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Abstract—This paper delves into the generation and use of 

image classification models in a real-time environment utilizing 

machine learning. The ImageAI framework was used to 

generate a list of models from a set of training images and also 

for classifying new images using the generated models. 

Through this paper, previous research projects and industry 

programs are analyzed for design and operation. The basic 

implementation results in models that classify new images 

correctly the majority of the time with a high level of 

confidence. However, almost a quarter of the time the models 

classify images incorrectly. This paper attempts to improve the 

classification accuracy and improve the operational efficiency 

of the overall system as well.  

Keywords-component; Machine Learning; Tensor Flow; 

Image Classification. 

I.  INTRODUCTION 

Presented in this research paper is a new and novel 
approach to machine learning design that maximizes the 
balance between accuracy, efficiency, solution justification, 
and rule evolution. This paper is a more complete and 
informative description of the research presented at the 
IARIA Data Analytics conference [1]. This research 
improves four factors of machine learning within a single 
design. During this research, traditional open source machine 
learning methodologies were altered to improve different 
aspects of machine learning, tested against a single 
application. These traditional methodologies were integrated 
using ensemble methods for enhancing the performance 
along with providing justifications for the classification 
results. This paper discusses the results, data used, the 
analysis, and validation methodologies used. 

This research attempted to find an optimal balance 
between maximizing a system's accuracy and minimizing a 
system's time and space requirements. As shown in Figure 1, 
these three attributes are directly correlated with each other 
and the system integrator needs to determine the trade-off 
required for the implemented system. 

During this research the Identifiable Professionals 
(IdenProf) Dataset was used for training and validating 
models. The dataset contains ten image sets of 
distinguishable professions, each set containing 900 images 

for training and 200 images for validation per profession. 
The expected outcome of this research is a two part system 
capable of analyzing a real-time feed and perform profession 
classification based on a remotely generated model. 

 

 
Figure 1: System Efficiency Tradeoffs 

 
This research aimed at answering the following four 

questions based upon improved decision support system 
operations. Investigations and implementations conducted 
comprised of different components of the Decision Support 
System (DSS). This research reviewed prior research in the 
machine learning technical field and built upon previous 
research to answer the following hypothesis: 

 
1. Utilizing a knowledge base, can a DSS be 

implemented to minimize the time and space 
requirements, while maximizing the accuracy of the 
suggested solutions? 

2. How can a knowledge base be implemented to 
improve the overall accuracy of the system? 

3. Is a DSS able to provide solution justification to the 
user, enabling users to have trust in the answers 
being provided? 
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4. Is it possible to improve rule evolution without 
needing to store locally all previous cases for doing 
rule re-validations? 

 
This paper is broken up into a Background section, where 

high-level aspects of machine learning and knowledge-bases 
are discussed. The Methodology is discussed following the 
Background section. Following the Methodology section the 
preliminary results are discussed in the Data Analytics and 
Results sections. Finally, the conclusion discusses planned 
future work and recommended further work. 

II. BACKGROUND 

Knowledge base systems enable problems to be quickly 
and accurately solved based on previous cases. Knowledge 
base systems also allow for problem solving of very complex 
situations at speeds humans alone would not be able to 
achieve at such accuracies. Throughout the last 20 years, 
knowledge bases have grown in applications to assist in 
everyday tasks. More recently, IBM’s Watson, an Artificial 
intelligence supercomputer, is in the limelight through its 
uses in the medical arena and in personal taxes with H&R 
Block. Other applications of machine learning have been 
completed or are being developed include detecting insider 
threats, big data analytics, market analysis for proposals, 
condition-based maintenance, and diagnostics in the medical 
field.   

In the medical industry, Watson has proven capable of 
making the same recommended treatment plans as doctors 
99% of the time. Unlike traditional human doctors, Watson 
can use all available medical resources when making a 
patient's diagnosis. By having such vast amounts of 
knowledge, Watson can provide treatment options doctors 
may miss. Watson utilizes powerful algorithms and immense 
computing resources to analyze all medical relevant data to 
find “…treatment options human doctors missed in 30 
percent of the cases” [3]. Since Watson has so much 
computing power it is able to determine treatment plans for 
patients faster than human doctors could, allowing doctors to 
put patients on treatments faster with the intervention of 
Watson. Watson is one example of how knowledge base 
systems positively benefit society by efficient and accurate 
problem solving of complex problems. Additional research 
into knowledge bases will allow them to problem solve 
faster, with more accuracy, and with less compute power 
requirements.  

Condition-Based Maintenance, shown in Figure 2, is the 
method of monitoring a system’s components to determine 
what level of maintenance is required for the system to 
remain functioning. Using a Condition-Based Maintenance 
system for managing maintenance events allows 
professionals to be proactive with performing maintenance 
activities versus being reactive. Reactive maintenance 
involves replacing components after they already failed, 
causing system downtime. When a system goes down for 
unscheduled maintenance or repairs, many different 
repercussions can occur depending on the affected system’s 
role. Using air traffic control centers as an example, any 
unplanned downtime has the potential to disrupt hundreds of 

flights and cost a significant amount of money due to flight 
delays [12]. Machine learning can be used to assist 
professionals to determine optimal maintenance schedules 
while minimizing system down time. 

 

 
Figure 2: Condition Based Maintenance [2] 

 
Although some of the described applications may not be 

as drastic as life or death medical decisions, all still can 
greatly affect society. Utilizing machine learning allows 
organizations to detect threats, conduct predictive 
maintenance, and perform many repeatable decision-making 
tasks consistently and efficiently. By allowing a machine to 
learn over time through historical cases and building a 
knowledge base, the machine allows operators to make 
informed decisions by providing every available piece of 
information. Systems are able to make decisions in a fraction 
of the time compared to a human expert attempting to come 
to the same decision, however additional advancement is 
needed to make machine learning more accurate and 
efficient. Areas needing additional inquiries include indexing 
algorithms, storage solutions, and finally the decision-
making algorithms themselves. Machine learning is 
important because of the wide range of applications and 
benefits provided through the decision making and 
predictions capable. As the field advances, machines will 
create predictions and perform decision making faster and 
more completely. 

A. Watson 

Watson originally became well-known for competing in 

Jeopardy. Watson is a knowledge base altered for various 

applications including Jeopardy, medical field, and taxes. 

Breaking down questions from a complex human language 

was required for Watson to compete at the Jeopardy game 

[3]. The analysis of the Jeopardy questions and identifying 

the correct answer needed to happen almost instantaneously 

to compete on a high caliber level. 

With the Jeopardy Challenge, Watson needed to break 

down questions out of human language to a format Watson 

could understand. The questions needed to break down into 

the main statement and then separate supporting statements 

out. “…decompose the question into these two parts and ask 

for answers to each one, we may find that the answer 

common to both questions is the answer to the original clue” 

[3]. 

In recent years, IBM altered Watson to handle taxes by 

collaborating with H&R Block. Although there is not much 

technical information available discussing the design of 
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Watson's work with taxes, there are a few assumptions that 

can be made. We would assume Watson uses a rule and 

case-based design. The rules would take in data on a new 

client, which determine what tax actions could take place. 

Watson would compare the new client to all previous clients 

allowing for more accurate and consistent tax evaluation. 

B. Deep Learning Frameworks – Tensor Flow 

Tensor Flow is a deep learning framework built on the 

first generation framework called DistBelief. Both 

frameworks were developed by Google to advance 

technology for the public and for use in Google’s wide 

range of data products [4]. One of TensorFlow's major 

improvements over DistBelief is its ability to scale up onto 

large distributed hardware platforms utilizing multiple 

CPUs and GPUs. Tensor Flow utilizes a master orchestrator 

to distribute work across the number of hardware platforms 

available, each individual platform then breaks the work 

down to be solved across each system’s available CPUs and 

GPUs. 

Benchmarks conducted by Google researchers showed 

the Tensor Flow framework performs, as well as other 

popular training libraries. However, Tensor Flow did not 

have the best performance statistics as other libraries in the 

study when tested on a single machine platform [9]. 

Researchers at Google are continuing development in the 

Tensor Flow framework to incorporate additional 

optimization and automation to improve the performance of 

the framework. 

C. Rule Evolution IB1 & IB2 Algorithms 

The IB1 and IB2 algorithms are used to evolve a 

system's rules used for classification by incorporating new 

cases. The addition of more instances over time causes the 

machine to alter its rules to improve the probability of 

giving a correct prediction on future instances. Instances can 

either enforce existing rules or go against existing rules. 

Over the course of a training period, the IB1 algorithm will 

converge to the actual results based on altering its rules. IB1 

requires data to have specific attributes, making cases 

distinct enough for the algorithm to learn over time. If the 

data does not have distinct attributes then the machine will 

not learn, since no strong points of comparison are available 

between cases [5]. 

A downside of the IB1 algorithm is the need to store all 

correct and incorrect classifications over the lifetime of the 

machine. The IB2 algorithm is a branch of the IB1 

algorithm that does not require the storage of all 

classifications, only the incorrect classifications. The 

tradeoff of saving storage space is the increase in time 

required for the IB2 algorithm to learn to predict with strong 

accuracy [5]. 

During the evaluation of both the IB1 and IB2 

algorithms, researchers determined both algorithms are able 

to achieve acceptable prediction accuracies in some 

situations. However, IB1 attains greater accuracies on each 

scenario when compared to the IB2 algorithm. The increase 

in accuracy for IB1 could be attributed to the storing of all 

classification events versus only the incorrect 

classifications. 

D. Ensemble Method 

Ensemble methods is the practice of implementing 

multiple machine learning algorithms and incorporating an 

additional algorithm to vote the responses to a single 

response. “Ensemble methods are learning algorithms that 

construct a set of classifiers and then classify new data 

points by taking a (weighted) vote of their predictions'' [6]. 

Ensemble methods help to remove model bias and 

overconfidence for models against specific applications. 

“Ensemble methods are meta-algorithms that combine 

several machine learning techniques into one predictive 

model in order to decrease variance (bagging), bias 

(boosting), or improve predictions (stacking)'' [7]. 

 

 
Figure 3: Weather Model Example [8] 

 

Ensemble methods are used in other industries; for 

example meteorologist compare numerous models to 

generate a cone of certainty for hurricane predictions. Figure 

3 shows an example of a cone of certainty track for 

hurricane Dorian in 2019. This cone was generated by 

averaging multiple hurricane track models to a single cone. 

The cone shows decreasing assurance in the accuracy the 

further in time of the prediction. 

One ensemble method, the Bayesian method, is a 

common practice of integrating multiple classifiers into a 

single classifier. The Bayesian method utilizes a weighted 

average method for determining the proper response. 

However, researchers from the University of Washington 

found the Bayesian method has a higher rate of error than 

other methods of ensemble [9]. 

 

 
Figure 4: Ensemble Voting Methods [10] 
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Another method used when incorporating ensemble with 

machine learning is the bagging method. Bagging involves 

multiple training models on different subsets of data and 

integrating the outputs from each model to produce a single 

result [7]. Boosting is another method for using numerous 

predictions to create a single result. Both the Bayesian and 

bagging methods are depicted in Figure 4. 

III. METHODOLOGY/THEORY 

This section discusses the methodology used in the 
completion of this research. The research process followed 
the system engineering v-diagram during development, as 
shown in Figure 6. 

 

 
Figure 6: Design Methodology 

 
This section is further broken into a system architecture 

and software architecture sections. 

A. System Architecture 

The implementation, which is shown in Figure 5, is 
broken into four sections; a workstation computer, web 
server, raspberry pi, and a shared storage box. The 
workstation computer contains an NVidia GTX 980ti and is 
used for generating models based on the training images. 
Once the models are generated they are stored on a 
centralized shared storage array.  

 
The model generator portion of the system handles 

ingesting a multitude of images and generating 200 models 
per generation algorithm. The model generation is a 
compute-intensive operation, taking about 90 seconds per 
model at 200 models per algorithm to run, and requires a 
high level of resources to provide accurate results. 
Additional hardware options were investigated, including 
Amazon's Web Service and Digital Ocean's droplets. Both of 
these alternatives allow users to utilize a pay by use virtual 
Linux environment having a wide range of hardware scaling 
options. These options were not chosen to eliminate 
variables introduced by relying on another company's 
infrastructure. 

A Raspberry Pi 3 B+ [11] was used for real-time image 
classification utilizing an onboard camera. During the initial 
testing and validation, the model generator was used. The 
model generator was capable of classifying a large number 
of images in rapid succession to validate the improvements 
implemented. The Raspberry Pi was best suited for 
completing single image classifications. 

During initial testing and validation, the Model Generator 
was also used in place of the Raspberry Pi. Connected to the 
workstation is a networked HDD used for storing the 
generated models. 

The web server is the middle point between the 
workstation and the raspberry pi, by serving the models 
generated for the Pi to download. To enable future learning 
from real imaging, the Pi will upload classified images to the 
web server for the workstation to use in future model 
generation. 

Figure 5: System Flow Diagram 
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B. Software Architecture 

The following software packages and frameworks are 
used to generate the models for real-time image 
classifications and for classifying new images: 

 Python 3.6 

 Tensorflow-GPU 

 Numpy 

 SciPy 

 OpenCV 

 Pillow 

 Matplotlib 

 H5py 

 Keras 

 ImageAI [12] 
 
ImageAI is an API that can generate models based on an 

image set and perform image classifications based on the 
generated models. The API can generate models using the 
Desenet, Inveption v3, Resnet, and Squeezenet algorithms. 

The workstation utilizes the above listed software when 
generating the initial models used for classification. ImageAI 
is a wrapper framework for the rest of the libraries, 
simplifying the development process. The same ImageAI 
framework is used on the raspberry pi for real-time image 
classification utilizing an add-on camera board. The 
raspberry pi is capable of handling the classification 
algorithms because the model generation and model 
evolution is offloaded to the workstation [13]. This heavily 
reduces the compute requirements, enabling the mobile real-
time classification. 

The web server is a repository for the raspberry pi to 
retrieve the latest generated models and to upload classified 
images for further analysis. Real-time images are uploaded 
to the webserver for manual verification of the image's 
classification and are then loaded into the workstation as 
additional training images to evolve the models. The 
combination of the workstation and Raspberry Pi enables an 
overall system supporting model evolution while increasing 
the efficiency of the real-time classifier [13]. 

A future implementation adds a system capability of 
justifying the classifications provided. The current design 
behind the justification uses the built in confidence levels 
provided when classifying images. An alternative approach 
includes providing sample images that were classified using 
the same models and produced the same results. 

C. Model Training 

The generation of the classification models requires one 
data input and five configuration settings to generate the 
models. The script takes a folder path to a subset of the 
image dataset used for training as a script input. The 
remainder of the images is used for validating the generated 
models. The folder structure, as seen in Figure 7, consists of 
one folder per profession with each folder containing at least 
200 images. 

The next section of the script generates four different 
types of models based on four different generation 
algorithms. Each generation takes five configuration settings. 

The first one defines the number of image types, in this 
scenario being the ten different professions. The next input is 
the number of experiments, which determines the number of 
models to generate. The enhance_data input is an optional 
input, “This is used to state if we want the network to 
produce modified copies of the training images for better 
performance'' [14]. The batch size input is dependent on the 
computing hardware available; the number is set to the 
maximum amount allowed by the equipment available. 
Finally, the show_network_summary input is used for 
providing detailed information to the console during model 
generation. The script cycles through the algorithms for 
generation and then generates 200 models and one JSON file 
per algorithm. The script serially generates the models for all 
four algorithms: DenseNet, Inceptionv3, ResNet, and 
SqueezeNet.  

 

 
Figure 7: Image Folder Structure 

 
Models are generated by breaking apart an image into 

simpler parts. These parts determine a rule set that goes into 
different layers. A culmination of each of these layers allows 
the model to make predictions based on an inputted image. 
The algorithm structures the layers in an optimal fashion to 
maximize the efficiency of image predictions. 

During model generation the number of models to 
generate determines the number of variations the underlying 
algorithms with attempt. For instance, this research used 200 
variations for the parameter settings producing 200 different 
models. The algorithms then determines an accuracy rate for 
each model generated, allowing the user to select the model 
with the highest evaluated accuracy. The generated models 
are given a specific naming structure for easy identification. 
The first parameter is an identification number ranging from 
one to the number of models generated. The second 
parameter gives the evaluated accuracy of the model, given 
in decimal format.  

Once all the models are generated, a PowerShell script 
identifies the top three accurate models per algorithm. The 
script copies the chosen models to a separate folder for use in 
image classifications. When the models are generated, the 
calculated accuracy is added to the filename, which is how 
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the PowerShell script selects the top three. At this point, the 
models are either used for individual image classification or 
bulk image classification. 

D. Image Classification 

Classifying a single image is done through the individual 
image classification script. This script takes in two directory 
paths and a probability threshold as inputs. The directory 
paths contain the location of the image to classify and the 
models to use during classification. The probability threshold 
determines what predictions from the models are used in the 
voting. When the ImageAI algorithm attempts to classify an 
image with a model, the algorithm returns a single prediction 
with the probability of correctness. The probability threshold 
variable only allows predictions with greater than 80% 
confidence to be included in voting for the final predicted 
profession. 

After all twelve models preform their prediction, the 
classifications that do not need the threshold requirements 
are thrown out. The remaining predictions are used in a 
simple majority voting scheme. The prediction with the 
majority of the votes from the various models is presented to 
the user with the average prediction confidence level and the 
number of models agreeing with the prediction. The script is 
capable of providing multiple predictions per image; 
however, for this application, only single predictions are 
needed. 

E. Learning Algorithms 

The ImageAI algorithm is used for the generation of the 
models and acts as a wrapper library to various machine 
learning algorithms, including Tensorflow. “ImageAI is an 
easy to use Computer Vision Python library that empowers 
developers to easily integrate state-of-the-art Artificial 
Intelligence features into their new and existing applications 
and systems'' [15]. By implementing the system utilizing 
ImageAI, the overall development cycle was simplified by 
masking the low-level coding. For this system, custom 
recognition is utilized. However, the algorithm is capable of 
also performing objection recognition and live video 
detection [15]. 

F. Ensemble Methods 

Two ensemble methods were used for combining the 
results of the individual models. The initial method used a 
simple majority voting scheme were each model has a single 
vote to the prediction. During analysis the simple majority 
method was altered to take into account each vote's 
confidence level. This weighted voting method calculated, 
which prediction has the highest confidence with a high 
number of votes. For example, if four models prediction 
waiter at a 95% confidence but five models predicted chef at 
80% then the simple majority would produce chef as the 
answer, while the weighted voting would produce waiter. 

IV. DATA ANALYTICS 

During this research, the Identifiable Professionals 
(IdenProf) dataset [16] is used for evaluating the proposed 
changes to the ImageAI algorithm. IdenProf contains 10 

distinguishable professions, listed in Table I. A sample 
image for each profession is shown in Figure 8. The dataset 
consists of over 900 images per profession used for training 
the system's models and an additional 200 images per 
profession for validating the models. All images are sized to 
a common pixel dimensions of 224 by 224 for uniformity. 
The image set has a makeup of mostly white males from the 
top 15 most populated countries [16], compared to other 
genders or nationalities. During the duration of this research 
project additional images can be gathered by pulling images 
from Google's search engine. 

 

 
Figure 8: Sample Profession Images [16] 

 
The experiments included testing the base algorithms 

against the training and validation images. These 200 images 
allowed analysis and validation of the models generated at 
all three stages of development. Additional experiments 
utilized the raspberry pi to simulate processing images on a 
low-powered machine. The models used in classifications 
are selected based on the assigned accuracy defined during 
model generation. For these experiments the models selected 
have over eighty percent accuracy. 

 

Table I: Training Images Classification 

Training Images Classifications 

Professions Accuracy 

Chef 74.5% 

Doctor 76.5% 

Engineer 86.0% 

Farmer 89.5% 

Firefighter 90.5% 

Judge 92.0% 

Mechanic 84.5% 

Pilot 87.5% 

Police 87.5% 

Waiter 72.0% 

 
 
Figure 10 depicts a collection of the test images for a 

pilot, one of the professions used in this research project. 
When running a classification against a pilot image, the 
system provides three results. Each result comes with a 
probability that the answer is correct. Typically the models 
generate one answer with a probability of over 95% and then 
the remaining two answers will make up the remaining 
percentage. During single image predictions, the system 
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provided a profession prediction, with a confidence level, 
and the number of models agreeing with the answer. The 
confidence level is the average of the models in agreeance on 
the vote disclosing the models that do not meet the threshold. 
During this sample run three of the twelve models did not 
meet the required threshold and were dropped from the 
calculations. The remaining nine models resulted in pilot as 
the answer with a combined confidence of 99.99%. Similar 
results were found on additional tests with different images. 
Single image predictions was tested on both the workstation 
and the Raspberry Pi B+ to act as a low powered system. 

 

 
Figure 10: Sample Profession Images - Pilot [16] 

 
While testing the performance of the model generation 

algorithm, the runtimes for each model algorithm were 
compared at different image dataset sizes. Figure 9 shows the 
runtime of the four model algorithms and the total runtime at 
nine image set sizes. With the exception of the final image 
set of 9000, each runtime gradually increased compared to 
the next smallest image set. 

V. RESULTS 

The results were gathered through two different methods, 
the first conducting single image predictions and the other 
doing an automated bulk analysis.  

A. Single Image Classification 

During testing using the Raspberry Pi 3 B+ for image 
prediction, the Raspberry Pi required slightly different 
software. The Raspberry Pi required older versions of some 
libraries because the newer versions were not yet compatible. 
Figure 11 shows the results when testing the Raspberry Pi 
against a pilot image. The Raspberry Pi was able to correctly 
classify the test image with a 99.99% confidence level; based 
on four separate models, with three of the four models 
agreeing on the prediction. The same image was used for 
tests on the desktop and both the high performance desktop 
and the Raspberry Pi 3 B+ were capable of providing the 
correct prediction and same confidence level. The only 
difference was the use of four models instead of twelve, to 

minimize the run time required and counter issues of not 
enough memory for twelve models. 
 

 
Figure 11: Single Image Prediction on a Raspberry Pi 

 
During execution the Raspberry Pi was consistently over 

90% memory utilization after running through five of the 
twelve models. Shortly into the sixth model assessment the 
python script crashed due to not enough memory available. 
Based on this limitation, the Raspberry Pi was configured to 
only use the top model from each algorithm instead of top 
three models per algorithm. All twelve models were ran 
individually and manually combined to verify only four 
models could perform as accurately as twelve. The manual 
combination resulted in nine of the twelve models agreeing 
with pilot for the prediction with a confidence level of 
98.1%. The four model implementation produced the same 
correct profession prediction, but with an increased 
confidence level at 99.99%. Since the accuracy and 
performance increased the Raspberry Pi implementation was 
altered to the four model design. 

The Raspberry Pi storage requirements grow at a rate of 
12 KBs per image classified with a constant model storage 
rate of 205 MBs for four models. These requirements are 
portable to any edge node device used. The Raspberry Pi 
takes an average of five minutes to classify a new image and 
about 600 MB of memory for each image classification. The 
time to classify is dependent on the hardware used, were the 
Raspberry Pi takes five minutes per image the desktop takes 
only three minutes per image. 

B. Bulk Image Classification 

During the bulk image processing, the scripts ingested 
two thousand images, evenly distributed between ten 
different professions. All the images received a profession 
prediction from all twelve models. The Squeezenet models 

Figure 9: Model Generation Runtime 
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consistently produced the wrong predictions, with only 10% 
of the predictions being correct. After further review, the 
model Squeezenet was only able to correctly predict a single 
profession. The Densenet and Inceptionv3 models all 
performed with an 87% accuracy and the Resnet algorithm 
performed slightly worse at 85%. Individually the models 
produced accurate results, but when implementing the voting 
schemes the results improved. 

Table II depicts the results of two different automated 
ensemble methods and a third with manual intervention. 
Implementing simple majority voting, also known as 
bagging, with a confidence level threshold resulted in an 
88% accuracy for predictions. The minimum required 
threshold eliminated the Squeezenet predictions from the 
voting. Where some models performed poorly for some 
professions other models performed strongly, resulting in 
increased correct predictions.  

The second ensemble method involved expanding on the 
bagging algorithm and incorporating the confidence levels 
into the vote determination. Implementing this design 
improvement resulted in a one percent accuracy increase 
over the simple majority voting scheme, at 89% accuracy 
when averaging the predictions from all 2000 image 
predictions. 

 

Table II: Training Images Classification 

Ensemble Results 

Ensemble Method 
Positively 
Predicted 

Total 
Images 

Percent 
Accuracy 

Majority Rule 1764 2000 88% 

Weighted Vote 1777 2000 89% 

Weighted with 
 Object Recognition 

1807 2000 90% 

 
Part of the future recommended work is incorporating 

object recognition to the predictions. The final row of Table 
II shows the improvement of doing manual object 
recognition for the waiter and chef professions. For manual 
recognition a tray or check book was searched for in the 
waiter images and a chef hat or side pocket thermometer for 
the chef images. The manual searching resulted in an 
improvement of one percent in accuracy over the weighted 
voting. Table III extracts the results for just the waiter and 
chef images. Adding object recognition gave an 8% accuracy 
improvement when looking solely at the chef and waiter 
images. 

 

Table III: Training Images Classification 

Object Recognition Result 

Prof. 
Weighted Vote Object Recognition 

Positively 
Predicted 

Percent 
Accuracy 

Positively 
Predicted 

Percent 
Accuracy 

Chef 165 / 200 83% 174 / 200 87% 

Waiter 148 / 200 74% 169 / 200 85% 

Chef & 
Waiter 

313 / 400 78% 343 / 400 86% 

 

C. Additional Image Test 

To verify the implemented algorithms additional police 
and firefighter images were chosen from Google searches 
and evaluated through the prediction script. These images 
were all classified correctly with over 98% certainty with at 
least six models agreeing on the vote. This test was 
conducted using the simple majority voting method. Each 
image was run multiple times against the same models to 
ensure the results were consistent each time.  

An additional test of five new chef and five new waiter 
images were chosen from Google searches and evaluated 
through the prediction script. Eight of the ten new images 
classified correctly, at a rate of 80%. The majority of the 
correctly identified images had a certainty of over 90%. 
These images were also classified using the simple majority 
voting method. 

VI. HYPOTHESIS RESULTS 

This section discusses how the implemented design 
addresses the four hypothesizes discussed in the introductory 
section. The hypotheses are also listed below: 

 
1. Utilizing a knowledge base, can a DSS be 

implemented to minimize the time and space 
requirements, while maximizing the accuracy of the 
suggested solutions? 

2. How can a knowledge base be implemented to 
improve the overall accuracy of the system? 

3. Is a DSS able to provide solution justification to the 
user, enabling users to have trust in the answers 
being provided? 

4. Is it possible to improve rule evolution without 
needing to store locally all previous cases for doing 
rule re-validations? 

 

A. Hypothesis 1 

The implemented design does not decrease the time 
complexity compared to using a traditional single model 
process. However, by implementing a real-time image 
classifier on an endpoint node and the model generator on a 
remote server the space complexity does improve. The 
thought behind this is to remove heavy storage requirements 
from endpoints that typically have minimal resources, while 
the remote server typically has excesses resources. 

B. Hypothesis 2 

The implementation of a voting scheme with multiple 
algorithms used for model generation has allowed an 
improvement in prediction accuracy on average. Individually 
the models perform worse than when all models are used in a 
voting scheme. 

C. Hypothesis 3 

The voting scheme provides additional confidence in the 
provided result while increasing accuracy. The system 
provides the number of models agreeing with a prediction to 
assist in providing the user with greater confidence in the 
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result. The system also provides the probability the system 
believes in the response provided. 

D. Hypothesis 4 

The feedback loop introduces manually verified 
predicted images and adds those images to the pool for future 
model generation to enhance the model evolution. By 
improving the model evolution, predictions improve 
accuracy and allow for the system to handle input changes 
over time. For example, as a profession’s physical 
characteristics evolve the system will evolve as well.  

To validate the feedback loop for incremental evolution 
nine separate simulations was ran. Nine sets of models were 
generated using different training set sizes ranging from one 
thousand to nine thousand in one thousand increments. After 
the models were generated the same five hundred images 
were classified against the top twelve models from each 
model set. Table IV shows the simulations with the results. 
The results did not show a perfect upwards curve for 
accuracy, but did show that as more images were added to 
the training set the accuracy did improve. From this test the 
accuracy went from 78% at one thousand training images to 
84% at nine thousand training images. The model set with 
one thousand images for training was an anomaly at a higher 
accuracy rate than the later model generations. This anomaly 
could be explained by the subset of images used in training 
just being an ideal set of images compared to the rest of 
image subsets. 

 

Table IV: Model Evolution Results 

Model Evolution Results 

Training 
Images 

Positively 
Predicted 

Incorrectly 
Predicted 

Total 
Processed 

Percent 
Accuracy 

1000 391 109 500 78% 

2000 316 184 500 63% 

3000 349 151 500 70% 

4000 360 140 500 72% 

5000 381 119 500 76% 

6000 399 101 500 80% 

7000 400 100 500 80% 

8000 424 76 500 85% 

9000 421 79 500 84% 

 

VII. CONCLUSION 

Throughout this project, there were limitations to 
development based on the hardware available. For future 
development in this area, additional work should include 
different types of hardware platforms. The algorithms were 
implemented to handle both low and high-performance 
hardware. Implementing the system on hardware like the 
Nvidia 2080 Ti should improve model generation because of 
the additional memory and CUDA cores, allowing for 
improved accuracy for profession predictions. Beyond 
improving the specific hardware available, work with a 
distributed computing system should be researched. 

A distributed system, shown in Figure 12, would grant a 
significant amount of computing power beyond what a single 

system would provide. A considerable improvement a 
distributed system would bring is a level of fault tolerance. A 
single system, similar to the one used in this project, has 
mostly all single points of failure. A distributed system 
would relieve the issue with single points of failure. During 
this project, using the Raspberry Pi attempted to simulate 
half the system in a distributed environment by using the 
Raspberry Pi as a low-powered endpoint node. The 
Raspberry Pi can be combined with an onboard camera to 
provide live image recognition as well. 

 

 
Figure 12: Distributed Network 

 
This system's edge nodes are scalable based on the 

quality of the back haul bandwidth from the edge node to the 
centralized repository. Each individual edge node acts 
autonomously, with no knowledge of the other edge nodes. 
As long as the centralized repository has enough resources to 
handle obtaining all the images from the edge nodes, the 
generation and distribution of models then the overall system 
can easily scale. 

Incorporating object recognition, visual shown in Figure 
13, into this design would also improve the overall 
performance. As discussed in the results section, object 
recognition improved the predictions of the chef and waiter 
professions by 8%. This was done with only four objects 
manually identified, using additional objects would improve 
the accuracy even more. 

 

 
Figure 13: Object Recognition Example [16] 

 

77

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 14 depicts the image classification flow when 
incorporating object recognition. Each image is classified by 
twelve models using a whole image classification method. 
The twelve predictions are then combined through the 
weighted majority voting algorithm. Separately, the image is 
analyzed for object recognition, with the results compared 
against a repository of known objects linked to professions. 
The result from the object recognition and whole image 
classification is compared, if the results are the same then the 
system will export the result. However, if the comparison 
shows a disagreement then both results are evaluated for 
their confidence to determine what prediction to make. 

 

 
Figure 14: Object Recognition with Voting 

 
Throughout this project machine learning algorithms and 

applications were reviewed to determine what improvements 
could be made to enhance the field. One of the greatest areas 
needing improvement was providing users with justification 
and confidence in the predictions a system is providing. This 
project attempted to use multiple machine learning 
algorithms in a voting scheme to increase the confidence 
level in the predictions, while also improving the accuracy of 
the predictions. 

By using predictions as a feedback loop into the model 
generator, the system attempted to improve predictions over 
time. Improvement of the knowledge evolution is crucial for 
a system operating for any length of time. For instance, with 
the profession application, police officers over the last 
hundred years have evolved through their uniforms. If a 
system were generated using photos of police from the 
1920's, then the system would have a difficult time providing 
correct predictions of present-day police. 

With improved knowledge evolution, accuracy 
improvements become possible. The accuracy of the system 
was improved by implementing a voting scheme and a 
confidence threshold to drop low confident predictions. 
Specific algorithms showed higher performance against 
certain professions and were able to counteract lower-
performing algorithms. 

To improve the efficiency of the system, the space 
complexity was improved with a slightly worse time 
complexity. By implementing a server and client system, the 
size complexity was greatly reduced at the endpoint node 
while maintaining typical size complexity at the server-side. 
The client-side system only needed to download models 
from the server when available. Otherwise, the client can 
perform predictions uninterrupted. However, since the 
overall system utilizes the integration of open source 
elements there is minimal control over the inner workings of 
the libraries affecting size and complexity. 

Overall, the implemented system addresses all 
hypotheses originally made by implementing common, open-
source software in an untraditional manner. The delivered 
system from this project is capable of predicting a person's 
profession solely based on a single image of them, in a 
manner and speed humans would not be capable of 
achieving. 

REFERENCES 

[1] D. Prairie and P. Fortier, "Improve Operations of Real-Time 
Image Classification Utilizing Machine Learning and 
Knowledge Evolution", IARIA Data Analytics, 2019. 

[2] A. Saxena, “Knowledge-Based Architecture for Integrated 
Condition Based Maintenance of Engineering Sysems," 
Georgia Institute of Technology, Tech. Rep., 2007, Accessed: 
Aug. 2019. [Online]. Available: 
https://smartech.gatech.edu/handle/1853/16125 

[3] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. 
Kalyanpur, A. Lally, W. Murdock, E. Nyberg, J. Prager, N. 
Schlaefer, and C. Welty, "Building Watson: An Overview of 
the DeepQA Project," AI Magazine, 2010, Accessed: Aug. 
2019. [Online]. Available: 
https://www.researchgate.net/publication/220605292 Building 
Watson An Overview of the DeepQA Project 

[4] Google, "Tensor Flow" Google, [Online]. Available: 
https://www.tensorflow.org/. [Accessed Apr. 20, 2019]  

[5] D. Aha, D. Kibler and M. Albert, "Instance-Based Learning 
Algorithms," Machine Learning, vol. 6, no. 1, pp. 37-66, 
1991. 

[6] F. Kittler and Josef; Roli, “Multiple Classifer Systems," in 
First International Workshop, MCS 2000. 

[7] V. Smolyakov, “Ensemble Learning to Improve Machine 
Learning Results,"Statsbot, 2017, Accessed: Sep. 2019. 
[Online]. Available: https://blog.statsbot.co/ensemble-
learning-d1dcd548e936 

[8]  F. P. R. E. Network, “Chances Increasing That Tropical 
Storm Dorian Will A 
ect Parts of Florida This Weekend," WUSF News, 2019, 
Accessed: Oct. 2019. [Online]. Available: 
https://wusfnews.wusf.usf.edu/post/chances-increasing-
tropical-storm-dorian-will-a 
ect-parts-florida-weekend 

[9] P. Domingos, “Bayesian Averaging of Classifiers and the 
Overfitting Problem," University of Washington, Seattle, 
Tech. Rep., 2002. 

[10] J. D'Souza, “A Quick Guide to Boosting in ML," GreyAtom, 
2018, Accessed: Sep. 2019. [Online]. Available: 
https://medium.com/greyatom/a-quick-guide-to-boosting-in-
ml-acf7c1585cb5 

[11] “Raspberry Pi 3 Model B+," Raspberry Pi Foundation, Tech. 
Rep., 2019, Accessed: Aug. 2019. [Online]. Available: 
https://www.raspberrypi.org/ 

78

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[12] DeepQuest AI, "Official English Documentation for 
ImageAI!" DeepQuest AI. [Online]. Available: 
https://imageai.readthedocs.io/en/latest/. [Accessed: Feb. 11, 
2019]. 

[13] S. Jain, "How to easily Detect Objects with Deep Learning on 
Raspberry Pi", medium.com, Mar. 20, 2018. [Online]. 
Available: https://medium.com/nanonets/how-to-easily-
detect-objects-with-deep-learning-on-raspberrypi-
225f29635c74. [Accessed May. 11, 2019]. 

[14] M. Olafenwa, “Custom Training," ImageAI, Tech. Rep., 
2019, Accessed: Sep. 2019. [Online]. Available: 
https://github.com/OlafenwaMoses/ImageAI/blob/master/ima
geai 

[15] M. Olafenwa and J. Olafenwa, “ImageAI," ImageAI, Tech. 
Rep., 2019, Accessed: Sep. 2019. [Online]. Available: 
http://imageai.org/ 

[16] M. Olafenwa, "IdenProf Datasheet" Olafenwa, [Online]. 
Available: https://github.com/OlafenwaMoses. [Accessed 
Mar. 16, 2019]  

[17] D. Galeon, "Paging Dr. Watson," 28 October 2016. [Online]. 
Available: https://futurism.com/ibms-watson-ai-recommends-
same-treatment-as-doctors-in-99-of-cancer-cases/. [Accessed 
22 February 2019]. 

[18] Dtex Systems, "The Hidden Security Threat," Dtex Systems, 
2016. [Online]. Available: https://dtexsystems.com/portfolio-

items/infographic-findings-from-the-2016-costs-of-insider-
threats-report/. [Accessed 21 March 2019]. 

[19] Q. Althebyan and B. Panda, "A Knwoledge-Base Model for 
Insider Threat Prediction," Proceedings of the 2007 IEEE 
Workshop on Information Assurance, vol. June, pp. 20-22, 
2007. 

[20] P. Bakkum and K. Skadron, "Accelerating SQL Database 
Operations on a CPU with CUDA," University of Virginia, 
Charlottesville, 2010. 

[21] J. Jean, G. Dong, H. Zhang, X. Guo, and B. Zhang, "Query 
Processing with An FPGA Coprocessor Board," in 
Proceedings of the International Conference on Engineering 
and Reconfigurable Systems and Algorithms, 2001. 

[22] Martín Abadi et al, "TensorFlow: A System for Large-Scale 
Machine Learning," in 12th USENIX Symposium on 
Operating Systems Design, Savannah, 2016.  

[23] D. Patil and P. Jayantrao. "Malicious URLs Detection Using 
Decision Tree Classifiers and Majority Voting Technique." 
Cybernetics and Information Technologies. vol. 18. no. 1, pp. 
11-29. 10.2478/cait-2018-0002.  

[24] C. Nichols, "How many flights come in and out of LAX every 
day?," Los Angeles Magazine, 1 May 2011. [Online]. 
Available: http://www.lamag.com/askchris/how-many-flights-
come-in-and-out-of-lax-every1/. [Accessed Mar. 20, 2018]. 

[25] Homeland Security, "Combating the Insider Threat," 
Homeland Security, 2014. 

 

79

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


