
A Study of Cordova and Its Data Storage Strategies

Gilles Callebaut∗, Michiel Willocx†, Jan Vossaert†, Vincent Naessens†, Lieven De Strycker∗

∗KU Leuven
DRAMCO, Department of Electrical Engineering (ESAT),

Ghent Technology Campus, 9000 Ghent, Belgium
{gilles.callebaut, lieven.destrycker}@kuleuven.be

†KU Leuven
MSEC, imec-DistriNet

Ghent Technology Campus, 9000 Ghent, Belgium
{michiel.willocx, jan.vossaert, vincent.naessens}@cs.kuleuven.be

Abstract—The mobile world is fragmented by a variety of mobile
platforms, e.g., Android, iOS and Windows Phone. While native
applications can fully exploit the features of a particular mobile
platform, limited or no code can be shared between the different
implementations. Cross-Platform Tools (CPTs) allow developers
to target multiple platforms using a single codebase. These
tools provide general interfaces on top of the native Application
Programming Interfaces (APIs). Apart from the performance
impact, this additional layer may also result in the suboptimal use
of native APIs. More specifically, this paper focuses on Apache
Cordova; the most used CPT. Via a data storage case study, the
impact of the abstraction layer is analyzed. Both the performance
overhead and API coverage are discussed. Based on the analysis,
an extension to the cross-platform storage API is proposed and
implemented. In addition, the Cordova framework, including the
employed bridge techniques, is studied and elaborated.

Keywords–Cross-Platform Tools; data storage; performance
analysis; API coverage; Apache Cordova/Phonegap.

I. INTRODUCTION

An increasing number of service providers are making their
services available via the smartphone. Mobile applications are
used to attract new users and support existing users more
efficiently. Service providers want to reach as many users as
possible with their mobile services. However, making services
available on all mobile platforms is very costly due to the frag-
mentation of the mobile market. Developing native applications
for each platform drastically increases the development costs.
While native applications can fully exploit the features of a
particular mobile platform, limited or no code can be shared
between the different implementations. Each platform requires
dedicated tools and different programming languages (e.g.,
Objective-C, C# and Java). Also, maintenance (e.g., updates or
bug fixes) can be very costly. Hence, application developers
are confronted with huge challenges. A promising alternative
are mobile Cross-Platform Tools. A significant part of the code
base is shared between the implementations for the different
platforms. Further, many Cross-Platform Tools such as Cordova
use client-side Web programming languages to implement
the application logic, supporting programmers with a Web
background.

Although several Cross-Platform Tools became more mature
during the last few years, some skepticism towards CPTs
remains. For many developers, the limited access to native

device features (i.e., sensors and other platform APIs) remains
an obstacle. In many cases, the developer is forced to use a
limited set of the native APIs, or to use a work-around –which
often involves native code– to achieve the desired functionality.
This paper specifically tackles the use case of data storage APIs
in Cordova. This paper extends our previous work [1] with an
elaboration of the inner workings of the Cordova framework and
new experiments concerning the employed bridge mechanisms.

Cordova is one of the most used CPTs [2][3]. It is a Web-
to-native wrapper, allowing the developer to bundle Web apps
into standalone applications.

Contribution. The contribution of this paper is fourfold.
First, the Cordova framework including the Cordova Bridge
is discussed. Second, four types of data storage strategies
are distinguished in the setting of mobile applications (i.e.,
variables, databases, files and sensitive data). The support for
each strategy using both native and Cordova development is
analysed and compared. Third, based on this analysis a new
Cordova plugin that extends the Cordova Storage API coverage
is designed and developed. This plugin tackles a shortcoming
in the currently available Cordova APIs. Finally, the security
and performance of the different native and Cordova storage
mechanisms is evaluated for both the Android and iOS platform.

The remainder of this paper is structured as follows.
Section II points to related work. Section III gives an overview
of CPTs. Section IV discusses the inner workings of Cordova
applications, followed by Section V where an overview of
data storage strategies and their API coverage in Cordova and
native applications is given. The design and implementation of
NativeStorage, a new Cordova storage plugin, is presented in
Section VI. Section VII presents a security and performance
evaluation of the Cordova and native storage mechanisms with
a strong focus on the performance evaluation. The final section
presents the conclusions and points to future work.

II. RELATED WORK

Many studies compare CPTs based on a quantitative
assessment. For instance, Rösler et al. [4] and Dalmasso
et al. [5] evaluate the behavioral performance of cross-platform
applications using parameters such as start-up time and memory
consumption. Willocx et al. [6] extend this research and
include more CPTs and criteria (e.g., CPU usage and battery
usage) in the comparison. Further, Ciman and Gaggi [7] focus

45

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



specifically on the energy consumption related to accessing
sensors in cross-platform mobile applications. These studies are
conducted using an implementation of the same application in
a set of cross-platform tools and with the native development
tools. This methodology provides useful insights in the overall
performance overhead of using CPTs. Other research focuses on
evaluating the performance of specific functional components.
For instance, Zhuang et al. [8] evaluate the performance of the
Cordova SQlite plugin for data storage. The work presented in
this paper generalizes this work by providing an overview and
performance analysis of the different data storage mechanisms
available in Cordova, and comparing the performance with
native components.

Several other studies focus on the evaluation of
cross-platform tools based on qualitative criteria. For in-
stance, Heitkötter et al. [9] use criteria such as development
environment, maintainability, speed/cost of development and
user-perceived application performance. The user-perceived
performance is analyzed further in [10], based on user ratings
and comments on cross-platform apps in the Google Play Store.
The API coverage (e.g., geolocation and storage) of cross-
platform tools is discussed in [11]. It is complementary with
the work presented in this paper, which specifically focuses
on the API coverage, performance and security related to data
storage.

III. CROSS-PLATFORM TOOLS

Cross-platform tools can be classified in five categories
based on their employed strategy [12]: JavaScript frameworks,
Web-to-native wrappers, runtimes, source code translators and
app factories. The latter provides a drag-and-drop interface to
allow the creation of simple applications without programming
knowledge. This paper focuses on the web-to-native wrapper
Cordova. However, an overview of relevant CPT strategies is
given to illustrate the differences, similarities and rationales.
We can further classify cross-platform tool strategies in: (I)
web-based CPTs and (II) source-code translators and runtimes.

A. Web-Based Cross-Platform Tool Strategies
JavaScript frameworks as well as Web-to-native wrappers

make use of Web technologies for the development of mobile
applications. A major advantage of these tools is that they
enable Web developers to participate in mobile application
development. Due to the availability of web browser capabilities
in mobile operating systems this strategy is widely adopted.
The user interface of such an application is developed with
HTML and CSS, and the functionality is implemented using
JavaScript.

To adapt to the specific interfaces and navigation patterns
of mobile applications new mobile Javascript frameworks have
been developed. These mobile interfaces are optimized for
smaller screen sizes compared to regular websites and, for
instance, provide support for the touch UI of mobile devices.
Some frameworks also try to mimic the UI of native applications
by providing native skins. Thereby tailoring the UI of the
application to the look and feel of the platform on which
it is running. These skins, however, do not provide a fully
native experience. Most JavaScript frameworks also support
traditional architectural design patterns such as Modelviewcon-
troller (MVC) and Modelviewviewmodel (MVVM) to facilitate
the development of well-structured and maintainable code.

Examples of such mobile JavaScript frameworks are: JQuery
Mobile [13], Ionic [14] and Sencha Ext JS [15].

Two strategies can be applied to distribute the applications
to end-users. First, an application (i.e., Web app) can be
hosted on a Web server. This flexible approach allows the user
to access the application in a mobile browser in a platform-
agnostic manner. Hence, a large market can be easily reached
and the time-to-market can be short. However, the application
is constrained to the resources available in the browser. For
instance, the JavaScript API of the browser (e.g., access to
sensors such as accelerometer and GPS) is more limited than
using native approaches. Furthermore, accessing the application
is more cumbersome than starting an application installed on
the device.

A second strategy is to pack the Web app into a standalone
application by using a Web-to-native wrapper. The resulting
application is often called a hybrid app due to the fact that it has
both native as well as web characteristics. The packaging results
in an application that can be submitted to the app stores of the
different platforms. The Web app does not longer reside in the
browser, but in a chromeless (without the window decoration
of a regular web browser) WebView. The application consists
of the WebView wrapper and the applications HTML, CSS
and JavaScript files. The Web-to-native wrapper also features
a JavaScript bridge that allows access to a broader range of
platform APIs compared to the browser-exposed functionality.
A typical structure of a hybrid application is illustrated in
Figure 1. The most popular Web-to-native wrapper is Apache
Cordova, formerly PhoneGap.

B. Source-Code Translators and Runtimes
Another CPT strategy is translating source code to code

which can be understood by the underlaying platform such
as a runtime. Runtimes shield applications from underlying
platform differences through compatibility layers. The applica-
tion source code can be either compiled or interpreted by the
runtime during execution.

Also, the source code can be translated to the platform’s
native language or to executable byte code via a Source-Code
Translator. Popular source code translators are Xamarin [16]
and Qt [17]. In most cases, a combination of a source-code
translator and a runtime is employed where a compilation step
translates the source code to a binary or intermediary language
that runs on the runtime. In a minority of tools, the source
code will run straight on the runtime (e.g., Titanium [18]) or
will be translated to native source code without a runtime (e.g.,
NeoMAD [19]). For each platform, the resulting source code is
compiled using the development tools provided by the platform
developer.

IV. CORDOVA FRAMEWORK

A typical Cordova application consists of three important
components: the application source, the WebView and plugins,
as depicted in Figure 1. The Cordova framework allows these
components to exchange information. A crucial component
is the Cordova bridge which provides a way to connect the
client-side native code with the JavaScript source.

A. Cordova Application Structure
The application code is loaded in a chromeless WebView.

By default, Cordova applications use the WebView bundled

46

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1. Structure of a Cordova application. Light grey arrows represent
JavaScript calls, darker grey arrows represent native calls. The Cordova

framework is illustrated by the grey area.

with the operating system. An alternative is to include the
Crosswalk WebView [20]. The Crosswalk WebView provides
uniform behaviour and interfaces between different (versions
of) operating systems. Hence, developers do not need to take
into account the differences in behaviour/APIs between the
WebViews contained in the different (versions of) operating
systems. Despite the efforts of the Crosswalk project, the
maintenance and further developments have halted. The Android
platform WebView has moved to an application so it can be
updated separately to the Android platform. As a consequence,
the crosswalk WebView will not yield a better performance
on devices were the WebView is kept up-to-date. Therefore,
we do not consider the impact of the crosswalk project on the
performance of data storage strategies in this paper.

Cordova developers have two options for accessing device
resources: the HTML5 APIs provided by the WebView and
plugins. Despite the continuously growing HTML5 function-
ality [21] and the introduction of Progressive Web Apps [22],
the JavaScript APIs provided by the WebView are not –yet–
sufficient for the majority of applications. They do not provide
full access to the diverse resources of the mobile device, such
as sensors (e.g., accelerometer, gyroscope) and functionality
provided by other applications installed on the device (e.g.,
contacts, maps, Facebook login). Plugins allow JavaScript code
to access native APIs by using a JavaScript bridge between
the Web code and the underlying operating system. Commonly
used functionality such as GPS are provided by Cordova as
core plugins. Additional functionality is provided by over 1000
third-party plugins, which are freely available in the Cordova
plugin store [23]. Plugins consist of both JavaScript code and
native code (i.e., Java for Android, Objective-C and recently
Swift for iOS). The JavaScript code provides the interface to the
developer. The native source code implements the functionality
of the plugin and is compiled when building the application. The
Cordova framework provides the JavaScript bridge that enables
communication between JavaScript and native components. For
each platform, Cordova supports several bridging mechanisms.
At runtime, Cordova selects a bridging mechanism. When an
error occurs, it switches to another mechanism. Independently

of the selected bridging mechanism, the data requires several
conversion steps before and after crossing the bridge.

B. Cordova Bridges
It is crucial to understand the inner workings of this bridge

to be able to correctly evaluate the performance of the Cordova
storage APIs. Here we consider the used bridge techniques on
the Android and iOS platform.

Default in Android, Cordova uses the
addJavaScriptInterface method for reaching
the native side. This method injects a supplied object into the
WebView. Afterwards an interface to the client-side Android
code is accessible in JavaScript running in the WebView.
This results in a bridge which can be invoked in JavaScript.
Cordova invokes the evaluateJavascript method to
execute JavaScript code in client-side Android.

The following bridge techniques are used in Android to
exchange data and commands:

• JavaScript to Native Android:
◦ JS Object (default). Methods of a Java object

are directly accessed in Javascript via the
addJavaScriptInterface as described
above.

◦ Prompt. The data is communicated through
the prompt functionality of the WebView. This
is used pre-JellyBean (i.e., Android 4.1), where
addJavascriptInterface is disabled.

• Native Android to Javascript:
◦ Evaluation Bridge (default). Through

evaluateJavascript native Android
code can execute JavaScript directly. This
bridge was recently added and is now the
default bridge.

◦ Polling. The JavaScript side can be accessed
by periodically polling for messages using the
Javascript to Native Bridge.

◦ Event interception. The Javascript code inter-
cepts events (i.e., Load URL and Online event)
and extracts the message from that event.

In iOS similar bridge techniques can be used. The
javascript-to-native bridge is realized via URL loading in-
terposition. On the JavaScript side a URL is loaded in
an iframe or via XMLHttpRequest (XHR). This loading is
intercepted by the native side. The JavaScript side com-
municates via the native side by encoding messages inside
these URLs. The native side can access the JavaScript side
by executing JavaScript code via the WebView’s method
StringByEvaluatingJavaScriptFromString.

V. DATA STORAGE IN CORDOVA

This work focuses on data storage mechanisms in Cor-
dova applications. Four types of data storage strategies are
distinguished: files, databases, persistent variables and sensitive
data. Databases are used to store multiple objects of the same
structure. Besides data storage, databases also provide methods
to conveniently search and manipulate records. File storage can
be used to store a diverse set of information such as audio, video
and binary data. Persistent variables are stored as key-value
pairs. It is often used to store settings and preferences. Sensitive

47

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



data (e.g., passwords, keys, certificates) are typically handled
separately from other types of data. Mobile operating systems
provide dedicated mechanisms that increase the security of
sensitive data storage.

The remainder of this section discusses the storage APIs
available in Cordova and native Android/iOS. A summary of
the results is shown in Table I.

TABLE I. STORAGE API COVERAGE

Cordova Android iOS

Databases
WebSQL

SQLite SQLiteIndexedDB
SQLite Plugin

Files Cordova File Plugin java.io NSData

Persistent Variables LocalStorage Shared Prefs NSUserDefaults
Property Lists

Sensitive Data SecureStorage Plugin KeyStore Keychain
Keychain

A. Databases

Android and iOS provide a native interface for the SQLite
library. Cordova supports several mechanisms to access database
functionality from the application. First, the developer can use
the database interface provided by the WebView. Both the
native and CrossWalk WebViews provide two types of database
APIs: WebSQL and IndexedDB. Although WebSQL is still
commonly used, it is officially deprecated and thus no longer
actively supported [24]. Second, developers can access the
native database APIs via the SQLite Plugin [25].

B. Files

In Android, the file storage API is provided by the java.io
package, in iOS this is included in NSData. Cordova provides
a core plugin for File operation, namely Cordova File Plugin
(cordova-plugin-file) [26]. Files are referenced via URLs
which support using platform-independent references such as
application folder.

C. Persistent Variables

In Android, storing and accessing persistent variables is
supported via SharedPreferences. It allows developers to
store primitive data types (e.g., booleans, integers, strings).
iOS developers have two options to store persistent variables:
NSUserDefaults and Property Lists. NSUserDefaults has a
similar behaviour to SharedPreferences in Android. Property
Lists offer more flexibility by allowing storage of more complex
data structures and specification of the storage location. Cordova
applications can use the LocalStorage API provided by the
Android and iOS WebView. Although it provides a simple API,
developers should be aware of several disadvantages. First,
LocalStorage only supports storage of strings. More complex
data structures need to be serialized and deserialized by the
developer. Second, LocalStorage is known [27] to perform
poorly on large data sets and has a maximum storage capacity
of 5MB.

1 // coarse grained API
2 NativeStorage.setItem("reference_to_value",<value>,

<success-callback>, <error-callback>);
3 NativeStorage.getItem("reference_to_value",<success-

callback>, <error-callback>);
4 NativeStorage.remove("reference_to_value",<success-

callback>, <error-callback>);
5 NativeStorage.clear(<success-callback>, <error-

callback>);

Listing 1. NativeStorage – Coarse-grained API

1 // fine grained API
2 NativeStorage.put<type>("reference_to_value",<value>,

<success-callback>, <error-callback>);
3 NativeStorage.get<type>("reference_to_value",<

success-callback>, <error-callback>);
4 NativeStorage.remove("reference_to_value",<success-

callback>, <error-callback>);

Listing 2. NativeStorage – Fine-grained API

D. Sensitive Data
Android provides two mechanisms to store credentials: the

KeyChain and the KeyStore. A KeyStore is bound to one
specific application. Applications can not access credentials
in KeyStores bound to other applications. If credentials need
to be shared between applications, the KeyChain should be
used. The user is asked for permission when an application
attempts to access credentials in the KeyChain. Credential
storage on iOS is provided by the Keychain. Credentials
added to the Keychain are, by default, app private, but can be
shared between applications from the same publisher. Cordova
developers can use the credential storage mechanisms provided
by Android and iOS via the SecureStorage (cordova-plugin-
secure-storage) [28] plugin.

VI. NATIVESTORAGE PLUGIN

An important limitation of using HTML5 APIs (e.g.,
IndexedDB and LocalStorage) to store data in Cordova ap-
plications is that both on Android and iOS the cache of the
WebView can be cleared when, for instance, the system is
low on memory. This section presents NativeStorage [29], a
Cordova plugin for persistent data object storage, mitigating
the limitations of the HTML5 storage mechanisms.

A. Plugin Requirements
The requirements of the plugin are listed below:

R1 Persistent and sufficient storage
R2 Storage of both primitive data types and objects
R3 Support for Android and iOS
R4 App private storage
R5 Responsive APIs
R6 A user-friendly API

B. Realisation of NativeStorage
The plugin consists of JavaScript and native code. The

JavaScript API provides the interface to application developers.
The native side handles the storage of variables using native
platform APIs.

NativeStorage provides two sets of JavaScript APIs, a fine-
grained and a coarse-grained API, which are both asynchronous

48

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and non-blocking. The coarse grained API (Figure 2a) provides
a type-independent interface, variables are automatically con-
verted to JSON objects via the JSON interfaces provided by the
WebView and passed as string variables to the native side. When
a value is retrieved, the WebView is used to convert the string
back to an object. The fine-grained API (Figure 2b) provides a
separate implementation for the different JavaScript types. On
the native side, the variables are stored via SharedPreferences
in Android and NSUserDefaults in iOS.

Object

Object

Disk

Web App Plugin

JSON
string

JSON
string

Object

Object

(a) Coarse-grained API

Boolean

Boolean
Disk

Web App Plugin

Boolean

Boolean

(b) Fine-grained API

Figure 2. NativeStorage API

C. Evaluation of NativeStorage
The plugin is evaluated based on the previously listed

requirements.
Persistent storage is provided via the native storage mech-

anisms. The documentation of the used native mechanisms
does not state a limitation on the storage capacity. Hence, as
opposed to LocalStorage, the storage capacity is only limited
by the available memory on the device, satisfying R1.

The native part of the plugin is developed for both Android
and iOS. These mobile operating systems have a combined
market share of 99% [30]. The used native storage mechanisms
were introduced in iOS 2.0 and Android 1.0. The plugin, hence,
provides support for virtually all versions of these platforms
used in practice, satisfying R3.

The plugin uses NSUserdefaults and SharedPreferences
to store the data in app-private locations, ensuring that the
variables can not be accessed from outside the application.
This satisfies R4.

The APIs are implemented using an asynchronous non-
blocking strategy, facilitating the development of responsive
applications (conform R5).

Web developers are familiar with duck typing used in
languages such as JavaScript. These types of languages often
have APIs that don’t distinguish between data types. The coarse-
grained API provides such a storage mechanism. This API is
shown in Listing 6. Not all Cordova developers, however, have
a Web background. Therefore, a fine-grained API (Listing 5)
is provided for developers who are more comfortable with a

statically typed language, satisfying R6 and R2. Using both
the coarse- and fine-grained API, the different JavaScript data
types can be stored. Developers, however, need to be aware
that the object storage relies on the JSON interface of the
WebView to convert the object to a JSON string representation.
The WebView, for instance, does not support the conversion of
circular data structures. These types of objects, hence, need to
be serialized by the developer before they can be stored.

Since its release to Github [31] and NPM [32] the plugin has
been adopted by many Cordova application developers. We have
registered over 16 500 downloads per month; with an overall
number of downloads of 172 250 over a time span of two years.1
Furthermore, the plugin is part of the 4% most downloaded
packages on NPM. The plugin has been adopted in Ionic Native
(Ionic 2) [33] and the Telerik plugin marketplace [34]. Telerik
verifies that plugins are maintained and documented, thereby
ensuring a certain quality.

VII. EVALUATION

The evaluation of the data storage mechanisms consists of
two parts: a quantitative performance analysis and a security
evaluation.

A. Performance
Developers want to be aware of the potential performance

impact of using a CPT for mobile app development [12].
This section evaluates the performance of the different storage
mechanisms for Cordova applications and compares the results
with the native alternatives. Each storage strategy is tested by
deploying a simple native and Cordova test application that
intensively uses the selected storage strategy on an Android
and iOS device. For Android the Nexus 6 running Android 6
was used, for iOS the IPhone 6 running iOS 9 was used. The
test application communicates the test results via timing logs
that are captured via Xcode for iOS and Android Studio for
Android. The experiments were run sufficient times to ensure
the measurements adequately reflect the performance of the
tested storage mechanisms.

1) Databases
a) Test Application The database test application exe-

cutes 300 basic CRUD operations (i.e., 100 x create, 100 x
read, 50 x delete and 50 x read) of objects containing two
string variables. The performance is determined by means of
measuring the total duration of all the transactions. This test has
been executed using the SQLite (native and Cordova), WebSQL
(Cordova) and IndexedDB (Cordova) mechanisms.

b) Results and Comparison The results are presented in
Table II. The mechanism for retrieving values by means of an
index clearly results in a better performance compared to the
SQL-based mechanisms. This analysis shows that IndexedDB
provides an efficient way of storing and retrieving small
objects. WebSQL –provided by the WebView– acts as a
wrapper around SQLite. This is illustrated by the performance
overhead associated with this mechanism. The deprecation of
the specification/development stop could also have contributed
to the performance penalty. The SQLite plugin suffers from
a performance overhead caused by the interposition of the
Cordova framework/bridge and has consequently a noticeable

1The statistics of the NativeStorage plugin can be found at https://npm-
stat.com/charts.html?package=cordova-plugin-nativestorage.

49

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



performance overhead. The performance overhead introduced
by the Cordova bridge is discussed in more detail in the
following section.

TABLE II. RATIO OF DATABASE EXECUTION TIME TO THE NATIVE
(SQLITE) OPERATION DURATION (IN %). *IN IOS INDEXEDDB IS ONLY

SUPPORTED AS OF IOS 10.

Android iOS
Nexus 6 iPhone 6

SQLite (Native) 100 100
IndexedDB 6.94 12.47*
WebSQL 153 128
SQLite Plugin 133 116

2) Files
a) Test Application The test application distinguishes

between read and write operations. Each operation is tested
using different file sizes, ranging from small files (∼ 1 kB) to
larger files (∼ 10MB). The performance of small files provides
a baseline for file access. The performance of the read and
write operations itself can be determined via the results of the
large files. This test has been conducted ten times for each
file size. The read and write operations consist of different
steps on Android and iOS. Both the duration of the individual
steps and the entire operation (i.e., read/write) is measured via
timestamps. The application’s memory footprint is measured via
Instruments tool (Activity Monitor) in Xcode and via Memory
Monitor in Android Studio.

b) Results and Comparison The results of the timing
analysis on Android and iOS are presented in Figures 3
and 4, respectively. In both Android and iOS a significant
performance difference between the native and the Cordova
mechanism can be observed. R/W operations via the file plugin
take longer compared to the native mechanisms. On top of
a performance overhead, Cordova also comes with a higher
memory consumption, especially in iOS (Figure 5).

0 5 10 15 20

0

1,000

2,000

3,000

4,000

Filesize [MB]

O
pe

ra
tio

n
du

ra
tio

n
[m

s]

Native Write
Native Read

Cordova Write
Cordova Read

Figure 3. Duration of file operations in Android

Speed. Tables III and IV give a fine-grained overview of
the different operations executed during respectively a file read

0 1 2 3 4 5 6 7 8 9 1
0

0

1,000

2,000

3,000

4,000

Filesize [MB]

O
pe

ra
tio

n
du

ra
tio

n
[m

s] Native Write
Native Read

Cordova Write
Cordova Read

Figure 4. Duration of file operations in iOS

and write using the Cordova platform on Android. Tables V
and VI provide the results for iOS. Before data can be sent
over the Cordova bridge, it needs to be converted to a string.
This can create significant overhead when large binary files
such as images need to be manipulated. Before they are sent
over the bridge, the binary data is converted to a Base64 string.
On Android, this is illustrated in the Processing file component
of Table IV. Sending the data over the bridge also comprises
a significant part of the overhead (i.e., Sending over bridge,
from Table III). For small files, the overhead originates for the
most part from resolving the platform-independent URL to a
local path and retrieving meta-data. Similar observations can
be made based on the iOS results.

TABLE III. EXECUTION TIME OF COMPONENTS ASSOCIATED WITH A READ
OPERATION IN CORDOVA ANDROID (FILE PLUGIN). THE PROCEDURE

”SENDING OVER BRIDGE” CONSISTS OF ENCODING, SENDING AND
DECODING MESSAGES FROM THE JAVASCRIPT SIDE TO THE NATIVE SIDE.

Component Duration [1MB] Duration [20MB]
(ms) (% total) (ms) (% total)

Resolve to local URL 58 46 59 7.56
Native reading 20 16 366 47
Sending over bridge 28 22 339 43

Total 126 780

Memory. In iOS, applications manipulating large files will
require large amounts of memory. This is illustrated in Figure 5.
As shown, reading and writing a 10MB file results in 400MB
of allocated memory. Reading and writing files larger than
10MB can result in unstable behavior on iOS due to the large
memory requirements. A solution for developers is to split
large file operations in different steps.

c) Conclusion File storage on Apache Cordova comes
with a number of limitations in terms of performance. This is a
result of the Cordova framework/bridge technology. Allowing
binary data to pass over the Cordova bridge could significantly
improve the performance of plugins that perform operations
on binary data. For instance, in [35] a bridging technology is
presented that allows access to native device APIs in HTML5

50

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



TABLE IV. EXECUTION TIME OF COMPONENTS ASSOCIATED WITH A
WRITE OPERATION IN CORDOVA ANDROID (FILE PLUGIN). THE
PROCEDURE ”PROCESSING FILE” CONVERTS THE BYTES –AS AN

ARRAYBUFFER– TO A STRING ARRAY. THE ”EXECUTE CALL DELAY”
REPRESENTS THE DELAY BETWEEN THE WRITE COMMAND EXECUTED IN

JAVASCRIPT AND THE EXECUTION AT THE NATIVE SIDE.

Component Duration [1MB] Duration [20MB]
(ms) (% total) (ms) (% total)

Processing file 108 65 1290 56
Execute call delay 38 23 632 28
Writing 20 12 369 16

Total 166 2291

TABLE V. PERFORMANCE READ COMPONENTS IN CORDOVA IOS

Component Duration [1MB] Duration [10MB]
(ms) (% total) (ms) (% total)

Resolve to local URL 11 3.56 16 0.6
Native reading 13.98 4.52 70 2.47
Arguments to JSONArray 202.77 65.62 2037.93 71.88
Sending over bridge 59.93 19.39 587.19 20.71

Total 309 2835

applications via WebSockets and HTTP servers, supporting the
use of binary data.

3) Persistent variables
a) Test Application The performance is examined via

storing and retrieving string values. The total duration of storing
and retrieving a thousand variables is measured. The average
storage and retrieval time is used to compare the different stor-
age mechanisms. The Cordova mechanisms are LocalStorage
and NativeStorage. These are compared to NSUserDefaults
(iOS), Property Lists (iOS) and SharedPreferences (Android).

b) Results and Comparison All mechanisms have an
execution time under 1ms, with the exception of NativeStorage
and Property Lists. The set operation takes around 1.9ms, the
get operation takes less than 1ms. NativeStorage is the only
mechanism which uses the Cordova bridge and framework,
introducing a certain overhead. However, the NativeStorage
API is asynchronous, hence, developers can continue processing
while the value is being stored. The listed measurements include
the time until the callback is fired. Property Lists load an entire
file in an array, after which individual parameters can be read.
As a consequence, the performance of the get operation, which
takes 9.83ms, is worse compared to the native alternatives.
SharedPreferences and NSUserDefaults also load all parameters
in memory, but this is done during the initialisation phase of
the application, which is not incorporated in the measurements.

4) Cordova Bridges In addition to the evaluation of the
data storage strategies in Cordova, compared to native, the
performance of the utilized bridges are studied.

a) Test Application The performance of the bridges is
tested by means of measuring the execution time of reading
and writing different file sizes for each employed bridge. The

TABLE VI. PERFORMANCE WRITE COMPONENTS IN CORDOVA IOS

Component Duration [1MB] Duration [10MB]
(ms) (% total) (ms) (% total)

Processing file 266 97 2614 96
Native writing 7 3 96 4

Total 273 2710

0 1 2 3 4 5 6 7 8 9 1
0

0

100

200

300

400

Filesize [MB]

M
em

or
y

co
ns

um
pt

io
n
[M

B
]

Native
Cordova

Figure 5. Memory consumption as a result of file operations in iOS

used file sizes range from small files (1 kB) to larger files
(10MB). The test application reads and writes each file 1000
consecutively. The execution time for each transaction (i.e.,
read and write) is averaged over 1000 iterations. For larger
files, such as ∼ 1MB and ∼ 10MB, the number of iterations
is reduced to 100 and 20, respectively. We only consider the
Android platform because the bridge techniques in iOS are
rather limited.

First, the Cordova bridge allowing communication from the
native to the JavaScript side (i.e., evaluation, online event, URL
loading and polling) is studied. The bridge between JavaScript
to native is unaltered, i.e., the default bridge is used. Second,
the performance of the bridges connecting the JavaScript to the
native side (i.e., JS object and prompt) is considered. For more
information on the bridge mechanisms see Section VII-A4

The bridge experiments were conducted on a Samsung
Galaxy S8 running Android 7.0.

b) Results and Conclusion The results [36], concerning
the bridge connecting native to JavaScript, are presented in
Tables VII and VIII. A first observation is that the polling
mechanism could not be used as a bridge for the used Android
version. In addition, the default bridge, denoted Eval, does
not always surpass the other available bridges in terms of
performance. This can be seen for reading as well as writing
files. Depending on the file size the performance of other bridges
are better than the default bridge. The same conclusion can
be made when considering the bridges between the JavaScript
side to the native side. However, the performance difference
between these bridges is not as pronounced as with the native
to JavaScript bridges. These results are added to this paper for

51

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



the sake of completeness. They are presented in Table IX.
Based on the measurements, we can conclude that a single

bridge technique is not appropriate for every use case when
considering the performance. Hence, we propose a system
were plugin developers can request a certain bridge technique
based on their requirements. A fine-grained flexible selection of
bridges will allow the performance of the application to increase.
The impact on the performance when switching between bridges
is not studied in this paper.

TABLE VII. PERFORMANCE NATIVE TO JAVASCRIPT BRIDGES IN ANDROID
WHEN READING FILES

Data Size
Eval

(default)
Online Event URL Load Polling

[bytes] [ms] [ms] [ms] [ms]

1k 2.31 6.46 3.28 N.A.
10k 6.22 6.80 6.74 N.A.
100k 19.60 8.20 32.06 N.A.
1M 106.08 43.42 176.71 N.A.
10M 1308.33 641.48 1823 N.A.

Bold measurements indicate the best performance.

TABLE VIII. PERFORMANCE NATIVE TO JAVASCRIPT BRIDGES IN ANDROID
WHEN WRITING FILES

Data Size
Eval

(default)
Online Event URL Load Polling

[bytes] [ms] [ms] [ms] [ms]

1k 19.34 43.03 23.34 N.A.
10k 36.74 42.85 26.20 N.A.
100k 42.60 40.74 37.61 N.A.
1M 424.65 419.67 398.50 N.A.
10M 4465.48 5996.29 4398.43 N.A.

Bold measurements indicate the best performance.

TABLE IX. PERFORMANCE JAVASCRIPT TO NATIVE BRIDGES IN ANDROID
WHEN READING AND WRITING FILES

Data Size Write Read

JS Object
(default)

Prompt
JS Object
(default)

Prompt

[bytes] [ms] [ms] [ms] [ms]

1k 21.88 22.02 2.73 3.17
10k 24.01 45.82 4.36 9.12
100k 46.19 43.51 21.38 19.80
1M 403.58 431.39 107.63 99.02
10M 5679.57 5606.48 1408.86 1406.48

B. Security
On both Android and iOS the security of storage mech-

anisms strongly depends on the storage location and the
platform’s backup mechanisms. Data stored inside the sandbox
of the application is only accessible by the application. However,
the backup mechanisms used in iOS and Android can result
in the exposure of sensitive data [37, 38, 39], or potentially
exhausting the limited cloud storage capacity. On iOS, this
can result in the rejection of the application (conform the Data

Storage Guidelines [40]). On Android, data stored inside the
application sandbox (e.g., the WebView’s storage) is included if
a backup is taken. The Backup API of Android can be used to
explicitly blacklist data that should not be backed up. On iOS,
whether or not a file is included in the backup depends on the
folder in which it is stored. For instance, by default, Cordova
stores the WebView’s data in a folder that allows backups. This
behavior can, however, be changed by modifying a Cordova
parameter.

1) Databases All database mechanisms are by default
private to the application and can be backed up on both mobile
platforms, with the exception of the SQLite plugin in iOS.
The plugin initially followed the default behaviour, but as a
security measure the default storage location of the plugin in
iOS was changed to a directory which is not backed up. This
SQLite plugin also has an encrypted alternative, i.e., cordova-
sqlcipher-adapter. This alternative provides a native interface
to SQLCipher, encrypting SQLite databases via a user-supplied
password.

2) Files In iOS files are protected by a protection class. Each
of these classes corresponds to different security properties. As
of iOS 7, all files are by default encrypted individually until
first user authentication. The file plugin doesn’t allow changing
this default behaviour. Native, each file can be secured using a
protection class best suited for the security requirements of that
file. The plugin allows the developer to choose between folders
that are public/private and backup-enabled/disabled. However,
on Android backup-disabled locations can be accessed by other
applications.

3) Persistent variables All persistent variable storage mech-
anisms are private to the application and included in backups
on both mobile platforms, with the exception of Property List.
Property lists can be stored in arbitrary locations, and can be
backed up depending on the specified location.

4) Sensitive Data The Secure Storage plugin provides
storage of sensitive data on Android and iOS. On iOS, the
plugin uses the SAMKeychain [41] plugin which provides an
API for the native iOS Keychain. The plugin allows app-global
static configuration of the KeyChain items’ accessibility. This
could entail a security risk, as it does not allow fine-grained
protection of individual items. When a user backs up iPhone
data, the Keychain data is backed up but the secrets in the
Keychain remain encrypted with a phone-specific key in the
backup. The Android KeyChain only allows storage of private
keys. Hence, for storing other tokens such as passwords or
JWT tokens, an additional encryption layer is used. The plugin
generates a key that is stored in the KeyChain and used to
encrypt/decrypt sensitive data. The KeyChain on Android is
not included in backups.

VIII. CONCLUSION AND FUTURE WORK

This paper presented an assessment of data storage strategies
using the mobile cross-platform tool Cordova. An in-depth
analysis was performed on the API coverage of the available
data storage mechanisms in Cordova and Native applications.
Based on the analysis, an additional Cordova storage plugin
was developed that improves the storage of persistent variables.

Furthermore, the performance and security of the available
storage mechanisms were evaluated. Our performance analysis
shows that using the Cordova bridge comes with a significant

52

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



performance penalty. Hence, the WebView’s JavaScript API
should be used when possible. Moreover, we also demonstrated
that the default bridges used in Cordova do not always
outperform the non-default bridges. However, apart from
performance, other parameters such as functionality and security
can have an impact on the selection of the storage mechanism.

Databases. If access to a full fledged SQL database is
required, the SQLite plugin should be used. However, in
most mobile applications, the functionality provided by the
significantly faster IndexedDB interface of the WebView is
sufficient.

Variables. As described in Sections VI and VII, it is
recommended to use NativeStorage for storing persistent
variables, since LocalStorage does not guarantee persistence
over longer periods of time. This type of storage is often used
to store preferences. Preferences are typically only accessed
once or twice during the life cycle of the application. Hence,
the performance overhead of NativeStorage does not have a
significant impact on the performance of the application.

Files. The WebView does not provide a file storage API.
Hence, developers have to use the core plugin, Cordova File
Plugin (cordova-plugin-file).

Sensitive data. The security analysis presented in Sec-
tion VII-B shows that plugins such as SecureStorage offer
increased security compared to the WebView’s JavaScript API
because they benefit from the platform’s native secure storage
APIs. It is therefore recommended to use a plugin such as
SecureStorage to store sensitive data.

Future work on this topic can include an enhancement of
the Cordova framework where a fine-grained selection of bridge
techniques is allowed. Thereby, improving the performance of
Cordova applications. Furthermore, more CPTs can be included
in the assessment of data storage strategies.

REFERENCES

[1] G. Callebaut, M. Willocx, J. Vossaert, V. Naessens, and
L. D. Strycker, “Assessment of data storage strategies us-
ing the mobile cross-platform tool cordova,” in MOBILITY
2017, The Seventh International Conference on Mobile
Services, Resources, and Users, J. Noll and K. El-Khatib,
Eds., 2017, pp. 25–32.

[2] VisionMobile. Cross–Platform Tools 2015. Access date:
13/04/2016. [Online]. Available: http://www.visionmobile.
com/product/cross-platform-tools-2015/

[3] ——. (2016) Developer economics state of the developer
nation q1 2016. Access date: 13/04/2016. [Online]. Avail-
able: http://www.visionmobile.com/product/developer-
economics-state-of-developer-nation-q1-2016/

[4] F. Rösler, A. Nitze, and A. Schmietendorf, “Towards a
mobile application performance benchmark,” in Interna-
tional Conference on Internet and Web Applications and
Services, vol. 9, 2014, pp. 55–59.

[5] I. Dalmasso, S. K. Datta, C. Bonnet, and N. Nikaein,
“Survey, comparison and evaluation of cross platform
mobile application development tools,” in Wireless Com-
munications and Mobile Computing Conference (IWCMC),
2013 9th International. IEEE, 2013, pp. 323–328.

[6] M. Willocx, J. Vossaert, and V. Naessens, “Comparing
performance parameters of mobile app development
strategies,” in Proceedings of the International Workshop

on Mobile Software Engineering and Systems. ACM,
2016, pp. 38–47.

[7] M. Ciman and O. Gaggi, “Evaluating impact of cross-
platform frameworks in energy consumption of mobile
applications.” in WEBIST (1), 2014, pp. 423–431.

[8] Y. Zhuang, J. Baldwin, L. Antunna, Y. O. Yazir, S. Ganti,
and Y. Coady, “Tradeoffs in cross platform solutions
for mobile assistive technology,” in Communications,
Computers and Signal Processing (PACRIM), 2013 IEEE
Pacific Rim Conference on. IEEE, 2013, pp. 330–335.

[9] H. Heitkötter, S. Hanschke, and T. A. Majchrzak, “Evalu-
ating cross-platform development approaches for mobile
applications,” in International Conference on Web Infor-
mation Systems and Technologies. Springer, 2012, pp.
120–138.

[10] I. Malavolta, S. Ruberto, T. Soru, and V. Terragni, “End
users’ perception of hybrid mobile apps in the google
play store,” in 2015 IEEE International Conference on
Mobile Services. IEEE, 2015, pp. 25–32.

[11] M. Palmieri, I. Singh, and A. Cicchetti, “Comparison
of cross-platform mobile development tools,” in Intelli-
gence in Next Generation Networks (ICIN), 2012 16th
International Conference on. IEEE, 2012, pp. 179–186.

[12] VisionMobile, “Cross-platform developer tools 2012,
bridging the worlds of mobile apps and the web,” Februar
y, 2012, access date: 13/04/2016.

[13] JQuery Mobile. A Touch-Optimized Web Framework.
Access date: 15/09/2017. [Online]. Available: https:
//jquerymobile.com/

[14] Ionic, “Hybrid vs. Native – An introduction to cross-
platform hybrid development for architects and app
development leaders,” Tech. Rep. [Online]. Available:
https://ionicframework.com/books/hybrid-vs-native

[15] Sencha. Sencha Ext JS. Access date: 15/09/2017. [Online].
Available: https://www.sencha.com/products/extjs

[16] Xamarin – Mobile App Development & App Creation
Software. Access date: 29/11/2017. [Online]. Available:
www.xamarin.com

[17] Qt – Cross-Platform software development for embedded
& desktop. Access date: 29/11/2017. [Online]. Available:
www.qt.io

[18] Appcelerator Inc. Appcelerator. Access date: 15/09/2017.
[Online]. Available: http://www.appcelerator.com/

[19] NeoMAD – Cross-platform mobile development. Access
date: 15/09/2017. [Online]. Available: http://neomades.
com

[20] Crosswalk – Build world class hybrid apps. Access
date: 29/05/2018. [Online]. Available: https://crosswalk-
project.org

[21] A. Deveria and L. Schoors. Can I use ... ?
Access date: 29/05/2018. [Online]. Available: https:
//caniuse.com/#search=HTML5

[22] Google. Progressive Web Apps. Access date: 29/05/2018.
[Online]. Available: https://developers.google.com/web/
progressive-web-apps/

[23] Apache Cordova. Cordova Plugins. Access date:
29/05/2018. [Online]. Available: https://cordova.apache.
org/plugins/

[24] Web SQL Database documentation. Access date:
29/05/2018. [Online]. Available: https://dev.w3.org/html5/
webdatabase/

[25] SQLite Plugin NPM website. Access date: 29/05/2018.

53

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[Online]. Available: https://www.npmjs.com/package/
cordova-sqlite-storage

[26] Cordova File Plugin NPM website. Access date:
29/05/2018. [Online]. Available: https://www.npmjs.com/
package/cordova-plugin-file

[27] Cordova Storage documentation. Access date: 29/05/2018.
[Online]. Available: https://cordova.apache.org/docs/en/
latest/cordova/storage/storage.html

[28] SecureStorage Plugin NPM website. Access date:
29/05/2018. [Online]. Available: https://www.npmjs.com/
package/cordova-plugin-secure-storage

[29] G. Callebaut and A. Rajiv, “NativeStorage – A
Cordova Plugin,” https://github.com/TheCocoaProject/
cordova-plugin-nativestorage.

[30] “Smartphone os market share, q2 2016,” http://www.
idc.com/prodserv/smartphone-os-market-share.jsp, 2015,
access date: 20/10/2016.

[31] (2016) Cordova plugin NativeStorage. [Online].
Available: https://github.com/TheCocoaProject/cordova-
plugin-nativestorage

[32] NativeStorage Plugin NPM website. Access date:
29/05/2018. [Online]. Available: https://www.npmjs.com/
package/cordova-plugin-nativestorage

[33] NativeStorage in the Ionic Framework documentation.
Access date: 29/05/2018. [Online]. Available: http:
//ionicframework.com/docs/v2/native/nativestorage/

[34] Cordova Plugins in the Telerik Marketplace. Access date:
29/05/2018. [Online]. Available: http://plugins.telerik.
com/cordova

[35] A. Puder, N. Tillmann, and M. Moskal, “Exposing
native device apis to web apps,” in Proceedings of
the 1st International Conference on Mobile Software
Engineering and Systems, ser. MOBILESoft 2014. New
York, NY, USA: ACM, 2014, pp. 18–26. [Online].
Available: http://doi.acm.org/10.1145/2593902.2593908

[36] G. Callebaut. (2017) Performance results bridges in
cordova (android). [Online]. Available: http://dx.doi.org/
10.17632/kyxc59tfmv.1

[37] P. Teufl, T. Zefferer, and C. Stromberger, “Mobile device
encryption systems,” in 28th IFIP TC-11 SEC 2013 In-
ternational Information Security and Privacy Conference,
2013, pp. 203 – 216.

[38] P. Teufl, A. G. Fitzek, D. Hein, A. Marsalek, A. Oprisnik,
and T. Zefferer, “Android encryption systems,” in Inter-
national Conference on Privacy & Security in Mobile
Systems, 2014, in press.

[39] P. Teufl, T. Zefferer, C. Stromberger, and C. Hechen-
blaikner, “ios encryption systems - deploying ios devices
in security-critical environments,” in SECRYPT, 2013, pp.
170 – 182.

[40] iOS Data Storage Guidelines. Access date: 29/05/2018.
[Online]. Available: https://developer.apple.com/icloud/
documentation/data-storage/index.html

[41] S. Soffes. SAMKeychain. Access date: 29/05/2018. [On-
line]. Available: https://github.com/soffes/SAMKeychain

54

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


