
An Algorithmic Solution for Adaptable Real-Time Applications

Lial Khaluf
Email: lial.khaluf@googlemail.com

and

Franz-Josef Rammig
Email: franz@upb.de

University of Paderborn
Paderborn, Germany

Abstract — Most real-life facilities nowadays belong to real-time
systems. E.g., airplanes, trains, cars, medical machines, alarming
systems and robotics, etc. Some of these systems behave on their
own, separately or in cooperation. Some of them interact with
humans. Operating and interaction is done under conditions
defined inside the systems and the environment. However, these
systems and environments might grow or change over time. In
order to develop safe and high-quality real-time applications, we
need to make them highly self-adaptable systems. In this paper,
we describe the detailed steps of a real-time aware adaptation
algorithm and we go through the boundedness proof of each step.
The algorithm mimics the behaviour of organic cells. It introduces
a new kind of real-time tasks. This kind enables tasks to change
their behaviour at run time according to internal changes inside
the system and external changes in the environment, preserving
all real-time constraints. This includes real-time constraints for
the adaptation process itself. Following this concept, real-time
tasks are turned to be real-time cells.

keywords – adaptation array; genetic optimization; organic
behavior; boundedness.

I. INTRODUCTION

Current trends of adaptation mechanisms have been applied
in traditional software systems as well as real-time (RT)
systems. RT systems, however, lack the required flexibility for
adapting themselves to changes being unpredictable at design
time. In this paper, we try to overcome this limitation by
providing an adaptation solution at run time. The problem
we solve assumes a system that has to fulfil a set of hard-
deadline periodic and aperiodic tasks. Aperiodic tasks might
have dependencies between each other. Modifications to the
current set of tasks may happen at run time as, e.g., a result
of environmental changes. Modifications may include adding
a new task or a set of dependent tasks, updating a task or a set
of dependent tasks, and deleting a task or a set of dependent
tasks. We assume that by updating dependent tasks, no new
tasks are added to the dependability graph, and no existing
tasks are deleted. The goal of the approach presented in this
paper is to adapt the newly arrived modifications at run time
without breaking any of the stated RT constraints.

In [1], we have introduced a summary of the adaptation
algorithm. In this paper, we go through details of it, and
prove the boundedness of each step. In our solution, we
assume a bounded, but online expandable, ecosystem of RT

tasks. Each RT task may exist by means of a bounded, but
online expandable, set of variants. All variants of a task
share the same principal functionality, however, at different
quality levels. Whenever activated, the algorithm tries to find a
solution that can accept all currently requested modifications.
For this reason, it tries to find a selection of task variants
such that all RT constraints are satisfied and at the same
time the overall quality over all tasks is maximized. The
underlying ecosystem is represented by a two-dimensional data
structure called RTCArray [2]. It is divided into classes.
Each class is represented by a column. A class represents a
unique functionality. Each variant within a column provides
the same principal functionality as the other variants, but with
different time and quality characteristics. We model quality
by a cost function where cost is defined as the inverse of
quality, i.e., highest possible quality is modelled by cost 0.
We call a variant an RT cell. The reason is that the structure
and behaviour of variants can change at run time following
the environment of the system. Modification requests may
arrive at any time. According to their priority, they are put
into a queue with a predefined capacity. The queue is handled
by a central cell called the Engine-Cell (EC). EC tries to
find a best combination of variants such that the arrived
modifications can be accepted. The problem of selecting a
best combination of variants is mapped on solving a Knapsack
problem, executed on a so-called AdaptationRTCArray.
This is a subset of RTCArray restricted on currently running
cells that have to continue execution and augmented by newly
arriving modifications. As this Knapsack problem has to be
solved under RT constraints, an “anytime algorithm” is needed
to solve it. We decided for a genetic algorithm with a trivial
initial population. The individuals of populations are evaluated
concerning their respected overall cost under the constraint
that all RT constraints have to be satisfied. It is assumed that
the RT system is running under Earliest Deadline First (EDF)
algorithm [16] as principal scheduling algorithm. EDF is used
to schedule a set of independent tasks by always giving the
priority to the task with earliest absolute deadline [16]. As
the challenge we are aiming to overcome in our approach
considers also the case of dependent tasks, Earliest Deadline
First with Precedence Constraints algorithm (EDF*) [5] is
used. EDF* transforms a set of dependent tasks into a set of
independent tasks by recalculating the timing parameters of the

16

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



tasks. The resulting independent tasks can then be scheduled
by EDF. The dependent set is schedulable if and only if
the independent set can be schedulable [16]. For considering
aperiodic tasks, we use the Total Bandwidth Server (TBS)
[6]. TBS calculates new absolute deadlines of aperiodic tasks,
so that the server can behave as a periodic task, which is
schedulable with the other periodic tasks in the system under
EDF. In our approach, the RT constraints of all periodic tasks
can be calculated using a utilization bound 1 and those for
aperiodic tasks by checking that deadlines calculated by TBS
are less or equal than specified hard deadlines.

In Section II, we present the related work. Section III
presents the definitions of some basic concepts. Section IV
includes a scenario example of an RT application, in which our
approach can be applied. Section V describes the algorithm and
boundedness proof of each step. In the last section, we present
a conclusion and future work.

II. RELATED WORK

In this paper, we are solving an optimization problem. The
goal is to provide enough processor capacity for the current
requests and the currently running cells while minimizing the
costs. The problem can be modelled by a multidimensional
multiple-choice knapsack problem (MMKP). Many approaches
were defined for solving this problem. In [7] a metaheuristic
approach is developed. It simplifies the MMKP into multiple-
choice knapsack problem (MCKP) by applying a surrogate
condition for cost. In the MCKP, there are several groups of
items. It is required that one item is selected from each group,
so that the total benefit is maximized without exceeding the
capacity of the knapsack. For finding a feasible solution and
enhancing it in a short time, the algorithm in [7] is considered
to be a good choice. In our approach, however, we use a
genetic algorithm. It can decide already in the first step whether
a feasible solution exists or not. Enhancing the solution is
bounded by a specific time.

In [8] a heuristic algorithm is used for solving the MMKP
by using convex hulls. The idea is to simplify the MMKP into
MCKP. This is done by multiplication of a transformation vec-
tor. Once the MCKP is constructed, each group of items can be
represented on X-Y Axes. X represents the resources used by
the items. Y represents the benefit that should be maximized.
An initial solution is found by selecting an item from each
group. The selected item is the one with lowest benefit. After
that, three iterations are done. In each iteration, the penalty
vector is used to turn each of the resource consumption vectors
into a single dimension vector. The frontier segments of the
items are calculated. “A segment is a vector with two items
representing a straight line.” [8]. According to the angle of the
segment, it is ordered within the list of segments. The segments
should be put in a descending order. For each segment, P1 and
P2, the items associated with the segment, are considered. A
current solution is calculated by selecting the item associated
with P1 and the same is applied for P2. If utility of the current
solution is smaller than the utility of the saved solution, the
saved solution is kept. Penalty is adjusted for the next iteration.
After iterations are done, if the current solution is not feasible,
then no solution is found, else the current solution is set to be
the final solution. Following this method requires the values
and weights to be known before penalty vectors and convex
hulls are constructed. In our approach this is not possible

because a pre-knowledge of members to be selected in each
group are required to calculate values of weights. The reason is
that one of the considered weights requires for its calculation
the deadline, which can be calculated according to TBS [6].
The calculation of a deadline, which belongs to a selected item
in a group depends on the deadlines of selected members in
previous groups.

In [10], a reduce and solve algorithm is used for solving
MMKP. The approach depends on group fixing and variable
fixing to reduce the problem. Then it runs CPLEX [14] to
solve the reduced problem. Also here it is required to know
the benefits and weights before start solving. In our approach
this is not possible.

In [9], three algorithms are introduced to solve MMKP. The
first algorithm tries to find an initial solution for the guided
local search. It is applied by assigning a ratio for each item in
the groups. The ratio is the value divided by the Scala Product
of the weight of the item, and total capacity of the knapsack.
Items, which own best ratios are selected. If a feasible solution
is not reached, then an item with heaviest ratio is chosen to be
swapped with another item from the same group. If this does
not result in a feasible solution, then the lightest item from the
same group is selected. This iteration continues until a feasible
solution is found. The initial solution can be enhanced by
applying the second algorithm, a complementary constructive
procedure (CCP). It consists of two stages. The first stage
swaps selected items with other items within their groups to
enhance the already found feasible solution. If the resulting
solution is feasible then the swapping is considered to be valid.
The second stage replaces the old item by the newly selected
one. The third algorithm is the derived algorithm. It starts by
applying the constructive procedure of the first algorithm in
order to get an initial feasible solution. If the solution cannot be
improved by CCP, a penalty parameter is applied to transform
the objective function, and a new solution is acquired by CCP.
If the new solution achieves improvement, then a normalization
phase is applied to get the original values of profits. If it does
not achieve any improvement, then a normalization phase is
applied and a penalty is applied again. The iteration continues
until a stopping condition is reached. In the previously three
described algorithms, it is required to know the benefits and
weights before start solving. In our approach this is not the
case.

In [11], a reactive local search algorithm to solve MMKP is
presented. A constructive procedure (CP) and a complementary
procedure CCP are used to acquire an initial solution. CP
uses a greedy procedure to acquire the initial solution. CCP
enhances the solution acquired by CP. The enhancement is
done by following an iterative approach that swaps elements
in the same class (group). The reactive local search (RLS) is
applied to enhance the solution acquired by CCP. RLS consists
of two procedures. The first one is called degrading strategy,
and the second one is called deblock procedure. The degrading
strategy consists of three steps. It selects an arbitrary class,
changes arbitrary elements inside it if this exchange will result
a feasible solution, repeats steps 1 and 2 several times, and
terminates with a new solution. The deblock strategy starts by
constructing a set of elements. Each element consists of two
classes. The strategy runs a loop on the set until no element
exists in it. In each run of the loop, it investigates if there is
a couple of items in both chosen classes, so that the objective

17

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



value of resulting feasible solution is better than the previous
solution value. The resulting feasible solution considers the
couple of items in chosen classes, in addition to the fixed items,
which belong to the classes other than the chosen ones. The
deblock strategy exits with the best solution. [11] describes
also the modified reactive local search algorithm (MRLS). It
replaces the deblock procedure by a memory list to enhance
computation time. In RLS and MRLS, again it is required
to know the benefits and weights before start solving. In our
approach this is not the case.

Evolutionary algorithms have been studied in a couple
of previous works for solving different kinds of knapsack
problems. For example, in [12], a general approach of using
genetic algorithm to solve MMKP is described. It starts by
selecting an initial population. This can be done randomly.
The fitness of the population is evaluated according to the
fitness function. The fitness function is defined according to the
objective function of the knapsack problem. Then a loop runs
until a predefined condition is satisfied. In each iteration, a new
population is selected from the previous one using the roulette
wheel selection [15]. Crossover and mutation are applied. The
resulting population is evaluated. The current generation is
combined with previous one. Finally, the resulting individuals
are ordered to find a best solution. The algorithmic principle in
[12] is similar to our approach, however, the selection process
differs from the selection process in our approach. In our
approach, we can determine if a feasible solution exists once
we construct the first individual. Further steps work only on
optimizing the solution. In [12], it is not explained if one can
recognize the existence of a feasible solution once the first
individual is constructed.

In [13], an evolutionary algorithm is used to solve MMKP.
The idea is to solve a manufacturing problem. Operators should
be distributed among machines to process components of
products. This has to be done in an efficient way to keep work
hours within a predefined limit. Operators differ regarding their
experience or working ability. To model this situation, binary
coded chromosomes are constructed. Each chromosome has
three dimensions: machines, operators and components. Chro-
mosomes are transferred into two dimensional chromosomes.
A first generation of chromosomes is chosen. It should contain
only feasible solutions. A loop is run on generations. In each
run, a new generation is generated by applying selection and
mutation on the previous generation. The loop continues until
a predefined condition is satisfied. The algorithmic principle in
[13] is similar to our approach, however the principle of setting
the fitness function and the principle of the selection process
differ from our approach. In our approach, we can determine if
a feasible solution exist once we construct the first individual.
Further steps work only on optimizing the solution. In [13], it
is not explained if one can recognize the existence of a feasible
solution once the first individual is constructed.

The comparison in this section between our approach and
the previously introduced approaches points out that our ap-
proach provides more flexibility in terms of solving a broader
set of problems where parameters can be calculated at runtime,
and the existence of a feasible solution can be known in a very
early stage of the algorithm.

In the next section, we present the basic concepts of RT
operating systems, the knapsack problem, and the genetic
algorithms.

III. BASIC CONCEPTS

RT systems are computing systems, in which the correct-
ness of behavior depends not only on the computation results
but also on the response time. “Examples of RT systems could
be automotive applications, flight control systems, robotics,
etc” [16].

- A real-time task: is characterized by many properties. In
the following, we mention some of them:

1) Arrival time (a): it is the time at which the task is
released and becomes ready for execution, called also
release time. [16]

2) Execution time (C): is the time required to execute
the task without interruption. [16]

3) Absolute deadline (d): is the time that the task exe-
cution should not exceed. [16]

4) Relative deadline (D): is the time difference between
the absolute deadline and the arrival time. [16]

5) Start time (s): is the time of starting the execution of
a task. [16]

6) Finishing time (f): is the time of finishing the execu-
tion of a task. [16]

7) Criticalness: is a parameter that indicates whether the
task is hard or soft. [16]

- A soft RT task: is a task that does not cause a catastrophic
result when its deadline is not met, but might cause a decrease
in the performance. [16]

- A hard RT task: is a task that may cause catastrophic
results in the system environment if its deadline is not met.
[16]

- A periodic task: is a task that is activated in regular time
periods, where each activation is called an instance of the task.
[16]

- An aperiodic task: is a task that is activated in irregular
time periods, where each activation is called an instance of the
task. [16]

- Precedence constraints: represent the precedence order
that tasks might have to respect concerning the order of their
execution. Precedence constraints are normally represented by
a directed acyclic graph (DAG) [16]. DAG has no directed
circles [17].

The knapsack problem is an NP-hard problem. In this
problem, there is a set of items, where each item has a benefit
and a weight. A subset of items should be selected, so that
the sum of their benefits is maximized, and the capacity of
the knapsack is not exceeded [18]. There are several types of
knapsack problems [18]:

1) 0-1 Knapsack problem: There is a set of items. We
want to put the items into a knapsack of capacity W.
We should pick a set of mutually different items, so
that the total value is maximized and the capacity of
the knapsack is not exceeded.

2) Bounded Knapsack problem: Same as 0-1 knapsack
problem. However, we can select more than one
instance from each item. The number of selected
instances is limited by a certain bound specified for
each item.

3) Multiple knapsack problem: Same as 0-1 knapsack
problem. However, here we have more than one knap-
sack. Each knapsack has a capacity. The knapsacks

18

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



should be filled with the items, so that the total value
is maximized, and the capacity of each knapsack is
not exceeded.

4) Multiple-choice knapsack problem: Same as 0-1
knapsack problem. However, the items should be
chosen from different disjoint classes. Only one item
is chosen from each class.

5) Multidimensional multiple-choice knapsack problem:
Same as multiple-choice knapsack problem. How-
ever, the knapsack may have a vector of capacities.
Each capacity represents the availability of different
resources (dimensions) that the knapsack provides.
The weight of each item is represented by a vector.
Each weight in the vector reflects the weight of a
unique resource. When a set of items is chosen by
solving the knapsack problem, the sum of weights
for a specific resource should not exceed the resource
capacity provided by the knapsack.

Evolutionary algorithms are heuristics that aim to find a
best solution. An evolutionary algorithm starts with an initial
population. The population consists of several individuals.
Each individual is characterized by a fitness value. The individ-
uals with best values are selected to reproduce new individuals,
as illustrated by Figure 1. [19]

A genetic algorithm is a type of evolutionary algorithms. It
consists of the following steps: Initial population, evaluation,
fitness assignment, selection, and reproduction. [25]

1) Initial population: In this step the initial population is
chosen. The initial population consists of individuals.
[25]

2) Evaluation: Evaluates the current population accord-
ing to an objective function. [25]

3) Fitness assignment: Determines the fitness of the
population. [25]

4) Selection: Selects the fittest individuals for the repro-
duction process. [25]

5) Reproduction: Applies crossover and mutation to
generate new individuals. [25]

The principle is to reach an optimal solution. Reaching
this solution is done by searching the design space to find an

Figure 1. Evolutionary Algorithms. [19]

initial population. The individuals of this population are tested
according to an objective function. New generations are then
produced from the current generation by applying selection,
crossover and mutation. An individual may be a number, set
of integers, two dimensional or three dimensional variable,
etc. Finding the initial population could be done randomly,
by going through an algorithm, or other methods.

Boundedness is equivalent to the fact that the algorithm
terminates after a finite time whenever being started. To
guarantee boundedness, the following conditions should be
satisfied:

1) There must be no external influences which are not
under control of the algorithm.

2) There must be no deadlocks and no unbounded
blocking.

3) There must be no while/until loops which are not
terminating: A classical test in this case is checking
whether the function to be calculated is bounded,
monotonic and not asymptotic. If these three con-
ditions are true then we are sure that the respective
loop will terminate.

In the following, we present the definition of bounded,
monotonic and asymptotic functions:

Bounded functions: “A function is bounded from below if
there is k such that for all x, f(x) ≥ k. A function is bounded
from above, if there is K such that, for all x, f(x) ≤ K.” [20]

Monotonic functions: “ A function is monotonically in-
creasing if for all x and y, such that x ≤ y one has
f(x) ≤ f(y), so f preserves the order. Likewise a function
is called monotonically decreasing if whenever x ≤ y then
f(x) ≥ f(y), so it reverses the order ” [21]

Asymptotic functions: “A function that increases or de-
creases until it approaches a fixed value, at which point it
levels off,” (when x tends versus infinity). [22]

In the next section, we introduce the robotic surgical system
as an appropriate example for an RT application, where our
approach can be applied.

IV. SCENARIO

Let us assume a telerobotic surgery system [23], where the
surgeon is performing the surgical operations remotely with the
help of a robotic surgery system, a set of surgical instruments, a
set of endoscopic tools, a set of medical, technical, and energy
resources, and a deterministic network. The surgical operations
are taking place online, where the surgeon deals with the
digital extension of the patient and the patient is operated by
the digital extension of the surgeon. The surgeon side is the
Master side. The patient side is the Slave side. See Figure
2. On the Master side, the robotic surgical system provides a
vision system that translates the information coming from the
Slave side. On the Slave side, the system provides a controller
which translates the decisions coming for the Master side into
instructions to be applied by the robotic arms, endoscopic
tools and other instruments which will in turn act as a digital
extension of the surgeon. The ability of the system to adapt
itself to the evolutions of surgical actions is limited by the
surgeon ’s ability to react to these evolutions with the required
speed so that the operation is performed successfully.

To overcome this limitation, we assume that the surgeon
is only responsible for deciding which surgical actions should

19

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



take place during the operation. However, the actions steps and
characteristics are predefined and performed by the system and
according to the system parameters. The previous assumption
defines the surgical operation to be a set of surgical actions that
are triggered online and must be accomplished in real-time.
This set should be able to change its structure and behavior at
run-time to enable the system to adapt itself to environmental
changes on the Slave side. The adaptation process should
preserve all RT constraints. Here, the overhead imposed by
the adaptation process itself has to be considered as well. To
perform the surgical operation successfully, the robotic surgical
system collects all internal and external parameters that reflect
the environment state on the Slave side. The parameters are
then analyzed by the system on the Master side and represented
using a vision system. This enables the surgeon to read the cur-
rent state of the patient and to decide if a new surgical action
should take place or a currently running surgical action should
be updated. The decision is then studied by the system to see
whether it has influence on meeting the real-time constraints
of the surgical operation. If no negative influence exists, the
decision is applied to the Slave side. However, if this is not the
case, an adaptation algorithm is run to check whether there is a
possibility to change the structure and behavior of the current
surgical actions set in a way that enables to apply the decision
and preserves all real-time constraints. If this succeeds, the set
is modified and the decision is applied. Otherwise, the surgeon
is informed about the necessity to make another decision. The
measurements of the patient as e.g. pressure, temperature, view
of the surgical field, etc. represent the internal parameters. The
measurements of the environmental factors as e.g. the energy
sources including light, temperature, etc. of the surgical room,
and the measurements of other resources as e.g. number and
kinds of surgical instruments, endoscopic tools, medical equip-
ment, etc, represent the external parameters. This scenario is
an example for an RT system, where our approach can be
applied. Here, we define a task to be a surgical action which
is set to handle a specific surgical state characterized by a
primary range of internal parameters. In this sense, the task
consists of the required positioning and movement actions of
the robotic arms, instruments and tools. The primary range
is the range of parameters that define an initial status of the
patient. A task update is a resulting task defined to handle
a specific contingency of a surgical state characterized by a
range of internal parameters different from the primary range
of the original task.

In the next section, we describe our solution. First, we
introduce the concept of RT cells and their properties. Af-

Figure 2. Telerobotic Surgery. [2]

terwards, we list the steps of the algorithm, and proof of
boundedness for each step.

V. SOLUTION

We assume a RT system, which consists of periodic
and aperiodic tasks. The scheduling technique to be applied
is EDF with relative deadline equal to the period. The
aperiodic tasks are served by TBS. All tasks are augmented
by additional properties, enabling them to be adapted online.
Such an augmented task is denoted by the term “Cell”.

We define the Hyperperiod to be an amount of time,
that is initially calculated according to the periodic
and aperiodic load in the system. The Hyperperiod
guarantees a point of time, at which all periodic
instances can start their execution. This point of time
is the end of current hyperperiod and the beginning
of next hyperperiod. The Hyperperiod might change
each time the adaptation algorithm takes place. NHP
is the point of time at which a hyperperiod ends.

We assume that an adaptation can take place only once
per hyperperiod and becomes effective not earlier than the
next hyperperiod. The adaptation algorithm is executed by a
periodic task with a period equal to the Hyperperiod. We
define two types of RT cells, the controlling RT cells, and the
controlled RT cells. The first one should be able to change the
structure and behaviour of the second one. In our approach,
we define the EC as the only controlling RT cell in the system.
It exists before the system starts. Any other cell in the system
is a controlled RT Cell, and abbreviated as RTC. EC becomes
an Active Engine-Cell (AEC) once it is activated. An RTC
becomes an Active RTC (ARTC) when it is accepted for
execution. Each cell inherits the characteristics of RT tasks,
and has an additional set of properties. This set enables the
organic behaviour to be applied.

A. EC

EC is a periodic cell with period initially calculated as
under paragraph 4 in the properties of EC. In the following,
we list the properties of the EC:

1) EC− ID: the ID of the EC. Each cell in the system
has a unique ID.

2) WorstCaseExecutionT ime (WCETEC): is the
worst-case execution time of the AEC.

3) WorstCasePeriod (WCTEC): is the worst-case
period of the AEC.

4) Hyperperiod: The initial hyperperiod is calculated
as the initial NHP (see the calculation of initial
NHP on page 7).

5) NumOfPARTCs: is the number of periodic
ARTCs in the system.

6) NumOfAARTCs: is the number of aperiodic
ARTCs in the system.

7) Cost: is the cost that AEC is assumed to consume.
The cost is seen as a function of quality factors.

8) Active: is a Boolean variable. It is set to true when
the system starts. Whenever the system stops execut-
ing, EC becomes not active, and the variable is set to
false.

20

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



9) RTCArray: is the data structure that holds the
different cells that exist on the local node and their
variants. New cells can be added to the RTCArray
at run time. Also, current cells can be updated. Each
column is called an RTClass. Each RTClass holds
a number of variants, which are RTCs dedicated to
fulfil the same principal functionality, with different
cost and time characteristics. All periodic variants,
which belong to the same class, have the same period.
The upper bounds of RTCArray dimensions may
change online, according to system resources.

B. RTC
An RTC has the following properties:

1) RTClassID/V ariantID: is a unique ID that dif-
ferentiates an RTC from other RTCs in the system.
Here, RTClassID is the ID of a class of RTCs. In
the RTCArray, a different RTClassID is assigned
to each column. The V ariantID differentiates the
different RTCs in the same class (column).

2) V ariantsAllowed: is a Boolean property that ex-
presses if an RTC is mandatory or not when it should
be tested for acceptance by the system. When it is
equal to true, all variants that belong to the class
of respective RTC should be examined to select the
most appropriate variant in the adaptation algorithm.
If the property, however, is equal to false, the RTC
is considered mandatory to be processed by the
adaptation algorithm without considering additional
variants of its class.

3) UpdatingPoints(UP ): is a set of points in the code
of the RTC routine. At these points, the RTC can be
substituted by another variant from the RTCArray.
The substitution has no influence on the functional-
ity of the RTC. All variants, which have the same
RTClassID, have a set of updating points with
the same number of points, where each point in a
specific set has a counterpart point in all the other
considered sets. In case of periodic cells, we make a
restriction to natural updating points, i.e., the release
time of the next instance [4]. Aperiodic RTCs may
have a sequence of updating points. The first updating
point of an aperiodic cell is its arrival time. The end
of the execution of an RTC does not represent an
updating point. An xth updating point is represented
as UP [x, y] : x ∈ {0, 1, 2, ..}, y is the computation
time between the starting point of the task and the
updating point. When introducing the concept of
updating points, we assume that an updating point
always has a context switch operation. In this context
switch, the AEC has to replace the address of the
old variant to the address of the respective location
of the new variant. In case of aperiodic variants, we
assume the current aperiodic variant just disappears
after execution if not explicitly reactivated at some
later time. Under this assumption the old variant of
the aperiodic RTC just disappears automatically and a
potential reactivation automatically relates to the new
variant.

4) ETexecuted : is the time that has been spent in exe-
cuting an aperiodic RTC before starting the current

hyperperiod. We assume that this value is always
provided by the underlaying RT operating system
(RTOS). ETexecuted is set initially to 0.

5) NextUpdatingPoint: a variable that saves the next
updating point, which has not been yet reached by
the executed code of the RTC.

6) Triggered: is a Boolean property that reflects the
status of an RTC. If it is equal to true, this means
that the RTC is triggered for execution (selected to
construct an insertion or deletion request). Otherwise,
it is not triggered. Whenever a decision is taken about
an RTC to be accepted or not, this property turns to
be false. In this case, we assume that the property is
turned to false by the AEC.

7) TriggeringT ime: is the time, at which an RTC is
triggered (chosen from the RTCArray to construct a
request). Here, we differentiate the arrival time from
the TriggeringTime, by defining the arrival time as the
time, at which the cell becomes ready for execution.

8) TriggeringRange: is the range of time, within
which the arrival time of an RTC could be set. It
starts at the triggering time. TriggeringRange pro-
vides flexibility in choosing arrival times of requests.
It is used, in case arrival times are not identical with
the next point, at which the hyperperiod of periodic
cells is completed (NHP ). Our goal is always to set
the arrival time of periodic requests equal to NHP ,
because at this point, we assume that all accepted
periodic requests are simultaneously activated (i.e.,
we assume that all phases to be 0). Our goal is also
to set the arrival time of aperiodic requests greater or
equal to NHP .

9) Deletion: a Boolean property, set to true if the
request should be deleted. It is set to false, otherwise.

10) DeletionT ime: is the time, at which the RTC should
to be deleted, if its Deletion property is equal to true.

11) Active: is a Boolean variable set to true when the
cell is accepted for execution.

12) ImportanceFactor: is a number, which represents
the expected importance of the RTC, regarding its use
in the system. The importance increases by increasing
the number. All variants that belong to a specific
RTClass have the same ImportanceFactor. The
ImportanceFactor is considered for filtering the
RTCArray when a newly deployed RTC adds a
new RTClass. The filtering process ensures that the
upper bound on the number of RTClasses is not
exceeded. Only most important RTClasses are kept.

13) Essential: is a Boolean property set to true, when
the process of the RTC is essential for the system
to operate. Implicitly this means that its importance
factor is infinitely high.

14) Cost: is an abstract concept. It includes a variety
of possible constituents, e.g., memory demand or
provided quality like precision of computation. For
simplicity reasons, we assume that the cost of the
various constituents in a system, which is consumed
by any cell is represented by one factor “Cost”. This
factor is a function of several system parameters.
Each parameter represents a constituent.

15) StaticParameters: is a list of static parameters used
in calculating the cost of the RTC. Each parameter

21

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



has a name, amount, and a weight.
16) Type: the type of an RTC could be periodic or aperi-

odic. All variants, which have the same RTClassID
have the same value of property Type.

17) Cost Update: the updated cost, which should be
calculated for an RTC, when it replaces another
executing RTC.

C. Complexity variables
The algorithm is bounded if each step needs a bounded

time. Time complexity depends on a set of variables.
The variables are:

1) h: The upper bound of the number of columns in the
RTCArray (number of RTClasses).

2) f : The upper bound of the number of RTCs in an
RTClass.

3) b: The upper bound of the newly deployed RTCs.
4) PN : an upper bound of number of parameters in the

system.
5) QB: The upper bound of requests that can be received

in each execution of the EC.
6) SC: The upper bound of the dependent cells, which

may construct a request.
7) m1:The sum of utilization factors (execution time /

period) for the periodic load and AEC (assuming that
period of AEC is least common multiple of periods
of periodic RTCs), approximated to the next integer
number.

8) n: The upper bound of the number of updating points
in a cell.

9) GRP : The value of the greatest period available
among the periods in the RTCArray, and the ex-
pected period of the EC.

10) NInd: Number of individuals in a generation within
the genetic algorithm solving the Knapsack problem.

All parameters have a predefined upper bound, which
guarantees boundedness of computation time.

D. Adaptation Algorithm
The following terms are used in the algorithm:

- ExpPARTCs: is the set of periodic ARTCs exclud-
ing deletion requests.
- ExpAARTCs: is the set of aperiodic ARTCs ex-
cluding deletion requests.

Calculating an initial NHP is carried out either offline or
when starting the system. The initial NHP is calculated as
follows:

WCTEC is initially set to the least common multiple of
periods of periodic cells in the system. Let sum1 denote the
sum of initial periodic RTCs utilizations. Initial periodic RTCs
are RTCs, which initially are in the system and let lcm initial
denote the least common multiple of the respective periods.
Let Us Initial denote the server utilization to handle the
aperiodic RTCs, which initially are in the system with respect
to their deadlines. Then, the utilization, which can be spent
for EC can be calculated by:

WCETEC/(lcm initial × factor) = 1 − Sum1 −
Us initial.

By resolving this equation for factor we obtain

factor

= d(WCETEC/lcm initial × (1− Sum1− Us initial))e
(1)

The initial NHP is equal to lcm initial × factor. This
value is set as a period of the EC.

Calculating the initial NHP shows a trade-off. A system,
which is highly utilized by its ”normal” load suffers from
low adaptability as only a small part of the processing power
can be assigned to the EC. A high utilization consumed by
EC may serve more requests but with longer reaction time.
The execution time of the EC depends on b and QB. For
this reason, setting b and QB by the system administrator
plays a role in this trade off. The execution time increases as
these parameters increase. The WCETEC of the EC depends
on a couple of parameters. The respective function will be
presented at the end of this paper. It is assumed that based
on this function and an appropriate model of the underlying
hardware the resulting WCETEC can be estimated with
sufficient precision.

Each time the EC is executed, following steps take place:
Step 1: Gathering and Filtering the newly deployed

RTCs:
The first step of the AEC is to collect the newly deployed

RTCs. It stores them in a WorkingRTCArray (a copy of
RTCArray) following a procedure that ensures to keep the
upper bound of the WorkingRTCArray dimensions pre-
served. Newly deployed RTCs enlarge the solution space when
applying the adaptation algorithm. Let b be the upper bound of
newly deployed RTCs that can arrive at this step. For the pur-
pose of providing predictability we restrict ourselves to fixed
upper bounds in both dimensions of the WorkingRTCArray.
Let us assume that f is the upper bound of the different variants
in each class of the WorkingRTCArray, and h is the upper
bound of the different RTClasses that can be stored in the
WorkingRTCArray. If the newly imported RTCs may cause
exceeding the upper bound of variants in a column, or the
upper bound of columns, the EC preserves the upper bounds
by applying a filter procedure. In this context, we discuss
following different cases:

1) If the upper bounds of influenced dimensions in
WorkingRTCArray will not be exceeded, the
RTCs can be added to the WorkingRTCArray. See
Figure 3, Figure 5 and Figure 6.
If upper bound of classes is exceeded, one pos-
sible heuristic for replacing RTClasses is the
ImportanceFactor-based approach. The RTClasses
that could be chosen to be replaced by the newly
arrived ones are the classes that are not essential or
activated. We exclude the classes with the smallest
ImportanceFactor. For example, let us suppose that
there exists in WorkingRTCArray 20 RTClasses.
All RTClasses have an ImportanceFactor equal
to 3, except the third RTClass. It has an
ImportanceFactor equal to 1. The upper bound of

22

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



classes is 20. If we have to add a newly deployed
RTClass with an ImportanceFactor equal to 5,
and the third RTClass is not essential and not
activated, then we can replace the third RTClass
by the newly arrived one.
If RTC adds a new periodic variant to an existing
column and the upper bound of variants in the column
is exceeded, then a decision should be taken, which
RTC to drop. One option may be to examine the
RTC with the highest Ci/Ti. If it does not result
in a successful schedulability test together with the
AEC, we exclude it. If it results in a successful
schedulability test, we exclude the RTC with the
highest cost. For example, let us suppose that there
exists 90 variants in the column, where the newly
deployed RTC should be added. The upper bound of
variants in the column is 90. If the utilization needed
by the newly deployed RTC is 0.3, and the highest
utilization needed by the variants in the column is
0.7. If the utilization needed by the AEC is 0.6, then
we exclude the RTC, which needs the utilization of
0.7. If, however, the highest utilization needed by the
variants in the column is 0.2, then we exclude the
variant with the highest cost among variants in the
column and the newly deployed RTC. If the cost of
the newly deployed RTC is 15, and highest cost of
variants in the column is 20, we exclude a variant
that has the cost 20.
In case the newly deployed RTC adds a new aperiodic
variant to an existing column, and this will cause
exceeding the upper bound, we exclude the RTC that
consumes the highest cost. An arbitrary exclusion can
also take place.

2) If a newly arrived column should update a specific
existing column, and no variant is active in the
existing column, we substitute it by the newly arrived
one. See Figure 3 and Figure 4. If there is an active
variant in the existing column, we add the newly
arrived RTClass to a queue to be considered later.
This UpdateQueue may be ordered by the arrival
times or an arbitrary other criterion. The upper bound
of its capacity is equal to QB. Each element of the
UpdateQueue is an array. The array includes the
newly deployed RTClass, in case this RTClass
does not have dependencies. In case a set of de-
pendent RTClasses arrives, the array includes more
than one column, the newly deployed RTClass and
the other RTClasses in the dependency graph.

Boundedness proof:
- Transmitting the newly deployed RTCs is bounded by

b and time for transmission. As we assume a deterministic
communication channel between the remote node where newly
deployed RTCs reside and the local one, the transmission
time is bounded. - The EC applies a filter procedure to
preserve upper bounds of the WorkingRTCArray. The filter
procedure is bounded by one of the WorkingRTCArray
dimensions. The formal proof of the boundedness of this step
and the next steps is clear when looking at Nassi-Schneiderman
diagrams which represent the steps. In [2], time complexity
appears on each diagram, and this in turn points out that the
step specified by the diagram is done in a bounded time, and

the bound depends only on the parameters, which participate
in the time complexity formula.

Step 2: Triggering and handling the newly arrived
requests:

In the previous step, an UpdateQueue has been con-
structed, including update requests. In this step, another queue

Figure 3. Nassi-Schneiderman Diagram for gathering and filtering the
newly deployed RTCs [2].

Figure 4. Nassi-Schneiderman Diagram for the arrival of an updating
list of RTCs [2].

Figure 5. Nassi-Schneiderman Diagram for adding a new column [2].

23

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



is constructed. It is called the TriggeredQueue, ordered by
arrival time or any other criterion. Requests, that are added
to this queue, are chosen from the WorkingRTCArray.
Triggered requests may add or delete RTCs. Triggered requests
are chosen according to the necessities of the system. The
upper bound of the TriggeredQueue capacity is QB. The
EC makes an iteration over items in the UpdateQueue and
the TriggeredQueue in parallel. It selects by an arbitrary
criterion either an update request or a triggered request. For
simplicity, the decision can be made arbitrarily. This selection
process is iterated until the number of requests is equal to the
upper bound or until no further requests exist. See Figure 7 and
Figure 8. Selected requests will be stored in a RequestQueue
of bounded size.

If the arrival time of the periodic requests in
the RequestQueue is not equal to NHP , their
TriggeringRange is examined. If TriggeringT ime ≤
NHP ≤ TriggeringT ime + TriggeringRange, then the
arrival time is set to NHP . Otherwise the requests, which do
not satisfy the previous condition, are not accepted and deleted
from the RequestQueue. After that a notification is sent to
the system administrator. For example, if NHP = 10. The
arrival time of the request is equal to 9. Its triggeringRange
is equal to 5, and the request has been triggered at time 8,
we notice that the arrival time of the request is not equal to
NHP. For this reason, we examine if TriggeringT ime ≤
NHP ≤ TriggeringT ime + TriggeringRange. We notice
that 8 ≤ 10 ≤ 8 + 5, so we set the arrival time to 10. The
DeletionT ime of periodic requests that have to be deleted is
set to next natural updating point. If arrival times of aperiodic
requests are greater than NHP , they stay the same. If they
are smaller than NHP , we set their arrival times the same
way as for periodic requests.

If the request includes a set of dependent cells, we assume
that their modified arrival times and deadlines are calculated
offline by EDF*. If one of the modified arrival times is smaller
than NHP , then a fixed offset is applied to all arrival times

Figure 6. Nassi-Schneiderman Diagram for adding an RTC to an
existing column [2].

and deadlines to keep them greater or equal to NHP . See
Figure 9.

An update request is represented by an array of RTCs
that constructs the RTClass of the update. Updating a set
of dependent cells is done under the same rules as updating a
cell.

When requests in the RequestQueue proceed for
processing by the AEC, the buffers (UpdateQueue,
TriggeredQueue, and RequestQueue) become empty.

Boundedness proof:
- A queue of triggered requests (add/delete requests) is

constructed in a time bounded by QB.
- The first and second iteration over UpdateQueue and
TriggeredQueue is bounded by QB.
- Setting the arrival time of requests is bounded by a constant
time.

Step 3: Calculating the cost of quality factors for the
system:

A part or the whole set of local parameters might influence
the overall quality of the system. This set of parameters
includes both parameters of the underlying computing system
and of the RT system under consideration. Parameters of the

Figure 7. Nassi-Schneiderman Diagram for triggering a request.

Figure 8. Nassi-Schneiderman Diagram for choosing between an
update and a triggered request.

24

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



system should be read in each execution of the EC because
they might change. This change may affect the result of the
adaptation process. E.g., adding new resources may allow
accepting a set of requests, which cannot be accepted with less
resources. The result of calculating the total cost depending on
quality parameters available is called Costtotal. For example,
let us assume that in a remote surgical system, only the
following set of parameters are considered: number of cameras,
number of robotic arms and number of endoscopic tools. Let
us assume that each of these parameters has a weight. Number
of cameras is equal to 3. Number of robotic arms is equal to
10. Number of endoscopic tools is equal to 8. The weight of
the first parameter is 1. The weight of the second parameter
is 4. The weight of the third parameter is 2. Let us assume
that Costtotal is given by the following function: t Costtotal =
first parameter × weight of first parameter + second parameter
× weight of second parameter + third parameter × weight of
third parameter = 3 × 1 + 10 × 4 + 8 × 2 = 3 + 40 + 16 =
59.

Boundedness proof: Under the assumption that an arith-
metic operation can be carried out in bounded time, and
number of system parameters is bounded by PN, the entire
calculation can be carried out in bounded time.

Step 4: Adaptation algorithm:
In this step, we calculate the lowest cost feasible

solution over the entire set of RTClasses stored in
AdaptationRTCArray. The AdaptationRTCArray is con-
structed as follows:

Constructing AdaptationRTCArray:
1) We copy the variants of the WorkingRTCArray

into a temporary array AdaptationRTCArray. The
WorkingRTCArray is essential for enabling a
transaction concept. If the adaptation process turns
out to be successful, the WorkingRTCArray will
replace the RTCArray. If the adaption fails, the
WorkingRTCArray will be neglected and the sys-
tem returns to the previous version.

Figure 9. Nassi-Schneiderman Diagram for setting time
characteristics of triggered requests [2].

2) We reduce AdaptationRTCArray to contain
only the variants, which RTClassID exists
in the ExpPARTCs and ExpAARTCs with
absolute deadlines exceeding NHP . For each
ExpPARTC or ExpAARTC, which has the
property V ariantsAllowed set to false, we do not
consider variants that hold the same RTClassID
in AdaptationRTCArray, other than the ARTC
itself.

3) For each aperiodic ARTC that should be deleted, and
has absolute deadline exceeding NHP , we add a
column including the ARTC as the only variant. If
a next possible updating point exists, its execution
time is set to yUpdatingPoint. The reason is that
updating points are the most suitable points to apply
deletion, as partial results are delivered on these
points. Deleting a cell suddenly on an arbitrary point
may cause errors.

4) We then add a column that includes the AEC.
5) We also add the newly triggered requests. If their

properties V ariantsAllowed are set to true, we
add columns that represent RTClasses of the
newly triggered variants. If, however, their prop-
erties V ariantsAllowed are set to false, we add
only columns containing the newly triggered vari-
ants (a column for each RTC). The value of
V ariantsAllowed might be different among the dif-
ferent requests.

6) In case there is an update request for an RTC: Adding
an aperiodic update is done (only if there exists an
updating point after NHP in the aperiodic variant
that is running) by adding the updating RTClass
that includes the triggered updating variant. In the
following, we summarize how to check the exis-
tence of an updating point after NHP (only in this
case, the updated variant should be excluded when
constructing ExpAARTCs), and how to set the
time characteristics for the variants in the updating
column:
First: Determining the set of ARTCs that can be
updated: First, we check whether in the current
hyperperiod there is capacity left to execute
aperiodic ARTCs with deadlines that exceed
NHP . This capacity is called ”Amount”.

Amount = Hyperperiod −
[(
∑NumofPARTCS

i=1 ((Hyperperiod/Ti) × Ci)) +

WCETEC +
∑NumofAARTCS−NumOfANHP

i=1 (Ci−
ETexecutedi)]

NumOfANHP : refers to the number of aperiodic
ARTCs with deadlines that exceed NHP . Based on
the value of Amount we now can identify those
ARTCs, which definitely result in a completion
time later than the current hyperperiod and hav-
ing an update point after NHP .
Amount1 = Amount.

/* We construct a vector of the running aperiodic
ARTCs, which deadlines exceed NHP . In the
following loop i indicates the ith item in the

25

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



vector.*/

If (Amount1 > 0) then {
For (i = 1 to NumofANHP ) {
If (Ci − ETexecutedi ≤ Amount1) then {
Amount1 = Amount1− (Ci − ETexecutedi)
}
else {
Ci,new = (Ci − ETexecutedi)−Amount1.

If there exist an updating point in Ci,new,
add this ARTC to the set of variants that can
be updated
}
}
}

else {
For (i = 1 to NumofANHP ) {
Ci,new = Ci − ETexecutedi

If there exists an updating point in Ci,new,
add this ARTC to the set of variants that can be
updated
}
}

Second: Calculation of time characteristics for the
updates: If the found updating point is UP [x, y],
the arrival time of the jth variant in the updating
RTClass is set to the arrival time of the updated
variant. The execution time for the jth variant
is set to (y + Cj - ỳ), where ỳ is the relative
updating point time for the counterpart updating
point. The specified absolute deadline for the jth
variant is set to max[((Dj - ỳ) + (Arrival time of
the running variant + y)), Absolute Deadline of
the running variant that should be updated]

7) Adding a periodic update is done by adding
the arrived RTClass, which includes the trig-
gered updating variant to AdaptationRTCArray.
If V ariantsAllowed is equal to false, only the
triggered updating variant should exist in the column.
Otherwise, all variants, which belong to the update
exist in the column. The updated variant has to be
excluded when constructing ExpPARTCs, because
executions of periodic instances are completed in
each hyperperiod. This means, when a periodic up-
date is applied in the next hyperperiod, no execution
of the updated variant can take place.

8) In case there is an update request for a set of aperiodic
dependent RTCs, modified arrival times and dead-
lines are calculated offline. When calculating time
characteristics of the variants in the columns that are
supposed to update dependent variants, same rules of
updating one variant are applied.

In this way, we can use the reduced array in the next
step for the adaptation algorithm as each column represents
a participant in the selection process. The columns in the
array are reordered, so that periodic columns comes first, then
AEC, and finally aperiodic columns.

Let us assume that: 1

the number of columns in AdaptationRTCArray = 2

Num. 3

Ǹ is the number of columns, which represent the 4

newly triggered aperiodic requests. They are placed as last 5

columns in AdaptationRTCArray. 6

If (NumOfANHP > 0) then { 7

/*In the following, we calculate arrival times, execution 8

times, and Cost−Update for the running aperiodic ARTCs 9

that are stored in AdaptationRTCArray, with deadlines 10

exceeding NHP .*/ 11

If (Amount > 0) then { 12

/* Amount as calculated under part “First” is the time 13

left in the current hyperperiod, after excluding the time 14

that should be spent in executing the periodic ARTCs, 15

and aperiodic ARTCs, which deadlines that do not exceed 16

NHP .*/ 17

/*We construct a vector of the running aperiodic 18

ARTCs, which deadlines exceed NHP . We order the 19

elements of this vector according to the increasing 20

absolute deadlines. In the following loop i indicates the 21

ith item in the constructed vector.*/ 22

23

For (i = 1 to NumOfANHP ){ 24

If (Ci − ETexecutedi ≤ Amount) then { 25

Amount = Amount - (Ci − ETexecutedi) 26

Exclude the column of the ith aperiodic variant from 27

AdaptationRTCArray. Decrease Num by 1. 28

} 29

else{ 30

Ci,new = (Ci − ETexecutedi)−Amount. 31

Set execution time of the variant in 32

AdaptationRTCArray that is equal to the ith variant to 33

Ci,new. 34

Set the arrival time of the variant in 35

AdaptationRTCArray that is equal to the ith variant to 36

Arrival time = NHP , if Arrival time < NHP 37

Amount = 0. 38

} 39

} 40

} 41

else{ 42

For (i = 1 to NumofANHP ){ 43

Ci,new = Ci − ETexecutedi 44

Set the execution time of the variant in 45

AdaptationRTCArray that is equal to the ith variant to 46

Ci,new. 47

Set the arrival time of the variant in 48

AdaptationRTCArray that is equal to the ith variant to 49

Arrival time = NHP , if Arrival time < NHP 50

} 51

} 52

Cost− Update = the cost of the RTC 53

54

/*The following iteration is done over the aperiodic 55

RTCs in AdaptationRTCArray, which do not belong to 56

26

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the newly triggered requests.*/ 57

58

For (k=Number of periodic columns+1..Num-Ǹ){ 59

If (V ariantsAllowed = true) && (there exists an 60

updating point in the part of the running variant dedicated 61

for Ci,new (after NHP )) then{ 62

/*The following calculations are done to include the 63

possible alternatives for the active aperiodic cells in the 64

knapsack problem.*/ 65

/*A new arrival time, execution time, cost and 66

absolute deadline are calculated for the variants of the kth 67

column in AdaptationRTCArray, excluding the running 68

variant in the kth column.*/ 69

Arrival time = Arrival time of the active variant in 70

the kth column. 71

New execution time is assigned to each variant in the 72

kth Column, excluding the running variant: 73

C̀k,new = (C̀ − ỳ) + (Ck,new − (Crunning,variant − y)) 74

C̀ is the execution time of the jth variant, for which 75

we are calculating the attributes, in the kth column. 76

Ck,new is the calculated execution time of the running 77

variant in the kth column. 78

Crunning,variant: is the original execution time of the 79

running variant in the kth column. 80

y is the relative updating point time of the next 81

updating point in the running variant. 82

ỳ is the relative updating point time of the counter- 83

part updating point in the jth variant. 84

Cost−Updatej = Maximum of (Cost of the running 85

variant, cost of the jth variant). 86

Specified absolute deadline = max (Specified absolute 87

deadline for the running variant, NHP + (Ck,new − 88

(Crunning,variant − y)) + specified relative deadline). 89

} 90

else We choose the running variant in the kth column. 91

} 92

} 93

Up to know we have prepared the current ecosystem
of RTCs, within which we have to find a valid solution
with minimized overall cost by making a proper selection of
variants.

To find the solution, we solve the following multiple-
choice multidimensional knapsack problem:

/*The fist constraint of the knapsack guarantees
minimizing the cost of the solution. The second constraint
of the knapsack guarantees the schedulability of periodic
and aperiodic cells with hard deadlines.*/

max
∑Num

i=1

∑ni

j=1−Costijxij

Subject to:
∑Num

i=1

∑ni

j=1 W
k
ijxij ≤ Rk

Where:
∑ni

j=1 xij = 1; i = 1..m & xij ∈ {0, 1}; i = 1..m
and j = 1..ni, k = 1:3

W 1
ij = Factor1/Factor2

For any of the periodic RTCs: Factor1 = Cij ,
Factor2 = Tij

For the AEC, Factor1 = WCETEC ,
Factor2 = WCTECtemp

For any of the aperiodic RTCs: Factor1 = 0, Factor2
= 1

WCTECtemp is calculated as follows:

The expected hyperperiod is calculated as the least
common multiple of periods of periodic ExpPARTCs in
AdaptationRTCArray, and periods of the newly triggered
periodic requests in AdaptationRTCArray. The resulting
value is set as initial value for the expected period of
AEC. If the resulting utilization of the RTCs is below 1
then, we examine the total utilization (AEC and RTCs).
If it is smaller or equal to 1, we have found the shortest
possible expected period for AEC, which at the same time
by definition is the hyperperiod. If the total utilization
is beyond 1 then the expected hyperperiod has to be
extended by a harmonic multiple until the total utilization
is no longer beyond 1. If the resulting utilization of the
RTCs is 1, the set of chosen RTCs results in a non-
feasible solution. In each hyperperiod, only one execution
of the AEC is assumed. For this reason, we finally update
WCTECtemp, the expected period of the AEC, to be equal
to the expected hyperperiod.
W 2

ij is calculated here in a way different from [1]. In [1], W 2
ij

is negative if there is an aperiodic lateness. The sum of weights
as stated in the knapsack problem is defined as the aperiodic
lateness. If this lateness is smaller than zero (the related
knapsack constraint succeeds), the aperiodic lateness indicates
a deviation from optimal case of meeting hard deadlines of
aperiodic RTCs.

In this paper, we set W 2
ij to be zero if hard deadlines

are met (dCalculated,ij ≤ dSpecified,ij). Otherwise it will be
equal to a positive value expressing the aperiodic lateness.
The sum of weights as stated in the knapsack problem is
defined as the aperiodic lateness. If the related knapsack
constraint succeeds, hard deadlines of aperiodic RTCs are

27

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



met.

W 2
ij = Factor1 − Factor2 if Factor1 > Factor2,

otherwise W 2
ij = 0.

For any of the periodic RTCs and the AEC: Factor1
= 0, Factor2 = 0.

For any of the aperiodic RTCs:

Factor1 = dCalculated,ij , Factor2 = dSpecified,ij .

Where:

dSpecified,ij : The specified absolute deadline for any
aperiodic variant, which belongs to an aperiodic variant
in AdaptationRTCArray. It is equal to its arrival time +
relative deadline of the variant.

dCalculated,ij = max{dCalculated(i−1)ji−1
, ArrivalT imeij}+

Cij,new/Us.

dCalculated(lpl) = 0.

Where;

p = j

l = Number of periodic columns in
AdaptationRTCArray +1

Us = 1− Up.

Depending on the different kinds of RTCs to be
considered in solving the Knapsack problem, W 3

ij is
defined as follows:

W 3
ij = Cost for periodic RTCs stored in

AdaptationRTCArray

W 3
ij = Cost−Update for running aperiodic RTCs that

are stored in AdaptationRTCArray

W 3
ij = Cost for added aperiodic RTCs stored in

AdaptationRTCArray

R1 = 1.

R2 = 0.

R3 = Costtotal.

The limit Costtotal is optional. If it is set to infinity,
then the optimization process tries just to find the lowest
cost solution. If the limit is set to a finite value, then the
solution space is further limited. If a solution is found, the
newly arrived requests are accepted.

The algorithm we are applying to solve the knapsack
problem is a genetic algorithm. See subsection E for further
details.

If the newly arrived requests are accepted by the
system, the ARTCs set or subset, which is represented
in AdaptationRTCArray is substituted by the chosen
alternatives. Replacing a periodic ARTC means deleting
the periodic ones that should be substituted and loading
the periodic alternatives at NHP . Replacing an aperi-
odic ARTC means, the replaced RTC can be treated as
a deletion request. When the deletion takes place, the
information necessary for replacing the ARTC (transferred
from replaced RTC to the replacing one) should be stored.
The chosen alternatives are stored in a ready queue. At
the NHP , the Active property of the alternatives and for
the newly triggered requests is set to true. The Active
property of the alternated cells is set to false once they
are replaced (deleted). In the aperiodic case, the part of
the updated cell that follows the first updating point after
NHP is to be replaced. At the replacement point for
aperiodic cells, any data of the altered cells or updated cells
that might be necessary for the alternatives or updating
variants is stored. The Active property becomes true for
the alternatives. After that, step 5 is applied.

E. Genetic Algorithm
The algorithm we are applying to solve the knapsack

problem is a genetic algorithm. In the algorithm, an in-
dividual contains exactly one variant for each column in
AdaptationRTCArray. And a generation may contain one or
more individuals. In total there exist up to fh individuals. Each
of them is a potential solution of the Knapsack problem. In
the genetic algorithm, we select smaller subsets of individuals
and call them Generations. The lowest cost individual of a
generation is a preliminary solution of the Knapsack problem.
A generation is constructed from a previous one by applying
selection and mutation. This process is iterated until no im-
provement can be observed or a given time limit is reached.
We set the first generation to include at least two individuals.
The first one is given by selecting from each periodic RTClass
the variant with the lowest respective utilization, and from
each aperiodic RTClass the variant with lowest respective
execution time. The low utilization of a periodic RTC rises
the chance of making the sum of all periodic utilizations
smaller or equal to 1. The low execution time of an aperiodic
RTC rises the chance that the calculated absolute deadline,
which is calculated according to TBS, becomes small. As a
result, the chance of meeting the hard deadlines of periodic
and aperiodic RTCs becomes higher. The second individual is
given by the current selection of variants for all RTClasses,
which are not affected by the adaptation together with all
adaptation requests included in the first individual. The first
initial individual allows a simple decision whether a solution
exists, as if this individual does not fulfil the constraints then
there cannot exist any solution. The reason is that we choose
the variants in the first individual in a way that reaches the
highest chance of satisfying the schedulability test because
the periodic utilization is at lowest amount and the calculated
aperiodic deadlines according to TBS are at lowest values.
The second initial individual is a promising one in the first
generation under the assumption that before adaptation we had
an optimized system.

28

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Let us assume that the number of individuals in a gener-
ation ≤ upper bound of number of variants in a class in the
WorkingRTCArray. The remaining individuals of the first
generation may be chosen by any procedure, e.g., by randomly
exchanging the selected variants in the columns.

After that WCTECTemp, server utilization, and absolute
deadlines for aperiodic load are calculated for each individual
according to TBS [6]. The individuals of a generation are
sorted by increasing total costs. This implies that the first
individual of this list, provided that the constraints are satisfied,
constitutes the preliminary optimum.

If the knapsack constraint
∑Num

i=1

∑ni

j=1 W
k
ijxij ≤ Rk has

no solution for the first generation, even under the assumption
of R3 = infinite, then the adaptation has to be rejected. Other-
wise, if it has a solution for a set of individuals, we choose as
an intermediate solution the individual, which minimizes the
accumulated cost of the chosen RTCs.

In order to potentially improve the solution with the ob-
jective to minimize the accumulated cost, we iterate to choose
different generations by applying selection and mutation on
the individuals, until we either have no further improvement
or we reach our predefined time limit.

As an example we assume that the selection process is
done by rejecting all constraint-violating individuals and a
certain amount of the worst individuals of a generation and
that the mutation process is done by replacing an arbitrary
RTC in the remaining individuals by another arbitrary RTC
from the same column. Selection also implies that the
size of the generations may vary (remains bounded). The
improvement of the solution is guaranteed by keeping the
fittest individuals in the next generation. Choosing an arbitrary
variant when applying the mutation may enhance the solution
more than choosing a variant with specific characteristics,
because there is no characteristic that can guarantee enhancing
the solution. We did not apply recombination in our approach.
Applying it is a possible option. However, in this case, we
should ensure to keep a specific number of individuals in each
generation after the selection process, which may enforce
keeping a number of constraint-violating individuals in the
next generation. This is necessary for the recombination
process to take place, because we should assume to have at
least two individuals in the previous generation. Figure 10,
Figure 12 and Figure 13 describe the solution. Figure 11 is
part of the process in Figure 12.

Boundedness proof:
- Operations Step 4 other than the genetic algorithm are

bounded by f , h, or f and h.
- The genetic algorithm is bounded because of the follow-

ing reasons:

1) The operations dedicated to calculate WCTECTemp,
server utilization, and absolute deadlines for the
aperiodic load in each individual are bounded by
NInd, upper bounds of RTCArray dimensions.

2) We can decide whether there exists a feasible
solution or not in bounded time. Feasibility can be
decided already based on the first generation.

3) The individuals of a generation are sorted by
increasing total costs. Sorting is bounded by NInd.

4) The optimization is done in bounded time as
well. The reason is that we loop from generation
to generation until we either have no further
improvement or we reach our predefined time
limit. The latter termination condition guarantees
boundedness.

Step 5: Activate the accepted requests, and update the
AEC:

If the newly triggered requests are accepted, the Active
property of their RTCs becomes true. They are put into the
ready queue of the underlying RTOS. The AEC schedules
the first arrival of each request to be at NHP . This is done
by loading the accepted RTCs into the memory (transforming
them into ARTCs). The scheduler is responsible for loading
the accepted RTCs at NHP . The AEC updates its properties,
e.g., WCTEC is set to the temporary value WCTECtemp.

Figure 10. Nassi-Schneiderman Diagram for choosing the initial
generation [2].

29

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Hyperperiod = WCTEC .

The AEC updates then its properties according to the
changes that will take place. NumOfAARTCs is increased
by number of accepted aperiodic RTCs, if the newly
triggered RTCs are aperiodic, or the NumOfPARTCs
is increased by number of accepted periodic RTCs, if the
newly triggered RTCs are periodic. NumOfAARTCs is
decreased by number of aperiodic RTCs that are deleted.
NumOfPARTCs is decreased by number of periodic RTCs
that are deleted. WCTEC is set to the temporary value, which
is calculated in step 4 as follows:

WCTEC = WCTECtemp.

The hyperperiod is updated according to step 4.

Hyperperiod = WCTEC .

In case the request is an update for one or sev-
eral active RTCs, it replaces the RTClasses in the

Figure 11. Nassi-Schneiderman Diagram for evaluating an individual
[2].

WorkingRTCArray, which includes the RTC/RTCs that
should be updated by the RTClass/RTClasses of the newly
arrived request. We set the Active property of the triggered
elements in the newly arrived RTClasses to true. After that,
AdaptationRTCArray is set to empty. See Figure 14.

Boundedness proof:

Figure 12. Nassi-Schneiderman Diagram for evaluating a generation
[2].

30

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



- Activating each accepted request is done in constant
time by turning the Active property into true.

- Iterating over newly arrived requests is bounded by QB.

- Updating each of the AEC properties
(NumOfAARTCs, NumOfPARTCs, period of the
EC) is also done in constant time.

Step 6: Turning the triggered requests into non-
triggered:

The Triggered Property of requests RTCs is
turned into false. If the arrived requests are accepted,
WorkingRTCArray is copied to RTCArray, and then it
is set to empty.

Boundedness proof:
- The Triggered property of each request RTC is turned

to false in constant time.

- Iterating over the requests in WorkingRTCArray is
done in time bounded by h ,f and QB.

- Copying WorkingRTCArray to RTCArray is done
in time bounded by f and h. Resetting WorkingRTCArray
is done in constant time.

Step 7: Notify the system, in case the requests are not
accepted:

If the set of proceeded requests cannot be accepted,
then a notification is sent by the AEC to the system

Figure 13. Nassi-Schneiderman Diagram for the genetic algorithm
[2].

for substituting the proceeded set of requests by another
set. Costtotal, WCTECtemp, The expected hyperperiod,
AdaptationRTCArray, ExpPARTCs and ExpAARTCs
are reset to their initial values. WorkingRTCArray is set to
empty.

Boundedness proof:
- A notification is sent to the system administrator in

constant time. Costtotal, WCTECtemp.

- The expected hyperperiod, AdaptationRTCArray,

Figure 14. Nassi-Schneiderman Diagram for activating the accepted
requests and updating the AEC [2].

Figure 15. Example from extracting time complexity from a pseudo
code.

31

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



ExpPARTCs and ExpAARTCs are reset in constant time.

- Resetting WorkingRTCArray is done in constant time.

As shown above, the adaptation process takes place in
bounded time. Part of this process, however, is the calcula-
tion of the WCETEC of the EC. This value depends on a
couple of parameters that may vary by each application of the
adaption. The following complexity function has been derived
in [2] to express the influence of all relevant parameters on
time complexity. It is assumed that based on this complexity
function and an adequate model of the underlying hardware the
resulting WCETEC can be estimated with sufficient precision.
The reason is that the complexities, which construct the
function can be derived from a pseudo code of the adaptation
algorithm. [24] points out how time complexity can be derived
from a pseudo code. In [2], the pseudo code was not described,
but an estimation was done on Nassi-Schneiderman diagrams.
Each diagram points out the step, which is specified by that
diagram, by breaking it into smaller steps. One can estimate
the complexity of these small steps, as if they were reflecting
parts of a pseudo code. In Figure 15, we present an example
for extracting the time complexity from a pseudo code.

We find that the algorithm is solved by a quadratic time
complexity.

Complexity of the algorithm [2]: Complexity of
step 1 + Complexity of step 2 + Complexity of step
3 + Complexity of step 4 + Complexity of step 5
+ Complexity of step 6 + Complexity of step 7 =
O(b∗h∗f)+O(QB∗h∗f∗SC+SC2)+O(PN)+O(QB∗SC∗
f ∗h+h2∗f+QB∗n+h∗n+f2∗h+f ∗m1+f ∗logGRP )+
O(QB ∗SC ∗h ∗ f +h2 ∗ f) +O(h ∗ f ∗QB ∗SC) +O(1) =
O(b ∗ h ∗ f + PN + f ∗m1 + f ∗ logGRP + f2 ∗ h + h2 ∗
f + QB ∗ n + h ∗ n + h ∗ f ∗QB ∗ SC + SC2)

In Section V, we have first pointed out how to transform
the traditional RT tasks into RT cells. For this purpose, we
defined the new properties that have to be added to the structure
of RT tasks in order to allow executing the tasks as cells.
Cells can change their structure an behavior at runtime. In
our approach, there is two kinds of cells. EC belongs to one
kind, and RTCs belong to the other kind. In this section, we
have listed the properties of EC and RTCs. Then we listed all
parameters, which may play a role in time complexity of the
adaptation algorithm. We defined the parameters. Afterwards,
we went through the steps of the algorithm. In each step, we
explained how the step is performed. Then, we presented the
boundedness proof of the step. Finally, we presented the time
complexity of the algorithm.

In the next section, we summarize the content of the paper,
and introduce potential future work.

VI. CONCLUSION AND FUTURE WORK

In this paper, we provided the details of the algorithmic
solution described in [1]. We have showed the proof of
boundedness for each step in the algorithm. The solution tries
to evolve the system at run time. Each time the EC executes,
and new requests exist, there is a possibility to change the
RTCs, which construct the system. The EC executes a genetic

algorithm, to solve a knapsack problem. The conditions of the
problem aim to provide more processor capacity and to mini-
mize the costs by choosing best combination of cells variants.
Every individual that results from the genetic algorithm acts
as a possible input for the knapsack. The genetic algorithm
runs until a best individual is found, or a predefined time limit
is reached. The time complexity of the algorithm has been
deduced depending on abstract code. Code statements have
been modelled by Nassi-Schneiderman diagrams [3]. In [2],
time complexities are listed in the diagrams. In the future,
we may apply different approaches including different genetic
algorithms to solve the knapsack problem. This may provide
different optimization output [2]. The problem might also be
modelled by means different from the knapsack. Considering
communication between cells is an additional aspect that may
expand the scope of RT applications, where the algorithm can
be applied [2]. The solution is designed for a local node and
one remote node, where newly deployed cells can be installed.
Later we may design a solution for more than one remote
node. Each one is dedicated for a different type or sort of RT
cells. By applying this enhancement, we can save costs because
nodes can stay where appropriate developers exist [2].

VII. ACKNOWLEDGEMENT

This work is based on a PhD thesis done at University of
Paderborn, Germany [2].

REFERENCES

[1] L. Khaluf and F. Rammig, “Organic Self-Adaptable Real-Time Ap-
plications,” In the fifteenth international conference on Autonomic
and Autonomous Systems (ICAS), pp. 65-71, 2019.

[2] L. Khaluf, “Organic Programming of Dynamic Real-Time Applica-
tions,” a PhD thesis, University of Paderborn, 2019.

[3] I. Nassi and B. Schneiderman, “Flowchart Techniques for Structured
Programming,” Technical Contributions, Sigplan Notices, pp. 12-26,
1973.

[4] L. Khaluf and F. Rammig, “Organic Programming of Real-Time Op-
erating Systems,” In the ninth international conference on Autonomic
and Autonomous Systems (ICAS), pp. 57-60, 2013.

[5] H. Ghetto, M. Silly, and T. Bouchentouf, “Dynamic scheduling of
real-time tasks under precedence constraints,” Journal of Real-Time
Systems, 2, pp. 181-194, 1990.

[6] M. Spuri and G. C. Buttazzo, “Efficient Aperiodic Service under
Earliest Deadline Scheduling,” Real-Time Systems Symposium, pp.
2-11, 1994.

[7] S. Htiouech, S. Bouamama and R. Attia, “OSC: solving the mul-
tidimensional multi-choice knapsack problem with tight strategic
Oscillation using Surrogate Constraints,” International Journal of
Computer Applications (0975 8887), Volume 73 - No. pxc3889883,
2013.

[8] M. M. Akbar, M. S. Rahman, M. Kaykobad, E.G. Manning and
G.C. Shoja, “Solving the Multidimensional Multiple-choice Knap-
sack Problem by constructing convex hulls,” Journal Computers and
Operations Research archive, pp. 1259-1273, 2006.

[9] M. Hifi, M. Michrafy and A. Sbihi, “Algorithms for the Multiple-
Choice Multi-Dimensional Knapsack Problem,” In: Les Cahiers de
la M.S.E : série bleue, Vol. 31, 2003.

[10] Y. Chen and J-K Hoa, “A ”reduce and solve” approach for
the multiple-choice multidimensional knapsack problem,” European
Journal of Operational Research, pp. 313-322, 2014.

[11] A. Sbihi, M. Mustapha and M. Hifi, “A Reactive Local Search-
Based Algorithm for the Multiple-Choice Multi-Dimensional Knap-
sack Problem,” Computational Optimization and Applications, pp.
271–285, 2006.

32

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[12] Shubhashis K. Shil, A. B. M. Sarowar Sattar, Md. Waselul Haque
Sadid, A. B. M. Nasiruzzaman and Md. ShamimAnower, “Solving
Multidimensional Multiple Choice Knapsack Problem By Genetic
Algorithm & Measuring Its Performance,” International Conference
on Electronics, Computer and Communication (ICECC), 2008.

[13] A. Duenas, C. D. Martinelly, and G. Tütüncü, “A Multidimensional
Multiple-Choice Knapsack Model for Resource Allocation in a
Construction Equipment Manufacturer Setting Using an Evolutionary
Algorithm,” APMS (1), IFIP AICT, Volume 438, pp. 539-546, 2014.

[14] IBM ILOG CPLEX Callable Library version 12.6.2.
[15] D. E. Goldberg, “Genetic Algorithms in Search, Optimization, and

Machine Learning,” 1989.
[16] G. C. Buttazzo, “Hard Real-Time Computing Systems, Predictable

Scheduling Algorithms and Applications,” Third Edition, Springer,
2011.

[17] H. Rosen, “Handbook of Graph Theory,” Series Editor Kenneth, CRC
Press, edited by Jonathan L. Gross, Jay Yellen, 2004.

[18] D. Pisinger, “Algorithms for knapsack problems,” Dept of Computer
Science, University of Kopenhagen, PhD thesis, February, 1995.

[19] F. Streichert, “Introduction to Evolutionary Algorithms,” University
of Tuebingen, 2002.

[20] http://math.feld.cvut.cz/mt/txtb/3/txe3ba3c.htm. Last visited on
30.05.2020.

[21] https://en.wikipedia.org/wiki/Monotonic˙function. Last visited on
30.05.2020.

[22] http://www.nlreg.com/asymptot.htm. Last visited on 30.05.2020.
[23] J. E. Speich and J. Rosen, “Medical Robotics, Encyclopedia of

Biomaterials and Biomedical Engineering,” 2004.
[24] https://en.wikipedia.org/wiki/Analysis˙of˙algorithms. Last visited on

31.05.2020.
[25] T. Weise, “Global Optimization Algorithms - Theory and Applica-

tion”, Self-Published, second edition, 2009.

33

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


