACES inBB AND inSB IN THE CLOCK PULSE PUSH MODEL AS DEPICTED IN FIGURE 5:

AT FIRST TOKEN CREATION AND THE FOLLOWING 10 PULSES, AFTER PULSE 96, AND AROUND THE LAST CONSUMPTION FROM THE

PLACES
inBB inSB
m id type inStamp id type inStamp
3 1 BB 00:02 76 SB 00:02
4
5 2 BB 00:04 77 SB 00:04
6 2 BB 00:04 77 SB 00:04
7 2|3 BB|BB 00:04]00:06 77)78 SB|SB 00:04/00:06
8 2|3 BB|BB 00:04/00:06 77)78 SB|SB 00:04]00:06
9 2|34 BB|BB|BB 00:04/00:06/00:08 77|78|79 SB|SB|SB 00:04]00:06]00:08
10 2|34 BB|BB|BB 00:04]00:06/00:08 77|78|79 SB|SB|SB 00:04]00:06]00:08
11 2|3]4|5 BB|BB|BB|BB 00:04]/00:06]/00:08/00:10 ~ 77|78|79|80 SB|SB|SB|SB 00:04|00:06|00:08|00:10
12 2|3]4|5 BB|BB|BB|BB 00:04]/00:06]/00:08/00:10 77|78|79|80 SB|SB|SB|SB 00:04|00:06|00:08|00:10
13 2|...16 BB|...|BB 00:04|...|00:12 77|...|81 SB|...|SB 00:04...|00:12
96 7|...147 BB|...|BB 00:14|...|01:34 87]...]122 SB|...|SB 00:24]...|01:34
669 38|...|75 BB|...|BB 01:16|...|02:30 150 SB 02:30
670 39]...|75 BB|....BB 01:18]...]02:30
1335 75 BB 02:30
1336

TABLE VI. ALLOCATIONS OF TOKENS ON THE PLACES buildBB
AND buildSB IN THE CLOCK PULSE PUSH MODEL AS DEPICTED IN
FIGURE 5: AT FIRST TOKEN CREATION AND THE FOLLOWING 10
PULSES, AFTER PULSE 96, AND AROUND THE LAST
CONSUMPTION FROM THE PLACES

buildBB buildSB
m id type inStamp id type inStamp
4 1 BB 00:02 76 SB 00:02
5 1 BB 00:02 76 SB 00:02
6 1 BB 00:02 76 SB 00:02
7 1 BB 00:02 76 SB 00:02
8 1 BB 00:02 76 SB 00:02
9 1 BB 00:02 76 SB 00:02
10 1 BB 00:02 76 SB 00:02
11 1 BB 00:02 76 SB 00:02
12 1 BB 00:02
13 1 BB 00:02 77 SB 00:11
14 1 BB 00:02 77 SB 00:11
96 6 BB 01:32 86 SB 01:32
677 38 BB 11:08 150 SB 11:08
678 38 BB 11:08
1352 75 BB 22:14
1353

Afterwards, the boxes are taken from the buffers directly
into the first production steps. Note the assumption that this
handling step consumes no time, i.e., the placing of a box
into a buffer allows for immediate start of the production step
(given the working place is available). This is due to the Box
Game’ layout: tables are in close vicinity to each other and
buffers are directly connected to their working stations.

Handling times could be implemented like it is the case for
the initial transportation between material and the first buffers.

As shown in Table VI, although being in pulse 4, inStamp
reads 00:02 for the first preassembly. Folding a small box takes
9 seconds. After pulse 11 this time is reached and the folded
small box can be transferred to the next buffer inFSB. Again,
note the inStamp of the next small box being 00:11 due to
the absence of handling times. The big box is not folded until
pulse 20. After pulse 677, the last consumption from buildSB
takes place, while pulse 1352 marks the last consumption from
buildBB. Then, both places remain empty.

Table VII (a) shows the buffers behind buildBB and buildSB
where the folded boxes are temporarily stored. As before,
handling or transportation times are not considered, thus the
inStamp of small box 76 reads 00:11. The first folded big box
1 arrives at the buffer only at pulse 21. In the next pulse, the
first available tokens get consumed, effectively transferring the
boxes to the final assembly. Once more, pulse 96 depicts the
allocation of tokens in the model’s state from Figure 5 while
the last two rows show the consumption of the last tokens.
The small box 150 shows some 11 minutes more waiting time
compared to the big box 75.

Starting with pulse 22, a big and a small box each are
transferred from inFBB and inFSB to the final assembly. Here,
the small box and a note are put into the larger. The construct
gets a seal and is passed on. Finishing the box takes time up to
pulse 45, thus being not reflected in Table VII (b), although the
the principle stays the same. At pulse 96, finish is not marked
because (as elaborated shortly) a finished box is in transit to
the next buffer and the two following boxes are in transit to
the final assembly. Pulse 1895 marks the consumption of the
last finished box.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

96

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

TABLE VII. ALLOCATIONS OF TOKENS ON THE PLACES (a) inFBB, inFSB AND (b) finish IN THE CLOCK PULSE PUSH MODEL AS
DEPICTED IN FIGURE 5: AT FIRST TOKEN CREATION AND THE FOLLOWING 10 PULSES, AFTER PULSE 96, AND AROUND THE LAST
CONSUMPTION FROM THE PLACES

(a) inFBB inFSB (b) finish
type inStamp type inStamp id type inStamp

12 00:11 22 1 FB 00:20
13 76 SB 00:11 23 1 FB 00:20
14 76 SB 00:11 24 1 FB 00:20
15 76 SB 00:11 25 1 FB 00:20
16 76 SB 00:11 26 1 FB 00:20
17 76 SB 00:11 27 1 FB 00:20
18 76 SB 00:11 28 1 FB 00:20
19 76 SB 00:11 29 1 FB 00:20
20 76 SB 00:11 30 1 FB 00:20
21 1 BB 00:20 76|77 SB|SB 00:11]00:20 31 1 FB 00:20
22 77 SB 00:20 32 1 FB 00:20
96 4|5 BB|BB 01:14/01:32 79|..|85 SB|..]SB 00:38|...]01:32 96

1871 75 BB 22:32 150 SB 11:17 1895 75 FB 31:10

1872 1896

TABLE VIII. ALLOCATIONS OF TOKENS ON THE PLACES (a) inT
AND (b) test IN THE CLOCK PULSE PUSH MODEL AS DEPICTED IN
FIGURE 5: AT FIRST TOKEN CREATION AND THE FOLLOWING 10

PULSES, AFTER PULSE 96, AND AROUND THE LAST
CONSUMPTION FROM THE PLACES

(a) inT (b) test
m id type inStamp m id type inStamp
46 1 FB 00:45 47 1 FB 00:45
47 48 1 FB 00:45
48 49 1 FB 00:45
49 50 1 FB 00:45
50 51 1 FB 00:45
51 52 1 FB 00:45
52 53
53 54
54 55
55 56
56 57
96 3 FB 01:35 96
1896 75 FB 31:35 1902 75 FB 31:35
1897 1903

While Table VIII (a) examines the behavior for the last
buffer inT just like it is the case for the other corresponding
buffers, Table VIII (b) does so for the last working station test
in accordance to the others.

The dashboard view shows the already explained clock:
Initialized with “00:00”, each tick adds one second to the
token. All evaluation places xEval are initialized with 0: no
costs have accumulated, yet. For each pulse, these values are
accessed by the arcs designated v. Then, the amount of tokens
on the corresponding buffer gets added to the value (by means
of the respective evalx(v) function) which gets returned to
the evaluation places. Thus, every item on any of the buffers
creates one unit of costs every second on these buffers.

TABLE IX. ALLOCATIONS OF TOKENS ON THE PLACES (a) matEval,
inBBEval, inSBEval, inFEval, AND (b) inTEval INDICATING THE
ACCUMULATED STORAGE COSTS IN THE CLOCK PULSE PUSH
MODEL AS DEPICTED IN FIGURE 5: INITIALLY, AFTER THE FIRST
10 PULSES, AROUND PULSE 96, AND AT THE LAST TOKEN
CREATING PULSE

“pulse | matkval | inBBEval | inSBEval
0

0 0 0 0 0
1 150 0 0 0 0
P 300 0 0 0 0
3 450 0 0 0 0
4 598 1 1 0 0
5 746 1 1 0 0
6 892 2 2 0 0
7 1038 3 3 0 0
8 1182 5 5 0 0
9 1326 7 7 0 0
10 1468 10 10 0 0

95 9926 1886 1656 327 2
96 9982 1927 1692 336 2
97 10038 1968 1728 345 3
1903 11550 44475 19500 64650 75

Table IX gives an overview of the storage costs’ develop-
ment. Although it would be possible to also include the storage
costs of the finished goods warehouse, this is omitted because
the goal of the models is to examine the difference of internal
storage costs when switching from push to pull production.
As throughput is limited by the final assembly step, taking 25
seconds, the inflow on goods remains the same regardless of
the implemented principle.

B. The Pull Model

The pull version of the Box Game as depicted in Figure 6 is
based on the previous push version. Some additional elements
facilitate the implementation of pull principles.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

97

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

b

box OX.

ﬂ deliverBB v‘f reqUBB reqUSB o >iJ deliverSB
¢-1) “) q «-1)
x x
0y 0y
pass(box) (3) (3) pass(box)
ﬂ pulluBB ’ ﬂ pullusB ’
inBB inSB n
ﬂ pullBB J ﬂ pullSB J
box (8)/ (8)/ box
| @ @
A4 A 4
H o anes o reqBB reqSB (G R—
(r-1) (r-1)
T T
startB(box,i) (i (i)/' startB(box,i)
v ~. — v
buildBB .::) idleBB) idlesB g) buildSB)
T — ~ T
box (SUM(clock.sec)) (SUM(clock.sec)) box
v — S v
ij stopBB stopSB
pass(box) pass(box)
v v
inFBB inFSB s!
bBox sBox/
\ir startF
(i startF(bBox,sBox,i)
— v Dashboard
idleF g) finish)
R T
(SUM(cIock&)) b:x
matEval a clock
ij stopF) 0)
¥ X
v/ s/
pass(box) evalMat(v) pulse(s)
v v v
inT n) observeMA ’ pulse \
|

box

inBBEval inFEval
T ®) ®)
X X
vl \
(i startB(box,i) evalBB(v) evalF(v)
= v Y Y
idleT 2) test)

< T
(SUM(clock.sec)) box
v

observeBB ’ observeF ’

= insBEval (R inTEval @)
ﬂ stopT))
X X
v/ v/
pass(box) evalSB(v) evalT(v)
v

v
goods o)

observeSB } observeT }

4

Fig. 6. Clock pulse pull model after 96 pulses.

New places regx for requesting boxes are attached to the
transition for delivery and starting the preassembly. These
places are integer-typed and initialized with a single token
bearing 0. The transitions pull* increases this value to 3, ef-
fectively implementing a batch size. This can be modeled with
a functionality of the P-S.C not normally seen in Petri nets:
Observance of other net elements. Exemplary, pullUBB carries
a condition="COUNT(inBB)=0’: this transition observes the
state of a place not directly connected. If inBB is empty, this
triggers a kanban request. The displayed buffer inBB is empty,
thus having enabled pullUBB. This led to the token on reqUBB
containing 3. Only then deliverBB is enabled as a condition
asks for the request to be larger than 0. The same principle
triggers the start of the preassembly: pullBB observes the state
of inFBB. Correspondingly, this is also executed on the small
boxes’ side.

While such an observance capability can be reproduced by
more traditional Petri nets, the implemented approach may
ease readability of the net as fewer arcs are needed. It is up to
the modeler which visualization they deem more important.

Consequently, this pull request mechanism could also be
implemented for the remainder of the net. However, these
requests are omitted for two reasons:

1. The visualization would become more convoluted.

2. They are not necessary for this model. The final assembly
finish takes the longest time of all working stations, thus
representing the bottleneck. Before this place (including
the associated buffers inFBB and inFSB), the kanban
system is implemented. Behind this place, no congestion
can occur. As only storage costs are examined, and the
storage costs are the same for all buffers, total costs would
not change when implementing a full kanban chain.

The remaining net is unchanged to the push version, thus,
only the main difference on the resulting reachability set are
examined: Indications for storage costs. As such, Table X
shows the data for the pull model like Table IX does for the
push model. While material exposes higher costs, the internal
storage costs for the buffer prove smaller than in the push
model. This is more deeply explored in Section VI-C.

TABLE X. ALLOCATIONS OF TOKENS ON THE PLACES (a) matEval,
inBBEval, inSBEval, inFEval, AND (b) inTEval INDICATING THE
ACCUMULATED STORAGE COSTS IN THE CLOCK PULSE PULL
MODEL AS DEPICTED IN FIGURE 6: INITIALLY, AFTER THE FIRST
10 PULSES, AROUND PULSE 96, AND AT THE LAST TOKEN
CREATING PULSE

“pulse | matkval | inBBEval | inSBEval
0

0 0 0 0 0
1 150 0 0 0 0
2 300 0 0 0 0
3 450 0 0 0 0
4 598 1 1 0 0
5 746 1 1 0 0
6 892 2 2 0 0
7 1038 3 3 0 0
8 1182 5 5 0 0
9 1326 7 7 0 0
10 1470 9 9 0 0
95 13338 144 196 157 2
96 13473 144 199 162 2
97 13608 144 202 167 3
1903 127068 4133 4584 4926 75

C. Simulation Results

Comparison of the two models’ simulation runs show
neither a change in total processing time nor one in idle
times for the different workplaces, which is as expected.
Differences on utilization of storage places become visible,
though. Figures 5 and 6 depict both clock pulse models after
pulse 96. Thus, they are in a comparable state but clearly show
distinct distributions on the earlier buffers. This is even more
evident when comparing the last rows of Tables IX and X.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The first model using push principles clearly unveils the
drawback of its approach: large interim storage and, as a result,
high inventory costs. Figure 7 (upper) depicts the (box-wise
split) inventory on the material storage (rawBB and rawSB),
the building buffers (inBB, inSB, inFBB, and inFSB) and the
finished goods storage during the push simulation.

Figure 7 (lower) shows the pull simulation run’s results. The
interim storage places are much less utilized as only those
items are put into the assembly lines that are demanded by
downstream stations. The decrease in raw material stocks is
very uniform. Both is as expected, as it corresponds to the
main goal behind just-in-time production schedules.

inBB iNSB essmmm inFBB

rawSB

80 rawBB INFSB e gOOS

Stocks [pcs] - Push

0 3 6 9 12 15 18 21 24 27 30 33

Elapsed time [min]

80 rawBB rawSB inBB iNSB essmmmm inFBB iNFSB e g00dS

Stocks [pcs] - Pull

0 e
0 3 6 9 12 15 18 21 24 27 30 33

Elapsed time [min]

Fig. 7. Stocks in the clock pulse models for (upper) push and (lower) pull.

Figure 8 (upper) presents the accumulated costs of interim
storage in the push model, while Figure 8 (lower) depicts the
same for the pull model. Also shown are the total costs of all
interim storage places. Be mindful of the scale difference of
the y-axis: The accumulated interim storage costs differ by an
order of magnitude when using pull instead of push principles!

inBB. inSB e— tOtals

pe——

= =
o @
1S} S

«
S

Interim storage costs
[1 000 sec] - Push

0 3 6 9 12 15 18 21 24 27 30 33

Elapsed time [min]

inSB e iNF e— 0125

15 inBB

Interim storage costs
[1 000 sec] - Pull

0 3 6 9 12 15 18 21 24 27 30 33

Elapsed time [min]

Fig. 8. Accumulated inventory costs per interim storage and totals in the
clock pulse models for (upper) push and (lower) pull.

The finished goods storage is omitted as throughput is
the same in both models, leading to the same costs on
this storage. The material warehouse, otherwise, is put aside
because the difference between the accumulated totals equals
to the possible savings when externalizing this storage.

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

By implementing pull principles, the stock costs on the
interim storage places plummet. Thus, the advantages of a
just-in-time production and a smaller main storage become
obvious. The pull principle allows for exactly this.

What is not accounted for in these models are for ex-
ample costs of transportation, as smaller batch sizes usually
correspond to higher transportation costs, leading to familiar
knowledge: decreasing one muda typically increases other
muda. Hence, batch size 1, which is optimal for the interim
storage cost, is not necessarily the globally optimal solution.

VII. EVENT TRIGGERED SIMULATION MODELS

The second modeling approach examined aims at develop-
ing an event triggered simulation model, again with the main
goal to determine the total costs of all involved stocks and
to explain the applied modeling technique. Thus, the setting
remains the same but the modeling principles change. While
the clock pulse models allow for observation of storage uti-
lization in real-time, event triggered models aim at computing
simulation results as fast as possible.

Hence, the now presented Petri net models mainly consist
of places to examine the stocks. The remainder of the Box
Game’s functionality is implemented as transitions and arcs.
Specifically, there are no places for the working stations.

Since an ideal production flow is one with minimal stocks
and short throughput times, the individual boxes are passed
from one production step directly to the following, effectively
establishing a batch size of 1. This is in accordance with the
handling times of the clock pulse models that were set to 0
with the exception of the initial dispatch. Other batch sizes
are implemented accordingly [5].

A. The Push Model

Figure 9 shows the push version of the event triggered
model. The timer establishes one possibility to track elapsed
times (another one is presented in the following Section
VII-B). The initial allocation with four tokens can be seen in
Table XI. The used record set RTimer stores the type, i.e., the
associated storage place, and the corresponding elapsed time
value of last access on this place. The tokens are initialized
with ”00:00” the buffers have not been in use, yet.

TABLE XI. INITIAL ALLOCATION OF TOKENS ON THE PLACE timer
IN THE EVENT TRIGGERED PUSH MODEL AS DEPICTED IN

FIGURE 9
BB 00:00
SB 00:00
FB 00:00
QA 00:00

The place material is typed with a record set RMat that
consists of the item type, the elapsed time, and two attributes
boxID and count. While boxID determines the next box’s id
value, count shows the amount of the remaining stock. The
attribute type is self-explanatory and elapsed tracks the time
of an item’s state change.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

99

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

100

TABLE XIII. ALLOCATIONS OF TOKENS ON THE PLACE timer IN
THE EVENT TRIGGERED PUSH MODEL AS DEPICTED IN FIGURE 6
FOR THE FIRST AND LAST FIVE SYSTEM STATES EACH

0 BB|SB|FBJQA 00:00]00:00|00:00/00:00
1 BBISB|FB|QA 00:00/00:00]00:00|00:00
2 BB|SB|FBJQA 00:20]00:11]00:00/00:00
3 BB|SBJFB[QA 00:38/00:20/00:45]00:00
4 BB|SB|FB|QA 00:56]00:29]01:10/00:52
74 BB|SB|JFB|QA 21:56]10:59|30:20]30:02
75 BB|SB|FB|QA 22:14]11:08]30:45]30:27
76 BB|SBJFB|QA 22:32|11:17|31:10]30:52
77 BB|SB|FB|QA 22:32|11:17|31:3531:17
78 BB|SB|JFB|QA 22:32[11:17|31:35|31:42

—
material =)
box/ box/
update(box) update(box)
] deliverBB'\’\l,l H eiverss '\,\L’
filll(box) ﬁlll({wox)
v v
inBB H) insg lall
XX,
Y T
tickB(box{A box box }kS(box. t)
A4 v
H o piees I H s }
T T
fillB(box, t) fillS(box, t)
A v
i [~ | i Rl
inFBB inFSB)
bBox sBox
— v —>—J finish <+
tickF(bBox, sBox, t) :
fillF(bBox, sBox, t)
v
i an
inT -
box
A
El— 0
* tickT(box, t)
fillO(box, t)
v
goods &

Fig. 9. Event triggered push model after 4 ticks, the first completed box
having just arrived on the finished goods warehouse.

The initial allocation for material is shown in Table XII:
There are 75 big and small boxes, respectively. Both (big and
small box) tokens that are the next to be created from this
information will have the id 1.

TABLE XII. INITIAL ALLOCATION OF TOKENS ON THE PLACE
material IN THE EVENT TRIGGERED PUSH MODEL AS DEPICTED IN

FIGURE 9
boxID type elapsed count
1 BB 00:00 75
1 SB 00:00 75

Left and right sides of the preassembly work correspond-
ingly, thus, an explanation of the big boxes’ side will suffice.
Two conditions on deliverBB ensure usage of the BB-typed
token from material while there are items left as indicated by
the token’s count. The information gets adapted by the function
update(box): boxID is incremented, count is decremented, and
elapsed receives a time stamp for the last access. Then, the
token is put back on material and a newly created RBox-typed
token is put on inBB.

With creation of a box token, boxID actually becomes the
box’s id while count as attribute on a box becomes superfluous.
Thus, RBox is adapted as a triplet id, type, and elapsed. Using
the id, the items can be tracked in this model’s tables.

The progression of token allocations on timer, material
warehouse, and the buffers inBB and inSB can excerpted be
seen in Tables XIII, XIV, and XV, respectively.

TABLE XIV. ALLOCATIONS OF TOKENS ON THE PLACE material IN
THE EVENT TRIGGERED PUSH MODEL AS DEPICTED IN FIGURE 6
FOR THE FIRST AND LAST FIVE SYSTEM STATES EACH

boxID type elapsed count
0 11 BB|SB 00:00/00:00 75|75
1 212 BB|SB 00:00/00:00 74|74
2 3|3 BB|SB 00:00/00:00 73|73
3 4|4 BB|SB 00:00/00:00 72|72
4 5|5 BB|SB 00:00[00:00 71|71
74 75|75 BB|SB 02:28]02:28 1]1
75 76|76 BB|SB 02:30]02:30 0]0
76 76|76 BB|SB 02:30]02:30 0]0
77 76|76 BB|SB 02:30]02:30 0[0
78 76|76 BB|SB 02:30]02:30 0/0

TABLE XV. ALLOCATIONS OF TOKENS ON THE PLACES inBB AND
inSB IN THE EVENT TRIGGERED PUSH MODEL AS DEPICTED IN
FIGURE 6 FOR THE FIRST AND LAST FIVE SYSTEM STATES EACH

inBB inSB
id type elapsed | id type elapsed

0
1 1 BB 00:02 1 SB 00:02
2 2 BB 00:04 2 SB 00:04
3 3 BB 00:06 3 SB 00:06
4 4 BB 00:08 4 SB 00:08
74 74 BB 02:28 74 SB 02:28
75 75 BB 02:30 75 SB 02:30
76
77
78

After the token has arrived on inBB, buildBB is en-
abled. It receives tokens from inBB and timer and trans-
mits tokens to inFBB and back to timer. The token from
timer is updated by the function tick(box,t) such that
t.elapsed=max(box.elapsed,t.elapsed)+700:18”: To the current
time, as computed by the maximum function, 18 seconds
are added for the preassembly. Thus, the timer token always
carries the time of last access on. In the system’s base state,
this token is initialized with ~00:00” as the workplaces have
not been accessed, yet. However, because the delivery takes 2
seconds, the folding must not start earlier. Again, the further
transportation steps are assumed to consume no time.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Using a generic function with a fitting parameter for all arcs
instead of a unique one for each would have led to larger arc
labels, convoluting the visualization. On the other hand, the
processing times would have been visible directly.

The function fillB(box,t) adapts the principle behind
tickB(box,t) to a box item where the attribute elapsed stores
the time of last change. Allocations of tokens on the two
buffers inFBB and inFSB just before the final assembly can be
examined in Table XVI. The first folded big box arrives after
20 seconds. At this time, the second folded small box arrives
in the other buffer, already. Du to the final assembly requiring
both box types, the buffer get cleared simultaneously, though
the small boxes show much longer waiting times.

TABLE XVI. ALLOCATIONS OF TOKENS ON THE PLACES inFBB
AND inFSB IN THE EVENT TRIGGERED PUSH MODEL AS
DEPICTED IN FIGURE 6 FOR THE FIRST AND LAST FIVE SYSTEM
STATES EACH

inFBB inFSB
type elapsed type elapsed

0

1

2 1 BB 00:20 1 SB 00:11
3 2 BB 00:38 2 SB 00:20
4 3 BB 00:56 3 SB 00:29
74 73 BB 21:56 73 SB 10:59
75 74 BB 22:14 74 SB 11:08
76 75 BB 22:32 75 SB 11:17
77
78

Both tickF(bBox,sBox,t) and fillF(bBox,sBox,t) work in
the same fashion, though they need both box tokens as
input because the big boxes arrive later than the small ones:
the maximum of three possible values (including the timer)
determines the availability to the next processing step.

Table XVII shows the allocations on the last buffer inT and
the finished goods storage. Unsurprisingly, the values match
the ones from the clock pulse push model.

TABLE XVII. ALLOCATIONS OF TOKENS ON THE PLACES inT AND
goods IN THE EVENT TRIGGERED PUSH MODEL AS DEPICTED IN
FIGURE 6 FOR THE FIRST AND LAST FIVE SYSTEM STATES EACH

goods
m type elapsed type elapsed
0
1
2
3 1 FB 00:45
4 2 FB 01:10 1 FB 00:52
74 72 FB 30:20 1]..]71 FB|..|FB 00:52|...]30:02
75 73 FB 30:45 1|..[72 FB|..][FB 00:52]|...]30:27
76 74 FB 31:10 1]..]73 FB|..|FB 00:52|...]30:52
77 75 FB 31:35 1]..|74 FB|..|[FB 00:52|...]31:17
78 1|..]75 FB|..[FB 00:52|...|31:42

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

101

Again, all these tables represent the entire reachability set
of the Petri net model, although the combined table is much
smaller in comparison to the clock pulse push model: It
contains only 24 columns and 78 data sets or rows. However,
storage costs need to be computed separately as a dashboard
or tracking functionality was not implemented.

B. The Pull Model

The event triggered pull version of the Box Game as
depicted in Figure 10 is partly more complicated, as sup-
plementary elements are needed to implement pull requests.
Otherwise, as time logging can be integrated by tracing token
information in the net forward and backward, the timer and
corresponding arcs may be dropped: instead of sending time
information from and to a dedicated timer place, it can be
integrated directly in the tokens and updated as needed.

orders kanbanID
of (idy/

queued(0). /(id+1)
+| (anbanize 5=
anbanize S
KkB(o, id) KS(o, id)
S
kanbanBB) material @ kanbanSB)
l o S !
give/ give/

K updateB(give, pull, k) updateS(give, pull, k) K
¢ « S #

4

ﬂ deliverBB deliverSB

et/

g et/
filllB(give, get, pull, k)
v

9
filllS(give, get, pull, k)
v

BB “ . |
inl mS

glve/ ol Ul g\vel

empty(glve get)
bulIdBB
gel/
fHB(glve get)

|nFBB

empty(g\ve get)
buﬂdSB
get/
fillS(glve get)

|nFSB

glveB/ glveS/
emptyF(giveB, giveS, get) emptyF(giveS, giveB, get)

finish

Ez
b\

ﬁHF(glveB, glveS, get)
v

an
inT -

give/
empty(give, get)

test

{

get/
fillO(give, get)
v

goods &

Fig. 10. Event triggered pull model after 5 ticks, the first completed box
having just arrived on the finished goods warehouse.

As mentioned in Section II-A, information flows from the
dispatch warehouse upstream. Thus, the kanban chain should
start at goods instead of where it is modeled. However, kanban
elements that are theoretically necessary for the model may
partly be omitted for simplification.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Skipping these connections is feasible for the same reasons
as in the clock pulse version: all pulls beside the modeled
ones arise from working steps that require less time than
finish, so their storage places are empty by specification at
the relevant times, plus the omission eases readability of the
visualization. For demonstration purposes, the batch size is set
to 1. Modeling the full kanban chain becomes necessary with
larger batch sizes, i.e., when the buffers are actually filled.

The first additional elements in the event triggered pull
model are the places orders and kanbanID, the latter being
an integer to be used as id for single kanban requests. The
orders place is typed with ROrder, consisting of the target
type, the total ordered volume, the batchSize, and the amount
of already queued items. The initial allocation of orders can
be seen in Table X VIII. For this model, there is only one order
placed for a total of 75 items. If there were more orders,
an additional attribute orderID would become necessary to
be tracked all through the net. The kanbanID is a sequential
number initialized with 0.

TABLE XVIII. INITIAL ALLOCATION ON THE PLACE orders IN THE
EVENT TRIGGERED PULL MODEL AS DEPICTED IN FIGURE 10

type volume batchSize queued
FB 75 1 0

Two places, kanbanBB and kanbanSB, are not initialized.
They are typed with the record set RKanban. A token is created
for each kanban request when the transition kanbanize fires.
The id is the one as supplied by kanbanID, type defines the
necessary intermediate product (that could be stored on a place
in a bill of materials, but is hard-coded in this model), and the
batchSize that is directly copied from the order.

As a first step, tokens on orders are transposed into kanban
tokens that adhere to the given batch size. To this end,
the transmission o supplies the order that gets updated by
queued(o) (adding the value of batchSize to the current value
of queued) and put back on its original place. The infor-
mation is also used to create kanban tokens on kanbanBB
and kanbanSB via the function calls kx(o,id), integrating the
corresponding kanban id. The kanban id itself is incremented
and also put back on its origin. Table XIX gives an overview
of the token allocations on the places orders and kanbanID.

TABLE XIX. ALLOCATIONS OF TOKENS ON THE PLACES orders
AND kanbanID IN THE EVENT TRIGGERED PULL MODEL AS
DEPICTED IN FIGURE 10 FOR THE FIRST THREE AND AROUND
THE LAST TOKEN CREATING SYSTEM STATE

orders kanbanID

type volume DbatchSize queued id
0 FB 75 1 0 0
1 FB 75 1 1 1
2 FB 75 1 2 2

74 FB 75 1 74 74

75 FB 75 1 75 75

76 FB 75 1 75 75

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

102

The kx(o,id) functions create tokens as excerpted in Table
XX. The kanban tokens slowly keep accumulating on their
respective places kanbanBB or kanbanSB.

TABLE XX. ALLOCATIONS OF TOKENS ON THE PLACES kanbanBB
AND kanbanSB IN THE EVENT TRIGGERED PULL MODEL AS
DEPICTED IN FIGURE 10 FOR THE FIRST AND LAST FIVE SYSTEM
STATES EACH WHERE THESE PLACES CARRY TOKENS

kanbanBB kanbanSB
id type batchSize id type batchSize

1 1 BB 1 1 SB 1

2 2 BB 1 2 SB 1

3 2|3 BB|BB 11 2|3 SB|SB 11

4 2|34 BB|BB|BB 111 2|3|14 SB|SB|SB 111

5 3|45 BB|BB|BB 111 3|45 SB|SB|SB 111
219 74|75 BB|BB 11 74|75 SB|SB 11
220 74|75 BB|BB 11 74|75 SB|SB 111
221 75 BB 1 75 SB 1
222 75 BB 1 75 SB 1
223 75 BB 1 75 SB 1

As seen comparably in other models, material is initialized
with two tokens, one for each type. However, in this model
the record set is used differently: Instead of “moving tokens
through the net”, several places are equipped with tokens and
information moves in the net while the tokens themselves
effectively stay on their original places. The initial allocation
for material is presented in Table XXI, also showing the
structure of the record set RMat: item type, elapsed time
denoting last access, and count of available stocks.

TABLE XXI. INITIAL ALLOCATION OF TOKENS ON THE PLACE
material IN THE EVENT TRIGGERED PULL MODEL AS DEPICTED IN
FIGURE 10

type elapsed count

BB 00:00 75
SB 00:00 75

The remaining places inBB, inSB, inFBB, inFSB, inT, and
goods are typed with the record set RBox, which expands
RMat by the batch size, orderID, and kanbanID. For clarity of
presentation, both orderID and kanbanID, though being used
for RBox, is not shown in any of the tables! The initialization
of these places is shown in Table XXII. The type denotes
the kind of (intermediate) product that is allowed on the
corresponding place.

TABLE XXII. INITTAL ALLOCATION OF TOKENS ON THE PLACES
inBB, inSB, inFBB, inFSB, inT, AND goods IN THE EVENT
TRIGGERED PULL MODEL AS DEPICTED IN FIGURE 10

m type elapsed count batchSize
inBB BB 00:00 0 0
inSB SB 00:00 0 0
inFBB BB 00:00 0 0
inFSB SB 00:00 0 0

inT FB 00:00 0 0
goods FB 00:00 0 0

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Again, big box and small box preassemblies work the same
way, thus only one side is explained in detail. The delivery
transition deliverBB is enabled when the adjacent places carry
fitting tokens, i.e., when following conditions are met:

1. There must not be an item on inFBB, i.e., pull.count=0,
otherwise there would not be the need for a pull request.
Also, the pull should be for the item type the delivery
transition is actually relevant for, here pull.type="BB”.

2. There must not be an item on inBB, i.e., get.count=0 as
this would effectively lead to an item on inFBB, again
rendering the pull unnecessary.

3. The fitting items must be supplied by the material
warehouse as indicated by the kanban request, i.e.,
give.type=k.type. Additionally, the corresponding stock
must meet the batch size, i.e., give.count>=k.batchSize.

Upon firing deliverBB, the corresponding pull request token
gets removed from kanbanBB. The token on material is
updated to reflect the withdrawal of items and the access
time on the place. A new token is created on inBB that
contains information about elapsed time, the item count,
and the batchSize. The pull token is transferred back to its
origin without a change. The functions updatex(give,pull,k)
and fillx(give,get,pull.k) account for the necessary delivery
times. Also, the functions on the right side handling the small
boxes account for the shorter processing time of those boxes,
leading to a later dispatch. Table XXIII gives an overview over
the progression of token allocations on material.

TABLE XXIII. ALLOCATIONS OF TOKENS ON THE PLACE material
IN THE EVENT TRIGGERED PULL MODEL AS DEPICTED IN
FIGURE 10 AROUND THE FIRST AND LAST FIVE SYSTEM STATES
WITH TOKEN CHANGES

type elapsed count
1 BB|SB 00:00/00:00 75|75
2 BB|SB 00:00]00:09 74|74
3 BB|SB 00:00/00:09 74|74
4 BB|SB 00:00/00:09 74|74
5 BB|SB 00:15/00:24 73|73
220 BB|SB 29:50/|29:59 2|2
221 BB|SB 30:15|30:24 11
222 BB|SB 30:15|30:24 11
223 BB|SB 30:15/30:24 11
224

BB|SB 30:40/30:49 0|0

Tables XXIV and XXV display some allocations of the
buffer places inBB, inSB, inFBB, and inFSB. The first big
box arrives in the preassembly buffer after 2 seconds, directly
being passed into the working station. As the small boxes only
need half the processing time, i.e., 9 seconds, the first small
box arrives after 11 seconds. Thus, both boxes are ready at
the same time for the final assembly. This can be seen as
the buffers for finish receive the first boxes after 20 seconds.
Because of the final assembly taking 25 seconds, these buffers
need to hold the next preassembled boxes ready after 45
seconds. Thus, folding for the second big and small boxes
should start at 27 and 36 seconds, respectively.

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

103

TABLE XXIV. ALLOCATIONS OF TOKENS ON THE PLACES inBB
AND inSB IN THE EVENT TRIGGERED PULL MODEL AS DEPICTED
IN FIGURE 10 AROUND THE FIRST AND LAST SIX SYSTEM
STATES WITH TOKEN CHANGES

inBB inSB
type elapsed count batchSize | type elapsed count batchSize

1 BB 00:00 0 0 SB 00:00 0 0
2 BB 00:02 1 1 SB 00:11 1 1
3 BB 00:02 0 1 SB 00:11 0 1
4 BB 00:02 0 1 SB 00:11 0 1
5 BB 00:27 1 1 SB 00:36 1 1
6 BB 00:27 0 1 SB 00:36 0 1
222 BB 30:27 0 1 SB 30:36 0 1
223 BB 30:27 0 1 SB 30:36 0 1
224 BB 30:52 1 1 SB 31:01 1 1
225 BB 30:52 0 1 SB 31:01 0 1
226 BB 30:52 0 1 SB 31:01 0 1
227 BB 30:52 0 1 SB 31:01 0 1

TABLE XXV. ALLOCATIONS OF TOKENS ON THE PLACES inFBB
AND inFSB IN THE EVENT TRIGGERED PULL MODEL AS
DEPICTED IN FIGURE 10 AROUND THE FIRST AND LAST SIX
SYSTEM STATES WITH TOKEN CHANGES

inFBB inFSB
type elapsed count batchSize | type elapsed count batchSize

1 BB 00:00 0 0 SB 00:00 0 0
2 BB 00:00 O 0 SB 00:00 0 0
3 BB 0020 1 1 SB 0020 1 1
4 BB 0020 O 1 SB 0020 0 1
5 BB 0020 0 1 SB 0020 0 1
6 BB 0045 1 1 SB 0045 1 1

222 BB 3045 1 1 SB 3045 1 1

223 BB 3045 0 1 SB 3045 0 1

24 BB 3045 0 1 SB 3045 0 1

225 BB 31:10 1 1 SB 31:10 1 1

226 BB 3L:10 0 1 SB 31:10 0 1

227 BB 3110 0 1 SB 31:10 0 1

Due to the pull requests, both unfolded boxes are supplied
at the right time in the preassembly buffers. The remainders
of the tables shows the allocations for the last system states.

Table XX VI examines the allocations for the last two places,
the test buffer inT and the finished goods store.

TABLE XXVI. ALLOCATIONS OF TOKENS ON THE PLACES inT
AND goods IN THE EVENT TRIGGERED PULL MODEL AS
DEPICTED IN FIGURE 10 AROUND THE FIRST AND LAST FIVE
SYSTEM STATES WITH TOKEN CHANGES

inT goods
type elapsed count batchSize | type elapsed count batchSize
3 FB 00:00 0 0 FB 00:00 0 0
4 FB 00:45 1 1 FB 00:00 0 0
5 FB 00:45 0 1 FB 00:52 1 1
6 FB 00:45 0 1 FB 00:52 1 1
7 FB 01:10 1 1 FB 00:52 1 1
223 FB 31:10 1 1 FB 30:52 73 1
224 FB 31:10 0 1 FB 31:17 74 1
225 FB 31:10 0 1 FB 31:17 74 1
226 FB 31:35 1 1 FB 31:17 74 1
227 FB 31:35 0 1 FB 31:42 75 1

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 11. Accumulated waiting times [in seconds]
in the event triggered push model:
(upper half circle) named storage places
(lower half circle) clusters of five consecutive boxes
(circular area) distribution of accumulated waiting times
of five-box-clusters to individual storage places.

The first finished box arrives at inT after 45 seconds. The
quality test starts immediately and the checked box is passed
to the outgoing store after a total elapsed time of 52 seconds.

As is the case for the event triggered push model, storage
costs are not directly visible in this result set and have to
be processed separately. However, the tokens on the finished
goods warehouses from both models resemble each other.

C. Simulation Results

As expected, the simulation of the two models show no dif-
ference in total processing or idle times for single workplaces.
Although, differences on storage places become evident again.

Because the distribution of waiting times behind finish is the
same for both models, only the first five storage places need
to be analyzed. Figure 11 shows the allocation of the boxes’
waiting times to single stocks - and hence the distribution of
storage costs - in the push model while Figure 12 shows the
same for the pull model.

The stocks on material are split by type (BB and SB in the
figures). The boxes themselves are aggregated into five-box-
clusters for clarity. The trend to successively longer waiting
times is clearly visible.

The push model’s material gets cleared as fast as possible.
This, however, leads to large buffers (inBB, inSB) just before
the first concurrent production steps. As the preassembly
requires less time than the final assembly, the two incoming
buffers for finish (inFBB, inFSB) are also highly occupied.

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

104

71-75

Fig. 12. Accumulated waiting times [in seconds]
in the event triggered pull model:
(upper half circle) named storage places
(lower half circle) clusters of five consecutive boxes
(circular area) distribution of accumulated waiting times
of five-box-clusters to individual storage places.

As anticipated, the pull principle leads to zero interim buffer
inventory throughout the stocks under consideration. This is
clearly visible as, although the total accumulated waiting times
for both models are equivalent, the pull model unites them on
the main storage material only.

This opens up the possibility to externalize costs. One such
alternative is to use consignment stores: suppliers maintain
warehouses inside the customer’s facility and, thus, must
keep the material in their balance sheet. Another common
possibility is just-in-time delivery. With high process stability
and fast response times, even the use of a kanban cycle with
the supplier is conceivable [6]. These options may lead to
partial or total eradication of stocks.

The final remark of the former section regarding muda and
friction between local vs. global optima still holds true.

VIII. CONCLUSION AND FUTURE WORK

The advantage of simulating the Box Game using clock
pulse models is that the fluctuation of stocks can be observed
in a very illustrative way while the simulation is running.
The amount of items in each storage is clearly visible for
every second. Since in the P-S.C the color of and the symbol
on places can change depending on the number of tokens
on the place, the advantages and disadvantages of push and
pull can be demonstrated very figuratively. As a consequence,
the simulation is a demonstrative extension of the personal
experience for the students in the logistics laboratory.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Event triggered models on the other hand emphasize the
end results over the visualization during runtime. As such,
they show advantages in computation times.

A. Computational Times

Using either of the clock pulse models, the presented sce-
nario runs for 1902 discrete time steps that represent seconds
in the Box Game. This equals to almost 32 minutes. Although
this is a much longer period than one that can be played by
students - because concentration levels decrease after about 5
minutes - it seems unnecessary as steps are computed at which
no change of the system’s state occurs.

Even though, calculating these steps takes time. In Chrome
on an iMac (4 GHz Quad-Core Intel Core i7, 16 GB RAM)
the full simulation takes on average 8234 milliseconds. The
duration for simulating a working day increases linearly.

However, this effort can be reduced drastically if the con-
crete result is more important than the runtime visualization. In
this case, it would be sufficient to calculate new states only in
the moments of state changes. Using event triggered models,
the simulation for the given scenario can be reduced to 79 steps
for the push and 228 steps for the pull version. The difference
is due to the kanban calculations needed during runtime. On
the aforementioned computer, the simulations only run for 315
and 923 milliseconds on average, respectively. The advantages
of event triggered simulation increase more if the demand
interval in which changes occur vary strongly from one part
of the model to the other since it takes into account local state
changes. Hence, the latter approach scales better, making it
beneficial for industrial applications.

B. Result Presentation

The primary presentation advantage of the clock pulse
models - visualization of state changes during runtime - cannot
inherently be conveyed without animation.

Generally, the simulation results of Petri net models can be
deducted from the nets’ reachability sets. The P-S.C provides
functionalities for completely or partially logging the actually
reached system states, i.e., the simulation results, and for
exporting this information in form of comma separated values.
For the diagrams presented in Sections VI and VII, such data
was used to generate the visualizations in external programs
in an individual working step.

Incidentally, this lead to the question as to how to present
data to the target audience. However, this audience and their
information needs have to be determined in the first place.
Modeling and domain expertise often exist disparately, so
modelers first need to understand which goals the domain
experts want to achieve and which indicators can be used for
reaching them.

The cumbersome external processing step and the require-
ment for an audience orientation combined show the necessity
for an internal visualization solution. The goal is to supply
modelers with fitting tools in form of an adaptable, integrated
dashboard. As a first step, a corresponding research-agenda
has been established [36].

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

105

C. Key Takeaways

The challenges that had to be overcome for implementing
the presented models led to some new insights in the de-
velopment of conceptual models for discrete time-dependent
systems. Eventually, the authors found their personal best
practice that consists of the following steps:

1. Define data types for the different stocks and other data
objects. Then, initialize the corresponding places in ac-
cordance with the starting condition.

2. Augment the model by transitions for beginning and ending
specific tasks like delivering raw materials, building or
quality testing.

3. Identify the next item to be taken and the moment this will
occur. This also allows for implementation of different
prioritization strategies.

4. Start with modeling the simpler push principle and augment
this model by pull principles.

5. Look for a proper visualization of the simulation results.

Moreover, at this time the development of a clock pulse
model may be seen as a preliminary for the development of
an event triggered model as some perceive the implementation
of the event triggered models as more difficult in comparison.
If an event triggered model is needed, the following steps -
especially the second one - might be helpful:

1. Develop the clock pulse model first.

2. Observe the reasons for state changes with the aid of the
clock pulse model and derive the event triggered model
from these observations.

3. Look for a proper visualization of the simulation results.

From personal observations, the authors derive the following
suggestion on when to use which modeling approach:

Use a clock pulse simulation if either a clock pulse visual-
ization of the system’s states is needed or if the computer
is fast enough for the few simulations that must be run
for the modeled system.

Use an event triggered simulation if high simulation speed
is necessary due the complexity of the modeled system,
if fast answers are needed in production, or if a large
number of variations of the production schedule or input
data has to be compared. In general, the more often
a specific model needs to be simulated, the more it is
worthwhile to develop an event triggered model instead
of a clock pulse model.

In order to ease the step from a clock pulse model to an
event triggered model, in the future the P-S.C will receive an
extension such that users are supported in finding the relevant
moments of state changes.

D. What else?

The biggest impression on the authors was the realization
that what can be modeled and simulated with the aid of Petri
nets is only restricted by the modelers imagination and the
ability of the used tool. In opposite to other out of the box
modeling environments for logistics, a user is free to lay the
focus on any parameter they are interested in most.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

However, two further challenges exist: Modelers must be
able to develop sophisticated, abstract models and they must
find a way to visualize the results. The authors hope to have
given a possible answer to the first challenge and see major
future work concerning the second one.

The P-S.C itself and the lessons learned regarding modeling
are used for theoretical and practical research.

The bullwhip effect, for example, is a phenomenon in
logistics that is widely known, but rarely examined from
a simulation perspective. However, using the P-S.C such a
simulation becomes manageable, giving insight into the basic
mechanism and possibilities to prevent the effect [37].

On the practical side, the authors work on simulating and
evaluating the processes used in a large hazardous goods
warehouse that is currently be built. The materials in question
will be transferred from an older warehouse, however, the
established processes can not be adopted due to scale, handling
and legal aspects. Thus, it is necessary to examine the system’s
behavior for problems and anomalies.

Teaching aspects, as shown in the Box Game, theoretical
and practical research cross-fertilize each other. In effect, this
leads to better tools, improved modeling competencies, and
more wide-spread usage of simulation and its benefits.

REFERENCES

[1] S. Haag, L. Zakfeld, C. Simon, and C. Reuter, “Event Triggered
Simulation of Push and Pull Processes,” in SIMUL 2020: The Twelfth
International Conference on Advances in System Simulation, L. Parra,
Ed., Porto (Portugal), 2020, pp. 68-73.

[2] C. Simon, S. Haag, and L. Zakfeld, “Clock Pulse Modeling and
Simulation of Push and Pull Processes in Logistics,” in SIMMaApp:
Special Track at SIMUL 2020: The Twelfth International Conference
on Advances in System Simulation, F. Herrmann, Ed., Porto (Portugal),
2020, pp. 31-36.

[3] M. Zhou and K. Venkatesh, Modeling, Simulation, and Control of

Flexible Manufacturing Systems - A Petri net Approach, ser. Intelligent
Control and Intelligent Automation. Singapore, New Jersey: World
Scientific, 1999, vol. 6.

[4] U. Dombrowski and T. Mielke, Ganzheitliche Produktionssysteme:
Aktueller Stand und zukiinftige Entwicklungen. Miinchen: Springer
Vieweg, 2014, German, transl. Holistic production systems: Current
status and future developments.

[51 J. Gottmann, Produktionscontrolling: Werstrome und Kosten optimieren,
2nd ed. Wiesbaden: Springer Gabler, 2019, German, transl. Production
controlling: Optimizing value flows and costs.

[6] H. Wildemann, Kanban-Produktionssteuerung, 28th ed.
TCW, 2020, German, transl. Kanban production control.

[7]1 L. Recalde, M. Silva, J. Ezpeleta, and E. Teruel, Lectures on Concur-
rency and Petri Nets: Advances in Petri Nets. Berlin: Springer, 2004,
ch. Petri nets and manufacturing systems: An examples-driven tour, pp.
742-788.

[8] W. Reisig, Understanding Petri Nets. Berlin: Springer, 2013.

[9] H. J. Genrich and K. Lautenbach, “System Modelling with High-Level

Petri Nets,” Theoretical Computer Science, vol. 13, 1981.

K. Jensen, Coloured Petri-Nets, 1st ed. Berlin: Springer, 1992.

M. Montali and A. Rivkin, “From DB-nets to Coloured Petri Nets with

Priorities (Extended Version),” CoRR, vol. abs/1904.00058, 2019.

C. Ramchandani, “Analysis of Asynchronous Concurrent Systems by

Timed Petri Nets,” MIT, Project MAC, Technical Report 120, 1974.

P. Merlin, “The Time-Petri-Net and the Recoverability of Processes,”

University California, Irvine, Tech. Rep., 1974.

J. Sifakis, “Use of petri nets for performance evalutation,” in Measuring,

modelling and evalutating computer systems, ser. IFIP, H. Beilner and

E. Gelenbe, Eds., North Holland Publ. Co., 1977, pp. 75-93.

H.-M. Hanisch, Petri-Netze in der Verfahrenstechnik. Miinchen:

Oldenbourg, 1992, German, transl. Petri nets in process engineering.

Miinchen:

[10]
[11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]
[23]

[24]
[25]
[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

(36]

(371

International Journal on Advances in Software, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/software/

106

H.-M. Hanisch, “Dynamik von Koordinierungssteuerungen in diskon-
tinuierlichen verfahrenstechnischen Systemen,” in Petrinetze in der Au-
tomatisierungstechnik, E. Schnieder, Ed. Miinchen, Wien: Oldenbourg
Verlag, 1992, German, transl. Dynamics of coordination controls in
discontinuous process engineering systems.

R. Konig and L. Quéck, Petri-Netze in der Steuerungs- und Digitaltech-
nik. Miinchen, Wien: Oldenbourg Verlag, 1988, German, transl. Petri
nets in control and digital technology.

C. Ghezzi, D. Mandrioli, S. Morasca, and M. Pezze, “A unified high-
level petri net formalism for time-critical systems,” IEEE Transactions
On Software Engineering, vol. 17, no. 2, pp. 160-172, 1991.

H.-M. Hanisch, K. Lautenbach, C. Simon, and J. Thieme, “Timestamp
Nets in Technical Applications,” in IEEE International Workshop on
Discrete Event Systems, San Diego, CA, 1998.

C. Simon, “Developing Software Controllers with Petri Nets and a
Logic of Actions,” in IEEE International Conference on Robotics and
Automation, ICRA 2001, Seoul, Korea, 2001.

K. Jensen, “High-Level Petri Nets,” Informatik-Fachberichte, vol. 66,
pp. 166-180, 1983.

L. Popova-Zeugmann, Time and Petri Nets. Berlin: Springer, 2013.
C. E. Knoeppel, Installing Efficiency Methods. The Engineering
Magazine, 1915.

T. Ohno, Toyota Production System. Milton Park, UK: Taylor & Francis,
1988.

BPMI, “BPMN 1.0 - Business Process Model and Notation,”
https://www.omg.org/spec/BPMN/ (last accessed 2021.11.20), 2004.
OMG, “BPMN 2.0 - Business Process Model and Notation,”
http://www.bpmn.org/ (last accessed 2021.11.20), 2011.

C. Simon, “Web-Based Simulation Of Production Schedules With High-
Level Petri Nets,” in 32rd International ECMS Conference on Modelling
and Simulation (ECMS 2018), L. Nolle, A. Burger, C. Tholen, J. Werner,
and J. Wellhausen, Eds. Wilhelmshaven, Germany: SCS Europe, 2018,
pp. 275-281.

A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in
Information Systems Research,” MIS Q., vol. 28, no. 1, pp. 75-105, mar
2004.

C. Simon and S. Haag, “Simulatable Reference Models To Transform
Enterprises For The Digital Age — A Case Study,” in ECMS 2020:
34th International ECMS Conference on Modelling and Simulation,
M. Steglich, C. Miiller, G. Neumann, and M. Walther, Eds., 2020, pp.
294 — 300.

C. Simon and S. Haag, “A Case-Study to Teach Process-Aware Informa-
tion Systems,” EMISA Forum: Proceedings of the SIG Enterprise Mod-
elling and Information Systems Architectures of the German Informatics
Society, vol. 40, pp. 9-10, 2020.

S. Haag and C. Simon, “Simulation of Horizontal and Vertical Inte-
gration in Digital Twins,” in ECMS 2019: 33rd International ECMS
Conference on Modelling and Simulation, M. lacono, F. Palmieri,
M. Gribaudo, and M. Ficco, Eds., 2019, pp. 284 — 289.

C. Simon and S. Haag, “Simulation vertikaler Integration: Vom Top-
Floor zum Shop-Floor und zuriick,” in Tagungsband AKWI, T. Barton,
F. Herrmann, V. G. Meister, C. Miiller, C. Seel, and U. Steffens, Eds.,
2018, pp. 104 — 113, German, transl. Simulation of vertical integration:
from top floor to shop floor and back again.

C. Simon, “Eine Petri-Netz-Programmiersprache und Anwendungen in
der Produktion,” in Tagungsband AKWI, T. Barton, F. Herrmann, V. G.
Meister, C. Miiller, and C. Seel, Eds., 2017, pp. 61-70, a Petri net
programming language and applications in production.

C. Simon, S. Haag, and L. Zakfeld, “Simulation taktgesteuerter Modelle
von Push- und Pull-Prozessen in der Logistik,” Anwendungen und
Konzepte der Wirtschaftsinformatik, vol. 13, pp. 27-33, 2021, German,
transl. Simulation of clock-controlled models of push and pull processes
in logistics.

Petri Nets World, “Petri Nets Tools Database Quick Overview,”
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
(last accessed 2021.11.20), 2020.

C. Simon, S. Haag, and L. Zakfeld, “Research-Agenda for Process
Simulation Dashboards,” in ECMS 2021: 35th International ECMS
Conference on Modelling and Simulation, 2021, pp. 243-249.

C. Simon, L. Zakfeld, C. E. Jensen, D. Klietsch, and M. Montag, “Can
simulation prevent companies from the bullwhip trap? New approaches
to model the bullwhip effect with the aid of Excel and high-level Petri
nets,” in SIM-SC : Special Tack at SIMUL 2021 : The Thirteenth Inter-
national Conference on Advances in System Simulation, F. Herrmann,
M. Popescu, and M. Audette, Eds., 2021, pp. 31-37.

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

