
The Collaborative Modularization and
Reengineering Approach CORAL

for Open Source Research Software

Christian Zirkelbach
Software Engineering Group

Kiel University
Kiel, Germany

czi@informatik.uni-kiel.de

Alexander Krause
Software Engineering Group

Kiel University
Kiel, Germany

akr@informatik.uni-kiel.de

Wilhelm Hasselbring
Software Engineering Group

Kiel University
Kiel, Germany

wha@informatik.uni-kiel.de

Abstract—Software systems evolve over their lifetime. Changing
requirements make it inevitable for developers to modify and
extend the underlying code base. Especially in the context of open
source software where everybody can contribute, requirements
can change over time and new user groups may be addressed.
In particular, research software is often not structured with a
maintainable and extensible architecture. In combination with
obsolescent technologies, this is a challenging task for new
developers, especially, when students are involved. In this paper,
we report on the modularization process and architecture of our
open source research project ExplorViz towards a microservice ar-
chitecture. The new architecture facilitates a collaborative devel-
opment process for both researchers and students. We explain our
employed iterative modularization and reengineering approach
CORAL, applied measures, and describe how we solved occurring
issues and enhanced our development process. Afterwards, we
illustrate the application of our modularization approach and
present the modernized, extensible software system architecture
and highlight the improved collaborative development process.
After the first iteration of the process, we present a proof-of-
concept implementation featuring several developed extensions
in terms of architecture and extensibility. After conducting the
second iteration, we achieved a first version of a microservice
architecture and an improved development process with room
for improvement, especially regarding service decoupling. Finally,
as a result of the third iteration, we illustrate our improved
implementation and development process representing an entire,
separately deployable, microservice architecture.

Keywords–collaborative software engineering; software modu-
larization; software modernization; open source software; microser-
vices.

I. INTRODUCTION

Software systems are continuously evolving during their
lifetime. Changing contexts, legal, or requirement changes
such as customer requests make it inevitable for developers
to perform modifications of existing software systems. Open
source software is based on the open source model, which
addresses a decentralized and collaborative software develop-
ment. In this paper, we report on the iterative modularization
process of our open source research project ExplorViz towards
a more collaboration-oriented development process featuring a
microservice architecture based on our previous work [1].

Open research software [2] is available to the public and
enables anyone to copy, modify, and redistribute the underlying

source code. In this context, where anyone can contribute
code or feature requests, requirements can change over time
and new user groups may appear. Although this development
approach features a lot of collaboration and freedom, the re-
sulting software does not necessarily constitute a maintainable
and extensible underlying architecture. Additionally, employed
technologies and frameworks can become obsolescent or are
not updated anymore. In particular, research software is often
not structured with a maintainable and extensible architec-
ture [3]. This causes a challenging task for developers during
the development, especially when inexperienced collaborators
like students are involved. Based on several drivers, like
technical issues or occurring organization problems, many
research and industrial projects need to move their applica-
tions to other programming languages, frameworks, or even
architectures. Currently, a tremendous movement in research
and industry constitutes a migration or even modernization to-
wards a microservice architecture, caused by promised benefits
like scalability, agility, and reliability [4]. Unfortunately, the
process of moving towards a microservice-based architecture
is difficult, because there a several challenges to address from
both technical and organizational perspectives [5]. We later call
the outdated version ExplorViz Legacy, and the new version
just ExplorViz. Our main contributions in this paper are:

• Identification of technical and organizational problems
in our monolithic open source research project
ExplorViz.

• An iterative modularization and reengineering process
focusing on collaborative development applied on our
project moving towards a microservice architecture in
three iterations.

• A proof-of-concept implementation, followed by an
evaluation based on several developed extensions, as
the result of the first iteration.

• An improved software architecture based on microser-
vices and development process after our second iter-
ation.

• Finally, after our third iteration, an entire and sepa-
rately deployable microservice architecture.

The remainder of this paper is organized as follows.
In Section II, we illustrate our problems and drivers for a

34

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



modularization and architectural modernization. Afterwards,
we present the initial state our software system and underlying
architecture of ExplorViz Legacy in Section III. Our employed
modularization and modernization process as explained in Sec-
tion IV. The following first iteration of this process as well
as the target architecture of ExplorViz are described in Sec-
tion V. Section VI concludes the first iteration with a proof-
of-concept implementation in detail, including an evaluation
based on several developed extensions. The second iteration
of our process in terms of achieving a first microservice
architecture is presented in Section VII. As there was still
room for improvement, we describe how we further improved
our microservice architecture and development process in Sec-
tion VIII. Section IX discusses related work on modularization
and modernization towards microservice architectures. Finally,
the conclusions are drawn, which includes a summary, depicts
lessons learned, and gives an outlook for future work.

II. PROBLEM STATEMENT

The open source research project ExplorViz started in
2012 as part of a PhD thesis and is further developed and
maintained until today. ExplorViz enables a live monitoring and
visualization of large software landscapes [6], [7]. In particular,
the tool offers two types of visualizations – a landscape-
level and an application-level perspective. The first provides
an overview of a monitored software landscape consisting of
several servers, applications, and communication in-between.
The second perspective visualizes a single application within
the software landscape and reveals its underlying architecture,
e.g., the package hierarchy in Java, and shows classes and
related communication. The tool has the objective to aid the
process of system and program comprehension for developers
and operators. We successfully employed the software in
several collaboration projects [8], [9] and experiments [10],
[11]. The project is developed from the beginning on Github
with a small set of core developers and many collaborators
(more than 40 students) over the time. Several extensions have
been implemented since the first version, which enhanced the
tool’s feature set. Unfortunately, this led to an unstructured
architecture due to an unsuitable collaboration and integration
process. In combination with technical debt and issues of
our employed software framework and underlying architecture,
we had to perform a technical and process-oriented modu-
larization. Since 2012, several researchers, student assistants,
and a total of 31 student theses as well as multiple projects
contributed to ExplorViz. We initially chose the Java-based
Google Web Toolkit (GWT) [12], which seemed to be a
good fit in 2012, since Java is the most used language in
our lectures. GWT provides different wrappers for Hypertext
Markup Language (HTML) and compiles a set of Java classes
to JavaScript (JS) to enable the execution of applications in
web browsers. Employing GWT in our project resulted in a
monolithic application (hereinafter referred to as ExplorViz
Legacy), which introduced certain problems over the course
of time.

A. Extensibility & Integrability

ExplorViz Legacy’s concerns are divided in core logic
(core), predefined software visualizations, and extensions.
When ExplorViz Legacy was developed, students created new

Git branches to implement their given task, e.g., a new feature.
However, there was no extension mechanism that allowed
the integration of features without rupturing the core’s code
base. Therefore, most students created different, but necessary
features in varying classes for the same functionality. Further-
more, completely new technologies were utilized, which intro-
duced new, sometimes even unnecessary (due to the lack of
knowledge), dependencies. Eventually, most of the developed
features could not be easily integrated into the master branch
and thus remained isolated in their created feature branch.

B. Code Quality & Comprehensibility

After a short period of time, modern JS web frame-
works became increasingly mature. Therefore, we started to
use GWT’s JavaScript Native Interface (JSNI) to embed JS
functionality in client-related Java methods. For example, this
approach allowed us to introduce a more accessible JS-based
rendering engine. Unfortunately, JSNI was overused and the
result was a partitioning of the code base. Developers were
now starting to write Java source code, only to access JS,
HTML, and Cascading Style Sheets (CSS). This partitioning
reduced the accessibility for new developers. Furthermore, the
integration of modern JS libraries in order to improve the
user experience in the frontend was problematic. Additionally,
Google announced that JSNI would be removed with the
upcoming release of Version 3, which required the migration
of a majority of client-related code. Google also released a
new web development programming language, named DART,
which seemed to be the unofficial successor of GWT. Thus,
we identified a potential risk, if we would perform a version
update. Eventually, JSNI reduced our code quality. By code
quality, we understand the maintainability of the source code,
which includes the concepts of analyzability, changeability,
and understandability [13]. Our remaining Java classes further
suffered from ignoring some of the most common Java conven-
tions and resulting bugs. Students of our university know and
use supporting software for code quality, e.g., static analysis
tools such as Checkstyle [14] or PMD [15]. However, we
did not define a common code style supported by these tools
in ExplorViz Legacy. Therefore, a vast amount of extensions
required a lot of refactoring, especially when we planned to
integrate a feature into the core.

C. Software Configuration & Delivery

In ExplorViz Legacy, integrated features were deeply cou-
pled with the core and could not be easily taken out. Often,
users did not need all features, but only a certain subset of the
overall functionality. Therefore, we introduced new branches
with different configurations for several use cases, e.g., a live
demo. Afterwards, users could download resulting artifacts,
but the maintenance of related branches was cumbersome.
Summarized, the stated problems worsened the extensibility,
maintainability, and comprehension for developers of our
software. Therefore, we were in need of modularizing and
modernizing ExplorViz Legacy.

III. ExplorViz Legacy

In order to understand the modularization process, we
provide more detailed information about our old architecture
in the following. The overall architecture and the employed

35

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Server

Monitored Server

Application

Monitoring

Client

Feature

Filesystem

TCP HTTPVisualization

Analysis

Figure 1: Architectural overview and software stack of the monolithic ExplorViz Legacy.

software stack of ExplorViz Legacy is shown in Figure 1.
We are instrumenting applications, regardless whether they
are native applications or deployed artifacts in an application
server like Apache Tomcat. The instrumentation is realized
by our monitoring component. The component employs in
the case of Java AspectJ, an aspect-oriented programming
extension for Java [16]. AspectJ allows us to intercept an
application by bytecode-weaving. Thereby, we can gather
necessary monitoring information for analysis and visualiza-
tion purposes. Subsequently, this information is transported
via Transmission Control Protocol (TCP) towards a server,
which hosts our GWT application. This part represents the two
major components of our architecture, namely analysis and
visualization. The analysis component receives the monitoring
information and reconstructs traces. These traces are stored in
the file system and describe a software landscape consisting
of monitored applications and communication in-between. Our
user-management employs the H2 database [17] to store related
data. The software landscape visualization is provided via
Hypertext Transfer Protocol (HTTP) and is accessible by
clients with a web browser. GWT is an open source framework,
which allows to develop JS front-end applications in Java. It
facilitates the usage of Java code for server (backend) and
client (frontend) logic in a single web project. Client-related
components are compiled to respective JS code. The com-
munication between frontend and backend is handled through
asynchronous remote procedure calls (ARPC) based on HTTP.
The usage of ARPC allows non-professional developers, in our
case computer science students, to easily extend our existing
open source research project. ARPC enables a simple exchange
of Java objects between client and server. In ExplorViz Legacy,
the advantages of GWT proved to be a drawback, because
every change affects the whole project due to its single
code base. New developed features were hard-wired into the
software system. Thus, a feature could not be maintained,
extended, or replaced by another component with reasonable
effort. This situation was a leading motivation for us to look
for an up-to-date framework replacement. We intended to take

advantage of this situation and modularize our software sys-
tem. The plan was to move from a monolithic to a distributed
(web) application divided into separately maintainable and
deployable backend and frontend components.

Our open source research project is publicly accessible
since the beginning on Github and is licensed under the Apache
License, Version 2.0. The development process facilitated the
maintainability and extensibility of our software by means of
so-called feature branches. Every code change, e.g., a new
feature or bugfix, had to be implemented in a separated feature
branch based on the master branch. This affected not only
the core developers (researchers), but also student assistants,
or students during a thesis or project. After performing a
validation on the viability and quality of the newly written
source code, the branch needed to be merged into the master
project and thus permanently into the project. This fact often
led to an intricate and time-consuming integration process,
since all developers worked on a single code base. For that
reason, we had to improve our development process to perform
a modularization and technical modernization.

The previously mentioned drawbacks in ExplorViz Legacy
were our initial trigger for a modularization and moderniza-
tion. Additionally, recent experience reports in literature were
published about successful applications of alternative technolo-
gies, e.g., Representational State Transfer (REST or RESTful)
Application Programming Interfaces (API) [18], [19]. In the
following, we describe our employed, iterative modularization
and reengineering approach CORAL, which guided us through
this process.

IV. THE MODULARIZATION AND REENGINEERING
APPROACH CORAL

Our Collaborative Reengineering and Modularization Ap-
proach (CORAL) addresses problems regarding the modern-
ization and modularization of open source research projects
in technical and organizational aspects. This collaborative,

36

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Manual Analysis

Software Architecture Evaluation

Development Process
Assessment

Tool-based Analysis

System and Program
Comprehension based on

Software Visualization

Recommendation

Software Architecture

Technologies and Frameworks

Development Process

Execution

Recommendation Plan
Execution

Evaluation

Software Quality Improvements

Software Architecture
Comparison

Manual Analysis
Result Document

Recommendation
Plan

Tool-based
Analysis Result

Document

result sufficient?

[true][false]

Figure 2: UML activity diagram illustrating our iterative modularization and reengineering approach CORAL.

tool-employing approach supports developers and operators
in modularizing and modernizing their software systems in
an iterative manner. Basically, the approach consists of five,
consecutive activities to support the modularization and reengi-
neering of existing software projects and involved systems.
Figure 2 gives an overview of the approach in form of an
UML activity diagram. The five activities (colored in gray)
are Manual Analysis, Tool-based Analysis, Recommendation,
Execution, and Evaluation. In the following, the activities are
briefly described.

A. Manual Analysis

An existing software project and involved systems, which
are in need of modularization and modernization, have to be
analyzed first (by the developers). Therefore, we need to take
a look at the underlying architecture, employed technologies,
and tools. This task includes a software architecture and mod-
ernization evaluation, in order to identify and reassess legacy
source code, frameworks and utilized libraries, and execution
environments. The software architecture evaluation task is
divided into four parts – (i) a software architecture review, (ii)
the application of the software architecture evaluation method
ATAM [20], (iii) the identification of technical debt, and (iv)
the examination of employed technologies and frameworks.
For guidelines and approaches for evaluating software architec-
tures, we refer to [21]–[23]. Additionally, the developers need
to contribute their knowledge of known technical debt, existing
documentation, and their current development process. For
assessing and evaluating software development processes, we
refer to [24], [25]. The results of this activity are summarized
in form of a result document.

B. Tool-based Analysis

Afterwards, the system is analyzed with tools, which aid
the modularization process by detecting (technical) flaws,
possible shortcomings, and optimization potential. In detail,
we focus on the aspect of understanding the software system.
We address this aspect by employing the software visualization
tool ExplorViz itself in order to aid the system and program
comprehension process. We employ ExplorViz to achieve a

better understanding of the software systems we want to
modularize and modernize within our approach. ExplorViz
was already successfully utilized for comprehension purposes
in several scientific [8], [9] and industrial collaborations. By
utilizing ExplorViz for the program comprehension process, we
take advantage of software visualizations instead of software
artifacts like source code or documentation. Thus, we can
enhance our previously obtained knowledge about the software
systems from discussions and interviews with the software
developers. Finally, we document our findings in form of a
result document.

C. Recommendation

In this activity, we take a look into the analysis result
documents of the Manual Analysis and Tool-based Analysis
activities, and design a recommendation plan in collaboration
with the developers. The recommendation plan is based on
the results and examines possible (target) architectures, tech-
nologies, and frameworks. Thereby, we also take the employed
development process into account. The purpose is to facilitate
synergy effects between the software system and the corre-
sponding development process. In the best case, we achieve a
collaborative development process, which supports the planned
modularization and modernization from the beginning.

D. Execution

After discussing the presented options leading towards a
recommendation plan in the last activity, we need to prepare
the execution of it. More precisely, we work out a proof-
of-concept implementation of the recommendation plan first.
Thus, we can verify the necessary technical adaptions in
general and are able to perform the reengineering and modu-
larization process afterwards on a solid basis.

E. Evaluation

Once we executed our recommendation plan, we need to
evaluate its impact on the software system. Therefore, we
focus on comparing the software quality based on metrics
provided by software quality tools on one hand and the

37

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



software architecture through visual comparison on the other
hand. Typically, the results of the evaluation are not sufficient
after only one execution. Thus, it is likely, that the overall
approach needs to be conducted multiple times in order to
achieve an acceptable state.

V. FIRST ITERATION: MODULARIZATION PROCESS AND
ARCHITECTURE OF ExplorViz

Within ExplorViz Legacy, we applied the above mentioned
process, which guided us through our modularization process
from performing a first requirement analysis and defining goals
towards our actual state. Summarized, we performed multiple
iterations of the process until we reached an entire, maintain-
able, and especially extensible microservice architecture. In the
following, the first iteration of the process is described.

A. Requirement Analysis and Goals

We no longer perceived advantages of preferring GWT over
other web frameworks. During the modularization planning
phase, we started with a requirement analysis for our modern-
ized software system and identified technical and development
process related impediments in the project. We kept in mind
that our focus was to provide a collaborative development
process, which encourages developers to participate in our
research project [26]. Furthermore, developers, especially inex-
perienced ones, tend to have potential biases during the devel-
opment of software, e.g., they make decisions on their existing
knowledge instead of exploring unknown solutions [27].

As a result, we intended to provide plug-in mechanisms
for the extension of the backend and frontend with well-
defined interfaces. We intended to encourage developers to
try out new libraries and technologies, without rupturing
existing code. According to [28], the organization of a software
system implementation is not an adequate representation of a
system’s architecture. Thus, architectural changes towards the
implementation of a software system have to be documented
before or at least shortly after the realization. If this aspect is
not addressed, the architecture model has a least to be updated
based on the implementation in a timely manner. Thus, we
took this into account in order to enhance our development
process. Architectural decay in long-living software systems
is also an important aspect. Over time, architectural smells
manifest themselves into a system’s implementation, whether
they were introduced into the system from the beginning or
later during development [29]. For the modularization process
of our software system it was necessary to look for such smells
to eliminate them in the new system. In the end, we identified
the following goals for our modularization and modernization
process:

• The project needs to be stripped down to it’s core,
anything else is a form of extension.

• We need to focus on the main purpose of our project
– the visualization of software landscapes and ar-
chitectures. Thus, we need to look for a monitoring
alternative.

• The backend and frontend should be separately de-
ployable and technologically independent. The latter

goal allows us to replace them with little effort.
Additionally, they store their own data and use no
centralized storage or database.

• Scaffolds or dummy-projects are provided for the
development of extensions.

• We stick to the encapsulation principle and provide
well-defined interfaces.

• The overall development process needs to be en-
hanced, e.g, by using Continuous Integration (CI) and
quality assurance (QA), like code quality checks.

In general, there exist many drivers and barriers for mi-
croservice adoption [30]. Typical barriers and challenges are
the required additional governance of distributed, networked
systems and the decentralized persistence of data. After we
applied the two activities Manual Analysis and Tools-based
Analysis within our iterative CORAL approach, we agreed
within the Recommendation activity to build our recommenda-
tion plan upon an architecture based on microservices. This ar-
chitectural style offers the ability to divide monolithic applica-
tions into small, lightweight, and independent services, which
are also separately deployable [4], [31]–[33]. However, the
obtained benefits of a microservice architecture can bring along
some drawbacks, such as increased overall complexity and data
consistency issues [34]. Adopting the above mentioned goals
lead us finally to the microservice-based architecture shown
in Figure 3.

B. Extensibility & Integrability

In a first step, we modularized our GWT project into
two separated projects, i.e., backend and frontend, which
are now two self-contained microservices. Thus, they can
be developed technologically independent and deployed on
different server nodes. In detail, we employ distinct technology
stacks with independent data storage. This allows us to replace
the microservices, as long as we take our specified APIs
into account. We tried to evaluate how we can facilitate the
development for our main collaborators, i.e., our students.
Therefore, our selection of technologies was driven by the
students’ education at the Kiel University. The backend is
implemented as a Java-based web service based on Jersey [35],
which provides a RESTful API via HTTP for clients. We chose
Jersey, because of its JAX-RS compliance. In our opinion,
Jersey is a mature framework and due to its HTTP roots it
is easy to understand for developers, especially collaborators
such as students. Jersey implements the Servlet 3.0 specifi-
cation, which offers javax.servlet.annotations to define servlet
declarations and mappings. We assume that the usage of the
Servlet 3.0 specification eases the development process in the
backend, especially for students. Furthermore, we replaced
our custom-made monitoring component by the monitoring
framework Kieker [36]. This framework provides an extensible
approach for monitoring and analyzing the runtime behavior
of distributed software systems. Monitored information is sent
via TCP to our backend, which employs the filesystem and H2
database for storage. Kieker employs a similar monitoring data
structure, which fits our replacement requirements perfectly.
The frontend uses the JS framework Ember.js, which enables
us to offer visualizations of software landscapes to clients with

38

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



a web browser [37]. Ember.js was chosen, since its core idea of
using addons to modularize the application, i.e., the frontend
of ExplorViz is a good practice in general. Furthermore, the
software ecosystem of Ember.js with community-driven addons
is tremendous and their developer team frequently updates
the framework with new features. Since Ember.js is based
on the model-view-viewmodel architectural pattern, develop-
ers do not need to manually access the Document Object
Model and thus need to write less source code. Ember.js uses
Node.js as execution environment and emphasizes the use of
components in web sites, i.e., self-contained, reusable, and
exchangeable user interface fragments [38]. We build upon
these components to encapsulate distinct visualization modes,
especially for extensions. Communication, like a request of a
software landscape from the backend, is abstracted by so-called
Ember.js adapters. These adapters make it easy to request or
send data by using the convention-over-configuration pattern.
The introduced microservices, namely backend and frontend,
represent the core of ExplorViz. As for future extensions,
we implemented well-defined extension interfaces for both
microservices, that allow their integration into the core.

C. Code Quality & Comprehensibility

New project developers, e.g., students, do not have to
understand the complete project from the beginning. They
can now extend the core by implementing new mechanics
on the basis of a plug-in extension. Extensions can access
the core functionality only by a well-defined read-only API,
which is implemented by the backend, respectively frontend.
This high level of encapsulation and modularization allows us
to improve the project, while not breaking extension support.
Additionally, we do no longer have a conglomeration between
backend and frontend source code, especially the mix of Java
and JS, in single components. This eased the development
process and thus reduced the number of bugs, which previously
occurred in ExplorViz Legacy. Another simplification was the
use of json:api [39] as data exchange format specification be-
tween backend and frontend, which introduced a well-defined
JavaScript Object Notation (JSON) format with attributes and
relations for data objects. This minimizes the amount of data
and round trips needed when making API calls. Due to its
well-defined structure and relationship handling, developers
are greatly supported when exchanging data.

D. Software Configuration & Delivery

One of our goals was the ability to easily replace the
microservices. We fulfill this task by employing frameworks,
which are exchangeable with respect to their language do-
main, i.e., Java and JS. We anticipate that substituting these
frameworks could be done with reasonable effort, if neces-
sary. Furthermore, we offer pre-configured artifacts of our
software for several use cases by employing Docker images.
Thus, we are able to provide containers for the backend
and frontend or special purposes, e.g., a fully functional live
demo. Additionally, we implemented the capability to plug-in
developed extensions in the backend, by providing a package-
scanning mechanism. The mechanism scans a specific folder
for compiled extensions and integrates them at runtime.

VI. PROOF-OF-CONCEPT IMPLEMENTATION

In order to execute and afterwards evaluate the recom-
mendation plan we designed before, we realized a proof-of-
concept implementation and split our project as planned into
two separate projects – a backend project based on Jersey,
and a frontend project employing the JS framework Ember.js.
Both frameworks have a large and active community and
offer sufficient documentation, which is important for new
developers. As shown in Figure 3, we strive for an easily
maintainable, extensible, and plug-in-oriented microservice
architecture. Since the end the first iteration of our modulariza-
tion and modernization process in early 2018, we were able to
successfully develop several extensions both for the backend
and the frontend. Four of them are described in the following.

A. Application Discovery

Although we employ the monitoring framework Kieker,
it lacks a user-friendly, automated setup configuration due to
its framework characteristics. Thus, users of ExplorViz experi-
enced problems with instrumenting their applications for mon-
itoring. In [40], we reported on our application discovery and
monitoring management system to circumvent this drawback.
The key concept is to utilize a software agent that simplifies
the discovery of running applications within operating systems.
An example visualization of the extension’s user-interface
is shown in Figure 4. The figure shows three discovered
applications on a monitored server. Furthermore, this extension
properly configures and manages the monitoring framework
Kieker. More precisely, the extension is divided in a frontend
extension, providing a configuration interface for the user, and
a backend extension, which applies this configuration to the
respective software agent lying on a software system. Then,
the software agent is able to apply the chosen configuration
towards Kieker for the application monitoring.

Finally, we were able to conduct a first pilot study to
evaluate the usability of our approach with respect to an easy-
to-use application monitoring. The improvement regarding the
usability of the monitoring procedure of this extension was a
great success. Thus, we recommend this extension for every
user of ExplorViz.

B. Virtual Reality Support

An established way to understand the complexity of a
software system is to employ visualizations of software land-
scapes. However, with the help of visualization alone, ex-
ploring an unknown software system is still a potentially
challenging and time-consuming task. In the past years, Virtual
Reality (VR) techniques emerged at the consumer market.
Starting with the Oculus Rift DK1 head-mounted display
(HMD), which was available at the end of 2013, the VR
devices constituted a major step towards the consumer market.
Based on this development, modern VR approaches became
affordable and available for various research purposes. A
similar development can be observed in the field of gesture-
based interfaces, when Microsoft released their Kinect sensor
in 2010 [41]. A combination of both techniques offers new
visualization and interaction capabilities for newly created
software, but can also improve reverse engineering tasks of
existing software by means of immersive user experience.

39

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Frontend

Monitored 
Server

Backend

Application
TCP

Client

HTTPHTTP

Filesystem

VisualizationAnalysis

Frontend-ExtensionBackend-Extension

Figure 3: Architectural overview and software stack of the modularized ExplorViz (after the first iteration).

Figure 4: Screenshot of the application discovery extension of ExplorViz.

Based on an in-depth 3D visualization and a more natural
interaction, compared to a traditional 2D screen and input de-
vices like mouse and keyboard, the user gets a more immersive
experience, which benefits the comprehension process [42].
VR can offer an advantage in comparison to existing devel-
oper environments to enable new creative opportunities and
potentially result in higher productivity, lower learning curves,
and increased user satisfaction [43]. For this extension, five
students followed a new approach using VR for exploring

software landscapes collaboratively based on our previous
work [44]. They employed severals HMDs (HTC Vive, HTC
Vive Pro, and Oculus Rift) to allow a collaborative exploration
and comprehension of software in VR. A screenshot of the
VR extension featuring the application-perspective and visu-
alized VR controllers is shown in Figure 5. The collaborative
VR approach builds upon our microservice architecture and
employs WebSocket connections to exchange data to achieve
modular extensibility and high performance for this real-time

40

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 5: Screenshot of the VR extension of ExplorViz showing
the application perspective and visualized VR controllers.

multi-user environment. As a proof of concept, they conducted
a first usability evaluation with 22 subjects. The results of
this evaluation revealed a good usability and thus constituted
a valuable extension to ExplorViz. Recently, we performed a
second evaluation focusing on the applicability of the approach
for system and program comprehension tasks in teams. With
24 subjects, grouped into physically separated teams of two
persons, they solved comprehension tasks collaboratively. First
results indicated an efficient usage of the approach, which
could offer an alternative to traditional 2D displays and in-
teraction devices.

C. Architecture Conformance Checking

Software landscapes evolve over the time, and conse-
quently, architecture erosion occurs. This erosion causes high
maintenance and operation costs, thus performing architecture
conformance checking (ACC) is an important task. ACC
allows faster functionality changes and eases the adaptation
to new challenges or requirements. Additionally, software
architects can use ACC to verify a developed version against a
previous modeled version. This can be used to check whether
the current architecture complies with the specified architec-
ture and allows to reveal constraint violations. An example
architecture conformance visualization of a monitored software
landscape against a modeled one is shown in Figure 6. The
visualization illustrates missing or modified (colored in red),
and additional (colored in blue) nodes and applications and
related communication in-between for a software landscape.
In this extension, a student developed an approach to perform
ACC between a modeled software landscape consisting of ap-
plications using an editor and a monitored software landscape.
This allows us to perform a visual comparison between both
versions on an architectural level. In order to evaluate the
extension, the student conducted a usability study with five
participants, applying the model editor for a desired software
landscape and performing ACC of a modeled software land-

scape against a monitored one. The results indicated a good
user experience of the approach, although the usability of the
editor could be improved.

D. Visualizing Architecture Comparison

Identifying architectural changes between two visualiza-
tions of a complex software application is a challenging task,
which can be supported by appropriate tooling. Although
ExplorViz visualizes the behavior and thus the runtime archi-
tecture of a software system, it is not possible to compare
two versions. In this extension one student developed an
approach to perform a visual software architecture comparison
of two monitored applications, e.g., indicating removed or
changed components or classes. This facilitates a developer
to see at a glance which parts of the architecture have been
added, deleted, modified, or remained unchanged between the
two versions. Finally, an evaluation based on a qualitative
usability study with an industrial partner was conducted. Five
professional software engineers participated in the study and
solved comparison tasks based on two different versions of
their own developed software. The evaluation showed that the
extension is applicable for solving architecture comprehension
tasks with different versions within ExplorViz.

VII. SECOND ITERATION: RESTRUCTURED
ARCHITECTURE AND NEW PROCESS

As the evaluations at the end of the first iteration revealed
some drawbacks, we decided to perform a second iteration
of our modularization and modernization approach. After
evaluating the first iteration we identified, among others, four
major drawbacks, which are presented in the following.

• Extensibility & Integrability: Higher services had to
perform several HTTP requests to obtain necessary
information from variety of services.

• Code Quality & Comprehensibility: The coding qual-
ity was on a low level due to the lack of employed
QA tools and rules.

• Software Configuration & Delivery: We needed to
provide compiled Java files of all available backend
extensions.

• Software Architecture Erosion & Accessibility: The
configuration of the monitoring was still too difficult.

Our modularization approach started by dividing the old
monolith into separated frontend and backend projects [26].
Since then, we further decomposed our backend into several
microservices to address the problems stated in Section II. The
resulting, restructured architecture is illustrated in Figure 7
and the new collaborative development process is described
below. As reported in Section VI, the new architecture already
improved the collaboration with new developers who realized
new features as modular extensions.

A. Extensibility & Integrability

Frontend extensions are based on Ember.js’s addon mecha-
nism. This approach works quite well for us as shown in Sec-
tion VI. The backend, however, used the package scanning
feature of Jersey to include extensions. The result of this

41

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 6: Screenshot of the architecture conformance checking extension of ExplorViz.

procedure was again an unhandy configuration of a monolithic
application with high coupling of its modules. Therefore, we
once again restructured the approach for our backend plug-in
extensions. The extensions are now decoupled and represent
separated microservices. As a result, each extension is respon-
sible for its own data persistence and error handling. Due to
the decomposition of the backend, we are left with multiple
Uniform Resource Identifiers (URI). Furthermore, new exten-
sions will introduce additional endpoints, therefore more URIs
again. To simplify the data exchange handling based on those
endpoints, we employ a common approach for microservice-
based backends. The frontend communicates with an API
gateway instead of several single servers, thus only a single
base Uniform Resource Locator (URL) with well-defined,
multiple URIs. This gateway, a NGINX reverse proxy [45],
passes requests based on their URI to the respective proxied
microservices, e.g., the landscape-service. Furthermore, the
gateway acts as a single interface for extensions and offers
additional features like caching and load balancing. Extension
developers, who require a backend component, extend the
gateway’s configuration file, such that their frontend extension
can access their complement. Some extensions must read data
from different services. In the past, we used HTTP requests
to periodically obtain this data. Each request was processed
by the providing service, therefore introducing unnecessary
load. The inter-service communication is now realized with the
help of Apache Kafka [46]. Kafka is a distributed streaming
platform with fault-tolerance for loosely coupled systems. We
use Kafka for events that might be interesting for upcoming
microservices. For example, the landscape-service consumes
traces from the respective Kafka topic and produces a new
landscape every tenth second for another topic. Microservices
can consume the topic, obtain, and process the data in their
custom way. As a result, the producing service does not have to
process unnecessary HTTP requests, but simply fires its data
and forgets it. Simple Create Read Update Delete (CRUD)
operations on resources, e.g., users and their management,
are provided by means of RESTful APIs by the respective
microservices. The decomposition into several independent mi-
croservices and the new inter-service communication approach
both facilitate low coupling in our system.

B. Code Quality & Comprehensibility

The improvements for code quality and accessibility, which
were introduced in the first iteration of our modularization
approach, showed a perceptible impact on contributor’s work.
For example, recurring students approved the easier access
to ExplorViz and especially the obligatory exchange format
json:api. However, we still lacked a common code style in
terms of conventions and best practices. To achieve this and
therefore facilitate maintainability, we defined compulsory rule
sets for the quality assurance tools Checkstyle and PMD.
In addition with SpotBugs [47], we impose their usage on
contributors for Java code. For JS, we employ ESLint [48], i.e.,
a static analysis linter, with an Ember.js community-driven rule
set. The latter contains best practices for Ember.js applications
and rules to prevent programming flaws. In the future, we are
going to enhance this rule set with our custom guidelines.
Another aspect are CI tools. CI systems and tools are used
to automate the compilation, building, and testing of software
(systems). Software projects that employ CI, release twice as
often, accept pull requests faster, and have developers who are
less worried about breaking the build, compared to projects
that do not use CI [49]. Therefore, employing CI tools is
a good method to improve our development process even
more. Consequently, we integrated the previously mentioned
tools into our continuous integration pipeline configured in
TravisCI [50]. More precisely, we employ TravisCI for Ex-
plorViz’s core and any extension to build, test, and examine the
code. Integrating the quality assurance tools allows us to define
thresholds within the pipeline. If a threshold regarding quality
assurance problems is exceeded, the respective TravisCI build
will fail and the contributor is notified by mail. A similar build
is started for each pull request that we receive on Github for
the now protected master branch. Therefore, contributors are
forced to create a new branch or fork ExplorViz to implement
their enhancement or bug fix and eventually submit a pull
request.

C. Software Configuration & Delivery

One major problem of ExplorViz Legacy was the necessary
provision of software configurations for different use cases.
The first iteration of modularization did not entirely solve
this problem. The backend introduced a first approach for an

42

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Processes

Message Broker

Monitored
Server

Application

Discovery-Agent

Client

Records

Analysis

TracesRecords

Landscape

Filesystem

Traces Landscapes

API-Gateway / Reverse Proxy

DiscoveryAuthentication 
& Authorization

Backend-
Extension

Processes Data

Frontend
HTTP

Visualization

Frontend-Extension

HTTP

Figure 7: Architectural overview and software stack of ExplorViz (after the second iteration).

integration of extensions, but their delivery was cumbersome.
Due to the tight coupling at source code level we had to
provide the compiled Java files of all extensions for download.
Users had to copy these files to a specific folder in their
already deployed ExplorViz backend. Therefore, configuration
alterations were troublesome. With the architecture depicted
in Figure 7 we can now provide a jar file for each service
with an embedded web server. This modern approach for
Java web applications facilitates the delivery and configuration
of ExplorViz’s backend components. In the future, we are
going to ship ready-to-use Docker images for each part of our
software. The build of these images will be integrated into our
CI pipeline. Users are then able to employ docker-compose
files to achieve their custom ExplorViz configuration or use a
provided docker-compose file that fits their needs. As a result,
we can provide an alternative, easy to use, and exchangeable
configuration approach that essentially only requires a single
command line instruction. The frontend requires another ap-
proach, since (to the best of our knowledge) it is not possible
to install an Ember.js addon inside of a deployed Ember.js
application. We are currently developing a build service for
users that ships ready-to-use, pre-built configurations of our
frontend. Users can then download and deploy these pre-
built packages. Alternatively, these configurations will also be
usable as Docker containers.

D. Software Architecture Erosion & Accessibility

One of our initial problems was the partitioning of our code
base and the resulting software architecture erosion. We think

that both employed frameworks, Ember.js and Jersey, matter
when it comes to this problem. Ember.js is well documented
and there are many examples on how to solve a problem with
the framework. Due to its JS nature, we can easily introduce
and use modern features in web development. Furthermore,
Ember.js introduces recognizable and reusable structures which
facilitate the development. For the Jersey backend, we again
provide a sample project that contributors can use for a start.
The project is runnable and shows how to use Kafka and the
HTTP client for different needs. ExplorViz uses the monitoring
framework Kieker to obtain monitoring data. These so called
Records are then processed by the analysis component of
our software. The setup of Kieker is extensive, but also
quite complex for untrained users. Since we are dealing with
many students, we were in need of a solution to circumvent
this drawback. We developed an external component with a
frontend and backend extension that simplifies the monitoring
setup for users. The so called discovery agent searches for
running Java processes in the encompassing operating system
and sends its data to the related discovery backend extension.
The frontend discovery extension visualizes the gathered data
and provides Graphical User Interface (GUI) forms for users
to start and stop the monitoring of found processes. Ultimately,
the resulting discovery mode was successful in internal tests
and we integrated it as a core feature.

43

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



VIII. THIRD ITERATION: ACHIEVING AN ENTIRE
MICROSERVICE ARCHITECTURE

The second iteration of our modernization process intro-
duced multiple microservices for different backend logic. For
example, each backend extension was build as a separate
source code project and deployed as Java jar file. This in-
troduced advantages, among others, for the configuration of
ExplorViz as described in Section VII. Since then, we further
refined our microservice decomposition. The current architec-
ture, after performing a third iteration of our modularization
approach, is illustrated in Figure 8. Additionally, we revised the
ubiquitous problems revealed within the evaluation, as we did
in the previous iterations. Thus, we identified, among others,
three major drawbacks, which are presented in the following.

• Extensibility & Integrability: Implementing extensions
against specific backend or frontend versions was
difficult.

• Code Quality & Comprehensibility: Collaborators like
students, did not have enough documentation to effi-
ciently contribute to our project.

• Software Configuration & Delivery: The testing and
release management was still cumbersome due to a
vast number of artifacts.

A. Extensibility & Integrability

Both previous iterations shared the problem that collab-
orators had to implement their feature or extension against
the latest version of ExplorViz. To circumvent this drawback,
we now push the backend build artifacts of the TravisCI
build pipeline as snapshots to Sonatype [51], i.e., an online
maven repository for unsigned artifacts. Furthermore, we use
Github releases to version ExplorViz. These releases follow a
documented release management process. As a result, release
descriptions and names share a common theme. In general,
Github releases use Git tags to reference the specific Git
commit that represents the release. We use these resulting Git
tags for versioning. The tags are picked up by our CI pipeline
and are used to name the Sonatype snapshots. As a result,
contributors can now select specific (intermediate) versions to
implement against.

After employing the second iteration of our modernization
for some time with different configurations, we observed per-
formance issues regarding the landscape-service. This service
continuously built our hierarchical landscape model, provided
the latest snapshot of the model via a HTTP API, and
returned previous snapshots upon incoming HTTP requests.
We identified that we could decompose these functionalities
into separated microservices to distribute the load on one
hand and gain a better performance on the other hand. The
decoupling of the landscape-service can be seen in Figure 8.
Frontend extensions now register at the broadcast-service to
receive server-sent events (SSE), which contain the latest
landscape model snapshot. Furthermore, specific snapshots
can be requested at the history-service. This microservice is
responsible for storing landscape model snapshots.

B. Code Quality & Comprehensibility

Introducing static analysis tools to our CI pipeline showed
improvements of ExplorViz’s code style. The automatic CI
build for Github pull requests highlights flaws and allows us
to impose refactoring before merging the code. This is also
used for collaborators’ extensions. Now, the remaining part to
improve the overall code quality was testing the source code
and the integration of components. We observed that collabo-
rators had less problems with testing frontend extensions than
with testing the related backend project. We think that is due
to the Ember.js documentation and the huge number of already
existing open source projects, which already show how one can
comprehensively test Ember.js projects. Therefore, we wrote
sample unit, integration, and API tests for our microservices,
which students can use as foundation to test their own written
code. By choosing these three categories of tests, we now
cover testing at source code and API level. All these tests are
automatically executed as part of our CI pipeline. Furthermore,
when a tests requires other running services, e.g., the reverse
proxy, these services are (if necessary) build and executed by
means of a Docker container.

To ease the development for collaborators, we wrote sup-
plemental guides on best practices, design ideas, and specifica-
tions. These can be found in our public Github documentation
wiki [52]. Furthermore, our CI pipeline now automatically
builds the latest API documentation (JavaDoc for the backend
and YUIDoc for the frontend). The resulting websites are
deployed by means of Github pages, i.e., public websites based
on the content of Git repositories. We additionally employ
Swagger [53], an interactive API development editor and UI,
to document our HTTP APIs. The tool is automatically started
when a microservice is started in development mode.

C. Software Configuration & Delivery

ExplorViz enables users and developers to use extensions
on demand by providing the build artifacts for every (release)
version. We now facilitate ExplorViz’ configuration with the
help of Docker images. After pushing the build artifacts to
Sonatype in the CI pipeline, we subsequently build a Docker
image for each service and push it to Docker Hub. Therefore,
users and collaborators can use the publicly hosted Docker
images to easily create their custom deployment environment
with Docker.

We build upon this process and now provide ready-to-
use docker-compose files for release versions of ExplorViz.
These configurations allow users to start the core features
of ExplorViz with only a single command. This approach is
also used in the development phase. Since ExplorViz requires
auxiliary software, i.e., database management systems, Apache
Kafka, and the reverse proxy NGINX, we now provide a
docker-compose file to start the mandatory, already configured
software stack for development. As a result, collaborators do
not need to read different instructions on how to start specific
software, but only need to start a set of Docker containers with
the help of the docker-compose file.

Figure 8 shows that we replaced our employed reverse
proxy NGINX with Traefik [54]. The reverse proxy NGINX
uses a static configuration file to define its routing. As a result,
ExplorViz users needed to update this configuration or use a

44

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Processes

Message Broker

Monitored Server

Application

Discovery-Agent

Client

Records

Analysis

TracesRecords

API-Gateway / Reverse Proxy

Backend-
Extension

Data

HTTP

HTTP

Frontend

Visualization

Frontend-Extension

Settings Broadcast History

LandscapesLandscapesUser Lifecycle 
events

Landscape

Traces Landscapes

DiscoveryUser

ProcessesUser Lifecycle 
events

Figure 8: Current architectural overview and software stack of ExplorViz (after the third iteration).

provided version to enable an installed or developed extension.
This was quite cumbersome and potentially deterred users to
try out extensions. With Traefik we can now use labels, i.e.,
metadata for Docker objects, to define the routing at docker-
compose level. Therefore, the routing of the reverse proxy can
be easily extended or changed.

IX. RELATED WORK

In the area of software engineering, there are many papers
that perform a software modernization in other contexts. Thus,
we restrict our related work to approaches, which focus on the
modernization of monolithic applications towards a microser-
vice architecture. Compared to frequently performed software
modernizations, we did not reconstruct the underlying software
architecture, since it was not our goal to keep the obsolete
monolithic architecture provided by GWT. Furthermore, we did
not need to apply multiple refactoring iterations to modernize
our software system. Instead, we successfully performed three
iterations of our modularization and modernization process
CORAL in order to continuously improve our software archi-
tecture and collaborative development process.

Villamizar et al. [55] evaluate monolithic and microservice
architectures regarding the development and cloud deployment
of enterprise applications. Their approach addresses similar
elements to our modernization process. They employed mod-
ern technologies for separating microservices, e.g., Java in
the backend and JS in the frontend, like we did. Contrary to
their results, we did not face any of the mentioned problems
during the migration, like failures or timeouts. In [56] an
approach regarding the challenges of the modernization of
legacy J2EE applications was presented. They employ static
code analysis to reconstruct architectural diagrams, which then
can be used as a starting point during a modernization process.
In contrast to our approach there was no need to reconstruct the
software architecture, because we wanted to modernize it from
the beginning due to previously mentioned drawbacks. Thus,
we split our application based on our knowledge into several
microservices and developed a communication concept based
on a message broker. Carrasco et. al [34] present a survey

of architectural smells during the modernization towards a mi-
croservice architecture. They identified nine common pitfalls in
terms of bad smells and provided potential solutions for them.
ExplorViz Legacy was also covered by this survey and cate-
gorized by the “Single DevOps toolchain” pitfall. This pitfall
concerns the usage of a single toolchain for all microservices.
Fortunately, we addressed this pitfall since their observation
during their survey by employing independent toolchains by
means of pipelines within our continuous integration system
for the backend and frontend microservices.

Knoche and Hasselbring [31] present a migration pro-
cess to decompose an existing software system into several
microservices. Additionally, they report from their gained
experiences towards applying their presented approach in a
legacy modernization project. Although their modernization
drivers and goals are similar to our procedure, their approach
features a more abstract point of view on the modernization
process. Furthermore, they focus on programming language
modernization and transaction systems. In [4], the authors
present an industrial case study concerning the evolution of
a long-living software system, namely a large e-commerce
application. The addressed monolithic legacy software system
was replaced by a microservice-based system. Compared to
our approach, this system was completely rebuilt without
retaining code from the (commercial) legacy software system.
Our focus is to facilitate the collaborative development of
open source software and also addresses the development
process. We successfully developed our pipeline towards CI
for all microservices mentioned in Section VII to minimize
the release cycles and offer development snapshots.

A different approach to perform a modernization of a
monolithic application is presented in [57]. They employed
a Domain-Driven Design (DDD) based approach to decom-
position their software system into services. Afterwards, they
integrated the services with an Enterprise Bus and orchestrated
the services on the basis of Docker Compose and Swarm. In
contrast to their approach, we did not perform a decomposition
of our monolithic application based on DDD. Instead, we
performed a decomposition based on backend and frontend

45

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



logic within our first iteration and refined it later. Additionally,
we employ Docker images for the deployment of ExplorViz
and do not use Docker swarm. Chen et. al [58] present a top-
down based dataflow-driven approach as an alternative decom-
position method. More precisely, they developed a dataflow-
driven decomposition algorithm, which operates on the basis
of a constructed dataflow diagram modeling the business logic
of the software system. In the next step, the dataflow diagram
is compacted based on similar operations with the same type of
output data. Finally, microservice candidates are identified and
extracted. In comparison, our approach does not facilitate the
usage of an algorithm which aids the decomposition process
and identifies microservice candidates. In detail, we propose a
collaborative-oriented, iterative process, which contains multi-
ple steps and also addresses the involved development process.

X. CONCLUSION

In the following, we conclude our paper and present a
summary, depict lessons learned, and give an outlook for future
work.

A. Summary

In this paper, we reported on our modularization and
modernization process of the open source research software
ExplorViz, moving from a monolithic architecture towards a
microservice architecture with the primary goal to ease the
collaborative development, especially with students. We de-
scribed technical and development process related drawbacks
of our initial project state until 2016 in ExplorViz Legacy
and illustrated our modularization process and architecture.
The process included not only a decomposition of our web-
based application into several components, but also a technical
modernization of applied frameworks and libraries. Driven by
the goal to easily extend our project in the future and facilitate
a contribution by inexperienced collaborators, we offer a plug-
in extension mechanism for our core project, both for backend
and frontend. On the basis of ExplorViz Legacy, we employed
our iterative, collaborative modularization and reengineering
process CORAL as a guidance through our modularization and
performed three successful iterations to ExplorViz Legacy until
we reached a sufficient state.

After our first iteration, we realized our modularization
process and architecture in terms of a proof-of-concept im-
plementation and evaluated it afterwards by the development
of several extensions of ExplorViz. Each of these extensions
was developed by students and evaluated afterwards, in each
case by at least a usability study. The results showed an overall
good usability of each extension. In the case of our developed
application discovery extension, we integrated it into our core
project based on the high-quality of the extension in addition
to the good usability and time saving aspect when instru-
menting applications with Kieker. As the results of the the
modularization process were not sufficient yet, we performed
a second iteration featuring a first microservice architecture.
More precisely, the iteration led to several independent de-
ployable services bundled with inter-service communication
handled via the message broker Kafka and requests from the
frontend towards the backend are passed through our reverse-
proxy in form of NGINX. Furthermore, we enhanced our
development and build process towards a more collaborative

manner. Unfortunately, we were not satisfied with the results
of the second iteration, because some services were still very
large and poorly maintainable. Thus, we needed to perform
a further decoupling of them. Additionally, we recognized
that our release management and CI processes, as well as
our documentation, still needed to be improved. Consequently,
with these drawbacks in mind, we performed a third iteration,
after which we achieved a fully decoupled microservice archi-
tecture, consisting of a set of self-contained systems and well-
defined interfaces in-between. The inter-service communica-
tion is still handled through Kafka. Additionally, we replaced
our reverse-proxy with Traefik for handling requests from the
frontend towards the backend. For the release management and
documentation, we further optimized our CI pipeline regarding
Docker images and supplemental (API) documentation for
both developers and users.

B. Lessons Learned

The lessons learned while applying our CORAL approach
to ExplorViz within three successfully performed iterations are
summarized in the following. Performing software develop-
ment for research is a challenging task, especially when a
large number of inexperienced students is involved. In our
experience, providing an extensible software architecture is a
crucial task for open source (research) projects. Furthermore,
extension points, i.e., interfaces, should be well-documented to
ease the development of extensions. Additionally, the overall
software development process should base on accessible docu-
mentation for all stages during the development for all collabo-
rators. This includes documentation of the employed software
architecture and the extension mechanisms, but should also
cover best practices, hints, or lessons learned.

Regarding software quality, especially with respect to
maintainability, we recommend the usage of software quality
tools. Static analysis tools such as Checkstyle or PMD in
combination with configured common code styles support
developers directly while they code. This way, common pro-
gramming flaws can be avoided in the committed source code
and thus result in less bugs and required bug fixes. Also,
we suggest the setup and usage of CI pipelines that allow
a project to automate their testing, code quality checking, and
software building. Thereby, the complete build cycle can be
tested periodically. If the building is triggered by commits,
developers also get an early feedback if something went wrong.

Providing Docker images of ExplorViz provides great
value. Developers and users are able to use pre-configured
images of our software for specific use cases, which may
be based on different versions. This approach also eases the
release management process and facilitates developers to test
and adapt their extension to upcoming versions.

C. Future Work

In the future, we are planning to evaluate our finalized
project, especially in terms of developer collaboration. Ad-
ditionally, we plan to move from our CI pipeline towards a
continuous delivery (CD) environment. Thus, we expect to
further decrease the interval between two releases and allow
users to try out new versions, even development snapshots,
as soon as possible. Furthermore, we plan to use architecture

46

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



recovery tools like [59] for refactoring or documentation pur-
poses in upcoming versions of ExplorViz. Recently, we applied
ExplorViz within case study, where we successfully performed
a microservice decomposition with static and dynamic analysis
of a monolithic application [60]. As a result, we plan to
investigate, if we could enhance our CORAL approach with
the applied decomposition process for future projects.

REFERENCES

[1] C. Zirkelbach, A. Krause, and W. Hasselbring, “Modu-
larization of Research Software for Collaborative Open
Source Development,” in Proceedings of the The Ninth
International Conference on Advanced Collaborative
Networks, Systems and Applications (COLLA 2019),
Jun. 2019, pp. 1–7.

[2] C. Goble, “Better Software, Better Research,” IEEE
Internet Computing, vol. 18, no. 5, pp. 4–8, Sep. 2014.

[3] A. Johanson and W. Hasselbring, “Software engineer-
ing for computational science: Past, present, future,”
Computing in Science & Engineering, vol. 20, no. 2,
pp. 90–109, Mar. 2018. DOI: 10 . 1109 / MCSE . 2018 .
021651343.

[4] W. Hasselbring and G. Steinacker, “Microservice Ar-
chitectures for Scalability, Agility and Reliability in E-
Commerce,” in Proceedings of the IEEE International
Conference on Software Architecture Workshops (IC-
SAW), Apr. 2017, pp. 243–246. DOI: 10.1109/ICSAW.
2017.11.

[5] P. D. Francesco, P. Lago, and I. Malavolta, “Migrat-
ing Towards Microservice Architectures: An Industrial
Survey,” in Proceedings of the IEEE International Con-
ference on Software Architecture (ICSA), Apr. 2018,
pp. 29–38.

[6] F. Fittkau, A. Krause, and W. Hasselbring, “Software
landscape and application visualization for system com-
prehension with ExplorViz,” Information and Software
Technology, vol. 87, pp. 259–277, Jul. 2017. DOI: doi:
10.1016/j.infsof.2016.07.004.

[7] F. Fittkau, S. Roth, and W. Hasselbring, “ExplorViz: Vi-
sual runtime behavior analysis of enterprise application
landscapes,” in Proceedings of the 23rd European Con-
ference on Information Systems (ECIS 2015 Completed
Research Papers), AIS Electronic Library, May 2015,
pp. 1–13. DOI: 10.18151/7217313.

[8] R. Heinrich, C. Zirkelbach, and R. Jung, “Architectural
Runtime Modeling and Visualization for Quality-Aware
DevOps in Cloud Applications,” in Proceedings of the
IEEE International Conference on Software Architecture
Workshops (ICSAW), Apr. 2017, pp. 199–201.

[9] R. Heinrich, R. Jung, C. Zirkelbach, W. Hasselbring, and
R. Reussner, “An Architectural Model-Based Approach
to Quality-aware DevOps in Cloud Applications,” in
Software Architecture for Big Data and the Cloud, I.
Mistrik, R. Bahsoon, N. Ali, M. Heisel, and B. Maxim,
Eds., Cambridge: Elsevier, Jun. 2017, pp. 69–89.

[10] F. Fittkau, A. Krause, and W. Hasselbring, “Hierarchical
software landscape visualization for system comprehen-
sion: A controlled experiment,” in Proceedings of the
3rd IEEE Working Conference on Software Visualization
(VISSOFT 2015), IEEE, Sep. 2015, pp. 36–45. DOI: 10.
1109/VISSOFT.2015.7332413.

[11] F. Fittkau, S. Finke, W. Hasselbring, and J. Waller,
“Comparing Trace Visualizations for Program Com-
prehension through Controlled Experiments,” in Pro-
ceedings of the 23rd IEEE International Conference
on Program Comprehension (ICPC 2015), May 2015,
pp. 266–276. DOI: 10.1109/ICPC.2015.37.

[12] Open Source Software Community, Google Web Toolkit
Project (GWT), version 2.8.2, last accessed: 2020.05.31.
[Online]. Available: http://www.gwtproject.org.

[13] H. Al-Kilidar, K. Cox, and B. Kitchenham, “The use
and usefulness of the iso/iec 9126 quality standard,” in
Proceedings of the International Symposium on Empir-
ical Software Engineering, 2005., 2005, pp. 126–132.

[14] Open Source Software Community, Checkstyle, ver-
sion 8.10, last accessed: 2020.05.31. [Online]. Avail-
able: http://checkstyle.sourceforge.net.

[15] ——, PMD, version 6.10.0, last accessed: 2020.05.31.
[Online]. Available: https://pmd.github.io.

[16] Eclipse Foundation, AspectJ, version 1.8.5, last ac-
cessed: 2020.05.31. [Online]. Available: https:/ /www.
eclipse.org/aspectj.

[17] Open Source Software Community, H2, version 1.4.177,
last accessed: 2020.05.31. [Online]. Available: http : / /
www.h2database.com.

[18] B. Upadhyaya, Y. Zou, H. Xiao, J. Ng, and A. Lau,
“Migration of SOAP-based services to RESTful ser-
vices,” in Proceedings of the 13th IEEE International
Symposium on Web Systems Evolution (WSE), Sep.
2011, pp. 105–114.

[19] S. Vinoski, “RESTful Web Services Development
Checklist,” IEEE Internet Computing, vol. 12, no. 6,
pp. 96–95, Nov. 2008, ISSN: 1089-7801.

[20] R. Kazman, M. Klein, and P. Clements, “Atam: Method
for architecture evaluation,” Carnegie-Mellon Software
Engineering Institute, University Pittsburgh, PA, Tech.
Rep., 2000.

[21] H. Koziolek, “Sustainability evaluation of software ar-
chitectures: A systematic review,” in Proceedings of the
Joint ACM SIGSOFT Conference – QoSA and ACM
SIGSOFT Symposium – ISARCS on Quality of Software
Architectures – QoSA and Architecting Critical Systems
– ISARCS, ser. QoSA-ISARCS ’11, Boulder, Colorado,
USA: ACM, 2011, pp. 3–12, ISBN: 978-1-4503-0724-6.
DOI: 10.1145/2000259.2000263.

[22] J. Knodel and M. Naab, “Software architecture evalua-
tion in practice: Retrospective on more than 50 architec-
ture evaluations in industry,” in 2014 IEEE/IFIP Confer-
ence on Software Architecture, Apr. 2014, pp. 115–124.
DOI: 10.1109/WICSA.2014.37.

[23] J. Knodel and M. Naab, Pragmatic Evaluation of Soft-
ware Architectures. Springer, 2016.

[24] M. Dick and S. Naumann, “Enhancing software engi-
neering processes towards sustainable software product
design,” in Integration of Environmental Information in
Europe, K. Greve and A. B. Cremers, Eds., Aachen:
Shaker Verlag, 2010.

[25] P. Clarke and R. V. O’Connor, “An approach to eval-
uating software process adaptation,” in Software Pro-
cess Improvement and Capability Determination, R. V.
O’Connor, T. Rout, F. McCaffery, and A. Dorling, Eds.,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 28–41, ISBN: 978-3-642-21233-8.

47

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[26] C. Zirkelbach, A. Krause, and W. Hasselbring, “On the
Modernization of ExplorViz towards a Microservice Ar-
chitecture,” in Combined Proceedings of the Workshops
of the German Software Engineering Conference 2018,
vol. Online Proceedings for Scientific Conferences and
Workshops, Ulm, Germany: CEUR Workshop Proceed-
ings, Feb. 2018.

[27] A. Tang, M. Razavian, B. Paech, and T. Hesse, “Human
Aspects in Software Architecture Decision Making: A
Literature Review,” in Proceedings of the IEEE Inter-
national Conference on Software Architecture (ICSA),
Apr. 2017, pp. 107–116.

[28] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A.
Shahbazian, and N. Medvidovic, “An Empirical Study
of Architectural Change in Open-Source Software Sys-
tems,” in Proceedings of the IEEE/ACM 12th Working
Conference on Mining Software Repositories (MSR),
May 2015, pp. 235–245.

[29] D. M. Le, D. Link, A. Shahbazian, and N. Medvidovic,
“An Empirical Study of Architectural Decay in Open-
Source Software,” in Proceedings of the IEEE Interna-
tional Conference on Software Architecture (ICSA), Apr.
2018, pp. 176–17 609.

[30] H. Knoche and W. Hasselbring, “Drivers and barriers for
microservice adoption – a survey among professionals
in Germany,” Enterprise Modelling and Information
Systems Architectures (EMISAJ) – International Journal
of Conceptual Modeling, vol. 14, no. 1, pp. 1–35, 2019.
DOI: 10.18417/emisa.14.1.

[31] H. Knoche and W. Hasselbring, “Using Microservices
for Legacy Software Modernization,” IEEE Software,
vol. 35, no. 3, pp. 44–49, May 2018, ISSN: 0740-7459.

[32] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microser-
vices: Yesterday, Today, and Tomorrow,” in Present and
Ulterior Software Engineering. Springer International
Publishing, 2017, pp. 195–216.

[33] N. Alshuqayran, N. Ali, and R. Evans, “A Systematic
Mapping Study in Microservice Architecture,” in Pro-
ceedings of the 9th International Conference on Service-
Oriented Computing and Applications (SOCA), Nov.
2016, pp. 44–51.

[34] A. Carrasco, B. v. Bladel, and S. Demeyer, “Migrat-
ing Towards Microservices: Migration and Architec-
ture Smells,” in Proceedings of the 2nd International
Workshop on Refactoring, ser. IWoR 2018, Montpellier,
France: ACM, 2018, pp. 1–6.

[35] Oracle, Jersey Project, version 2.27, last accessed:
2020.05.31. [Online]. Available: https://jersey.github.io.

[36] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker:
A Framework for Application Performance Monitoring
and Dynamic Software Analysis,” in Proceedings of
the 3rd joint ACM/SPEC International Conference on
Performance Engineering (ICPE 2012), ACM, Apr.
2012, pp. 247–248.

[37] Ember Core Team, Ember.js, version 3.6.0, last ac-
cessed: 2020.05.31. [Online]. Available: https:/ /www.
emberjs.com.

[38] Joyent, Node.js, version 10.15.0, last accessed:
2020.05.31. [Online]. Available: https://nodejs.org.

[39] Open Source Software Community, json:api, ver-
sion 1.0.0, last accessed: 2020.05.31. [Online]. Avail-
able: https://jsonapi.org.

[40] A. Krause, C. Zirkelbach, and W. Hasselbring, “Simpli-
fying Software System Monitoring through Application
Discovery with ExplorViz,” in Proceedings of the Sym-
posium on Software Performance 2018: Joint Developer
and Community Meeting of Descartes/Kieker/Palladio,
Nov. 2018.

[41] L. Garber, “Gestural Technology: Moving Interfaces in a
New Direction,” Computer, vol. 46, no. 10, pp. 22–25,
2013, ISSN: 0018-9162. DOI: 10.1109/MC.2013.352.
[Online]. Available: http://dx.doi.org/10.1109/MC.2013.
352.

[42] F. Fittkau, A. Krause, and W. Hasselbring, “Exploring
Software Cities in Virtual Reality,” in Proceedings of the
3rd IEEE Working Conference on Software Visualization
(VISSOFT 2015), 2015, pp. 130–134. DOI: 10 . 1109 /
VISSOFT.2015.7332423. [Online]. Available: http://dx.
doi.org/10.1109/VISSOFT.2015.7332423.

[43] A. Elliott, B. Peiris, and C. Parnin, “Virtual Reality in
Software Engineering: Affordances, Applications, and
Challenges,” in Proceedings of the 37th IEEE Interna-
tional Conference on Software Engineering, vol. 2, May
2015, pp. 547–550. DOI: 10.1109/ICSE.2015.191.

[44] C. Zirkelbach, A. Krause, and W. Hasselbring, “Hands-
On: Experiencing Software Architecture in Virtual Re-
ality,” Kiel University, Research Report, Jan. 2019.
[Online]. Available: http://oceanrep.geomar.de/45728/.

[45] NGINX, NGINX, version 1.15.8, last accessed:
2020.05.31. [Online]. Available: http://nginx.org.

[46] Apache Software Foundation, Apache Kafka, last ac-
cessed: 2020.05.31. [Online]. Available: https://kafka.
apache.org.

[47] Open Source Software Community, Spotbugs, ver-
sion 3.1.10, last accessed: 2020.05.31. [Online]. Avail-
able: https://spotbugs.github.io.

[48] ESLint Team, ESLint, version 5.12.0, last accessed:
2020.05.31. [Online]. Available: https://eslint.org.

[49] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and
D. Dig, “Usage, costs, and benefits of continuous inte-
gration in open-source projects,” in Proceedings of the
31st IEEE/ACM International Conference on Automated
Software Engineering (ASE), Sep. 2016, pp. 426–437.

[50] Open Source Software Community, TravisCI, last ac-
cessed: 2020.05.31. [Online]. Available: https://travis-
ci.org.

[51] ——, Sonatype, last accessed: 2020.05.31. [Online].
Available: https://oss.sonatype.org.

[52] ExplorViz Team, ExplorViz Developer and User Doc-
umentation Wiki, last accessed: 2020.05.31. [Online].
Available: https://github.com/ExplorViz/Docs/wiki.

[53] Open Source Software Community, Swagger, last ac-
cessed: 2020.05.31. [Online]. Available: https://swagger.
io.

[54] ——, Traefik, last accessed: 2020.05.31. [Online].
Available: https://containo.us/traefik/.

[55] M. Villamizar, O. Garcés, H. Castro, M. Verano, L.
Salamanca, R. Casallas, and S. Gil, “Evaluating the
monolithic and the microservice architecture pattern to
deploy web applications in the cloud,” in Proceedings

48

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



of the 10th Computing Colombian Conference (10CCC),
Sep. 2015, pp. 583–590.

[56] D. Escobar, D. Cárdenas, R. Amarillo, E. Castro, K.
Garcés, C. Parra, and R. Casallas, “Towards the un-
derstanding and evolution of monolithic applications
as microservices,” in Proceedings of the XLII Latin
American Computing Conference (CLEI), Oct. 2016,
pp. 1–11.

[57] J. Gouigoux and D. Tamzalit, “From Monolith to Mi-
croservices: Lessons Learned on an Industrial Migration
to a Web Oriented Architecture,” in Proceedings of the
IEEE International Conference on Software Architecture
Workshops (ICSAW), Apr. 2017, pp. 62–65. DOI: 10 .
1109/ICSAW.2017.35.

[58] R. Chen, S. Li, and Z. Li, “From Monolith to Microser-
vices: A Dataflow-Driven Approach,” in Proceedings of
the 24th Asia-Pacific Software Engineering Conference
(APSEC), 2017, pp. 466–475.

[59] G. Granchelli, M. Cardarelli, P. D. Francesco, I. Mala-
volta, L. Iovino, and A. D. Salle, “MicroART: A
Software Architecture Recovery Tool for Maintaining
Microservice-Based Systems,” in Proceedings of the
IEEE International Conference on Software Architecture
Workshops (ICSAW), Apr. 2017, pp. 298–302.

[60] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga,
and D. Kröger, “Microservice Decomposition via Static
and Dynamic Analysis of the Monolith,” in Proceedings
of the IEEE International Conference on Software Ar-
chitecture (ICSA 2020), Mar. 2020. [Online]. Available:
https://arxiv.org/abs/2003.02603.

49

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


