
Industry Case Study: Design Antipatterns in Actual Implementations

Understanding and Correcting Common Integration Design and Database Management Oversights

Mihaela Iridon

Cândea LLC

Dallas, TX, USA

e-mail: iridon.mihaela@gmail.com

Abstract—Prototyping integration points with external systems

and new technologies is an excellent starting point for

validating certain design aspects but turning that into a

complete enterprise solution goes far beyond implementing a

working passthrough prototype. In some instances, the focus

on functional features and tight deadlines lead to inadequate

attention placed on non-functional system attributes, such as

scalability, extensibility, performance, etc. Many design

guidelines, best practices, and principles have been established,

and antipatterns were identified and explained at length. Yet,

it is not uncommon to encounter actual implementations

suffering from deficiencies prescribed by these antipatterns.

The first part of this paper discusses Leaky Abstractions,

Mixing Concerns, and Vendor Lock-in antipatterns, as some of

the more frequent offenders in case of system integration

design. Ensuing problems such as the lack of proper structural

and behavioral abstractions are revealed, along with potential

solutions aiming to avoid costly consequences due to

integration instability, constrained system evolution, and poor

testability. The second half of this industry case study shows

how unsuitable technology and tooling choices for database

design, source code, and release management can lead to a

systemic incoherence of the data layer models and artifacts,

and implicitly to painful database management and

deployment strategies. Raising awareness about certain design

and technological challenges is what this paper aims to achieve.

Keywords-integration models; design antipatterns; leaky

abstractions; database management.

I. INTRODUCTION

Translating business needs into technical design artifacts
and choosing the right technologies and tools, demands a
thorough understanding of the business domain as well as
solid technical skills. Proper analysis, design, and modeling
of functional and non-functional system requirements is only
the first step. A deep understanding of design principles and
patterns, experience with a variety of technologies, and
excellent skills in quick prototyping are vital. Although
conceptual or high-level design is in principle technology-
agnostic, ultimately specific frameworks, tools, Application
Programming Interfaces (APIs), and platforms must be
chosen [1]. Together they enable the translation of the design
artifacts into a well-functioning, efficient, extensible, and
maintainable software system [2].

Designing a solution that targets multi-system integration
increases the difficulty and complexity of the design and

prototyping tasks considerably, bringing additional concerns
into focus. Identifying integration boundaries and how data
and behavior should flow between different components and
sub-systems, maintaining stable yet extensible integration
boundaries, and ensuring system testability, are just a few of
such concerns. This paper intends to outline a few design
challenges that are not always properly addressed during the
early stages of a project and which can quickly lead to brittle
integration implementations and substantial technical debt.

A few recognized design antipatterns and variations
thereof are explained here, including concrete examples from
actual integration implementations as encountered on various
industry projects. Solutions to refactor and resolve these
design deficiencies and issues are recommended as well.

Section II presents a simplified perspective of a typical
system integration problem. It explains a few general-
purpose integration concerns and goals, and how these can
help to guide the design of the overall integration solution
topology and the underlying componentization boundaries.

Section III will address architectural and integration
modeling concerns, focusing on a couple of design
antipatterns. The structural aspects discussed in this section
range from low granularity models (i.e., data types which
support the exchange of data between systems) to large-
grained architectural models (i.e., system layers and
components). The consequences of designing improper
layers and levels of abstractions are outlined, followed by
recommendations on how to avoid such pitfalls by
refactoring the design accordingly.

In Section IV, antipatterns covered in Section III are
extended to the design of the data models and relational
databases, also discussing the ability to customize external
open-sourced systems that participate in the integration.
Additional antipatterns are discussed, the problems behind
them, as well as potential solutions that can overcome them.

In Section V, the focus is shifted to the management and
delivery of the data layer components and artifacts, as
databases are an integration concern that goes beyond the
data exchanged between the application tier and the data tier.
This section intends to explain how the choice of tools and
frameworks can have a significant impact on the overall
realization, management, and delivery of a robust and
consistent integration solution.

Finally, Section VI summarizes the integration design
and database management concerns and issues and the
accompanying recommendations presented in this paper.

80

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

II. HIGH-LEVEL OVERVIEW OF GENERAL INTEGRATION

OBJECTIVES

From an architectural perspective, a given system that
realizes a variety of features of its own may be designed
around one or perhaps a combination of architectural styles,
such as N-layered, service orientation, component-based, etc.
However, when certain features rely on services or data
provided by some external system or systems, employing
them properly and efficiently becomes an integration
requirement that must be carefully analyzed, designed, and
realized.

As a general principle, a software system’s quality
attributes, such as extensibility, performance, testability, and
maintainability, to name a few, should always be targeted by
design, achieved, and continuously safeguarded. Casually
bringing into the integrating system external concerns, data
and behavior along with specialized technologies, libraries,
frameworks, and tools, could potentially lead to a variety of
problems that are difficult to resolve later.

To better understand the reasons behind this statement,
Figure 1 shows an integration approach where the system on
the left is integrating with a variety of targets (on the right)
that provide some needed functionality. Perhaps the
integration targets are added over time, one by one, as new
overall features are supported. Quick, ad-hoc integration
implementations, facilitated by easy access to service

endpoints, APIs, and data, can lead to patchy and brittle
solutions, where components from different layers of the
current system become riddled with - and directly dependent
on - the data, behavior, and technologies of the targeted
systems. Furthermore, in some cases, even data and behavior
of the integration system may leak into the external systems,
if these are accessible for customizations, for example. This
bleed of concerns and technology between systems is
depicted by the various tiny geometric shapes in Figure 1.

With such an approach, future updates to the integration
dependencies (shown as hashed geometric shapes) involve
code changes throughout the integrating system, risking the
overall system’s integration stability, as well as potentially
its performance, scalability, testability, and evolution.

Ideally, proper design of the integration points would
identify new component(s) where integration concerns
would be bounded to – as shown in Figure 2 and discussed in
[1]. Features, data, and functionality imported from external
systems would be exposed to the integrating system via
interfaces/contracts that are vendor- and technology-neutral.

Adding such a layer of abstraction (denoted here as the
Integration Layer) around the integration points will not only
ensure a robust integration solution, but also the ability to
easily swap targeted platforms in case of a product
replacement (avoiding vendor lock-in), or for independent
component and load testing of the integrating system, where
the integration targets’ features are simulated or mocked.

Figure 1. An unsuitable integration solution with external system concerns and technology bleeding

into the integrating system (left)

Figure 2. A fitting integration solution with a well-defined integration boundary that isolates external concerns

from the rest of the system

81

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

III. TIGHT INTEGRATION: LEAKY ABSTRACTIONS AND

VENDOR LOCK-IN

A. The Problem Definition

Let us consider some defined business requirements for
building a software system targeting to integrate with - and
consume - a third-party service. The exposed data transport
models, e.g., REpresentational State Transfer (REST)
models or Simple Object Access Protocol (SOAP) data
contracts, are already defined, maintained, and versioned by
some external vendor or entity (the service provider). Note
that this scenario can easily be extended further, to
integrations with an arbitrary system by means of some
third-party APIs that expose specific behavior and data
structures.

Focusing on the data structures rather than behavior, once
the service model proxies have been generated via some
automation, they tend to become part of the design artifacts
for the rest of the system. Their use extends beyond the point
where they are needed to exchange data with the external
application. These models will percolate throughout the
various layers and components of the integrating system. It is
not unusual to see development efforts proceed around them,
with application and business logic rapidly building on top of
these data types. Development costs and tight deadlines, and
sometimes the lack of design time and/or technical expertise,
are the main reasons leading to this undesirable outcome.

Models exposed by external vendors were not designed
with the actual needs of other/integrating systems in mind.
External models are characterized by potentially complex
shapes (width: number of exposed attributes or properties;
depth: composition hierarchy). They cater to most integration
needs (“one size fits all”), so they tend to be composed of an
exhaustive set of elements to be utilized as needed.

Moreover, allowing these structural characteristics to

seep into the application logic layer, beyond the component
that constitutes the integration boundary, introduces adverse
and unnecessary dependencies to external concerns.
Therefore, the system is now exposed to structural instability
and will require a constant need to adapt whenever these
externally derived models will change. The integration
boundary is no longer a crisp and well-defined layer that can
isolate and absorb all changes to the external systems –
speaking from a data integration perspective.

B. The Antipatterns

The lack of proper structural abstractions and allowing
integration concerns to infiltrate into the integrating system
is a costly design pitfall and is in fact a variation of the
“Leaky Abstractions” problem – as originally defined by
Joel Spolsky in 2002 [3]. Such deficient abstractions can be
identified not only relative to structural models, but also to
behavioral models, which could expose the underlying
functional details of the software components to integrate
with. This will inevitably lead to increased complexity of the
current system, jeopardizing its extensibility and its ability to
evolve and to be tested independently. Ultimately this results
in a tightly coupled integration between the two systems
(with strong dependencies on the target of the integration).

Another perspective or consequence of the problem
described is an imposing reliance on vendor-specific
technologies, their libraries, and even implementations. This
problem is also known as the “Vendor Lock-In” antipattern
[4]. External system upgrades will necessitate system-wide
changes and constant adjustments on the integration side and
will impact the overall stability of the system and the
integration solution itself.

Examples range from adopting dedicated libraries for
various cross-cutting concerns (logging, caching, etc.) to
domain-specific technologies (telephony, finance, insurance,
etc.). Vendors will encourage integrators to infuse their

Figure 3. Integration components and the Integration Layer (Adapter)

isolating and decoupling the integrating system from the external system

82

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

specialized technology everywhere, leading to entire
(sub)systems taking on pervasive dependencies on their
technologies, making it difficult to isolate or replace it. Such
third party-entwined architectures must and can be avoided
with added effort during the design phase, as described next.

C. The Solution

To avoid such scenarios, the design must unambiguously
identify the integration boundary and define custom
integration models that abstract away any and all structural
and behavioral details related to the system targeted for
integration. This architectural approach is exemplified in the
component diagram in Figure 3. The integration layer should
also hide the underlying technology (REST vs. SOAP,
message bus vs sockets, etc.) to avoid tight and unnecessary
dependencies. An example of defining canonical models
based on the “ubiquitous” integration language in case of
multi-system integration is presented in “Enterprise
Integration Modeling” [5].

Based on the author’s experience, designing proper
model abstractions proved extremely useful in the case of
building custom integrations with real-time systems. For
example, Session Initiation Protocol (SIP) soft switches
used in telecommunications networks, such as those from
Genesys, the leader in customer experience, pertaining to
contact center technology (call routing and handling,
predictive dialing, multimedia interactions, etc.). In this case,
an extensive array of data types, requests, events, etc., are

made available to integrators as part of the Genesys Platform
SDKs [6]. These facilitate communication with the Genesys
application suite – which in turn enables integration with
telephony systems, switches, IVR systems, etc. Most of these
data types are very complex and heavy, and introduce acute
dependencies on the underlying platform, exposing many
implementation details as well. Employing code generation
and metadata inspection via reflection, for example, simpler
connection-less models were designed to mimic and expose
only the needed structural details and are currently used in
several production systems. Furthermore, defining and
realizing the proper architectural isolation layers will
ultimately provide independence from vendor-specific
platforms for the rest of the system. For example,
considering the integration scenario mentioned above using
Genesys’ Platform SDK shown in Figure 4, recently the
company (Genesys) has been pushing for a new approach to
integrate with their systems, specifically using the Genesys
Web Services (GWS) [7], a RESTful API. From an
integration viewpoint, this substitution is practically
equivalent to switching to a different vendor, as the two
integration facilities are based on different technologies (web
calls versus direct socket connections) and using completely
different models, from both a structural model perspective as
well as behavioral and consumption views.

Building an explicit and clean integration layer as shown
earlier in Figure 3, when dealing with such a significant
change (vendor or technology replacement), implementation

Figure 4. A sample layered architecture for exposing Computer Telephony Integration (CTI) features

via integration with Genesys Platform SDK

83

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

adjustments will be isolated to this adapter layer without any
impact on the business domain layer of the integrating
system (assuming similar data and functionality). This
includes the specifics of the technology used to communicate
between the two systems.

Finally, it is noteworthy that four out of the five SOLID
design principles [8] substantiate and drive towards the
proposed solution:

• Single Responsibility (SRP), from the component
and layering perspective,

• Open-Closed, to avoid changing the underlying
implementation every time the integration endpoints
change,

• Interface Segregation, exposing only the necessary
data types for consumption by the business logic
layer,

• Dependency Inversion, where the Domain does not
directly depend on the external system, its data and
behavior, but rather on abstractions – the repository
contracts realized by the integration layer.

D. Added Architectural Benefit

Proper design and isolation of the integration components
and the use of interfaces and model adapters will enable
adequate testing of the custom system without demanding

the availability of the external system for integration testing
until most defects within the custom system are resolved.

Furthermore, this design approach supports building
synthetics that simulate or mock the data and behavior of the
external system, providing the means to prototype and test
the integration points and functional use cases. This is
exemplified in Figure 5, describing at high level a real
implementation of a simulation subsystem intended to
synthesize the behavior of Genesys’ Statistics Server
employed in a concrete integration solution.

Even if only a reduced set of features is synthesized,
deferring the needs for actual integration testing can be cost-
effective, especially in situations where the external system
is a shared resource, perhaps expensive to manage and to
access in general. Employing Dependency Injection (DI) [9],
either the real or the mock implementation of the integration
contracts can be injected into the Domain layer, making it
easy to swap between the two implementations.

IV. DATA TIER DESIGN AND DATA ACCESS

ANITPATTERNS

One of the most common system integration use cases for
many enterprise applications is related to data persistence
and access. Integration with (relational) databases that are
either part of the custom system or accessible (co-located)
components of a third-party system is a pervasive
requirement, whether the data tier is needed for storing
configuration data, audit/logging, security-related aspects, or
to support concrete operational or reporting needs.

This section focuses on several issues related to both
database design as well as accessing the data itself.

A. ‘Inverted’ Leaky Abstractions in Data Integrations

1) The Problem
The previous section discussed Leaky Abstractions that

result from allowing third-party concerns to infiltrate custom
systems when designing and implementing an integration
solution. The directionality of the “leak”, as described
earlier, is from the external system into the current one.
However, it is also possible to encounter the reverse scenario
when the integration target is open or transparent to the
integrators who then take advantage of this fact to develop
and apply their own customizations onto the external system.

Here are two examples:
(a) An Original Equipment Manufacturer (OEM) and/or

White Label license of the external system is available to
integrators, including access to source code for additional
customization and integration options.

(b) The external system contains database(s) accessible to
the integrators, either deployed on premise or in a cloud
environment, and is open/accessible to change.

In the first example, the same issues and solutions apply,
as already discussed in the previous section, only this time
from the perspective of the external system. If customization
design is not executed properly, software upgrades of the
open-sourced third-party system will result in continuous
maintenance, or worse, breaking the custom code. Both
scenarios will incur high development and system integration
testing costs, among other problems.

Figure 5. A concrete example of an integration architecture where the
integration layer is replaced by components that simulate the

integration target’s functionality for testing purposes

84

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The rest of this sub-section will focus on the second
example, involving third-party databases that are accessible
(i.e., open to modification) from an integration and
customization perspective.

When expecting and relying on continuous upgrades and
patches supplied by the vendor of the external system, it is
possible that custom database artifacts (added by the
integration provider) will have to be discarded and reapplied,
or worse, no longer compatible with the updated system.
Moreover, management of database source code targeting
the customizations is more difficult if tightly dependent on
the elements defined by the external entity/vendor. For
example, the custom integration requirements demand two
new columns on one of the third-party database tables.

Evidently, with respect to customizations of third-party
components (database or otherwise), “Vendor Lock-in” is
the status quo as a business-driven need and not a concern
here.

2) The Solution
There are several options available and their applicability

depends on concrete scenarios and business needs. Ideally, a
separate, custom database could be considered, where data
collected by the third party system (stored in their databases)
would be Extracted, Transformed as needed, and Loaded
(ETL) [10]. Detached custom data models are easy to
maintain, modify, and version-control by the integration
provider. Aligning with the arguments stated in Section III,
this approach enforces a well-defined data integration
boundary, as shown in Figure 6 below.

Allowing for independent provisioning and evolution of
both data models (one provided by the external system and
one specifically designed for - and consumed by- the
integrating system) will lead to improved extensibility,
scalability, performance, testability, and maintainability.
With this approach, upgrading the external system will
potentially require updating the ETL artifacts and, if needed,
some enhancements to the custom database – but both
activities can be done in a detached, self-contained fashion.

Further details regarding the management of database
artifacts will be discussed later, but one noteworthy benefit
here is the freedom from having to maintain (a) partial
custom database artifacts (divorced from their context)
and/or (b) complete external database artifacts (since the
database is a self-contained software system, and should not
be divided further into sub-components). The reason why
maintaining select/partial database artifacts is undesirable is
that from a specification perspective, a database (meaning all
its defining artifacts) must be valid, consistent, and complete
(as it must also be from a deployment perspective).

If database customizations must live in the same database
as the one that is part of the external system (perhaps for
performance considerations), a less optimal solution to the
Inverted Leaky Abstractions (i.e., the data model), is to
expend proper design effort to minimize tight dependencies
and attempt to follow - as best as possible - the Open-Closed
design principle at the data tier, in the context of system
integration and customization.

For example, if the custom integration components
require the persistence of new attributes (fields) in addition
to the data captured by the external system, rather than
modifying the existing third-party tables by adding new
columns, association or edge tables should be considered
instead, with custom data residing in new, custom tables.
Custom views, parameterized or otherwise, should be
designed to transform data into a ready-to-consume format
(for operational, reporting, or analytical needs).

In this case, the system quality attributes mentioned
earlier must however be carefully monitored, especially
query performance and scalability.

On the downside, database code management will
become either (a) fragmented/isolated, by extracting the
custom database artifacts from the rest of the database into
independent scripts, or (b) more complex, by importing the
entire third-party database under source control along with
the custom artifacts, in order to preserve its integrity.

Section V discusses tools that help validate the full
database, warning about invalid or broken object references,
binding and syntax errors, thus increasing the probability that
database deployments will succeed.

B. Mixing Data Modeling Concerns

1) The Problem
Regardless of the targeted Database Management

Systems (DBMS) technology, designing the conceptual and
logical data models is a prerequisite to the implementation of
the physical data models [11]. Beside ensuring that all data
elements outlined by the business requirements are
accurately represented, non-functional requirements, such as
performance, scalability, multi-tenancy support, security
(access to data), etc., will also shape the data architecture.

From an application perspective, the database is used to
persist the state of the business processes supported by the
application, i.e., operational needs, and to support analysis
and reporting needs around the stored business data. The
concept of Separation of Concerns (SoC) applies here as well
but is often ignored or inadequately addressed. Operational
versus reporting concerns are often mixed and data models

Figure 6. The integration database added to support data integration

customizations and to remove direct dependencies on the third-party

database

85

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

designed specifically for operational needs are used as such
for reporting or analytics purposes, although these models
are usually quite different, in terms of how the data is stored
and how it is accessed. Yet, it is not uncommon to find a
given database used both as the operational as well as the
reporting database. As a direct consequence of violating SoC
with respect to data modeling (both logically and physically),
stability, scalability, extensibility, and performance are the
main quality attributes of the system that will be impacted.

An alternate description of this problem is known as the
“One Bunch of Everything” antipattern [12], qualifying it as
a performance antipattern in database-driven applications,
the author aptly pointing out that “treating different types of
data and queries differently can significantly improve
application performance and scalability.”

2) The Solution
Following general data architecture guidelines, the

solution is straightforward. In [13], Martin Fowler suggests
the separation of operational and reporting databases and
outlines the benefits of having domain logic access the
operational database while also massaging (pre-computing)
data in preparation for reporting needs. Extract-Transform-
Load (ETL) pipelines/workflows can and should be created
to move operational data into the reporting database;
specifically, into custom-tailored models that cater to
requirements around reporting and efficient data reads.

Existing tooling and frameworks can be employed to
transform and move data efficiently, on premise or in the
cloud (Azure Data Factory, Amazon AWS Glue, Matillion
ETL, etc.), for data mining and analytics, for historical as
well as real-time reporting needs.

C. Data Access and Leaky Abstractions

1) The Problem
It has been noted [14] that Object Relational Mapping

(ORM) technologies, such as Entity Framework (EF) or
Hibernate, are in fact a significant cause of data architecture
bleed into the application logic, representing yet another
example of the Leaky Abstractions antipattern.

Although intended to ease the access to the data tier and
the data it hosts, such technologies expose underlying
models and behavior to the application tier. In more acute
cases – depending on its usage – it also introduces strong
dependencies from the domain logic to the data shapes
defined in tables, views, and table-valued functions.

Entity Framework, for example, while providing the
ability to create custom mappings between these data models
and the entity models, as designed, these object models are
intended to be used as the main domain entities to build the
actual domain logic around them. This forces a strong,
intertwined yet inadequate dependency between two very
different models, targeting different technologies, employed
by very different programming paradigms (OO/functional
such as C#.NET versus set-based such as SQL). This not
only restricts the shape of the domain models, forcing
constrained behavioral models to be implemented around
them, but also causes data architecture changes to affect the
domain and the application logic itself.

Not surprising, Microsoft’s EF Core framework in fact
discourages against using a repository layer [15] (as
prescribed by Evans’s DDD [16]) on account that EF itself
implements the repository pattern/unit of work enterprise
pattern [17] – alas, leading towards a rigid and potentially
brittle integration. The reason is that ORM technologies push
design and development towards data access logic tangled
with the domain logic by encouraging multi-purpose models
(domain and data access or data proxies).

2) The Solution
Just as with the integration solution presented in Figure

3, the impact of changes to database models should be
constrained to one or two components – those that make up
the data access layer, and prohibited from affecting the other
application layers, specifically the domain and service layers.
Sharing a single model across all layers of the application
places unnecessary limitations on the overall design and
ultimately on the extensibility and stability of the system.

Although it is uncommon to replace the database
technology altogether, sometimes it may be required to
replace the data access technology due to performance and
scalability concerns. Without a proper separation of data
access from domain logic and models, such design changes
targeting the lower layers of the system architecture are
impractical without extensive refactoring of the application.

In a layered component-based architecture – as shown in
Figure 7 above, it is easy and natural to allow each layer to
define its own models (darker boxes) and provide adapters to
translate from one model to another as data flows through the
layers of the application by means of interfaces. Although
this would seem wasteful at first sight, especially if some
models hardly vary from one layer to the next, this approach
offers two core benefits. It allows for independent evolution
of the models, customizing them to serve very specific needs
of the layer they belong to, and keeps the propagation of
model changes confined to the corresponding adapter
(translation) components.

In case of ORM technologies, the data access layer
overlaps with the domain layer, while entity models (shown
as data proxies in Figure 7) represent the actual domain
models. Interestingly enough, even as ORM is recognized as
a Leaky Abstraction, its use is nevertheless encouraged [18],
most likely because in unsophisticated implementations, it
may be able to deliver acceptable results.

Figure 7. Layered architecture with layer-specific models and model

transformations

86

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

However, as Bilopavlovic points out [14], ORM tools can
be successfully used “if there is proper separation of
concerns, proper data access layer, and competent developers
who know what they are doing and really, really understand
how relational databases work.” Sooner or later, the inherent
deficiencies of such technologies, compounded by
inadequate implementations due to the lack of understanding
of how the underlying technology works, will surface, in
most cases under system load and/or when new features are
added.

V. DATA TIER MANAGEMENT CONCERNS

Previous sections discussed antipatterns as relevant to the
design of software solutions, specifically to the design of
software systems integration. Bad practices and approaches
can be encountered in several areas, beside design: in code
implementations, in management of the code and software
artifacts, in activities pertaining to DevOps, such as
deployment and change management, etc.

This section will focus on inadequate practices around
management of relational databases, with a detailed focus on
Microsoft SQL Server relational databases, tooling and
frameworks used for change management and incremental
deployments, among other things.

A. Improper Management of Database Artifacts

1) The Problem
Source code, regardless of the language it is written in, is

“a precious asset whose value must be protected”, as
Atlassian’s Bitbucket web site states in their “What is
version control” online tutorial [19]. All software-producing
companies will employ one tool or another for version
control. This allows software developers to collaborate, store
(or restore/rollback) versions of the software components
they build and perform code reviews, providing a single,
stable “source of truth” of the software artifacts they create
and release/deploy. As advocated in [20], “source files that
make up the software system aren't on shared servers, hidden
in folders on a laptop, or embedded in a non-versioned
database.” Yet, it is rather commonplace to find database
implementations that are improperly managed, leading to
frustration, bad deployments, making the data tier integration
and overall solution delivery unreliable and difficult. There
are many online articles and blogs describing such cases.

As encountered by the author, while being engaged as a
solution architect and consultant on several projects at
various clients, the actual data models and database artifacts
were often created and delivered as ad-hoc implementations
in some arbitrary database, hosted under some arbitrary
Microsoft SQL Server database instance. Several teams
needed these database artifacts: Development for
implementation and integration, Quality Assurance for
testing, Business team (domain experts and business
analysts) for reporting and analytics, and DevOps for
deployment. The most common process for deploying this
database (fresh install or incremental) to some other
environment was to generate and pass around SQL scripts

when needed. In somewhat more fortunate situations, these
scripts were maintained in some form of source control as
SQL/text files but lacking the ability to validate them or trace
the source back to the developer responsible for the actual
implementation (in the original database).

So then, where does the “source of truth” for the database
definition reside? How can multiple developers work on the
database code without overwriting each other’s changes and
without being aware of the latest updates? How does the
organization deliver incremental deployments to any number
of target environments? When onboarding new team
members, what database code should they be pointed to?

The problems derived from not having a stable, accurate,
up-to-date, and complete definition of the database source
code, one that is under version control and that can be
validated before a deployment, are numerous, acute, and
rather obvious. Just as one maintains all other application
code under source control, entire solutions composed of
many components, why should database implementations not
follow the same standards and take advantage of the same
acclaimed benefits of code well-managed?

Furthermore, when the database (source) code resides in
some database, invalid object references (because someone
dropped a column on a table or deleted a stored procedure)
will surface only at runtime. Often, changes are made to the
database post deployment, even in Production environments,
changes that could potentially break the code, or which are at
best confined to that environment alone, but without being
retrofitted/updated back into the “source code database”.

A particularly curious approach to database code
management and deployment was encountered on a project
that used the Fluent Migrations Framework for .NET [21],
self-proclaimed as a “structured way to alter your database
schema […] and an alternative to creating lots of sql scripts
that have to be run manually by every developer involved.”
In a nutshell, the tool calls for creating a C#.NET class every
time the database schema would change (one class per
“migration”). These code files (admittedly, version-
controlled) attributed with metadata to identify a specific
database update, encapsulate two operations that describe the
schema changes: one for a forward deployment (“Up”) and
one for rollback (“Down”).

A very simple example, involving the source code of a
rather trivial stored procedure, is shown in Figure 8.

With a large database, one that evolved considerably over
time, with hundreds of artifacts, the number of C# migration
files was astounding (thousands). Database changes were
published to the target database as part of the application
deployment process. Installing the database from scratch
would incrementally apply every single “Up” migration
specification found in these files, following the prescribed
update. To maintain sanity, these source code files needed to
be named such that the chronological order would be
preserved when browsing through them in the development
environment tool.

However, other more serious problems arise from using
this framework, two of them being briefly discussed next.

87

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

a) SQL code as C#.NET strings??

Say a new stored procedure must be added; the code is
developed and tested from SQL Server Management Studio
(SSMS) in some local deployment of the database (assuming
the objects the stored procedure is referencing do not change
in the interim). Next, a migration file is created, with the
“Up” method containing the full (CREATE) stored
procedure script, as a C# string passed as input argument to
the “Execute.Sql” method call. A sample migration code
snippet describing this scenario is shown in Figure 8.

The major and obvious problem here is the inability to
validate SQL syntax and semantics and SQL object
references when represented as indiscriminate plain strings,
subject to typing errors.

b) No database source code??

Unless deployed on some SQL Server instance, it is
impossible to even begin to understand the structure of the
database, even the structure of individual objects. The data
models and data logic are scattered, fragmented (across
many C# files), impossible to validate (syntactically or
otherwise) from where the database “source code” is stored.

Moreover, a given database object, say a table for
example, can change any number of times, each change
being captured in a different source file, with no unified,
single view of what that table looks like, what the shape of
the data is, with all its columns and corresponding types,
with its keys and indexes, constraints and triggers, if any.
This problem extends to all database objects, not just tables.

The data models (the source code artifacts) are practically
non-existent, disjointed, difficult to comprehend, and cannot
be validated until they are deployed. The result is a total and
indefensible representational incoherence afflicting the most
important component of a data-dependent enterprise system.

2) The Solution
There are various software tools available to address this

problem. Both Microsoft and Redgate, for example, provide
excellent tooling for developing relational databases,
managing database artifacts under source control, facilitating
change management and incremental deployment, generating
manual update scripts (when automated deployment is
constrained), and more.

Microsoft’s SQL Server Data Tools (SSDT) [22] is a
development tool, available since 2013, using the Data-Tier
Application Framework (DacFx). It facilitates the design and
implementation of SQL Server and Azure SQL databases, as
well as database source control and incremental deployment,
all integrated under the Microsoft Visual Studio development
environment.

A version-controlled database project contains all distinct
database objects as individual files, and it must compile –
targeting a specific SQL Server (or Azure) database version
– before it can be deployed anywhere. Developers can check
out individual objects (files) to change as needed or can add
new objects using the provided templates. Just as one can see
the entire schema of a database in SSMS, similarly they can
see and browse these objects in Visual Studio, as shown later
in the development environment snapshot in Figure 9. Here,
the main database project (Config.Database) is – like all
projects in the bounding solution – subjected to building or
compilation. As a result, two artifacts are being created: a
managed assembly file (.dll) and a data tier application
package (.dacpac) file. Both are required for actual database
deployment, but it is the .dacpac that holds the actual and full
database definition. It is used by the Microsoft tooling
(SqlPackage.exe) employed for incremental deployments
(schema updates) against targeted environments.

It is highly questionable to store Java or C# code in SQL
scripts, with artifacts/classes shredded and reduced to SQL
NVARCHARs, scattered in an arbitrary number of stored
procedures (equal to the number of updates effected upon
that class), and passed around to call other stored procedures
(via EXEC statements). The reverse scenarios should be
equally unacceptable. Treating the database as a proper
software implementation artifact is imperative.

B. Database Development and Deployment Concerns

1) The Problem
Tools like SSDT are also capable of identifying the

changes (delta) between the source and the destination
database in order to create the appropriate deployment
scripts, and ultimately allowing rapid and valid delivery of
database changes to any environment. Quite frequently,
multiple teams are involved in database development:
backend developers of applications relying on persisted data
as well as data migrations (ETL) and reporting developers.
Bringing all teams together to follow unified and consistent
database development and deployment processes can be
challenging.

Furthermore, how can specialized implementations be
properly designed, source-controlled, and deployed
seamlessly, while keeping the two implementations (core
and custom) separate but dependent solution components?

using FluentMigrator;

namespace DatabaseMigration.Migrations
{

[Migration(98)]
public class M0098_CreateStProcAddNodes : Migration
{

public override void Up()
{

Execute.Sql(@"CREATE PROCEDURE [cfg].[AddNodes]
@nodes cfg.NodeType READONLY
AS
BEGIN

SET NOCOUNT ON;
INSERT INTO cfg.Node
(Name, Value, ValueType, CreatedBy,
CreatedDate, UpdatedBy, UpdatedDate)

SELECT s.Name, s.Value, s.ValueType, s.CreatedBy,
s.CreatedDate, s.UpdatedBy, s.UpdatedDate

FROM @nodes as s;
END");

}

public override void Down()
{

Execute.Sql("DROP PROCEDURE [cfg].[AddNodes]");
}

}
}

Figure 8. Sample C#.NET migration code for adding a new stored

procedure and rolling back the change

88

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Considering a database (and hence its associated project)
as part of a larger software system, as an essential
component of that system, requires indeed some additional
effort in designing and managing all system’s artifacts under
a unified solution framework. If libraries and executables are
easy to group around layers and features, whether they cater
to domain versus cross-cutting concerns of that system,
database componentization strategies may not be
straightforward. However, recognizing that even databases
and their underlying objects (i.e., code) can be broken down
into logical parts, will facilitate management of these
artifacts and better extensibility.

To better understand this, consider a database that
consists of core objects (tables, procedures, functions, etc.),
perhaps part of a product line that evolves over time. Some
customers may ask for certain customizations, for example,
that require additional database objects to be created, specific
to their business rules and models (as would be the case of
custom reports that rely on custom views).

One option is to design and implement these new views
directly in the targeted environment, without including them
into the source-controlled database component. The
database/reporting developers would separately maintain
these objects, but when later the underlying tables change,
the views referencing them may break, and hence the
validity of the reporting component is jeopardized.

2) The Solution
Alternatively, extensions of the core database component

can be created – as separate database projects, holding only
these additional custom objects, with a same-database
dependency setting to the main database (project). Teams
can independently work on core versus custom components,
both being validated (compiled) and source controlled.

Figure 9 shows such a solution, with two database
projects (components), one extending the other, with the
extension component, ConfigExt.Database, having a
dependency to the main component via database reference.
Then, for actual deployment, the extension database package
would be used – as it contains both custom objects as well as
the core database objects from the referenced component,
resulting in a full database installation or update.

The tooling and processes described here, as already
mentioned, target the Microsoft technology stack. However,
similar options exist for other platforms as well, more or less
effective in various areas or others, to assist with
development and management of enterprise databases.

Figure 9 shows a snapshot of a solution developed under
the Microsoft Visual Studio environment, with two of the 19
projects being a couple of rather trivial database projects,
Config.Database, and its extension, ConfigExt.Database.
Either project encapsulates an entire (yet simple) database
with all its objects grouped under schemas and object type
folders. The top right panel shows the same stored procedure

Figure 9. Database source code managed in Microsoft Visual Studio via SQL Server Data Tools.

Code files are checked in or out from a source control repository (shown on the left) as database development in is progress.

89

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

from earlier in Figure 8– whose source code was captured
there as a C#.NET string. In contrast, here it is managed as a
proper element of the database, that can be compiled
(validated) and independently tracked for code changes.

The project/database compiles successfully, as shown in
the bottom part of the screenshot in Figure 9. The build
output artifact, i.e., the data tier application package
Config.Database.dacpac, is highlighted.

Similarly, table objects (including indexes, constraints,
etc.) can be managed in a fashion that resembles the look and
feel of the table designer utility in SQL Server Management
Studio. This visual design feature is captured by the top
section in Figure 10. Otherwise, the scripting option (bottom)
is always available, for all object types.

For all database objects, only the CREATE statement is
used in all SQL source code. The tooling itself determines, at
deployment/publishing time, whether CREATE or ALTER
Data Description Language (DDL) statements will be
required based on the delta between the concrete target
database and the database source code. This greatly
simplifies deployment of SQL databases against any
environment, including fresh installations as well as
incremental updates.

Finally, as far as employing SQL Server Data Tools and
treating databases as proper software artifacts, we can
enumerate below some of the key benefits that should
encourage software companies to adopt SSDT, should they
design and develop solutions around Microsoft’s SQL Server
relational databases.

To briefly summarize, here are these benefits, which
should be considered perhaps also as a guiding set of
objectives for any database development activity:

✓ Providing a unified perspective of a database,
✓ Validating correctness of the database definition,
✓ Validating completeness of a database definition,
✓ Providing support for version-control of the database

artifacts (at the database object level),
✓ Allowing to perform schema comparison,
✓ Facilitating incremental deployments (change

management), directly against a target database or
via SQL scripts,

✓ Enabling the logical and physical componentization
of databases, to facilitate the customization,
extensibility, and manageability of the underlying
artifacts.

Figure 10. Database table designer (top) and script (bottom) snapshot in Microsoft Visual Studio, using SQL Server Data Tools

90

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VI. CONCLUSION

This paper aimed to raise awareness about certain design
challenges that, when not addressed early and properly, will
lead to deficient architectures and rigid solutions concerning
various aspects of system integration, as often encountered in
practice.

When the design of software systems follows some basic
guidelines and principles (SOLID), the resulting architecture
will allow the system to be easily built, modified, and
extended. In case of system integrations and customizations,
violating these principles and particularly the multi-faceted
Separation of Concerns design rule, leads to unmanageable
and highly complex systems that do not scale well, cannot be
extended or modified easily, with tight dependencies on
external components and overall brittle integration solutions.

Many design antipatterns have been catalogued and well
documented; yet deficient architectures are encountered quite
frequently, leading to high technical debt and unhappy
stakeholders. This paper discussed “Leaky Abstractions”,
“Mixing Concerns”, and “Vendor Lock-in” antipatterns –
from the perspective of concrete industry examples, as
encountered and worked on by the author.

Concrete approaches that address these problems to help
refactor and realign the design according to best practices
and principles were elaborated, explaining how they lead to
scalable, extensible, testable, efficient, and robust integration
solutions.

Relational database design and management concerns
were also presented, with focus on data model design, data
access practices, and management of database artifacts. The
consequences of improper tooling and frameworks were
briefly covered, and a technology-specific solution targeting
Microsoft SQL Server databases was discussed.

ACKNOWLEDGEMENT

I would like to thank my husband and long-time mentor,
Chris Moore, for his indefatigable guidance and for sharing
the extensive technical knowledge and experience he
possesses and masters so adeptly.

REFERENCES

[1] M. Iridon, “Industry Case Study: Design Antipatterns in
Actual Implementations. Understanding and Correcting
Common Integration Design Oversights,” FASSI 2019: The
Fifth International Conference on Fundamentals and
Advances in Software Systems Integration, ISBN: : 978-1-
61208-750-4, pp. 36-42, Nice, France, October, 2019.

[2] R. Martin, “Clean Architecture,” Prentice Hall, 2018, ISBN-
13: 978-0-13-449416-6.

[3] J. Spolsky, “The Law of Leaky Abstractions,” [Online]
Available from https://www.joelonsoftware.com/2002/11/11/
the-law-of-leaky-abstractions/ [retrieved: May, 2020].

[4] SourceMaking, Software Architecture AntiPatterns, [Online].
Available from https://sourcemaking.com/antipatterns
[retrieved: May 2020].

[5] M. Iridon, “Enterprise Integration Modeling,” International
Journal of Advances in Software, vol 9 no 1 & 2, 2016, pp.
116-127.

[6] Genesys, “Platform SDK,” [Online]. Available from
https://docs.genesys.com/Documentation/PSDK [retrieved: May,
2020].

[7] Genesys, “Web Services and Applications,” [Online].
Available from https://docs.genesys.com/Documentation/HTCC
[retrieved: May, 2020].

[8] G. M. Hall, “Adaptive Code via C#: Agile coding with design
patterns and SOLID principles (Developer Reference),”
Microsoft Press, 1st Edition, 2014, ISBN-13: 978- 0735683204.

[9] M. Seemann, “Dependency Injection in .NET,” Manning
Publications, 1st Edition., 2011, ISBN-13: 978-1935182504.

[10] Microsoft, “Extract, Transform, and Load (ETL), ” [Online].
Available from https://docs.microsoft.com/en-
us/azure/architecture/data-guide/relational-data/etl [retrieved:
May, 2020].

[11] G. Simsion and G. Witt, “Data Modeling Essentials,” Morgan
Kaufmann; 3rd edition, 2004, ISBN-13: 978-0126445510.

[12] A. Reitbauer, “Performance Anti-Patterns in Database-Driven
Applications,” [Online] Available from
https://www.infoq.com/articles/Anti-Patterns-Alois-Reitbauer/
[retrieved: May, 2020].

[13] M. Fowler, “Reporting Database, ” [Online]. Available from
https://martinfowler.com/bliki/ReportingDatabase.html
[retrieved: May, 2020].

[14] V. Bilopavlovic, “Can we talk about ORM Crisis?”. [Online]
Available from https://www.linkedin.com/pulse/can-we-talk-
orm-crisis-vedran-bilopavlovi%C4%87 [retrieved: May, 2020].

[15] Jon P. Smith, “Entity Framework Core in Action,” manning
Publications, 2018, ISBN-13: 978-1617294563.

[16] E. Evans, “Domain-Driven Design: Tackling Complexity in
the Heart of Software,” 1st Edition, Prentice Hall, 2003,
ISBN-13: 978-0321125217.

[17] M. Fowler, “Patterns of Enterprise Application Architecture,”
Addison-Wesley Professional, 2002.

[18] M. Fowler, “OrmHate,” [Online]. Available from
https://martinfowler.com/bliki/OrmHate.html [retrieved: May,
2020].

[19] Atlassian, “What is version control, ” [Online]. Available from
https://www.atlassian.com/git/tutorials/what-is-version-control
[retrieved: May, 2020].

[20] P. Duvall, “Version everything,” [Online]. Available from
https://www.ibm.com/developerworks/library/a-devops6/
[retrieved: May, 2020].

[21] “Fluent Migrations Framework for .NET,” [Online].
Available from https://fluentmigrator.github.io/ [retrieved:
May, 2020].

[22] Microsoft, “SQL Server Data Tools,” [Online]. Available
from https://docs.microsoft.com/en-us/sql/ssdt/sql-server-
data-tools [retrieved: May, 2020].

91

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

