
Improve Decision Support System Operations of Real-Time Image Classification

Utilizing Machine Learning and Knowledge Evolution

David Prairie

Electrical and Computer Engineering Dept.

University of Massachusetts Dartmouth

Dartmouth, Massachusetts United States

Email: dprairie@umassd.edu

Paul Fortier

Electrical and Computer Engineering Dept.

University of Massachusetts Dartmouth

Dartmouth, Massachusetts United States

Email: pfortier@umassd.edu

Abstract—This paper delves into the generation and use of

image classification models in a real-time environment utilizing

machine learning. The ImageAI framework was used to

generate a list of models from a set of training images and also

for classifying new images using the generated models.

Through this paper, previous research projects and industry

programs are analyzed for design and operation. The basic

implementation results in models that classify new images

correctly the majority of the time with a high level of

confidence. However, almost a quarter of the time the models

classify images incorrectly. This paper attempts to improve the

classification accuracy and improve the operational efficiency

of the overall system as well.

Keywords-component; Machine Learning; Tensor Flow;

Image Classification.

I. INTRODUCTION

Presented in this research paper is a new and novel
approach to machine learning design that maximizes the
balance between accuracy, efficiency, solution justification,
and rule evolution. This paper is a more complete and
informative description of the research presented at the
IARIA Data Analytics conference [1]. This research
improves four factors of machine learning within a single
design. During this research, traditional open source machine
learning methodologies were altered to improve different
aspects of machine learning, tested against a single
application. These traditional methodologies were integrated
using ensemble methods for enhancing the performance
along with providing justifications for the classification
results. This paper discusses the results, data used, the
analysis, and validation methodologies used.

This research attempted to find an optimal balance
between maximizing a system's accuracy and minimizing a
system's time and space requirements. As shown in Figure 1,
these three attributes are directly correlated with each other
and the system integrator needs to determine the trade-off
required for the implemented system.

During this research the Identifiable Professionals
(IdenProf) Dataset was used for training and validating
models. The dataset contains ten image sets of
distinguishable professions, each set containing 900 images

for training and 200 images for validation per profession.
The expected outcome of this research is a two part system
capable of analyzing a real-time feed and perform profession
classification based on a remotely generated model.

Figure 1: System Efficiency Tradeoffs

This research aimed at answering the following four

questions based upon improved decision support system
operations. Investigations and implementations conducted
comprised of different components of the Decision Support
System (DSS). This research reviewed prior research in the
machine learning technical field and built upon previous
research to answer the following hypothesis:

1. Utilizing a knowledge base, can a DSS be

implemented to minimize the time and space
requirements, while maximizing the accuracy of the
suggested solutions?

2. How can a knowledge base be implemented to
improve the overall accuracy of the system?

3. Is a DSS able to provide solution justification to the
user, enabling users to have trust in the answers
being provided?

69

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

4. Is it possible to improve rule evolution without
needing to store locally all previous cases for doing
rule re-validations?

This paper is broken up into a Background section, where

high-level aspects of machine learning and knowledge-bases
are discussed. The Methodology is discussed following the
Background section. Following the Methodology section the
preliminary results are discussed in the Data Analytics and
Results sections. Finally, the conclusion discusses planned
future work and recommended further work.

II. BACKGROUND

Knowledge base systems enable problems to be quickly
and accurately solved based on previous cases. Knowledge
base systems also allow for problem solving of very complex
situations at speeds humans alone would not be able to
achieve at such accuracies. Throughout the last 20 years,
knowledge bases have grown in applications to assist in
everyday tasks. More recently, IBM’s Watson, an Artificial
intelligence supercomputer, is in the limelight through its
uses in the medical arena and in personal taxes with H&R
Block. Other applications of machine learning have been
completed or are being developed include detecting insider
threats, big data analytics, market analysis for proposals,
condition-based maintenance, and diagnostics in the medical
field.

In the medical industry, Watson has proven capable of
making the same recommended treatment plans as doctors
99% of the time. Unlike traditional human doctors, Watson
can use all available medical resources when making a
patient's diagnosis. By having such vast amounts of
knowledge, Watson can provide treatment options doctors
may miss. Watson utilizes powerful algorithms and immense
computing resources to analyze all medical relevant data to
find “…treatment options human doctors missed in 30
percent of the cases” [3]. Since Watson has so much
computing power it is able to determine treatment plans for
patients faster than human doctors could, allowing doctors to
put patients on treatments faster with the intervention of
Watson. Watson is one example of how knowledge base
systems positively benefit society by efficient and accurate
problem solving of complex problems. Additional research
into knowledge bases will allow them to problem solve
faster, with more accuracy, and with less compute power
requirements.

Condition-Based Maintenance, shown in Figure 2, is the
method of monitoring a system’s components to determine
what level of maintenance is required for the system to
remain functioning. Using a Condition-Based Maintenance
system for managing maintenance events allows
professionals to be proactive with performing maintenance
activities versus being reactive. Reactive maintenance
involves replacing components after they already failed,
causing system downtime. When a system goes down for
unscheduled maintenance or repairs, many different
repercussions can occur depending on the affected system’s
role. Using air traffic control centers as an example, any
unplanned downtime has the potential to disrupt hundreds of

flights and cost a significant amount of money due to flight
delays [12]. Machine learning can be used to assist
professionals to determine optimal maintenance schedules
while minimizing system down time.

Figure 2: Condition Based Maintenance [2]

Although some of the described applications may not be

as drastic as life or death medical decisions, all still can
greatly affect society. Utilizing machine learning allows
organizations to detect threats, conduct predictive
maintenance, and perform many repeatable decision-making
tasks consistently and efficiently. By allowing a machine to
learn over time through historical cases and building a
knowledge base, the machine allows operators to make
informed decisions by providing every available piece of
information. Systems are able to make decisions in a fraction
of the time compared to a human expert attempting to come
to the same decision, however additional advancement is
needed to make machine learning more accurate and
efficient. Areas needing additional inquiries include indexing
algorithms, storage solutions, and finally the decision-
making algorithms themselves. Machine learning is
important because of the wide range of applications and
benefits provided through the decision making and
predictions capable. As the field advances, machines will
create predictions and perform decision making faster and
more completely.

A. Watson

Watson originally became well-known for competing in

Jeopardy. Watson is a knowledge base altered for various

applications including Jeopardy, medical field, and taxes.

Breaking down questions from a complex human language

was required for Watson to compete at the Jeopardy game

[3]. The analysis of the Jeopardy questions and identifying

the correct answer needed to happen almost instantaneously

to compete on a high caliber level.

With the Jeopardy Challenge, Watson needed to break

down questions out of human language to a format Watson

could understand. The questions needed to break down into

the main statement and then separate supporting statements

out. “…decompose the question into these two parts and ask

for answers to each one, we may find that the answer

common to both questions is the answer to the original clue”

[3].

In recent years, IBM altered Watson to handle taxes by

collaborating with H&R Block. Although there is not much

technical information available discussing the design of

70

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Watson's work with taxes, there are a few assumptions that

can be made. We would assume Watson uses a rule and

case-based design. The rules would take in data on a new

client, which determine what tax actions could take place.

Watson would compare the new client to all previous clients

allowing for more accurate and consistent tax evaluation.

B. Deep Learning Frameworks – Tensor Flow

Tensor Flow is a deep learning framework built on the

first generation framework called DistBelief. Both

frameworks were developed by Google to advance

technology for the public and for use in Google’s wide

range of data products [4]. One of TensorFlow's major

improvements over DistBelief is its ability to scale up onto

large distributed hardware platforms utilizing multiple

CPUs and GPUs. Tensor Flow utilizes a master orchestrator

to distribute work across the number of hardware platforms

available, each individual platform then breaks the work

down to be solved across each system’s available CPUs and

GPUs.

Benchmarks conducted by Google researchers showed

the Tensor Flow framework performs, as well as other

popular training libraries. However, Tensor Flow did not

have the best performance statistics as other libraries in the

study when tested on a single machine platform [9].

Researchers at Google are continuing development in the

Tensor Flow framework to incorporate additional

optimization and automation to improve the performance of

the framework.

C. Rule Evolution IB1 & IB2 Algorithms

The IB1 and IB2 algorithms are used to evolve a

system's rules used for classification by incorporating new

cases. The addition of more instances over time causes the

machine to alter its rules to improve the probability of

giving a correct prediction on future instances. Instances can

either enforce existing rules or go against existing rules.

Over the course of a training period, the IB1 algorithm will

converge to the actual results based on altering its rules. IB1

requires data to have specific attributes, making cases

distinct enough for the algorithm to learn over time. If the

data does not have distinct attributes then the machine will

not learn, since no strong points of comparison are available

between cases [5].

A downside of the IB1 algorithm is the need to store all

correct and incorrect classifications over the lifetime of the

machine. The IB2 algorithm is a branch of the IB1

algorithm that does not require the storage of all

classifications, only the incorrect classifications. The

tradeoff of saving storage space is the increase in time

required for the IB2 algorithm to learn to predict with strong

accuracy [5].

During the evaluation of both the IB1 and IB2

algorithms, researchers determined both algorithms are able

to achieve acceptable prediction accuracies in some

situations. However, IB1 attains greater accuracies on each

scenario when compared to the IB2 algorithm. The increase

in accuracy for IB1 could be attributed to the storing of all

classification events versus only the incorrect

classifications.

D. Ensemble Method

Ensemble methods is the practice of implementing

multiple machine learning algorithms and incorporating an

additional algorithm to vote the responses to a single

response. “Ensemble methods are learning algorithms that

construct a set of classifiers and then classify new data

points by taking a (weighted) vote of their predictions'' [6].

Ensemble methods help to remove model bias and

overconfidence for models against specific applications.

“Ensemble methods are meta-algorithms that combine

several machine learning techniques into one predictive

model in order to decrease variance (bagging), bias

(boosting), or improve predictions (stacking)'' [7].

Figure 3: Weather Model Example [8]

Ensemble methods are used in other industries; for

example meteorologist compare numerous models to

generate a cone of certainty for hurricane predictions. Figure

3 shows an example of a cone of certainty track for

hurricane Dorian in 2019. This cone was generated by

averaging multiple hurricane track models to a single cone.

The cone shows decreasing assurance in the accuracy the

further in time of the prediction.

One ensemble method, the Bayesian method, is a

common practice of integrating multiple classifiers into a

single classifier. The Bayesian method utilizes a weighted

average method for determining the proper response.

However, researchers from the University of Washington

found the Bayesian method has a higher rate of error than

other methods of ensemble [9].

Figure 4: Ensemble Voting Methods [10]

71

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Another method used when incorporating ensemble with

machine learning is the bagging method. Bagging involves

multiple training models on different subsets of data and

integrating the outputs from each model to produce a single

result [7]. Boosting is another method for using numerous

predictions to create a single result. Both the Bayesian and

bagging methods are depicted in Figure 4.

III. METHODOLOGY/THEORY

This section discusses the methodology used in the
completion of this research. The research process followed
the system engineering v-diagram during development, as
shown in Figure 6.

Figure 6: Design Methodology

This section is further broken into a system architecture

and software architecture sections.

A. System Architecture

The implementation, which is shown in Figure 5, is
broken into four sections; a workstation computer, web
server, raspberry pi, and a shared storage box. The
workstation computer contains an NVidia GTX 980ti and is
used for generating models based on the training images.
Once the models are generated they are stored on a
centralized shared storage array.

The model generator portion of the system handles

ingesting a multitude of images and generating 200 models
per generation algorithm. The model generation is a
compute-intensive operation, taking about 90 seconds per
model at 200 models per algorithm to run, and requires a
high level of resources to provide accurate results.
Additional hardware options were investigated, including
Amazon's Web Service and Digital Ocean's droplets. Both of
these alternatives allow users to utilize a pay by use virtual
Linux environment having a wide range of hardware scaling
options. These options were not chosen to eliminate
variables introduced by relying on another company's
infrastructure.

A Raspberry Pi 3 B+ [11] was used for real-time image
classification utilizing an onboard camera. During the initial
testing and validation, the model generator was used. The
model generator was capable of classifying a large number
of images in rapid succession to validate the improvements
implemented. The Raspberry Pi was best suited for
completing single image classifications.

During initial testing and validation, the Model Generator
was also used in place of the Raspberry Pi. Connected to the
workstation is a networked HDD used for storing the
generated models.

The web server is the middle point between the
workstation and the raspberry pi, by serving the models
generated for the Pi to download. To enable future learning
from real imaging, the Pi will upload classified images to the
web server for the workstation to use in future model
generation.

Figure 5: System Flow Diagram

72

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. Software Architecture

The following software packages and frameworks are
used to generate the models for real-time image
classifications and for classifying new images:

 Python 3.6

 Tensorflow-GPU

 Numpy

 SciPy

 OpenCV

 Pillow

 Matplotlib

 H5py

 Keras

 ImageAI [12]

ImageAI is an API that can generate models based on an

image set and perform image classifications based on the
generated models. The API can generate models using the
Desenet, Inveption v3, Resnet, and Squeezenet algorithms.

The workstation utilizes the above listed software when
generating the initial models used for classification. ImageAI
is a wrapper framework for the rest of the libraries,
simplifying the development process. The same ImageAI
framework is used on the raspberry pi for real-time image
classification utilizing an add-on camera board. The
raspberry pi is capable of handling the classification
algorithms because the model generation and model
evolution is offloaded to the workstation [13]. This heavily
reduces the compute requirements, enabling the mobile real-
time classification.

The web server is a repository for the raspberry pi to
retrieve the latest generated models and to upload classified
images for further analysis. Real-time images are uploaded
to the webserver for manual verification of the image's
classification and are then loaded into the workstation as
additional training images to evolve the models. The
combination of the workstation and Raspberry Pi enables an
overall system supporting model evolution while increasing
the efficiency of the real-time classifier [13].

A future implementation adds a system capability of
justifying the classifications provided. The current design
behind the justification uses the built in confidence levels
provided when classifying images. An alternative approach
includes providing sample images that were classified using
the same models and produced the same results.

C. Model Training

The generation of the classification models requires one
data input and five configuration settings to generate the
models. The script takes a folder path to a subset of the
image dataset used for training as a script input. The
remainder of the images is used for validating the generated
models. The folder structure, as seen in Figure 7, consists of
one folder per profession with each folder containing at least
200 images.

The next section of the script generates four different
types of models based on four different generation
algorithms. Each generation takes five configuration settings.

The first one defines the number of image types, in this
scenario being the ten different professions. The next input is
the number of experiments, which determines the number of
models to generate. The enhance_data input is an optional
input, “This is used to state if we want the network to
produce modified copies of the training images for better
performance'' [14]. The batch size input is dependent on the
computing hardware available; the number is set to the
maximum amount allowed by the equipment available.
Finally, the show_network_summary input is used for
providing detailed information to the console during model
generation. The script cycles through the algorithms for
generation and then generates 200 models and one JSON file
per algorithm. The script serially generates the models for all
four algorithms: DenseNet, Inceptionv3, ResNet, and
SqueezeNet.

Figure 7: Image Folder Structure

Models are generated by breaking apart an image into

simpler parts. These parts determine a rule set that goes into
different layers. A culmination of each of these layers allows
the model to make predictions based on an inputted image.
The algorithm structures the layers in an optimal fashion to
maximize the efficiency of image predictions.

During model generation the number of models to
generate determines the number of variations the underlying
algorithms with attempt. For instance, this research used 200
variations for the parameter settings producing 200 different
models. The algorithms then determines an accuracy rate for
each model generated, allowing the user to select the model
with the highest evaluated accuracy. The generated models
are given a specific naming structure for easy identification.
The first parameter is an identification number ranging from
one to the number of models generated. The second
parameter gives the evaluated accuracy of the model, given
in decimal format.

Once all the models are generated, a PowerShell script
identifies the top three accurate models per algorithm. The
script copies the chosen models to a separate folder for use in
image classifications. When the models are generated, the
calculated accuracy is added to the filename, which is how

73

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the PowerShell script selects the top three. At this point, the
models are either used for individual image classification or
bulk image classification.

D. Image Classification

Classifying a single image is done through the individual
image classification script. This script takes in two directory
paths and a probability threshold as inputs. The directory
paths contain the location of the image to classify and the
models to use during classification. The probability threshold
determines what predictions from the models are used in the
voting. When the ImageAI algorithm attempts to classify an
image with a model, the algorithm returns a single prediction
with the probability of correctness. The probability threshold
variable only allows predictions with greater than 80%
confidence to be included in voting for the final predicted
profession.

After all twelve models preform their prediction, the
classifications that do not need the threshold requirements
are thrown out. The remaining predictions are used in a
simple majority voting scheme. The prediction with the
majority of the votes from the various models is presented to
the user with the average prediction confidence level and the
number of models agreeing with the prediction. The script is
capable of providing multiple predictions per image;
however, for this application, only single predictions are
needed.

E. Learning Algorithms

The ImageAI algorithm is used for the generation of the
models and acts as a wrapper library to various machine
learning algorithms, including Tensorflow. “ImageAI is an
easy to use Computer Vision Python library that empowers
developers to easily integrate state-of-the-art Artificial
Intelligence features into their new and existing applications
and systems'' [15]. By implementing the system utilizing
ImageAI, the overall development cycle was simplified by
masking the low-level coding. For this system, custom
recognition is utilized. However, the algorithm is capable of
also performing objection recognition and live video
detection [15].

F. Ensemble Methods

Two ensemble methods were used for combining the
results of the individual models. The initial method used a
simple majority voting scheme were each model has a single
vote to the prediction. During analysis the simple majority
method was altered to take into account each vote's
confidence level. This weighted voting method calculated,
which prediction has the highest confidence with a high
number of votes. For example, if four models prediction
waiter at a 95% confidence but five models predicted chef at
80% then the simple majority would produce chef as the
answer, while the weighted voting would produce waiter.

IV. DATA ANALYTICS

During this research, the Identifiable Professionals
(IdenProf) dataset [16] is used for evaluating the proposed
changes to the ImageAI algorithm. IdenProf contains 10

distinguishable professions, listed in Table I. A sample
image for each profession is shown in Figure 8. The dataset
consists of over 900 images per profession used for training
the system's models and an additional 200 images per
profession for validating the models. All images are sized to
a common pixel dimensions of 224 by 224 for uniformity.
The image set has a makeup of mostly white males from the
top 15 most populated countries [16], compared to other
genders or nationalities. During the duration of this research
project additional images can be gathered by pulling images
from Google's search engine.

Figure 8: Sample Profession Images [16]

The experiments included testing the base algorithms

against the training and validation images. These 200 images
allowed analysis and validation of the models generated at
all three stages of development. Additional experiments
utilized the raspberry pi to simulate processing images on a
low-powered machine. The models used in classifications
are selected based on the assigned accuracy defined during
model generation. For these experiments the models selected
have over eighty percent accuracy.

Table I: Training Images Classification

Training Images Classifications

Professions Accuracy

Chef 74.5%

Doctor 76.5%

Engineer 86.0%

Farmer 89.5%

Firefighter 90.5%

Judge 92.0%

Mechanic 84.5%

Pilot 87.5%

Police 87.5%

Waiter 72.0%

Figure 10 depicts a collection of the test images for a

pilot, one of the professions used in this research project.
When running a classification against a pilot image, the
system provides three results. Each result comes with a
probability that the answer is correct. Typically the models
generate one answer with a probability of over 95% and then
the remaining two answers will make up the remaining
percentage. During single image predictions, the system

74

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

provided a profession prediction, with a confidence level,
and the number of models agreeing with the answer. The
confidence level is the average of the models in agreeance on
the vote disclosing the models that do not meet the threshold.
During this sample run three of the twelve models did not
meet the required threshold and were dropped from the
calculations. The remaining nine models resulted in pilot as
the answer with a combined confidence of 99.99%. Similar
results were found on additional tests with different images.
Single image predictions was tested on both the workstation
and the Raspberry Pi B+ to act as a low powered system.

Figure 10: Sample Profession Images - Pilot [16]

While testing the performance of the model generation

algorithm, the runtimes for each model algorithm were
compared at different image dataset sizes. Figure 9 shows the
runtime of the four model algorithms and the total runtime at
nine image set sizes. With the exception of the final image
set of 9000, each runtime gradually increased compared to
the next smallest image set.

V. RESULTS

The results were gathered through two different methods,
the first conducting single image predictions and the other
doing an automated bulk analysis.

A. Single Image Classification

During testing using the Raspberry Pi 3 B+ for image
prediction, the Raspberry Pi required slightly different
software. The Raspberry Pi required older versions of some
libraries because the newer versions were not yet compatible.
Figure 11 shows the results when testing the Raspberry Pi
against a pilot image. The Raspberry Pi was able to correctly
classify the test image with a 99.99% confidence level; based
on four separate models, with three of the four models
agreeing on the prediction. The same image was used for
tests on the desktop and both the high performance desktop
and the Raspberry Pi 3 B+ were capable of providing the
correct prediction and same confidence level. The only
difference was the use of four models instead of twelve, to

minimize the run time required and counter issues of not
enough memory for twelve models.

Figure 11: Single Image Prediction on a Raspberry Pi

During execution the Raspberry Pi was consistently over

90% memory utilization after running through five of the
twelve models. Shortly into the sixth model assessment the
python script crashed due to not enough memory available.
Based on this limitation, the Raspberry Pi was configured to
only use the top model from each algorithm instead of top
three models per algorithm. All twelve models were ran
individually and manually combined to verify only four
models could perform as accurately as twelve. The manual
combination resulted in nine of the twelve models agreeing
with pilot for the prediction with a confidence level of
98.1%. The four model implementation produced the same
correct profession prediction, but with an increased
confidence level at 99.99%. Since the accuracy and
performance increased the Raspberry Pi implementation was
altered to the four model design.

The Raspberry Pi storage requirements grow at a rate of
12 KBs per image classified with a constant model storage
rate of 205 MBs for four models. These requirements are
portable to any edge node device used. The Raspberry Pi
takes an average of five minutes to classify a new image and
about 600 MB of memory for each image classification. The
time to classify is dependent on the hardware used, were the
Raspberry Pi takes five minutes per image the desktop takes
only three minutes per image.

B. Bulk Image Classification

During the bulk image processing, the scripts ingested
two thousand images, evenly distributed between ten
different professions. All the images received a profession
prediction from all twelve models. The Squeezenet models

Figure 9: Model Generation Runtime

75

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

consistently produced the wrong predictions, with only 10%
of the predictions being correct. After further review, the
model Squeezenet was only able to correctly predict a single
profession. The Densenet and Inceptionv3 models all
performed with an 87% accuracy and the Resnet algorithm
performed slightly worse at 85%. Individually the models
produced accurate results, but when implementing the voting
schemes the results improved.

Table II depicts the results of two different automated
ensemble methods and a third with manual intervention.
Implementing simple majority voting, also known as
bagging, with a confidence level threshold resulted in an
88% accuracy for predictions. The minimum required
threshold eliminated the Squeezenet predictions from the
voting. Where some models performed poorly for some
professions other models performed strongly, resulting in
increased correct predictions.

The second ensemble method involved expanding on the
bagging algorithm and incorporating the confidence levels
into the vote determination. Implementing this design
improvement resulted in a one percent accuracy increase
over the simple majority voting scheme, at 89% accuracy
when averaging the predictions from all 2000 image
predictions.

Table II: Training Images Classification

Ensemble Results

Ensemble Method
Positively
Predicted

Total
Images

Percent
Accuracy

Majority Rule 1764 2000 88%

Weighted Vote 1777 2000 89%

Weighted with
 Object Recognition

1807 2000 90%

Part of the future recommended work is incorporating

object recognition to the predictions. The final row of Table
II shows the improvement of doing manual object
recognition for the waiter and chef professions. For manual
recognition a tray or check book was searched for in the
waiter images and a chef hat or side pocket thermometer for
the chef images. The manual searching resulted in an
improvement of one percent in accuracy over the weighted
voting. Table III extracts the results for just the waiter and
chef images. Adding object recognition gave an 8% accuracy
improvement when looking solely at the chef and waiter
images.

Table III: Training Images Classification

Object Recognition Result

Prof.
Weighted Vote Object Recognition

Positively
Predicted

Percent
Accuracy

Positively
Predicted

Percent
Accuracy

Chef 165 / 200 83% 174 / 200 87%

Waiter 148 / 200 74% 169 / 200 85%

Chef &
Waiter

313 / 400 78% 343 / 400 86%

C. Additional Image Test

To verify the implemented algorithms additional police
and firefighter images were chosen from Google searches
and evaluated through the prediction script. These images
were all classified correctly with over 98% certainty with at
least six models agreeing on the vote. This test was
conducted using the simple majority voting method. Each
image was run multiple times against the same models to
ensure the results were consistent each time.

An additional test of five new chef and five new waiter
images were chosen from Google searches and evaluated
through the prediction script. Eight of the ten new images
classified correctly, at a rate of 80%. The majority of the
correctly identified images had a certainty of over 90%.
These images were also classified using the simple majority
voting method.

VI. HYPOTHESIS RESULTS

This section discusses how the implemented design
addresses the four hypothesizes discussed in the introductory
section. The hypotheses are also listed below:

1. Utilizing a knowledge base, can a DSS be

implemented to minimize the time and space
requirements, while maximizing the accuracy of the
suggested solutions?

2. How can a knowledge base be implemented to
improve the overall accuracy of the system?

3. Is a DSS able to provide solution justification to the
user, enabling users to have trust in the answers
being provided?

4. Is it possible to improve rule evolution without
needing to store locally all previous cases for doing
rule re-validations?

A. Hypothesis 1

The implemented design does not decrease the time
complexity compared to using a traditional single model
process. However, by implementing a real-time image
classifier on an endpoint node and the model generator on a
remote server the space complexity does improve. The
thought behind this is to remove heavy storage requirements
from endpoints that typically have minimal resources, while
the remote server typically has excesses resources.

B. Hypothesis 2

The implementation of a voting scheme with multiple
algorithms used for model generation has allowed an
improvement in prediction accuracy on average. Individually
the models perform worse than when all models are used in a
voting scheme.

C. Hypothesis 3

The voting scheme provides additional confidence in the
provided result while increasing accuracy. The system
provides the number of models agreeing with a prediction to
assist in providing the user with greater confidence in the

76

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

result. The system also provides the probability the system
believes in the response provided.

D. Hypothesis 4

The feedback loop introduces manually verified
predicted images and adds those images to the pool for future
model generation to enhance the model evolution. By
improving the model evolution, predictions improve
accuracy and allow for the system to handle input changes
over time. For example, as a profession’s physical
characteristics evolve the system will evolve as well.

To validate the feedback loop for incremental evolution
nine separate simulations was ran. Nine sets of models were
generated using different training set sizes ranging from one
thousand to nine thousand in one thousand increments. After
the models were generated the same five hundred images
were classified against the top twelve models from each
model set. Table IV shows the simulations with the results.
The results did not show a perfect upwards curve for
accuracy, but did show that as more images were added to
the training set the accuracy did improve. From this test the
accuracy went from 78% at one thousand training images to
84% at nine thousand training images. The model set with
one thousand images for training was an anomaly at a higher
accuracy rate than the later model generations. This anomaly
could be explained by the subset of images used in training
just being an ideal set of images compared to the rest of
image subsets.

Table IV: Model Evolution Results

Model Evolution Results

Training
Images

Positively
Predicted

Incorrectly
Predicted

Total
Processed

Percent
Accuracy

1000 391 109 500 78%

2000 316 184 500 63%

3000 349 151 500 70%

4000 360 140 500 72%

5000 381 119 500 76%

6000 399 101 500 80%

7000 400 100 500 80%

8000 424 76 500 85%

9000 421 79 500 84%

VII. CONCLUSION

Throughout this project, there were limitations to
development based on the hardware available. For future
development in this area, additional work should include
different types of hardware platforms. The algorithms were
implemented to handle both low and high-performance
hardware. Implementing the system on hardware like the
Nvidia 2080 Ti should improve model generation because of
the additional memory and CUDA cores, allowing for
improved accuracy for profession predictions. Beyond
improving the specific hardware available, work with a
distributed computing system should be researched.

A distributed system, shown in Figure 12, would grant a
significant amount of computing power beyond what a single

system would provide. A considerable improvement a
distributed system would bring is a level of fault tolerance. A
single system, similar to the one used in this project, has
mostly all single points of failure. A distributed system
would relieve the issue with single points of failure. During
this project, using the Raspberry Pi attempted to simulate
half the system in a distributed environment by using the
Raspberry Pi as a low-powered endpoint node. The
Raspberry Pi can be combined with an onboard camera to
provide live image recognition as well.

Figure 12: Distributed Network

This system's edge nodes are scalable based on the

quality of the back haul bandwidth from the edge node to the
centralized repository. Each individual edge node acts
autonomously, with no knowledge of the other edge nodes.
As long as the centralized repository has enough resources to
handle obtaining all the images from the edge nodes, the
generation and distribution of models then the overall system
can easily scale.

Incorporating object recognition, visual shown in Figure
13, into this design would also improve the overall
performance. As discussed in the results section, object
recognition improved the predictions of the chef and waiter
professions by 8%. This was done with only four objects
manually identified, using additional objects would improve
the accuracy even more.

Figure 13: Object Recognition Example [16]

77

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14 depicts the image classification flow when
incorporating object recognition. Each image is classified by
twelve models using a whole image classification method.
The twelve predictions are then combined through the
weighted majority voting algorithm. Separately, the image is
analyzed for object recognition, with the results compared
against a repository of known objects linked to professions.
The result from the object recognition and whole image
classification is compared, if the results are the same then the
system will export the result. However, if the comparison
shows a disagreement then both results are evaluated for
their confidence to determine what prediction to make.

Figure 14: Object Recognition with Voting

Throughout this project machine learning algorithms and

applications were reviewed to determine what improvements
could be made to enhance the field. One of the greatest areas
needing improvement was providing users with justification
and confidence in the predictions a system is providing. This
project attempted to use multiple machine learning
algorithms in a voting scheme to increase the confidence
level in the predictions, while also improving the accuracy of
the predictions.

By using predictions as a feedback loop into the model
generator, the system attempted to improve predictions over
time. Improvement of the knowledge evolution is crucial for
a system operating for any length of time. For instance, with
the profession application, police officers over the last
hundred years have evolved through their uniforms. If a
system were generated using photos of police from the
1920's, then the system would have a difficult time providing
correct predictions of present-day police.

With improved knowledge evolution, accuracy
improvements become possible. The accuracy of the system
was improved by implementing a voting scheme and a
confidence threshold to drop low confident predictions.
Specific algorithms showed higher performance against
certain professions and were able to counteract lower-
performing algorithms.

To improve the efficiency of the system, the space
complexity was improved with a slightly worse time
complexity. By implementing a server and client system, the
size complexity was greatly reduced at the endpoint node
while maintaining typical size complexity at the server-side.
The client-side system only needed to download models
from the server when available. Otherwise, the client can
perform predictions uninterrupted. However, since the
overall system utilizes the integration of open source
elements there is minimal control over the inner workings of
the libraries affecting size and complexity.

Overall, the implemented system addresses all
hypotheses originally made by implementing common, open-
source software in an untraditional manner. The delivered
system from this project is capable of predicting a person's
profession solely based on a single image of them, in a
manner and speed humans would not be capable of
achieving.

REFERENCES

[1] D. Prairie and P. Fortier, "Improve Operations of Real-Time
Image Classification Utilizing Machine Learning and
Knowledge Evolution", IARIA Data Analytics, 2019.

[2] A. Saxena, “Knowledge-Based Architecture for Integrated
Condition Based Maintenance of Engineering Sysems,"
Georgia Institute of Technology, Tech. Rep., 2007, Accessed:
Aug. 2019. [Online]. Available:
https://smartech.gatech.edu/handle/1853/16125

[3] D. Ferrucci, E. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A.
Kalyanpur, A. Lally, W. Murdock, E. Nyberg, J. Prager, N.
Schlaefer, and C. Welty, "Building Watson: An Overview of
the DeepQA Project," AI Magazine, 2010, Accessed: Aug.
2019. [Online]. Available:
https://www.researchgate.net/publication/220605292 Building
Watson An Overview of the DeepQA Project

[4] Google, "Tensor Flow" Google, [Online]. Available:
https://www.tensorflow.org/. [Accessed Apr. 20, 2019]

[5] D. Aha, D. Kibler and M. Albert, "Instance-Based Learning
Algorithms," Machine Learning, vol. 6, no. 1, pp. 37-66,
1991.

[6] F. Kittler and Josef; Roli, “Multiple Classifer Systems," in
First International Workshop, MCS 2000.

[7] V. Smolyakov, “Ensemble Learning to Improve Machine
Learning Results,"Statsbot, 2017, Accessed: Sep. 2019.
[Online]. Available: https://blog.statsbot.co/ensemble-
learning-d1dcd548e936

[8] F. P. R. E. Network, “Chances Increasing That Tropical
Storm Dorian Will A
ect Parts of Florida This Weekend," WUSF News, 2019,
Accessed: Oct. 2019. [Online]. Available:
https://wusfnews.wusf.usf.edu/post/chances-increasing-
tropical-storm-dorian-will-a
ect-parts-florida-weekend

[9] P. Domingos, “Bayesian Averaging of Classifiers and the
Overfitting Problem," University of Washington, Seattle,
Tech. Rep., 2002.

[10] J. D'Souza, “A Quick Guide to Boosting in ML," GreyAtom,
2018, Accessed: Sep. 2019. [Online]. Available:
https://medium.com/greyatom/a-quick-guide-to-boosting-in-
ml-acf7c1585cb5

[11] “Raspberry Pi 3 Model B+," Raspberry Pi Foundation, Tech.
Rep., 2019, Accessed: Aug. 2019. [Online]. Available:
https://www.raspberrypi.org/

78

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[12] DeepQuest AI, "Official English Documentation for
ImageAI!" DeepQuest AI. [Online]. Available:
https://imageai.readthedocs.io/en/latest/. [Accessed: Feb. 11,
2019].

[13] S. Jain, "How to easily Detect Objects with Deep Learning on
Raspberry Pi", medium.com, Mar. 20, 2018. [Online].
Available: https://medium.com/nanonets/how-to-easily-
detect-objects-with-deep-learning-on-raspberrypi-
225f29635c74. [Accessed May. 11, 2019].

[14] M. Olafenwa, “Custom Training," ImageAI, Tech. Rep.,
2019, Accessed: Sep. 2019. [Online]. Available:
https://github.com/OlafenwaMoses/ImageAI/blob/master/ima
geai

[15] M. Olafenwa and J. Olafenwa, “ImageAI," ImageAI, Tech.
Rep., 2019, Accessed: Sep. 2019. [Online]. Available:
http://imageai.org/

[16] M. Olafenwa, "IdenProf Datasheet" Olafenwa, [Online].
Available: https://github.com/OlafenwaMoses. [Accessed
Mar. 16, 2019]

[17] D. Galeon, "Paging Dr. Watson," 28 October 2016. [Online].
Available: https://futurism.com/ibms-watson-ai-recommends-
same-treatment-as-doctors-in-99-of-cancer-cases/. [Accessed
22 February 2019].

[18] Dtex Systems, "The Hidden Security Threat," Dtex Systems,
2016. [Online]. Available: https://dtexsystems.com/portfolio-

items/infographic-findings-from-the-2016-costs-of-insider-
threats-report/. [Accessed 21 March 2019].

[19] Q. Althebyan and B. Panda, "A Knwoledge-Base Model for
Insider Threat Prediction," Proceedings of the 2007 IEEE
Workshop on Information Assurance, vol. June, pp. 20-22,
2007.

[20] P. Bakkum and K. Skadron, "Accelerating SQL Database
Operations on a CPU with CUDA," University of Virginia,
Charlottesville, 2010.

[21] J. Jean, G. Dong, H. Zhang, X. Guo, and B. Zhang, "Query
Processing with An FPGA Coprocessor Board," in
Proceedings of the International Conference on Engineering
and Reconfigurable Systems and Algorithms, 2001.

[22] Martín Abadi et al, "TensorFlow: A System for Large-Scale
Machine Learning," in 12th USENIX Symposium on
Operating Systems Design, Savannah, 2016.

[23] D. Patil and P. Jayantrao. "Malicious URLs Detection Using
Decision Tree Classifiers and Majority Voting Technique."
Cybernetics and Information Technologies. vol. 18. no. 1, pp.
11-29. 10.2478/cait-2018-0002.

[24] C. Nichols, "How many flights come in and out of LAX every
day?," Los Angeles Magazine, 1 May 2011. [Online].
Available: http://www.lamag.com/askchris/how-many-flights-
come-in-and-out-of-lax-every1/. [Accessed Mar. 20, 2018].

[25] Homeland Security, "Combating the Insider Threat,"
Homeland Security, 2014.

79

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

