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Abstract—Regression model is a popular and powerful model
for finding a rule from large amount of collected data. It is
widely used in various areas for predicting the value derived
from observable values. Especially in multivariate numerical
analysis, several types of regression models, not only linear but
also polynomial or exponential, are established. In case of non-
numerical data, although fuzzy regression models are proposed
and investigated by some researchers, most of them are linear
models. In order to construct a non-linear regression model
with fuzzy type data set, new type of devices are needed since
fuzzy numbers have a complicated behavior in multiplication and
division. In this paper, we try to extend a linear fuzzy regression
model to non-linear model by adapting a modified kernel method.
Then, we apply the model of only low degree of polynomial kernel
to a data set obtained by conducting questionnaire survey on
purchasing decision making of electric assisted bicycle in Japan.

Keywords–Fuzzy regression model; Kernel method; Decision
making.

I. INTRODUCTION

As an analysis method of numerical big-data mining, the
regression model is still playing an important role. However,
the huge amount of data processing requires strong computing
power and resources. In particular, when handling data with
non-linear features, finding a proper regression model is not
easy, sometimes even infeasible. The kernel method, so-called
a kernel trick, is one of smart devices solving this kind of
problem. A kernel defined on the product of a data set induces
an element of Hilbert space, a space of functions with an inner
product, and considering a linear model in the space gives
us a non-linear model in the original space. Thus, only the
calculation of kernels for the given data set is non-linear, and
the calculation for solving the problem to give a model is
performed in the linear operation method. The kernel method
is applied to many analytical systems, such as the Principal
Component Analysis (PCA) [20], the Canonical Correction
Analysis (CCA) [8] [16], Fisher’s Linear Discriminant Anal-
ysis (LDA) [17], the Support Vector Machine(SVM) [2] [10],
the regression model [18] [21], etc.

In the real world, the collected data are sometimes ex-
pressed in linguistic values, and in order to apply well-known
and authorized stochastic methods such as regression analysis,
these values are transformed into numerical data. For instance,
the price of a production or a service are determined from

several factors, such as price of raw materials, selling expenses,
consumer demand, etc. Also, the price has high correlations
with the customer value of product or service. Gale [13,
pp. 218-219] proposed a scenario where price satisfaction
carries 40% of the weight and non-price attributes 60% in
the customer-value equation, and showed a figure representing
the relationship between relative performance overall score and
relative price for luxury cars based on data. In that figure, the
relative price is generically expressed in linguistic values such
as “Higher”, “Lower”, etc., then these values are transformed
into numerical values in order to plot corresponding points on
the performance-price plane. For the price prediction model,
Inoue et al. [15] proposed a sale price prediction model by
fuzzy regression, and Michihiro Amagasa [4], also proposed
a method to handle data with uncertainty in the model of
regression analysis as an extension of their model. We also
give a precise formulation of a multi-variable regression model
where both explanatory variables and objective one are L-R
type fuzzy numbers [1] [5].

Construction approaches for regression models handling
fuzzy set are roughly divided into two types, one is Fuzzy Least
Square Regression (FLSR) and the other is dual model for
possibilistic regression. The concept of FLSR model is similar
to that of ordinary regression model where each value of three
vertexes is processed to minimize the sum of distances between
the given data and the estimated values. D’Urso adopts this
approach handling linear regression model with several types
of input-output data, such as crisp-fuzzy, fuzzy-crisp, and
fuzzy-fuzzy, with not only type1 fuzzy data set but also type2
fuzzy data set [24]. The dual model of possibilistic regression
approach, originally proposed by Tanaka et al. [22] [23], gives
upper and lower regression model by using linear programing
analysis approach. Although their model is extended to non-
linear models [14], explanatory variables are still crisp values.
In this paper, we propose a non-linear regression model of
fuzzy input-fuzzy output type as an extension of our previously
proposed model in [5] by applying the kernel method.

The rest of the paper is organized as follows: In Section II,
we will review general theory of the kernel method and give
a concrete construction of quadratic and cubic kernels for a
small number of variables. Section III is dedicated to a brief
explanation of Guo and Tanaka’s non-linear fuzzy regression
model and the details of our linear model. Then, in Section IV,
we describe the extension version of our model into non-linear
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type with modified kernels. Illustrative examples to see how
the proposed model works are coming up, and application to
a real data obtained by conducting a questionnaire survey on
purchasing behavior of electric assisted bicycle in Japan is also
described with some discussions. The last section, Section V,
is the conclusion and the future works.

II. KERNEL THEORY

First, we give a brief description of kernel theory, then
give an expression of the functions in the reproducing kernel
Hilbert space for a quadratic kernel.

A. Overview of Kernel Theory
For any set X and the Hilbert space H of functions on X

over R, a positive definite kernel is a map

k : X × X → H

satisfying

• k(x, y) = k(y, x) for any x, y ∈ X ,
• For any {ci} ⊂ R and any {xi} ⊂ X ,∑

cicjk(xi, xj) ≥ 0.

Here, we give some examples of kernel over Rk.
For ~x = (x1, . . . , xk), ~y = (y1, . . . , yk),

• k(~x, ~y) = ~xt~y =
∑k
i=1 xiyi (linear kernel)

• kP (~x, ~y) = (~xt~y + c)d,
with c ≥ 0, 0 < d ∈ Z (polynomial kernel)

• kE(~x, ~y) = exp(β~xt~y), with β > 0 (exponential kernel)
• kG(~x, ~y) = exp(− 1

2σ2 ‖~x− ~y‖2)
(Gaussian radial basis function kernel)

• kL(~x, ~y) = exp(−α
∑k
i=1 |xi − yi|) (Laplacian kernel)

If, for any x ∈ X , there exists a function kx ∈ H such that

f(x) =< f, kx >H, (∀f ∈ H) (1)

where < ·, · >H is the inner product of the Hilbert space, the
Hilbert space H is called a Reproducing Kernel Hilbert Space
(RKHS). It is shown that kx ∈ H is unique, and k(·, x) = kx
is a positive definite kernel on X called the reproducing kernel.

Conversely, the following theorem is known in [6].

Theorem 1. (Moore-Aronszajn) For any positive definite ker-
nel on X , there exist unique Hilbert space H satisfying

1) k(·, x) ∈ H (for any x ∈ X ),
2) The subspace spanned by {k(·, x);x ∈ X} is dense in H,
3) k is the reproducing kernel of H.

Although Hilbert space has infinity dimension, solution of
some optimization problem with data, if there is any, can be
expressed as a linear combination of at most the number of data
elements in H. This is guaranteed by the following theorem
in [19].

Theorem 2. (The Representer Theorem) Let k be a kernel on
X and let H be its associated RKHS. Fix x1, · · · , xn ∈ X ,
and consider the optimization problem

min
f∈H

D(f(x1), . . . , f(xn)) + P (‖f‖2H) (2)

where P is nondecreasing and D depends only on
f(x1), · · · , f(xn). If there is a minimizer, then it has the form
of

f =

n∑
i=1

aik(·, xi) (3)

with some a1, · · · , an ∈ R. Furthermore, if P is strictly
increasing, then every solution has this form.

B. Example Expression of RKHS Basis
From the representer theorem, we can express an optimal

function as in the form of (3). However, if the given data set
is big, we will have many unknown variables {ai}i=1,...,n to
be determined. For the convenience of calculation, we try to
reduce the number of components for the polynomial kernel
and give an example for the quadratic polynomial kernel of
tow cases, one is the case of d = 2 with k = 3 variables and
the other is the case of d = 2, 3 with k = 4 variables.

From the representer theorem and the equation below,

kP (~x, ~y) = (
∑k
j=1 xjyj + c)d

=
∑

0 ≤ e1 + · · ·+ ek ≤ d
0 ≤ ej

cd−(e1+·+ek)xe11 · · ·x
ek
k y

e1
1 · · · y

ek
k

we have that for any (e1, . . . , ek) such that 0 ≤ e1+· · ·+ek ≤
d, 0 ≤ ei, there exist N =k+d Cd vectors, ~x1, . . . ~xN , and
a1, . . . , aN satisfying∑N

i=1 aix
f1
i1 · · ·x

fk
ik

=

{
c−(d−(e1+·+ek)) if(f1 . . . , fk) = (e1, . . . , ek),

0 otherwise.
(4)

1) In case of d = 2 with k = 3: In a simple case of d = 2
with k = 3 variables, N =5 C2 = 10 and the left side of
equation (4) is expressed as

x211 x221 · · · x210 1

x212 x222 · · · x210 2

x213 x223 · · · x210 3
x11 x21 · · · x10 1

x12 x22 · · · x10 2

x13 x23 · · · x10 3

x11x12 x21x22 · · · x10 1x10 2

x11x13 x21x23 · · · x10 1x10 3

x12x13 x22x23 · · · x10 2x10 3

1 1 · · · 1




a1
a2
...
...
a10

 .

However, we only have to determine ~x1, ~x2, ~x3 and solve
the 10 equations of (4) shown as follows.x21j x22j x23j

x1j x2j x3j
1 1 1

( a1a2
a3

)
=

(
1
0
0

)
,

(
0
c
0

)
,

 0
0
c2

 ,

or  x21j x22j x23j
x1j x2j x3j
x1jx1l x2jx2l x3jx3l

( a1a2
a3

)
=

(
0
0
1

)
,

where j, l = 1, 2, 3 and j 6= l. Just analyzing the invertibility
of these matrices, we have 10 functions spanning the dense
subspace H′k of Hk.

H′k =< k(·, ~xi); i = 1, . . . , 10 >R,
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where
~x1 = (1, 0, 0), ~x2 = (0, 1, 0), ~x3 = (0, 0, 1),
~x4 = (−1, 0, 0), ~x5 = (0,−1, 0), ~x6 = (0, 0,−1),
~x7 = (1, 1, 0), ~x8 = (0, 1, 1), ~x9 = (1, 0, 1), and
~x10 = (0, 0, 0).

2) In case of d = 2, 3 with k = 4: For the analysis of
the real data, we need to have base vectors which have k = 4
elements. We find out the basis for d = 2 and d = 3 with N =6

C2 = 15 and N =7 C3 = 35, respectively by considering the
matrix expression of the left side of equation (4) expressed as

x211 x221 · · · x215 1
...

...
...

...
x214 x224 · · · x215 4

x11 x21
... x15 1

...
...

...
...

x14 x24 · · · x15 4

x11x12 x21x22 · · · x15 1x15 2

...
...

...
...

x13x14 x23x24 · · · x15 3x15 4

1 1 · · · 1




a1
a2
...
...
a15

 .

and

x311 x321 · · · x335 1
...

...
...

...
x314 x324 · · · x335 4

...
...

...
...

x11 x21 · · · x35 1

...
...

...
...

x14 x24 · · · x35 4

x211x12 x221x22 · · · x235 1x35 2

x211x13 x221x23 · · · x235 1x35 3

x211x14 x221x24 · · · x235 1x35 4

x212x13 x222x23 · · · x235 2x35 3

x212x14 x222x24 · · · x235 2x35 4

x213x14 x223x24 · · · x235 3x35 4

x11x
2
12 x21x

2
22 · · · x35 1x

2
35 2

x11x
2
13 x21x

2
23 · · · x35 1x

2
35 3

x11x
2
14 x21x

2
24 · · · x35 1x

2
35 4

x12x
2
13 x22x

2
23 · · · x35 2x

2
35 3

x12x
2
14 x22x

2
24 · · · x35 2x

2
35 4

x13x
2
14 x23x

2
24 · · · x35 3x

2
35 4

x11x12 x21x22 · · · x35 1x35 2

x11x13 x21x23 · · · x35 1x35 3

x11x14 x21x24 · · · x35 1x35 4

x12x13 x22x23 · · · x35 2x35 3

x12x14 x22x24 · · · x35 2x35 4

x13x14 x23x24 · · · x35 3x35 4

x11x12x13 x21x22x23 · · · x35 1x35 2x35 3

x11x12x14 x21x22x24 · · · x35 1x35 2x35 4

x11x13x14 x21x23x24 · · · x35 1x35 3x35 4

x12x13x14 x22x23x24 · · · x35 2x35 3x35 4

1 1 · · · 1




a1
a2
...
...
a15

 .

Analyzing the invertibility of these matrices, we have
following sets of 15 and 35 vectors which induce the functions

spanning the dense subspace H′k of Hk. For d = 2,

H′k =< k(·, ~xi); i = 1, . . . , 15 >R,

with ~x1 = (1, 0, 0, 0), ~x2 = (0, 1, 0, 0), ~x3 = (0, 0, 1, 0),
~x4 = (0, 0, 0, 1), ~x5 = (−1, 0, 0, 0), ~x6 = (0,−1, 0, 0),
~x7 = (0, 0,−1, 0), ~x8 = (0, 0, 0,−1), ~x9 = (1, 1, 0, 0),
~x10 = (1, 0, 1, 0), ~x11 = (1, 0, 0, 1), ~x12 = (0, 1, 1, 0),
~x13 = (0, 1, 0, 1), ~x14 = (0, 0, 1, 1), and ~x15 = (0, 0, 0, 0).

For d = 3,

H′k =< k(·, ~xi); i = 1, . . . , 35 >R,

with ~x1 = (1, 0, 0, 0), ~x2 = (0, 1, 0, 0), ~x3 = (0, 0, 1, 0),
~x4 = (0, 0, 0, 1), ~x5 = (−1, 0, 0, 0), ~x6 = (0,−1, 0, 0),
~x7 = (0, 0,−1, 0), ~x8 = (0, 0, 0,−1), ~x9 = (2, 0, 0, 0),
~x10 = (0, 2, 0, 0), ~x11 = (0, 0, 2, 0), ~x12 = (0, 0, 0, 2),
~x13 = (1, 1, 0, 0), ~x14 = (1, 0, 1, 0), ~x15 = (1, 0, 0, 1),
~x16 = (0, 1, 1, 0), ~x17 = (0, 1, 0, 1), ~x18 = (0, 0, 1, 1),
~x19 = (−1,−1, 0, 0), ~x20 = (−1, 0,−1, 0),
~x21 = (−1, 0, 0,−1), ~x22 = (0,−1,−1, 0),
~x23 = (0,−1, 0,−1), ~x24 = (0, 0,−1,−1),
~x25 = (1,−1, 0, 0), ~x26 = (1, 0,−1, 0), ~x27 = (1, 0, 0,−1),
~x28 = (0, 1,−1, 0), ~x29 = (0, 1, 0,−1), ~x30 = (0, 0, 1,−1),
~x31 = (1, 1, 1, 0), ~x32 = (1, 1, 0, 1), ~x33 = (1, 0, 1, 1),
~x34 = (0, 1, 1, 1), and ~x35 = (0, 0, 0, 0).

III. SOME EXISTING FUZZY REGRESSION MODEL

In this section, we will give a brief explanation of two fuzzy
regression models, one is crisp-input and fuzzy-output type by
Guo and Tanaka, and the other is fuzzy-input and fuzzy-output
type.

A. Guo and Tanaka’s Non-Linear Model
Guo and Tanaka have investigated the dual possibilistic

regression models of both linear and non-linear types with
crisp-input and symmetric triangular fuzzy-output in [14]. At
first, the linear model whose output Y = (y; p)F = (y; p, p)F
from crisp input values for variables xj (j = 1, . . . , k) is
defined as follows,

Y = A1x1 +A2x2 + · · ·+Akxk, (5)

with symmetric fuzzy coefficients Aj = (aj ; rj)F (j =
1, . . . , k). In this formula, the value of Y is obtained by
calculating (

∑k
j=1 ajcj ,

∑k
j=1 rj |cj |), once explicit values

c1, . . . , ck for each given variable. When we have a data set of
n number of data, {(Yi;xi1, · · · , xik)}i=1,...,n with crisp xij
and symmetric fuzzy numbers Yi = (yi; pi)F , we consider the
upper regression model and the lower regression model.

For the upper regression model, try to find fuzzy coeffi-
cients A∗j = (a∗j ; r

∗
j )F such that

Minimizing: J(~r∗) =
∑k
j=1 r

∗
j

(∑n
i=1 |xij |

)
,

under the condition
Yi ⊆ Y ∗i = A∗1xi1 + · · ·+A∗kxik (i = 1, . . . , n).

(6)

The inclusion condition above can be expressed by the follow-
ing equations, because the shapes of fuzzy set are supposed to
be similar

yi − pi ≥
∑k
j=1 a

∗
jxij −

∑k
j=1 r

∗
j |xij |

yi + pi ≤
∑k
j=1 a

∗
jxij +

∑k
j=1 r

∗
j |xij |

r∗j ≥ 0

. (7)
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For the lower regression model, try to find fuzzy coeffi-
cients Aj∗ = (aj∗; rj∗)F such that

Maximizing: J(~r∗) =
∑k
j=1 rj∗

(∑n
i=1 |xij |

)
,

under the condition
Yi ⊇ Yi∗ = A1∗xi1 + · · ·+Ak∗xik (i = 1, . . . , n).

(8)
The inclusion condition above also can be expressed by the

following equations.
yi − pi ≤

∑k
j=1 aj∗xij −

∑k
j=1 rj∗|xij |

yi + pi ≥
∑k
j=1 aj∗xij +

∑k
j=1 rj∗|xij |

rj∗ ≥ 0

. (9)

For the existence of upper and lower regression model, Guo
and Tanaka showed the following theorem.

Theorem 3. (by Guo and Tanaka in [14])

1) There always exists an optimal solution in the upper
regression model (6) under (7) .

2) There exists an optimal solution in the lower regres-
sion model (8) under (9) if and only if there exist
a
(0)
1∗ , a

(0)
2∗ , . . . , a

(0)
k∗ satisfying

yi−pi ≤
k∑
j=1

a
(0)
j∗ xij ≤ yi+pi (i = 1, . . . , n). (10)

From the theorem, there might not be any optimal solution
for the lower regression model. This problem is caused by the
relationship between the number of variables and the number
of data. They tried to solve the problems by extending the
model into non-linear model which has more formal variables
xixj (i, j = 1, . . . , k) in the following formula.

Y = A0 +

k∑
j=1

Ajxj +

k∑
j,l=1

Ajlxjxl, (11)

with symmetric fuzzy coefficients Aj , Ajl (j, l = 1, . . . , k).
The right hand side has a quadratic part when considering xi
variables, however, we need to find Aj and Ajl for a given
data set which minimize or maximize the value, so this might
be solved by LP method.

B. Our Linear Model
As a general type of fuzzy number, we consider L-

R fuzzy set with monotone decreasing functions satisfying
L(0) = R(0) = 1 and L(1) = R(1) = 0, and denote a L-
R fuzzy set by Y = (y; p, q)F , where y is the value giving
the maximum uncertainty, e.g., 1, and p, q are left and right
range from y, i.e., y − p and y + q give the uncertainty value
0 [3]. We proposed the following type of possibilistic fuzzy
regression model

Y = A1X1 +A2X2 + · · ·+AkXk, (12)

with L-R fuzzy variables Y = (y; p, q)F and Xj =
(xj ;wj , zj)F and L-R fuzzy coefficients Aj = (aj ; rj , sj)F
(j = 1, . . . , k).

Let [Y ]h be the support of fuzzy number Y above h-cut
line, we have

[Y ]h = [y − pL−1(h), y + qR−1(h)],
[Xj ]h = [xj − wjL−1(h), xj + zjR

−1(h)],
[Aj ]h = [aj − rjL−1(h), aj + sjR

−1(h)].

Applying commonly known multiplication and summation of
L-R fuzzy numbers, we have

[
∑k
j=1AjXj ]h = [

∑k
j=1(aj − rjL−1(h))(xj − wjL−1(h)),∑k
j=1(aj + sjR

−1(h))(xj + zjR
−1(h))]h,

and the range of the interval, denoted by J , is calculated by
subtracting the left end value from the right end value. Then

J =
∑k
j=1{(zjR−1(h) + wjL

−1(h))aj
+(xj + zjR

−1(h))R−1(h)sj
+(xj − wjL−1(h))L−1(h)rj}.

Following Guo and Tanaka, we consider upper and lower
models, and describe the inclusion relation of the support of
Yi and that of the obtained fuzzy number in the regression
model for a given data set.

Now we let ZWj , XZj , XWj be as follows, ZWj = (
∑n
i=1 zij)R

−1(h) + (
∑n
i=1 wij)L

−1(h)
XZj = ((

∑n
i=1 xij) + (

∑n
i=1 zij)R

−1(h))R−1(h)
XWj = ((

∑n
i=1 xij)− (

∑n
i=1 wij)L

−1(h))L−1(h)
.

(13)
Then our upper model Y ∗ is constructed with A∗j =

(a∗j ; r
∗
j , s
∗
j )F , such that

Minimizing: J(A∗) =
∑k
j=1(ZWja

∗
j +XZjs

∗
j +XWjr

∗
j ),

where A∗ = (A∗1, . . . , A
∗
k),

(14)
under the condition that for all i

yi − piL−1(h) ≥
∑k
j=1(a

∗
j − r∗jL−1(h))×

(xij − wijL−1(h))
yi + qiR

−1(h) ≤
∑k
j=1(a

∗
j + s∗jR

−1(h))×
(xij + zijR

−1(h))
r∗j , s

∗
j ≥ 0

. (15)

The lower model Y∗ is similarly constructed with Aj∗ =
(aj∗; rj∗, sj∗)F , such that

Maximizing: J(A∗) =
∑k
j=1(ZWjaj∗ +XZjsj∗ +XWjrj∗),

where A∗ = (A1∗, . . . , Ak∗),
(16)

under the condition that for all i
yi − piL−1(h) ≤

∑k
j=1(aj∗ − rj∗L−1(h))×

(xij − wijL−1(h))
yi + qiR

−1(h) ≥
∑k
j=1(aj∗ + sj∗R

−1(h))×
(xij + zijR

−1(h))
rj∗, sj∗ ≥ 0

. (17)

We could also show the following theorem similar to the
Theorem 3 on the existence of models.

Theorem 4. When xij − wijL−1(h) > 0 (i = 1, . . . , n, j =
1, . . . , k), then

1) There always exists an optimal solution in the upper
regression model (14) under (15) .
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2) There exists an optimal solution in the lower regres-
sion model (16) under (17) if and only if there exist
a
(0)
1∗ , a

(0)
2∗ , . . . , a

(0)
k∗ satisfying{

yi − piL−1(h) ≤
∑k
j=1(xij − wijL−1(h))a

(0)
j∗

yi + qiR
−1(h) ≥

∑k
j=1(xij + zijR

−1(h))a
(0)
j∗

.

(18)

Proof.
1) If xij − wijL

−1(h) ≥ 0 in (15), then xij > 0 from
wij ≥ 0 and 0 ≤ L−1(h) ≤ 1. Therefore xij+zijR−1(h)
are also non-negative, and sufficiently large r∗j and s∗j
satisfy the condition.

2) If there exist Aj∗ = (aj∗; rj∗, sj∗)F (j = 1, . . . , k) satis-
fying (17), then we have the condition (18). Conversely,
for a(0)j∗ satisfying (18), put A(0)

j∗ = (a
(0)
j∗ ; 0, 0)F and they

satisfy the condition (17).

�

Remark1: When the data for independent variables are
given in linguistic values, they are usually transformed into
fuzzy numbers satisfying the condition xij − wijL

−1(h) >
0 (i = 1, . . . , n, j = 1, . . . , k). So, the assumptions in the
Theorem 4 are not special condition.

Remark2: The condition (18) means the inclusion relation
between Yi and the resulted fuzzy number Yi∗ of areas between
h-cut horizontal line and the base-line (h = 0) of them.

Remark2.1: In case of h = 1, L−1(1) = R−1(1) = 0 and
(18) is reduced to

yi =

k∑
j=1

xija
(0)
j∗ ,

which means that the line segment of Yi∗ is in the area of Yi.
Remark2.2: In case of h = 0, L−1(0) = R−1(0) = 1 and

(18) is reduced to{
yi − pi ≤

∑k
j=1(xij − wij)a

(0)
j∗ ≤

∑k
j=1 xija

(0)
j∗

yi + qi ≥
∑k
j=1(xij + zij)a

(0)
j∗ ≥

∑k
j=1 xija

(0)
j∗

.

which means that Yi∗ ∩ Yi 6= φ.

IV. REGRESSION METHOD WITH KERNEL

We extend our linear model to a regression model with a
kernel-like function, we call modified kernel, on a set of L-
R fuzzy number. First we describe a general formula, then
give more precise formula as an extension of the polynomial
kernel, kP (x, y), for the case of degree d = 2 and the number
of explanatory variables k = 3 as described in Section II.B.

A. General Formula
We suppose that there exists a function K(X,Y ) satisfying

only K(Y,X) = K(X,Y ) on the product of a set of fuzzy
numbers, X kF ×X kF to XF . Actually, we use a function induced
from one of kernels explained in Section II.A if it can be well-
defined on fuzzy numbers.

For a given data set of L-R fuzzy numbers, {(Yi,Xi); i =
1, . . . ,M}, where Yi = (yi; pi, qi)F , Xi = (Xi1, . . . Xik)F

with Xij = (xij ;wij , zij)F (i = 1, . . . ,M, j = 1, . . . , k). We
just modify the formula (12) by replacing Xj with K(X,Xi),
and consider the model

Y = A1K(X,X1)+A2K(X,X2)+· · ·+AMK(X,XM ), (19)

where X = (X1, . . . , Xk) is vector expression of the explana-
tion fuzzy variable and Y is the objective fuzzy variable. For
this formula, we can apply our proposed method for the dual
model with h-cut. Since the number of data, M , is usually
much greater than the number of explanatory variables, k, the
possibility of existence for the lower model increases from the
Theorem 4.

On the other hand, when M is very big, there will be too
many possible fuzzy number coefficients {Ai} for both upper
and lower model. Thus, try to find smaller set of representer
if possible, and denote their number by N . Then fuzzy
coefficients A∗ = (A∗1, . . . , A

∗
N ) and A∗ = (A1∗, . . . , AN∗)

are calculated for upper and lower models from the following
formulas of fuzzy numbers, respectively,

A1K(Xi, X̃1) +A2K(Xi, X̃2) + · · ·+ANK(Xi, X̃N ), (20)

where i = 1, . . . ,M , and {X̃l; l = 1, . . . , N} is a representer.

B. Case of Modified Polynomial Kernel

Here we consider a modified kernel induced from polyno-
mial kernel, kP (x, y), denoted by KF (X, X̃) = (XtX̃ + C)d.
When we could find N (=k+d Cd) number of proper value vec-
tors ~̃xl = (x̃l1, . . . , x̃lk) (l = 1, . . . , N ) for the dense subspace
of HkP , put X̃l = (X̃l1, . . . , X̃lk) with X̃li = (x̃li; 0, 0)F
(l = 1, . . . , N ).

Now calculate the h-cut of the equation (20) for C =
(c; 0, 0)F in the way described in Section III.B. When putting
~xi = (xi1, . . . , xik), ~wi = (wi1, . . . , wik), ~zi = (zi1, . . . , zik),
i = 1, . . . ,M ,we have

[Xi]h = ([Xi1]h, . . . , [Xik]h) = [~xi−L−1(h)~wi, ~xi+R−1(h)~zi],

and the h-cut of the modified kernel is as follows,

[K(Xi, X̃l)]h =
(∑k

j [Xij ]h[X̃lj ]h + [C]h

)d
=

[(∑k
j=1(xij − wijL−1(h))x̃lj + c

)d
,(∑k

j=1(xij + zijR
−1(h))x̃lj + c

)d]
=
[
kP (~xi − L−1(h)~wi, ~̃xl), kP (~xi +R−1(h)~zi, ~̃xl)

]
.

Thus we have[
N∑
l=1

AlK(Xi, X̃l)
]
h

=

[
N∑
l=1

(al − rlL−1(h))kP (~xi − L−1(h)~wi, ~̃xl),
N∑
l=1

(al + slR
−1(h))kP (~xi +R−1(h)~zi, ~̃xl)

]
,

(21)
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and minimizing or maximizing objective value is

J(A) =
N∑
l=1

al

(
1
M

∑M
i=1

(
kP (~xi +R−1(h)~zi, ~̃xl)

−kP (~xi − L−1(h)~wi, ~̃xl)
))

+R−1(h)
N∑
l=1

sl
1
M

∑M
i=1 kP (~xi +R−1(h)~zi, ~̃xl)

+L−1(h)
N∑
l=1

rl
1
M

∑M
i=1 kP (~xi − L−1(h)~wi, ~̃xl),

(22)
where ~̃xl = (x̃l1, . . . , x̃lk) for l = 1, . . . , N .

Then our upper model Y ∗ is constructed with A∗j =
(a∗j ; r

∗
j , s
∗
j )F minimizing J(A∗) under the condition that for

all i = 1, . . . ,M ,

yi − piL−1(h) ≥
N∑
l=1

(a∗l − r∗l L−1(h))×

kP (~xi − L−1(h)~wi, ~̃xl)

yi + qiR
−1(h) ≤

N∑
l=1

(a∗l + s∗lR
−1(h))×

kP (~xi +R−1(h)~zi, ~̃xl)
r∗j , s

∗
j ≥ 0

. (23)

The lower model Y∗ is similarly constructed with Aj∗ =
(aj∗; rj∗, sj∗)F maximizing J(A∗) under the condition that
for all i = 1, . . . ,M ,

yi − piL−1(h) ≤
N∑
l=1

(al∗ − rl∗L−1(h))×

kP (~xi − L−1(h)~wi, ~̃xl)

yi + qiR
−1(h) ≥

N∑
l=1

(al∗ + s∗lR
−1(h))×

kP (~xi +R−1(h)~zi, ~̃xl)
rj∗, sj∗ ≥ 0

. (24)

We also have the same kind of theorem as Theorem 4.

Theorem 5. When kP (~xi − L−1(h)~wi, ~̃xl) > 0 and kP (~xi +
R−1(h)~zi, ~̃xl) > 0 (i = 1, . . . ,M , l = 1, . . . , N ), then

1) There always exists an optimal solution in the upper
regression model under (23) .

2) There exists an optimal solution in the lower regression
model under (24) if and only if there exist a(0)1∗ , . . . , a

(0)
N∗

satisfying{
yi − piL−1(h) ≤

∑N
l=1 kP (~xi − L−1(h)~wi, ~̃xl)a

(0)
l∗

yi + qiR
−1(h) ≥

∑N
l=1 kP (~xi +R−1(h)~zi, ~̃xl)a

(0)
l∗

.

(25)

C. Illustrative Example

As an illustrative example, we consider a polynomial kernel
kP (x, y) of degree d = 2 and the number of explanatory
variables k = 3 cases, so the number of basis for the dense
subspace H′k of Hk is N = 10. Only considering triangular
type fuzzy numbers, i. e., L = R is the linear function from
(0, 1) to (1, 0) and L−1(h) = R−1(h) = 1− h, and using the

base vectors given in Section II.B, we have

X̃l = (X̃l1, X̃l2, X̃l3) (l = 1, . . . , 10) with
X̃11 = (1; 0, 0)F , X̃22 = (1; 0, 0)F , X̃33 = (1; 0, 0)F ,

X̃41 = (−1; 0, 0)F , X̃52 = (−1; 0, 0)F , X̃63 = (−1; 0, 0)F ,
X̃71 = (1; 0, 0)F , X̃72 = (1; 0, 0)F ,

X̃82 = (1; 0, 0)F , X̃83 = (1; 0, 0)F ,

X̃91 = (1; 0, 0)F , X̃93 = (1; 0, 0)F ,

X̃lj = (0; , 0, 0)F otherwise.

Here, we have M = 8 pairs of fuzzy numbers as an
example data set shown in Table I. From these fuzzy numbers,
calculate kP (~xi − L−1(h)~wi, ~̃xl) and kP (~xi + R−1(h)~zi, ~̃xl)
for each pair of (i, l) (i = 1, . . . , 8, l = 1, . . . , 10), then take
averages through i for each l. Notice that the calculation is
done using ~̃xl not X̃l,i.

Next, after setting the constant value for c and the value for
h-cut, solve two LP problems, one is for upper model with A∗
and the other is lower model with A∗, satisfying the conditions
(23) and (24), respectively.

TABLE I. DATA SET FOR THE ILLUSTRATIVE EXAMPLE

(y; p, q)F (x1;w1, z1)F (x2;w2, z2)F (x3;w3, z3)F
(3.5; 1.5, 1.5) (1.0; 0.5, 0.1) (2.0; 0.5, 0.5) (3.0; 0.5, 1.0)
(4.5; 2.0, 2.0) (2.0; 0.5, 0.1) (2.0; 0.5, 1.0) (3.5; 0.75, 1.0)
(7.0; 2.5, 2.5) (3.0; 0.1, 0.0) (6.5; 0.5, 1.5) (5.5; 1.0, 1.25)
(9.5; 2.0, 2.0) (2.0; 0.5, 0.1) (9.5; 1.0, 0.5) (10.0; 2.0, 2.5)
(11.0; 3.0, 3.0) (4.0; 0.5, 1.0) (9.0; 1.0, 1.0) (10.5; 3.0, 2.5)
(6.0; 2.0, 2.0) (2.0; 0.0, 0.0) (3.0; 1.0, 2.0) (2.0; 0.5, 1.0)
(8.0; 2.5, 2.5) (3.0; 0.1, 0.0) (5.0; 1.5, 1.5) (5.0; 1.5, 2.0)
(9.0; 3.0, 3.0) (3.5; 0.5, 0.0) (4.0; 0.5, 0.5) (6.0; 2.0, 1.25)

By applying the solver function in MS-EXCEL, when
setting c = 1 and h = 0.3, for the upper model we have

A∗1 = (0.218; 0, 0.038)F , A
∗
6 = (0.030; 0, 0)F ,

A∗10 = (1.455; 0, 5.230)F , A
∗
l = (0; 0, 0)F (for other l),

and

Y = A∗1K(X, X̃1) +A∗6K(X, X̃6) +A∗10K(X, X̃10). (26)

For the lower model, we have

A1∗ = (0.160; 0, 0.038)F , A2∗ = (0.037; 0, 0)F ,
A3∗ = (0.002; 0, 0)F , A10∗ = (3.301; 0, 0.167)F ,
Al∗ = (0; 0, 0)F (for other l),

and

Y = A1∗K(X, X̃1) +A2∗K(X, X̃2)

+A3∗K(X, X̃3) +A10∗K(X, X̃10).
(27)

Table II describes the correspondence of original values and
the resulted values by lower model (27) and by upper model
(26). The expression of fuzzy numbers here is not the same as
used so far in this paper. These values express the left edge, the
center point, and the right edge of each triangular shape. We
can see three corresponding fuzzy numbers have no inclusion
relation, because they are full numbers before operating h-cut
procedure. When looking at the support interval of h-cut of
each fuzzy set, we have the set relationship [Y∗]h ⊂ [Y ]h ⊂
[Y ∗]h. Figure 1 illustrates the relationship among three fuzzy
numbers from the second row in Table II.

We also tried other type of kernels for these test data, and
may have some discussion on the fitness.
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TABLE II. COMPARISON: Y , Y ∗ , AND Y∗

(y − p, y, y + q) (y∗ − p∗, y∗, y∗ + q∗) (y∗ − p∗, y∗, y∗ + q2)
(2.0, 3.5, 5.0) (2.0, 2.4, 8.1) (3.9, 4.3, 4.8)
(2.5, 4.5, 6.5) (2.9, 3.6, 9.5) (4.6, 5.1, 6.0)
(4.5, 7.0, 9.5) (5.1, 5.6, 11.8) (7.6, 8.0, 9.8)
(7.5, 9.5, 11.5) (4.3, 5.8, 13.1) (7.8, 9.1, 10.2)
(8.0, 11.0, 14.0) (7.1, 9.6, 20.2) (9.7, 11.3, 15.5)
(4.0, 6.0, 8.0) (3.4, 3.4, 9.1) (5.1, 5.4, 6.6)
(5.5, 8.0, 10.5) (5.0, 5.4, 11.9) (6.5, 7.3, 8.8)
(6.0, 9.0, 12.0) (5.2, 6.6, 13.0) (6.7, 7.6, 8.7)

Figure 1. Relationship of Three Fuzzy Numbers

D. Applying to Real Data

The second author of this paper conducted a questionnaire
survey on the purchasing behavior of electric assisted bicycle
in Japan. The subjects were 102 males and 68 females aged
between 20 to 22 years old, and the questionnaire item is
a total of 15 items, 6 items are classified as hard function
such as selling prices, battery capacity, assist-able maximum
distance, charging time, weight, and running cost, and 9 items
are classified as soft function such as ride comfortability, ease
of operation, etc. Four items of hard function other than the
selling price are extracted by using the NGT (Nominal Group
Techniques) as the explanatory variables for the price.

According to the questionnaire result, the most important
factor for purchasing decision making is the selling price, and
the importance degree of the running cost is quite low. Thus we
apply our fuzzy regression model to the selling price prediction
analysis with four explanatory variables of battery capacity,
assist-able maximum distance, charging time, weight. Among
170 responses, the number of valid responses that answered
appropriately to these items is 31, and we modified data to
obtain the set of the isosceles triangular type fuzzy data since
we consider the respondents would have given the values for
each of items with uncertainty.

1) Settings and Some Remarks : Here we consider the poly-
nomial kernel kP (x, y) of degree d = 2 and 3 and the number
of explanatory variables k = 4, so the number of basis for
the dense subspace H′k of Hk is N = 15 and 35, respectively.
Like as in the illustrative example, L = R is the linear function
from (0, 1) to (1, 0) and L−1(h) = R−1(h) = 1−h. Using the
base vectors given in Section II.B.2, we have basis described
as follows.

For d = 2,

X̃l = (X̃l1, X̃l2, X̃l3, X̃l4) (l = 1, . . . , 15) with
X̃11 = (1; 0, 0)F , X̃22 = (1; 0, 0)F , X̃33 = (1; 0, 0)F ,

X̃44 = (1; 0, 0)F , X̃51 = (−1; 0, 0)F , X̃62 = (−1; 0, 0)F ,
X̃73 = (−1; 0, 0)F , X̃84 = (−1; 0, 0)F ,
X̃91 = (1; 0, 0)F , X̃92 = (1; 0, 0)F ,

X̃10 1 = (1; 0, 0)F , X̃10 3 = (1; 0, 0)F ,

X̃11 1 = (1; 0, 0)F , X̃11 4 = (1; 0, 0)F ,

X̃12 2 = (1; 0, 0)F , X̃12 3 = (1; 0, 0)F ,

X̃13 2 = (1; 0, 0)F , X̃13 4 = (1; 0, 0)F ,

X̃14 3 = (1; 0, 0)F , X̃14 4 = (1; 0, 0)F ,

X̃lj = (0; , 0, 0)F otherwise.

For d = 3,

X̃l = (X̃l1, X̃l2, X̃l3, X̃l4) (l = 1, . . . , 35) with
X̃11 = (1; 0, 0)F , X̃22 = (1; 0, 0)F , X̃33 = (1; 0, 0)F ,

X̃44 = (1; 0, 0)F , X̃51 = (−1; 0, 0)F , X̃62 = (−1; 0, 0)F ,
X̃73 = (−1; 0, 0)F , X̃84 = (−1; 0, 0)F , X̃91 = (2; 0, 0)F ,

X̃10 2 = (2; 0, 0)F , X̃11 3 = (2; 0, 0)F , X̃12 4 = (2; 0, 0)F ,

X̃13 1 = (1; 0, 0)F , X̃13 2 = (1; 0, 0)F ,

X̃14 1 = (1; 0, 0)F , X̃14 3 = (1; 0, 0)F ,

X̃15 1 = (1; 0, 0)F , X̃15 4 = (1; 0, 0)F ,

X̃16 2 = (1; 0, 0)F , X̃16 3 = (1; 0, 0)F ,

X̃17 2 = (1; 0, 0)F , X̃17 4 = (1; 0, 0)F ,

X̃18 3 = (1; 0, 0)F , X̃18 4 = (1; 0, 0)F ,

X̃19 1 = (−1; 0, 0)F , X̃19 2 = (−1; 0, 0)F ,
X̃20 1 = (−1; 0, 0)F , X̃20 3 = (−1; 0, 0)F ,
X̃21 1 = (−1; 0, 0)F , X̃21 4 = (−1; 0, 0)F ,
X̃22 2 = (−1; 0, 0)F , X̃22 3 = (−1; 0, 0)F ,
X̃23 2 = (−1; 0, 0)F , X̃23 4 = (−1; 0, 0)F ,
X̃24 3 = (−1; 0, 0)F , X̃24 4 = (−1; 0, 0)F ,
X̃25 1 = (1; 0, 0)F , X̃25 2 = (−1; 0, 0)F ,
X̃26 1 = (1; 0, 0)F , X̃26 3 = (−1; 0, 0)F ,
X̃27 1 = (1; 0, 0)F , X̃27 4 = (−1; 0, 0)F ,
X̃28 2 = (1; 0, 0)F , X̃28 3 = (−1; 0, 0)F ,
X̃29 2 = (1; 0, 0)F , X̃29 4 = (−1; 0, 0)F ,
X̃30 3 = (1; 0, 0)F , X̃30 4 = (−1; 0, 0)F ,
X̃31 1 = (1; 0, 0)F , X̃31 2 = (1; 0, 0)F , X̃31 3 = (1; 0, 0)F ,

X̃32 1 = (1; 0, 0)F , X̃32 2 = (1; 0, 0)F , X̃32 4 = (1; 0, 0)F ,

X̃33 1 = (1; 0, 0)F , X̃33 3 = (1; 0, 0)F , X̃33 4 = (1; 0, 0)F ,

X̃34 2 = (1; 0, 0)F , X̃34 3 = (1; 0, 0)F , X̃34 4 = (1; 0, 0)F ,

X̃lj = (0; , 0, 0)F otherwise.

M = 31 pairs of the isosceles triangular type fuzzy
numbers are shown in Table III, where zi = wi for i =
1, 2, 3, 4, and the units of y, q = p is 10,000 yen. From these
fuzzy numbers, calculate kP (~xi−L−1(h)~wi, ~̃xl) and kP (~xi+
R−1(h)~zi, ~̃xl) for each pair of (i, l) (i = 1, . . . , 31, l =
1, . . . , 15 or 35), then take averages through i for each l. Also,
notice that the calculation is done using ~̃xl not X̃l,i.

Although we preliminary gave the value 1 to the external
variable c, for the constant of quadratic polynomial kernel in
advance and the solver function in MS-EXCEL is used for the
calculation, here the LOOCV (Leave One Out Cross Valida-
tion) method is applied to find out proper value for c between
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a given interval and wrote a program in MATLAB language
since MATLAB has a ready-made package for solving LP
problems.

In order to judge the properness of each resulted fuzzy
number calculated from other 30 data with each value of c
during the execution of LOOCV, we adopt the fuzzy similarity
measure proposed by Chen [12]. Of course there are various
definitions for the fuzzy similarity [11], [7], [9], [25], however,
many of them are concerning the trapezoidal type fuzzy
numbers and the similar formula is obtained when applying
to the triangular type fuzzy numbers.

For two triangular type fuzzy numbers A = (aL, aC , aR)
and B = (bL, bC , bR) expressed by left, center, right values in
the interval [0, 1], the similarity value of them is defined by

Sim(A,B) = 1− |aL − bL|+ 2|aC − bC |+ |aR − bR|
4

.

(28)
Since element values in the calculation are not always between
0 and 1, we need to modify them so that they satisfy the
condition by transposition and division in the following way.

Put {
a′∗ = (a∗ −min)/d
b′∗ = (b∗ −min)/d , for ∗ = R,C,L, (29)

where d = max − min, min = min{aL, bL}, and max =
max{aR, bR}. Then apply the similarity function to the pair
of A′ = (a′L, a

′
C , a

′
R) and B′ = (b′L, b

′
C , b
′
R).

In the calculation of LOOCV, the program watches the
average of 1

2 (Sim(Yi, Y
∗
−i) + Sim(Yi, Y∗−i)) (i = 1, . . . , 31)

where Y ∗−i ( Y∗−i) denotes the calculated upper model (resp.
lower model) value from the data set given by removing i-
th data from the original data set. Then find out the optimal
values for the constant c.

TABLE III. DATA SET FOR THE PRICE OF ELECTRIC ASSISTED BICYCLE

(y; p)F (x1;w1)F (x2;w2)F (x3;w3)F (x4;w4)F
(15.0; 5.0) (7.0; 1.0) (27.5; 2.5) (4.0; 1.0) (15.0; 3.0)
(11.5; 3.5) (9.0; 3.0) (35.5; 10.5) (4.0; 1.0) (15.0; 5.0)
(8.5; 1.5) (12.0; 4.0) (43.0; 7.0) (26.0; 1.0) (4.5; 1.5)
(8.5; 1.5) (11.5; 3.5) (45.0; 5.0) (5.0; 1.0) (30.0; 10.0)
(13.5; 3.5) (13.5; 1.5) (45.0; 5.0) (5.5; 1.5) (15.0; 3.0)
(11.2.5; 0.25) (7.5; 1.5) (47.5; 7.5) (5.0; 1.0) (27.5; 2.5)
(11.0; 4.0) (12.5; 2.5) (25.0; 5.0) (5.5; 0.5) (21.0; 3.0)
(11.5; 3.5) (11.5; 3.5) (35.0; 15.0) (4.0; 1.0) (10.0; 5.0)
(12.5; 2.5) (7.0; 1.0) (27.0; 3.0) (5.0; 1.0) (22.5; 2.5)
(11.5; 1.5) (12.0; 3.0) (45.0; 5.0) (3.0; 1.0) (25.0; 3.0)
(8.75; 1.25) (11.5; 3.5) (40.0; 10.0) (5.0; 1.0) (27.5; 2.5)
(11.5; 1.5) (10.5; 1.6) (45.0; 5.0) (4.0; 1.0) (22.5; 2.5)
(9.0; 1.0) (10.0; 2.0) (35.0; 5.0) (11.0; 1.0) (20.0; 5.0)
(13.5; 1.5) (12.5; 2.5) (35.0; 5.0) (6.5; 0.5) (27.5; 2.5)
(15.0; 5.0) (10.0; 5.0) (40.0; 20.0) (6.0; 1.0) (20.0; 5.0)
(8.5; 1.5) (10.0; 2.0) (45.0; 5.0) (5.5; 1.5) (25.0; 1.0)
(12.5; 2.5) (7.5; 1.5) (30.0; 5.0) (5.0; 1.0) (25.0; 5.0)
(10.5; 0.5) (6.5; 1.5) (27.5; 7.5) (5.5; 0.5) (27.5; 2.5)
(11.5; 1.5) (7.5; 2.5) (40.0; 10.0) (9.0; 1.0) (30.0; 2.0)
(11.0; 1.0) (10.0; 2.0) (35.0; 5.0) (4.5; 1.5) (19.0; 1.0)
(15.0; 5.0) (10.0; 2.0) (35.0; 5.0) (3.5; 0.5) (19.0; 1.0)
(12.5; 2.5) (11.0; 1.0) (27.5; 7.5) (7.5; 2.5) (27.5; 2.5)
(11.0; 1.0) (7.0; 1.0) (35.0; 5.0) (4.0; 1.0) (25.0; 5.0)
(12.0; 3.0) (8.0; 2.0) (32.5; 7.5) (3.0; 1.0) (25.0; 5.0)
(11.0; 1.0) (9.0; 3.0) (37.5; 7.5) (5.3; 0.8) (7.5; 2.5)
(10.0; 2.0) (10.5; 1.5) (45.0; 5.0) (5.5; 0.5) (17.5; 2.5)
(11.5; 3.5) (10.0; 2.0) (40.0; 10.0) (5.5; 2.5) (20.0; 5.0)
(9.0; 1.0) (6.0; 1.0) (25.0; 5.0) (5.0; 1.0) (27.5; 2.5)
(10.75; 1.25) (11.0; 1.0) (40.0; 5.0) (4.5; 0.5) (25.0; 5.0)
(12.5; 2.5) (10.0; 2.0) (35.0; 15.0) (4.5; 1.5) (20.5; 4.5)
(12.5; 2.5) (12.5; 0.5) (45.0; 5.0) (11.0; 1.0) (35.0; 5.0)

2) Results and Discussion: When applying quadratic poly-
nomial kernel, i.e., d = 2, we have solutions for lower model
in case of h = 0.3, 0.4, and the optimal constant obtained by
LOOCV is c = −37, −32, respectively. Using each optimal
constant value, the program re-calculate the fuzzy coefficients
A∗ = (A∗1, . . . , A

∗
N ) and A∗ = (A1∗, . . . , AN∗) for upper

and lower models, then the corresponding fuzzy numbers with
average similarity values 0.717 and 0.612 are obtained.

Table IV represents the original data of Y , calculated upper
model fuzzy numbers Y ∗ and lower model fuzzy numbers Y∗
in case that h = 0.3 with the optimal constant c = −37. As
the notation in the table, yR = y−p, yL = y+q, y∗R = y∗−p∗,
y∗L = y∗ + q∗, y∗R = y∗ − p∗, y∗L = y∗ + q∗. And, in the
“Simil” row, values are calculated by

1

2
(Sim(Yi, Y

∗
i ) + Sim(Yi, Y∗i)),

for each of data i = 1, . . . , 31.
We can see that all the right side values coincide with the

center values both in lower and upper models, and the left
side values especially in the upper model is very big. This
phenomenon is alleviated in case of h = 0.4, however, values
for lower model becomes crisp instead.

TABLE IV. COMPARISON: Y , Y ∗ , AND Y∗ BY QUADRATIC POLYNOMIAL
KERNEL WITH h = 0.3 AND c = −37

(yR, y, yL) (y∗R, y
∗, y∗L) (y∗R, y∗, y∗L) Simil

(10, 15, 20) (8.2, 8.2, 66.5) (12.4, 12.4, 39.2) 0.75
(8, 11.5, 15) (8.7, 8.7, 67.1) (13.4, 13.4, 40.2) 0.74
(7, 8.5, 10) (9.4, 9.4, 67.7) (11.4, 11.4, 38.2) 0.72
(7, 8.5, 10) (5.7, 5.7, 64.0) (9.4, 9.4, 36.2) 0.74
(10, 13.5, 17) (9.5, 9.5, 67.8) (8.7, 8.7, 35.5) 0.74
(11, 11.25, 11.5) (1.7, 1.7, 60.1) (10.5, 10.5, 37.3) 0.71
(7, 11, 15) (9.4, 9.4, 67.8) (13.9, 13.9, 40.6) 0.74
(8, 11.5, 15) (6.4, 6.4, 64.7) (10.8, 10.8, 37.6) 0.75
(10, 12.5, 15) (8.5, 8.5, 66.8) (11.6, 11.6, 38.3) 0.75
(10, 11.5, 13) (10.8, , 10.8, 69.1) (13.3, 13.3, 40.0) 0.74
(7.5, 8.75, 10) (8.3, 8.3, 66.7) (10.9, 10.9, 37.7) 0.73
(10, 11.5, 13) (8.8, 8.8, 67.2) (13.3, 13.3, 40.1) 0.73
(8, 9, 10) (10.2, 10.2, 68.5) (8.9, 8.9, 35.6) 0.75
(12, 13.5, 15) (9.7, 9.7, 68.1) (12.0, 12.0, 38.8) 0.74
(10, 15, 20) (8.5, 8.5, 66.9) (11.2, 11.2, 38.0) 0.75
(7, 8.5, 10) (7.0, 7.0, 65.4) (11.1, 11.1, 37.8) 0.72
(10, 12.5, 15) (7.6, 7.6, 66.0) (11.1, 11.1, 37.9) 0.74
(10, 10.5, 11) (7.1, 7.1, 65.4) (10.2, 10.2, 36.9) 0.74
(10, 11.5, 13) (8.9, 8.9, 67.2) (10.1, 10.1, 36.9) 0.75
(10, 11, 12) (9.2, 9.2, 67.5) (12.6, 12.6, 39.4) 0.73
(10, 15, 20) (10.3, 10.3, 68.6) (13.6, 13.6, 40.4) 0.77
(10, 12.5, 15) (9.6, 9.6, 67.9) (14.6, 14.6, 41.4) 0.73
(10, 11, 12) (5.8, 5.8, 64.1) (10.8, 10.8, 37.6) 0.74
(9, 12, 15) (7.5, 7.5, 65.9) (11.3, 11.3, 38.1) 0.75
(10, 11, 12) (4.0, 4.0, 62.4) (9.5, 9.5, 36.3) 0.72
(8, 10, 12) (9.2, 9.2, 67.5) (11.8, 11.8, 38.5) 0.74
(8, 11.5, 15) (8.6, 8.6, 67.0) (11.7, 11.7, 38.5) 0.76
(8, 9, 10) (7.2, 7.2, 65.6) (9.6, 9.6, 36.4) 0.74
(9.5, 10.75, 12) (8.9, 8.9, 67.2) (11.8, 11.8, 38.6) 0.74
(10, 12.5, 15) (9.3, 9.3, 67.6) (12.6, 12.6, 39.3) 0.76
(10, 12.5, 15) (10.6, 10.6, 68.9) (9.8, 9.8, 36.6) 0.02

When applying cubic polynomial kernel, i.e., d = 3, we
have solutions for lower model in case of h = 0.5, 0.6, 0.7, 0.8,
0.85 and the optimal constant obtained by LOOCV is c = 25,
25, 28, 8, 8, respectively. Using these optimal values, also re-
calculate the fuzzy coefficients for upper and lower models,
then the corresponding fuzzy numbers with average similarity
values 0.733, 0.735, 0.727, 0.720, 0.728 are obtained.

Table V represents the original data of Y , calculated upper
model fuzzy numbers Y ∗ and lower model fuzzy numbers
Y∗ in case that h = 0.6 with the optimal constant c = 25.
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The center values in both models are very similar to those
of the original data, however, left and right values are all big
especially the left value of lower model. In case of h = 0.7,
this phenomenon is somehow alleviated, however, the left
value of the upper model becomes bigger. In case of h = 0.8,
the right side value of upper model and left side value of lower
model are very big.

TABLE V. COMPARISON: Y , Y ∗ , AND Y∗ BY CUBIC POLYNOMIAL
KERNEL WITH h = 0.6 AND c = 25

(yR, y, yL) (y∗R, y
∗, y∗L) (y∗R, y∗, y∗L) Simil

(10, 15, 20) (−22.2, 15.1, 48.4) (−5.8, 14.0, 116.8) 0.78
(8, 11.5, 15) (−26.3, 11.1, 44.4) (−7.6, 12.3, 115.0) 0.77
(7, 8.5, 10) (−28.3, 9.0, 42.3) (−10.9, 8.9, 111.7) 0.76
(7, 8.5, 10) (−29.6, 7.7, 41.0) (−11.8, 8.0, 110.8) 0.76
(10, 13.5, 17) (−27.8, 9.6, 42.9) (−7.5, 12.3, 115.1) 0.76
(11, 11.25, 11.5) (−28.5, 8.8, 42.1) (−4.9, 15.0, 117.7) 0.74
(7, 11, 15) (−24.8, 12.5, 45.8) (−10.5, 9.3, 112.1) 0.77
(8, 11.5, 15) (−24.7, 12.7, 45.9) (−8.2, 11.6, 114.4) 0.77
(10, 12.5, 15) (−23.4, 14.0, 47.2) (−6.4, 13.5, 116.2) 0.76
(10, 11.5, 13) (−26.1, 11.3, 44.5) (−5.8, 14.0, 116.8) 0.76
(7.5, 8.75, 10) (−27.2, 10.1, 43.4) (−11.5, 8.4, 111.1) 0.75
(10, 11.5, 13) (−29.7, 7.7, 41.0) (−9.1, 10.8, 113.5) 0.75
(8, 9, 10) (−29.9, 7.4, 40.7) (−12.5, 7.4, 110.1) 0.75
(12, 13.5, 15) (−23.3, 14.0, 47.3) (−7.5, 12.3, 115.1) 0.76
(10, 15, 20) (−26.9, 10.4, 43.7) (−12.1, 7.8, 110.5) 0.76
(7, 8.5, 10) (−28.7, 8.6, 41.9) (−11.2, 8.6, 111.4) 0.76
(10, 12.5, 15) (−24.0, 13.3, 46.6) (−8.5, 11.4, 114.1) 0.76
(10, 10.5, 11) (−25.8, 11.6, 44.8) (−10.1, 9.7, 112.5) 0.75
(10, 11.5, 13) (−27.9, 9.5, 42.8) (−10.5, 9.3, 112.1) 0.75
(10, 11, 12) (−24.2, 13.2, 46.4) (−8.5, 11.4, 114.1) 0.75
(10, 15, 20) (−23.1, 14.3, 47.5) (−7.2, 12.7, 115.4) 0.77
(10, 12.5, 15) (−23.4, 14.0, 47.2) (−6.8, 13.0, 115.8) 0.76
(10, 11, 12) (−25.6, 11.7, 45.0) (−10.2, 9.7, 112.4) 0.75
(9, 12, 15) (−24.5, 12.9, 46.2) (−8.6, 11.3, 114.0) 0.76
(10, 11, 12) (−28.6, 8.7, 42.0) (−9.6, 10.2, 113.0) 0.75
(8, 10, 12) (−30.6, 6.7, 40.0) (−9.6, 10.3, 113.0) 0.76
(8, 11.5, 15) (−27.4, 9.9, 43.2) (−11.6, 8.2, 111.0) 0.76
(8, 9, 10) (−25.5, 11.9, 45.1) (−10.9, 9.0, 111.7) 0.75
(9.5, 10.75, 12) (−26.8, 10.5, 43.8) (−10.7, 9.1, 111.9) 0.76
(10, 12.5, 15) (−24.1, 13.3, 46.6) (−8.7, 11.1, 113.9) 0.76
(10, 12.5, 15) (−28.8, 8.6, 41.8) (−10.4, 9.4, 112.2) 0.02

V. CONCLUSION

As an extension of our fuzzy dual linear regression model,
we proposed to apply kernel method and give a general formula
with a modified kernel of polynomial type. Then, we showed
how it works using artificial sample data set for illustration of
performance in a simple case.

Although we could see that the kernel method can be
incorporated with fuzzy regression model, the effectiveness of
our method, depending on data set type, is not yet clear. In
the example handling small data, when changing the values
slightly, we could not have any solution for the lower model.
This infeasibility also occurs by increasing the value of h,
which may reduce the degree of freedom of resulted fuzzy
number of lower model. Though the number of data is less
than the number of base set, the merit of choosing base set is
that the number N depends only on the degree of kernel and
the number of explanatory variables, and does not depend on
the size of data set, M .

In order to construct proper model by applying our model
to real data, we need to prepare several types of modified
kernel and need to investigate feasibility conditions for the
induced LP problem. As we see from the list of calculated
model in the last part by applying the method to the set of
real data obtained from questionnaire survey on selling price
and some factors of electric assisted bicycle, the resulted values

contains too many uncertainties and the values of the spread
width are monotonous. These phenomenon might be dependent
on how to modify the original crisp values to fuzzy values.
Therefore we need more raw data expressed in fuzzy values.

In the implementation of LOOCV for determining the
external variable, the fuzzy similarity measure is critical. We
also need to investigate them as our future works.
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