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Abstract - Due to its abstract nature, program code structures 
have been inherently challenging to visualize. As virtual reality 
(VR) hardware products become common, their utilization for 
providing insights into these software structures become 
feasible. However, for certain user programmer-centric 
interaction scenarios, typical VR interfaces (controller held in 
each hand) can be awkward. This paper describes our VR and 
mixed reality (MR) fly-through software structure approach 
for visualizing internal program code structures and 
investigates additional interfaces to augment the virtuality. MR 
use of any keyboard and mouse are supported for 
programming tasks. To interface with a virtual tablet menu 
that is used as an oracle, a real tablet is used as a touchpad for 
the VR tablet. Voice control of the tablet menu was also 
implemented and investigated in comparison to the other 
interfaces. The paper evaluates the various VR and MR 
interfaces for their suitability for selected software 
development and computer science educational tasks. The 
evaluation results provide insight into which interfaces were 
more efficient and preferred by subjects. 

Keywords - Virtual reality; mixed reality; augmented 
virtuality; software visualization; program comprehension; 
software engineering; speech recognition; voice control. 

I.  INTRODUCTION 
This paper extends [1], where we described a VR 

approach for visualizing, navigating, and conveying program 
code information interactively in a VR environment called 
VR-FlyThruCode (VR-FTC). 

The volume of program source code produced and 
maintained worldwide continues to increase, yet gauging this 
metric is difficult since large portions are not publicly 
available. Google alone is estimated to have at least 2bn lines 
of code (LOC) internally accessible by 25K developers [2]. 
By some estimates well over a trillion lines of code (LOC) 
exist worldwide with 33bn added annually [3]. The 
limitations for humans to comprehend source code are 
evident in the relatively low code review reading rates of 
around 200 LOC/hour [4]. 

Faced with this ever-increasing code base, the question 
becomes: how can programmers quickly comprehend large 
amounts of code and understand their underlying and mostly 
invisible abstract structures? Common display forms used in 
the comprehension of source code include text, the two-
dimensional Unified Modeling Language (UML), and 
software analysis tools. For large projects, typically multiple 
UML diagrams exist that are not coherently tied together and 
no screen can support showing all diagrams simultaneously, 

thus a mental patchwork of the multiple visual images is 
used to create a coherent model in the programmer’s mind. 
For code files, typically these are hierarchically hidden 
among various subdirectories, and determining relations is an 
arduous task. These forms of extraction leave the 
programmer creating and stitching explicit or implicit visual 
images together. 

One software pioneer, F. P. Brooks, Jr., asserted that the 
invisibility of software is an essential difficulty of software 
construction because the reality of software is not embedded 
in space [5]. Yet the philosopher Aristotle once stated, 
"thought is impossible without an image." 

In 1998, Feijs and De Jong [6] presented a vision of 
walking through a 3D visualization of software architecture 
using VRML. Currently the immersive potential of VR and 
game engines for improving software engineering (SE) tools 
has still not been realized, and their practicality with off-the-
shelf VR hardware remains insufficiently explored. 

This paper describes our visually immersive VR 
approach for visualizing, navigating, and conveying program 
code information interactively to support exploratory, 
analytical, and descriptive cognitive processes [7]. In 
extending [1], it contributes additional interface capabilities 
to the VR-FTC solution concept and investigates their 
suitability. Specifically, the following interfaces: speech 
recognition for voice-directed control of the oracle – our VR 
voice FTC (VRVoc-FTC), as well as an MR tablet that was 
added to the to the MR-FTC variant to control the oracle like 
a touchpad. Furthermore, the fly-in theaters were replaced 
with an always-accessible virtual tablet which functions as 
an oracle – an interactive screen supplying information on 
request to the user. Also, as a form of augmented virtuality 
[8], MR support for real keyboard and mouse interfacing 
were added to support programming on the tablet [9], 
henceforth known as the MR-FTC variant. A prototype 
realization demonstrates the viability of these capabilities, 
and initial empirical experiments investigate effectiveness, 
efficiency, and user experience (UX) factors of the various 
interfaces for programming and menu navigation tasks. 

The paper is organized as follows: the next section 
discusses related work; Section III then describes the 
solution approach. Section IV provides details on our 
prototype realization. Section V describes the evaluation of 
prototype and the alternative interfaces from a technical or 
empirical perspective. It is followed in Section VI by a 
conclusion. 
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II. RELATED WORK 
As to voice interfaces in SE, work related to voice 

control of SE tools includes Delimarschi et al. [10], who 
applied voice and gesture control to IDE tools. Lahtinen and 
Peltonen [11] investigated voice control for UML modeling 
tasks. 

As to utilizing tablets in VR, Afonso et al. [12] tracked 
hand movement to determine if people preferred to see a 
virtual hand on a virtual tablet while holding a real tablet in 
VR. In our case, the tablet is not necessarily held (it is placed 
on the desk like the keyboard and mouse in a known 
position), we do not track hand movement, and we do not 
show a hand but do show a small box indicator where the 
tablet was last touched. 

Work on visualization of software structures in VR 
includes Imsovision [13], which visualizes object-oriented 
software in VR using electromagnetic sensors attached to 
shutter glasses and a wand for interaction. ExplorViz [14] is 
a Javascript-based web application that uses WebVR to 
support VR exploration of 3D software cities using Oculus 
Rift together with Microsoft Kinect for gesture recognition. 

Work regarding software visualization without the use of 
VR includes Teyseyre and Campo [15], who give an 
overview and survey of 3D software visualization tools 
across the various software engineering areas. Software 
Galaxies [16] provides a web-based visualization of 
dependencies among popular package managers and 
supports flying. Every star represents a package that is 
clustered by dependencies. CodeCity [17] is a 3D software 
visualization approach based on a city metaphor and 
implemented in SmallTalk on the Moose reengineering 
framework. Buildings represent classes, districts represent 
packages, and visible properties depict selected metrics, 
improving task correctness but slowing task completion time 
[18]. Rilling and Mudur [19] use a metaball metaphor 
(organic-like n-dimensional objects) combined with dynamic 
analysis of program execution. X3D-UML [20] provides 3D 
support with UML in planes such that classes are grouped in 
planes based on the package or hierarchical state machine 
diagrams. A case study of a 3D UML tool using Google 
SketchUp showed that a 3D perspective improved model 
comprehension and was found to be intuitive [21]. Langelier 
et al. [22] supports the visualization of metrics (e.g., 
coupling, test coverage).  

In contrast to the above work, the VR-FTC approach and 
its variants (MR-FTC and VRVoc-FTC) leverage game 
engine capabilities to support an immersive VR software 
structure visualization environment; provide multiple 
dynamically-switchable (customizable) metaphors; use one 
VR system and controller set (without requiring gesture 
training) for interaction and navigation; uses a virtual tablet 
to provide an information screen within the VR landscape; 
leverages MR to support keyboard, mouse, and tablet 
interfaces in VR; and provides a voice direction capability to 
control menu options.  

III. SOLUTION APPROACH 
As described in [1], our VR-FTC solution approach uses 

VR flythrough for visualizing program code structure or 
architecture. This inherent 3D application domain view 
visualization [15] arranges customizable symbols in 3D 
space to enable users to navigate through an alternative 
perspective on these often-hidden structures. For example, 
certain information typically not readily accessible is 
visualized, such as the relative size of classes (not typically 
visible until multiple files are opened or a UML class 
diagram is created), the relative size of packages to one 
another, and the dependencies between classes and packages. 

A. Principles 
The principles (P:), (basic ideas or primary methods) 

involved in the VR-FTC solution approach include: 
P:Multiple 3D visual metaphors: Analogous to the 

concept of skins, it models and supports tailoring and 
switching between multiple code structure visualization 
metaphors. While our initial implementation focused on 
modeling and visualizing object-oriented packages, classes, 
and their relationships, the approach is extensible for other 
programming languages. Initially, two metaphors are 
provided "out-of-the-box" while custom mappings to other 
object types are supported. In the universe metaphor, each 
planet represents a class with its size based on the number of 
methods, and solar systems represent a package. Any metric 
can be used to map to any visual object property (like color). 
Multiple packages are shown by layer solar systems over one 
another. In the terrestrial metaphor, buildings can represent 
classes, building height can represent the number of 
methods, and glass bubbles can group classes into packages. 
Relationships are modeled visually as colored pipes. 

P:Group metaphor: elements (classes) are grouped and 
delineated in a way appropriate for that language (packages 
for Java) and metaphor. For instance, the terrestrial metaphor 
uses either a glass bubble over a city or a circle of trees at the 
city border, and the universe metaphor uses solar systems. 

P:Connection metaphor: elements (classes) are 
connected in a way appropriate for that metaphor. For our 
two metaphors, we chose colored light beams, which often 
are used to portray networks on a geological background.  

P:Flythrough navigation: 3D navigation (motion) is 
provided by moving the camera in space based on controller 
or motion sensor input. The scenery, however, remains 
anchored in the scene, allowing users to remember places via 
their geolocation relative to other elements. 

P:Oracle: a virtual tablet is provided, and can be viewed 
as a type of oracle to answer questions a user might have, 
although these cannot be formulated directly like a chatbot. 
Instead, it provides menus and displays source-code and SE 
tool-generated information as selected by the user within 
their given context (such as a selected object). The screens 
currently presented include: 

• Tags: Setting, searching, or filtering automatic (via 
patterns) or manual persistent annotations/tags. 

• Source Code: code is shown in scrollable form. 
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• UML: 2D UML diagrams can be shown on the 
tablet, including dynamically generated 2D 
diagrams, allowing users to leverage knowledge of 
this form if already available or if dynamic 
generation thereof is desired. 

• Metrics: code metrics are displayed textually due to 
the large number of possible metrics that may be of 
interest to the user; displaying a large amount of 
metric information visually may be disconcerting. 
Customization enables metrics of interest to be 
utilized in a metaphor (e.g., colors, object height can 
relate to number of class methods, font colors can 
indicate a threshold is exceeded). 

• Filtering: shows elements that match selectors.  
• Project: change metaphors, load, or import a project. 
P:MR interfaces: in addition to the VR controllers and a 

virtual keyboard and a virtual tablet, use of a real keyboard, 
mouse, and tablet used as a touch pad are supported in the 
MR-FTC variant. 

P:Voice interface: Voice control of the tablet menu is 
supported in the VRVoc-FTC variant using speech 
recognition. 

B. Process 
Five steps are involved in the solution process, consisting 

of: 
1) Modeling: modeling generic program code structures, 

metrics, and artifacts as well as visual objects. More details 
on what models and formats are used in our prototype are 
given in Section IV. 

2) Mapping: mapping a model to a visual object 
metaphor. 

3) Extraction: extracting a given project's structure (via 
source code import and parsing) and metrics. 

4) Visualization: visualizing a given model instance 
within a metaphor. 

5) Navigation: supporting navigation through the VR 
model instance (via camera movement based on user 
interaction) and navigation of the oracle menu. 

IV. IMPLEMENTATION 
For the implementation, we utilized the Unity engine for 

3D visualization due to its multi-platform support, VR 
integration, and popularity, and for VR hardware both HTC 
Vive, a room scale VR set with a head-mounted display and 
two wireless handheld controllers tracked using two 
'Lighthouse' base stations. First, we reiterate implementation 
details based on [1] and then in Sections E, F, and G we 
provide descriptions of the new interface implementations. 

A. Architecture 
Figure 1 shows the architecture. Assets are used by the 

Unity engine and consist of Animations, Fonts, Imported 
Assets (like a ComboBox), Materials (like colors and 
reflective textures), Media (like textures), 3D Models, 
Prefabs (prefabricated), Shaders (for shading of text in 3D), 
VR SDKs, and Scripts. Scripts consist of Basic Scripts like 
user interface (UI) helpers, Logic Scripts that import, parse, 
and load project data structures, and Controllers that react to 

user interaction. Logic Scripts read Configuration data about 
Stored Projects and the Plugin System (input in XML about 
how to parse source code and invocation commands). Logic 
Scripts can then call Tools consisting of General and 
Language-specific Tools. General Tools currently consist of 
BaseX, Graphviz, PlantUML, and Graph Layout - our own 
version of the KK layout algorithm [23] which we use for 
placing and spacing objects within a metaphor. Java-specific 
tools are srcML, Campwood SourceMonitor, Java 
Transformer (invokes Groovy scripts), and Dependency 
Finder. Our Plugin system enables additional tools and 
applications to be easily integrated.   

 

 
Figure 1. VR-FlyThruCode software architecture. 

B. Information Extraction 
For extracting existing code structure information into 

our model, srcML [24] is used to convert source code into 
XML that is then stored in the XML database BaseX, 
Campwood SourceMonitor, and DependencyFinder are used 
to extract code metrics and dependency data, and plugins 
with Groovy scripts and a configuration are used to integrate 
the various tools. 

C. Project structure 
For an imported project the following files are created: 
• metrics_{date}.xml: metrics obtained from 

SourceMonitor and DependencyFinder are grouped 
by project, packages, and classes. 

• source_{date}.xml: holds all classes in XML 
• structure_{date}.xml: contains the project structure 

and dependencies utilizing the DependencyFinder. 
• swexplorer-annotations.xml: contains user-based 

annotations (tags) with color, flag, and text including 
both manual and automatic (pattern matching) tags. 

• swexplorer-metrics-config.xml: contains thresholds 
for metrics. 

• swexplorer-records.xml: contains a record of each 
import of the same project done at different times 
with a reference to the various XML files such as 
source and structure for that import. This permits 
changing the model to different timepoints as a 
project evolves. 
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D. Metaphor Realization 
To support P:Multiple 3D visual metaphors, a universe 

and a city metaphor were chosen since these are universally 
known and can be easily related to by users, however other 
metaphors are easily realizable. A welcome room similar to a 
cockpit, shown in Figure 2, enables the user to select the 
desired metaphor and project state. Figure 3 shows the city 
metaphor, where buildings represent classes with a label at 
the top and the height can portray a metric of interest such as 
the number of methods in that class. In the City metaphor, 
P:Group was implemented as a glass bubble over the city as 
shown in Figure 4. In the universe metaphor, planets 
represent classes and have a label in the center as shown 
Figure 5. P:Group was implemented as solar systems  (see 
Figure 6 and compare with Figure 7). For P:Connection, in 
both metaphors colored light beams were used to show 
dependencies between classes or packages (see Figure 8 and 
Figure 9) To highlight a selected object, we utilized a 3D 
pointer in the form of a rotating upside-down pyramid. 
Graph Layout was used for placement of the visual objects, 
which is done automatically by the system. 

To allow the user to remember objects, tagging is 
supported, which allows any text label to be entered and 
placed on an object (e.g., the ‘Important’ Tag in Figure 5).  

 

 
Figure 2. VR-FlyThruCode software architecture. 

 
Figure 3. The city metaphor, with buildings as classes and the VR 

controller visible. 

 
Figure 4. City metaphor showing glass bubbles with oracle visible. 

 
Figure 5. Universe metaphor showing tagged planet (class) and oracle. 

 
Figure 6. Universe metaphor showing solar systems. 

 
Figure 7. City metaphor showing glass bubbles. 
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Figure 8. A directed dependency in the City metaphor. 

 
Figure 9. A directed dependency in the Universe metaphor. 

To highlight a selected object, we utilized a 3D pointer in 
the form of a rotating upside-down pyramid (see Figure 4 
and Figure 5). This was needed because, once an object is 
selected, after navigating to a screen or menu one may turn 
around and lose track of where the object was, especially if 
the object was small relative to its surrounding objects. 

E. Virtual Reality Interaction 
On the HTC Vive the touchpad on the left controller 

controls altitude (up, down) and the one on the right hand the 
direction (left, right, forward, backward), which realizes 
P:Flythrough navigation by moving the camera position. 
The controllers are shown in the scenery when they are 
within the view field, as shown in Figure 10. A virtual laser 
pointer was created for selecting objects, as was a virtual 
keyboard (see Figure 10) to support text input for searching, 
filtering, and tagging. To implement P:Oracle, menus and 
screens showing source code, code metrics, UML diagrams, 
tags, filtering, and project data are accessible via a virtual 
tablet. 

 

 
Figure 10. VR controller using the virtual keyboard. 

F. Mixed Reality Keyboard, Mouse, and Tablet 
To implement P:MR interfaces in the MR-FTC variant, 

access to a real keyboard and mouse in MR was achieved via 
a live camera view, which was integrated into the VR 
landscape using a virtual plane object (see Figure 11). A 
Logitech C920 webcam with a 1080p resolution was used 
instead of the Vive Front camera to achieve better resolution. 
With this option, the user can utilize their favorite keyboard 
and mouse that they are already accustomed to.  

 

 
Figure 11. MR-FTC variant with a MR keyboard (mouse out of view). 

We chose to automatically activate and show MR when 
the user's tilts the goggles low enough, as one would if one 
were to wish to see the keyboard when using it and turn MR 
off again if one tilts the head up far enough again. Keyboard 
and mouse inputs are accessible at any time, not just when 
MR is activated. 

 

 
Figure 12. Android tablet use as augmented virtuality. 

To support a tablet, we created an Android app with no 
visible user interface (it only needs to detect the finger 
location as shown in Figure 12) and tested it on a Sony 
XPERIA Z2 Tablet with Android 6.0.1. When a user touches 
the App screen, a UDP packet consisting of the finger 
location coordinates and a tap event flag to our MR-FTC 
Unity application on the PC via the wireless network. A 
mouse pointer in the form of a white cube is then shown on 
the oracle (virtual tablet) at the equivalent position. A 
double-tap results in an OnClick-Event. Figure 12 shows a 
user holding the tablet and “seeing” the location on the 
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virtual tablet. Figure 13 shows a closeup of the oracle and 
shows the cube indicator of the finger location. Note that no 
orientation information is sent (e.g., tilt angle) and that for 
the experiment the tablet was fixed to the desktop in a known 
location for the user, so they do not need to hold it. The app 
is blank except for displaying the coordinates because the 
user in VR does not see the real tablet; it is not under the 
camera as the MR keyboard and mouse but rather in a fixed 
position on the desk known to the user before putting the VR 
goggles on. A Sony XPERIA XZ with Android 8.0.0 was 
also tested.  

 

 
Figure 13. Closeup of the oracle showing menus and the source code view. 

G. Voice Directed Control 
To implement a P:Voice interface in our VRVoc-FTC 

variant - specifically voice-directed control of the oracle 
menu, we evaluated various openly available speech 
recognition options. Our constraints were that we not be 
required to pay for any service, which constrained certain 
well-known cloud options. We then evaluated various 
popular libraries but our requirements were that little to no 
training would be required. After various attempts that did 
not result in satisfying solutions, we settled on Windows 
System Speech (WSS) and Unity Speech (Cortana). For the 
evaluation, only WSS was used since network access to 
Cortana was blocked by campus IT. Off-campus, Windows 
10 Pro (with Fall Creators Update) was tested with Cortana. 

Because WSS support is not integrated in Unity 5.6, we 
used a client-server program to send the commands from 
WSS to Unity, where it is processed by the SpeechHandler 
class. Thus, any Speech API (Application Programming 
Interface) could send the commands over TCP/IP to VR-
FTC. 

The microphone was mounted on a headset, so it is close 
to the mouth and thus reduces unrelated noise inputs. 
Currently no indication is given if a command is not 
understood, but because the response is normal fast, after a 
second the user should notice that the command was not 
executed and will likely try again. 

The following words are supported at this time: 
"class information", "class details": opens the view 

"Class Details" 
"source code", "source": shows the source code for the 

selected class 
"project manager", "project": opens the view "Project 

Manager" 

"feature screen", "feature": opens the view "Feature 
Screen" 

"option screen", "options screen", "option", "options": 
opens the configuration options view 

"left", "previous": changes the view to the previous 
window 

"right", "next": changes the view to the next window 
  
Under Unity Cortana, we also support "search 

<classname>", which shows the program code of that class. 
In WSS this functionality was not possible since only 
predefined words can be used, and its free speech recognition 
mode performance was unusable for SE-specific tasks. 

WSS does not improve automatically over time. While 
one can manually improve WSS, we noticed no 
improvements after a half hour session. Unity Speech 
(Cortana) probably improves automatically but we were 
unaware of an option to manually improve it via sessions. 

V. EVALUATION 
After showing the feasibility of the solution with our 

implementation, our technical evaluation focused on 
assessing the implementation’s viability on current VR 
hardware options. To compare our VR-FTC solution’s 
suitability, effectiveness, and efficiency with non-VR and 
provide an overall picture, empirical evaluations were 
performed as indicated below. Section D includes new 
evaluations focused on the interfaces for programming-
centric tasks, where we performed an empirical evaluation of 
MR-FTC with a keyboard and mouse input compared to 
non-VR and a virtual keyboard. And to evaluate menu 
interfaces of the oracle (virtual tablet), we performed an 
empirical study comparing VR controllers, a MR touchpad-
like tablet interface, and voice control. 

A. Technical Evaluation 
Our technical evaluation performed in [1] utilized an 

HTC Vive with a 2160×1200 447 PPI resolution, Unity 
5.3.5f1 PE, SteamVR 1479163853. The desktop PC had a 
4GHz i7-6700K, 32GB RAM, SSD, NVIDIA GeForce 
GTX980Ti with 6GB GDDR5, Win7 Pro x64 SP1. The 
notebook was a MSI GS60 2.5GHz i7-4710HQ, 16GB 
RAM, NVIDIA GeForce GTX870M with 3GB GDDR5, 
SSD, Win10 Home x64, which did not meet Vive's 
minimum requirements but allows us to determine if a 
notebook (popular among software developers) would 
suffice for our VR application. 

1) Resource usage: RAM was allocated for a 64-bit 
implementation was 220MB (with no project), 250MB 
(project with 27 classes), and 620MB (project with 95 
classes). On the notebook, graphics card load was 80% 
without a project and went to 90% with a loaded project (for 
the PC 20%). We determined the CPU was the bottleneck, 
with load on the PC for a large project almost always at 
100%. We believe that scripts attached to each visible class 
invoke their update method for each frame, and plan to 
optimize this in future work. 
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1) Frame rate: to determine the performance impact of 
each metaphor and if a notebook would be sufficient, the 
Saxon XSLT 2.0 and XQuery processor consisting of 300K 
lines of code and 1635 classes was loaded and the frames 
per second (FPS) measured via a custom script. 

 

 
Figure 14. Universe metaphor frame rate over time on notebook and PC. 

 
Figure 15. City metaphor frame rate over time on notebook and PC. 

Figure 14 and Figure 15 show that the notebook mostly 
exhibited lower FPS rates than the PC, and that the city 
metaphor lowered the FPS rate. This is also shown by the 
average FPS rates for universe (notebook=20.0; PC=22.2) 
and city (notebook=12.7; PC=16.0). Below 15 FPS is not 
tolerable (early silent films had 16-20). An initial analysis 
found the dynamic UML generator - run in a separate 
process - as a main cause, and this will be addressed in future 
work. The universe ran better than city, since city included 
multiple shadows, reflections from the glass bubble, and a 
terrain. Higher FPS occurred when flying to an outer 
package such that far fewer objects were in view. 

B. Suitability of VR for SE Tasks 
Our empirical evaluation to compare the SE task 

suitability of VR vs. non-VR was performed in [1] using the 
HTC Vive. Our hypotheses were (1) that VR mode is on par 
with non-VR in effectiveness and efficiency for SE code 
structure analysis tasks and education, and (2) VR mode 
offers an immersive and UX quality absent in non-VR. 

Resource-constraints such as having only one Vive and 
the time-intensive 2-on-1 supervision of the experiment with 
a single subject at a time limited our sample size. A 
convenience sample of 10 computer science students of 

various academic semesters (1; 3-4; 6-9 grouped respectively 
as beginner, intermediate, and advanced) participated and 
self-rated their programming and UML competency (Figure 
16). Object-orientation (OO) is taught in the second and 
UML in the fourth semester. The one first semester student 
had work experience in the software industry and thus knew 
OO and UML. Each received a short tutorial on non-VR 
FTC (three had prior experience). Project A consisted of 2 
packages, 27 classes, and 170 methods, while Project B had 
5 packages, 95 classes, and 800 methods.  

 

 
Figure 16. Participant UML/programming self-rating by semester level. 

In non-VR mode, project A was loaded in the universe 
and thereafter the city metaphor, and likewise with B, and 
the same sequence repeated for VR mode. 8 questions were 
asked per case dealing with program code structural 
comprehension requiring navigation (not the same set each 
time), resulting in 64 questions (see Figure 17); 5 additional 
general questions followed giving 69 in total. So that the VR 
glasses need not be removed, and in order not to skew the 
task durations in non-VR mode, questions were asked and 
answered verbally and noted by a supervisor. 

 

 
Figure 17. Sample timed task questions and requests. 

As to efficiency, on average 92.5 min were needed for 
the 64 questions, 43.4 in VR mode vs. 39.5 min in non-VR 
(10% difference), while VR training took 9.4 min. Figure 18 
shows the sum of the task durations for each mode per 
subject, whereby subjects 8-10 had prior FTC familiarity. 
Although VR mode was 10% slower, this was their first 

1) How many connections/dependencies does class X 
have within the package Foo? 

2) How many connections/dependencies does class Y 
have within the package Bar? 

3) Add a tag to the class X 
4) Which package is the largest/smallest? 
5) How many connections/dependencies does package 

Foo have? 
6) How many connections/dependencies does package 

Bar have? 
7) How many variables are declared in the class Y in 

package Foo? 
8) Which classes are directly connected with the class Y? 
9) Name all classes on the shortest path from A to B. 
10) How many overloaded functions does the class Z have 

in package Bar? 
11) In what package did you set your tag?  
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experience using VR. In addition, in non-VR mode the HUD 
is instantly available and screens can be switched, while in 
VR mode navigation to a screen is required. In our opinion, 
more VR practice might reduce this difference further. 

With regard to effectiveness, given 32 questions in each 
mode across 10 subjects, in non-VR 300 (94%) and in VR 
296 (93%) were answered correctly.  

 

 
Figure 18. Sum of task durations per subject for VR and non-VR modes. 

Subjects considered both FTC application modes suitable 
for these SE tasks. Comments included liking how 
information was visually displayed, its closeness to a reality, 
its clear arrangement, and that head movement could be used 
for exploring (which non-VR cannot provide). Subjects felt 
no differently after using non-VR, whereas after VR the 
feeling was described as impressive for seven of the ten 
subjects. The other three subjects reported VR sickness 
symptoms, a type of visually-induced motion sickness 
exhibiting disorientation. We plan to address the VR 
sickness in future work, e.g., by increasing the frame rate via 
optimizations and reducing the speed of camera movement.  

C. Mixed-Reality Interface for SE Tasks 
An empirical evaluation of the MR-FTC keyboard 

capability using a convenience sample consisting of 
Computer Science students was performed as described in 
[9]. For evaluating typing speed in particular, for program 
text such as comments which are full words without special 
characters, five subjects were required to write two unique 
pangrams consisting of 18 words using a text editor 
(Notepad++), the MR keyboard, and the VR only keyboard. 
We varied the starting configuration order among the 
subjects to minimize training effects. As shown in Table I, 
the text editor was the most efficient with 50 seconds 
duration and 22.5 words per minute (wpm) with an average 
error rate of 3.3%. With MR 75 seconds were required (16.0 
wpm) with an error rate of 3.3%. With the VR keyboard 110 
seconds were required (10.1 wpm) with an error rate of 
4.4%. Thus, the MR keyboard was faster than the VR 
keyboard and did not exhibit a higher error rate. However, 
the subjects needed 11 seconds on average between laying 
down the VR controllers and pressing the first letter on the 
keyboard. 

TABLE I.  TEXT EDITOR, MR, AND VR PANGRAM MEASUREMENTS 
(AVERAGE) 

 
Text 

Editor MR VR 

Duration (seconds) 50 75 110 

Words per minute 22.5 16.0 10.1 

Error rate 3.3% 3.3% 4.4% 

 
For evaluating programming, four subjects were required 

to view a certain class and then create a class and were given 
certain specified modifications thereafter (creating some 
object and setting some variable to some value) using either 
a text editor or the MR keyboard. As seen in Table II, using a 
text editor (Notepad++), they needed on average 50 seconds 
to analyze a similar class, 30 seconds to create a new class, 
and 144 seconds to do the programming. Using the MR 
keyboard, they needed 84 seconds to analyze a similar class, 
77 seconds to create a class, and 245 seconds to complete the 
programming.  

TABLE II.  TEXT EDITOR AND MR MEASUREMENTS (AVERAGE IN 
SECONDS) 

 Analysis Class Creation Programming 

Text editor 50 30 144 

MR 84 77 245 

 
We were pleased that none of the subjects reported 

motion sickness despite the inclusion of MR and the average 
response to how they felt afterwards was 4.75 (on a scale of 
1 to 5 with 5 best).  

Although the keyboard was a German layout keyboard, 
we noted that some subjects already had used that specific 
keyboard model before (Logitech K280e) while others had 
not and thus needed more time to search for certain specific 
keys. In searching they needed to get close with the VR 
goggles to see the key label, so we will consider providing a 
zoom or magnification option in the interface in the future. 

D. Voice, Tablet, and Controller Interface Comparison 
To compare menu-centric control of the oracle with the 

VR-FTC, MR-FTC tablet, and VRVoc-FTC variants 
empirically, we used a convenience sample of six Computer 
Science students. During the experiment, one of the subjects 
exhibited VR sickness symptoms and could not continue, so 
the results for this student were removed. In future work, we 
will attempt various optimizations and see if this reduces the 
likelihood. After the supervised treatments, the subjects 
filled out a questionnaire and were debriefed. 

To ascertain efficiency effects of the different interfaces, 
each subject was given five different SE tasks by a 
supervisor to perform in the VR-Based VR-FTC City 
metaphor with each interface, such as find a certain class, 
determine how many methods a certain class has, tag a class, 
add a comment. Similar tasks were given for each case of 
interface when using primarily Voice control (V), Tablet 
control (T), or VR Controller (C). A random order of 
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treatments was applied in order to ascertain if the treatment 
ordering created a training effect (e.g., always faster with the 
second or third interface), and the order is depicted as labels 
in Figure 19 which shows the total task duration by subject 
for each interface. As can be seen, the ordering did not show 
a clear trend. On average, voice took 353 seconds, the tablet 
346 seconds, and the VR controller 197 seconds. we 
approximate that the tablet and voice are similar in efficiency 
and averaged together (350s) they are 77% slower than 
controller use. 
 

 
Figure 19. VR-FTC total task duration in seconds by subject for voice, 
tablet, and controller interfaces. 

Figure 20 shows the results of the subjective assessment 
of suitability and enjoyment by the subjects. Overall one 
observes that the VR controllers had the most positive 
suitability and enjoyment ratings, and that voice was had 
three positive assessments for suitability and enjoyment. The 
tablet had the least positive suitability and enjoyment 
assessment. 

 

 
Figure 20. Suitability and enjoyment assessments in VR-FTC for voice, 
tablet, and controller interfaces from very high (++) to very low (--). 

The supervisor gave subjects their tasks via speech, and 
subjects also spoke with supervisor during their tasks, which 
caused unintended commands to be executed. Also, the 
university lab setting included various other students and 
background noise, which reflect a realistic setting for 
software developers. From approximately 50 voice 
commands that were required to perform the SE tasks, the 
supervisor noted that less than 1 was not heard and less than 
1 misinterpreted. For instance, if the subject was naming the 

functions the speech interpreter might interpret a command 
based on the name of a function or class. To address this, in 
future work we plan to provide a clear delineation for voice 
command mode (e.g., push to talk on a controller) and to 
inject the experiment directions into the scenery. 

We were surprised that the MR-FTC tablet was not found 
to be that suitable or enjoyable for controlling the virtual 
tablet. We thought it would be found to be similar to a touch 
pad on a notebook, some users thought it was a good idea 
and more stable than holding the controllers.  

Voice was the slowest overall. Voice direction almost 
always requires more time than direct control (e.g., keyboard 
or mouse on a PC vs. voice control), however it can free up 
other interfaces, and this was recognized as a benefit in the 
debriefing by a number of subjects. 

E. Discussion 
The technical evaluation of Section V.A showed suitable 

resource usage but pointed out frame rate issues. As to the 
suitability of using VR-FTC for SE tasks such as answering 
structural issues like those in Figure 17, Section V.B showed 
that while VR-FTC was 10% slower on average for 
untrained VR users, no significant difference in correctness 
were observed. Thus, our empirical hypotheses were 
confirmed by our results and the feedback from participants.  

One threat to validity is the order effect of application 
usage in that non-VR followed VR. Thus, non-VR times 
include the overhead for gaining familiarity with the 
application concepts, and VR mode did not have this 
overhead. However, 2D monitor and mouse-centric 
interaction was a pre-existing competency, while VR display 
and navigation was a new interaction paradigm for all 
subjects. Furthermore, subjects 8, 9, and 10 had prior 
familiarity with the non-VR FTC via a prior experiment, yet 
their task duration times did not exhibit any clear trend that 
prior familiarity sped up the non-VR task durations. 
Furthermore, the 1% difference in correctness might be 
attributed to mental fatigue since VR was done in the second 
hour. A further threat to validity is that the positive 
experience is possibly a novelty effect - VR veterans would 
be needed to be included to assess this factor. For better 
external validity, the sample size should be larger and more 
diverse to include professionals. However, the results can be 
viewed as indicative and the approach as promising if we can 
address the VR sickness. We made optimizations for the 
frame rate issues to address VR sickness in further empirical 
studies, and only one person in those experiments 
experienced VR sickness. 

With regard to the results in Section V.C of using FTC 
with a keyboard, a non-VR text editor remains more 
efficient, yet usage of the MR-FTC keyboard was faster than 
a purely VR-FTC keyboard and, once familiar with a certain 
keyboard, we expect the overhead of MR to be reduced to an 
acceptable level given sufficient practice. The overhead of 
switching between VR controllers to keyboard and back 
again can be seen as analogous to the overhead of keyboard 
use on a PC and moving the hand to the mouse and back 
again and may thus be considered acceptable for certain 
users. We will investigate this further in future work. 
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The Section V.D results regarding interfaces for oracle 
menu control found that the use of the VR controllers was 
most efficient, suitable, and enjoyable. Since VR controllers 
are specifically intended for interacting in VR, this result is 
not surprising. However, our investigation showed that the 
impacts of alternative interfaces may still be acceptable for 
certain users, and this efficiency impact is not on the order of 
magnitudes in scale.  VRVoc-FTC indicated that it has 
potential, with no subject indicating it was not suitable. MR-
FTC with a real tablet was not found to be suitable or 
enjoyable and was about as slow as VRVoc-FTC, which we 
found surprising since the virtual tablet is shown in VR and 
one would think it would be enjoyable to hold one while in 
VR. In future work we will investigate potential 
improvements to its interface and removing all need for 
having VR controllers when using the tablet. One threat to 
validity is the small sample sizes, yet it does provide some 
indicator as to which interfaces to pursue and investigate 
further and consider for industrial usage studies. 

VI. CONCLUSION 
As VR devices become more commonplace, the potential 

of VR to assist programmers in program comprehension can 
provide an immersive alternative to commonly available 
tools and paradigms. This paper described our VR flythrough 
software structure visualization approach called VR-FTC. As 
augmented virtuality we explored alternative interfaces to the 
VR controllers including MR-FTC (keyboard and tablet) and 
VRVoc-FTC (voice) variants. It immerses users into 
multiple and customizable VR metaphors for visualizing, 
navigating, conveying, and changing program code 
information interactively to support exploratory, analytical, 
and descriptive cognitive processes.  

Our investigation observed that when comparing SE 
tasks in VR to non-VR, non-VR (with which the subjects are 
quite familiar) was more efficient. However, given more VR 
experience and training these differences could become 
smaller, and the VR efficiency overhead may be justified by 
the better and more enjoyable and motivational experience 
for users. In exploring alternative interfaces in VR, for text 
input we found that MR-FTC using keyboard and mouse was 
a viable option and faster than a virtual keyboard. For menu 
navigation, we found that VR controllers were most efficient 
and that voice, although less efficient, was an acceptable 
alternative option. A real tablet interface equivalent to a 
touchpad was not found to be suitable or enjoyable and was 
equivalent to voice in efficiency. However, in future work 
we intend to turn the tablet into a complete replacement for 
the VR controllers and reevaluate its suitability.  

Future work includes further analysis and optimizations 
to address any remaining VR sickness symptoms, and 
comprehensive empirical studies in the industry.  
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