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Abstract—Runtime verification checks if the behavior of a system
under observation in a certain run satisfies a given correctness
property. While a positive description of the system’s behavior
is often available from specification, it contains no information
for the monitor how it should continue in case the system
deviates from this behavior. If the monitor does not resume its
operation in the right way, test coverage will be unnecessarily
low or further observations are misclassified. To close this gap,
we present a new method for extending state-based runtime
monitors in an automated way, called resumption. Therefore,
this paper examines how runtime verification monitors based on a
positive behavior description can be resumed to find all detectable
deviations instead of reporting only invalid traces. Moreover, we
examine when resumption can be applied successfully and we
present alternative resumption algorithms. Using an evaluation
framework, their precision and recall for detecting different kinds
of deviations are compared. While the algorithm seeking expected
behavior for resumption works very well in all evaluated cases, the
framework can also be used to find the best suited resumption
extension for a specific application scenario. Further, two real
world application scenarios are introduced where resumption has
been successfully applied.

Keywords–resumption; runtime verification; monitor; state ma-
chine; current state uncertainty; networked embedded systems;
model-based.

I. INTRODUCTION

This paper extends, updates, and provides more detail on
earlier research results presented at the International Confer-
ence on Trends and Advances in Software Engineering [1].

In various application areas, new kinds of services are cre-
ated by combining a multitude of different software functions.
Off-the-shelf products provide means to connect software
functions on a physical and logical level, regardless if the
functions are spread over several devices or share a common
platform. However, verifying the correct functionality and
identifying deviating services remains a challenge, since not
only static interfaces have to be compatible but also the inter-
action behavior [2]. Moreover, the verification process of the
final product remains incomplete, as the entire verification of
embedded programs is unsolvable in general [3]. Thus, diverse
approaches suggest monitoring such a system at runtime to
check that it adheres to its specification [4][5][6].

A robust system continues its work after a non-critical
failure or deviation from its specification occurs. Hence, it
may deviate multiple times during a single execution and
all deviations should be identified by the monitor. By this,
the development time and effort needed to observe deviations
can be reduced; especially, if they are rare and hard to
be reproduced. The effort for creating such a monitor can

be reduced, if artifacts from the specification phase can be
reused [7]. State machines are a common way to specify
interactions and protocols. However, these state machines are
often limited to expected behavior and have an incomplete
transition function. This means, it remains undefined what
happens if an unpredicted deviation in the interaction behavior
occurs. If the monitor has to terminate on a deviation, any
further deviation that would be observable will be missed.

This work presents a novel approach for detecting all
differences between an execution of a system and its speci-
fication using a single runtime verification monitor. Our main
research goal is to enable a monitor to identify all detectable
deviations instead of reporting only invalid traces. Moreover,
we strive for eliminating the need to split a specification into
independent properties. Therefore, we examine how the same
monitor instance can resume its observation and find multiple
deviations. We call this approach resumption.

Using resumption, the same model can be used to define
valid behavior in the specification and to verify its imple-
mentation, i.e., no separate verification model needs to be
created. If available, we suggest to use a reference model
of a specification as basis for the monitor. Thereby, it is
easier to understand deviations, as they can be directly related
to the context of the whole specification. Further, the reuse
of the specification guarantees compliance of the respective
monitor. We examine the conditions that allow deviations to
be identified and the current state uncertainty to be reduced,
i.e., when resumption can succeed. We present alternative
resumption algorithms and the evaluation framework used to
compare them. By selecting a different resumption algorithm,
the monitor can be optimized for a particular application
scenario. We introduce two real world application scenarios
where resumption has been successfully applied.

The rest of this paper is structured as follows. Section II
introduces runtime verification using a specification-based
monitor and the problem of detecting all deviations. Section III
gives a survey of state-of-the-art methods to detect multiple
deviations in a system’s execution. The method of resumption
is introduced in Section IV: First we examine unexpected
behavior, before we discuss the detection of deviations and
introduce the algorithms considered in this paper. Section V
presents the evaluation and discusses the findings. In Sec-
tion VI, we demonstrate our approach with real world appli-
cations. Section VII concludes the paper and gives an outlook
on future work.
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Figure 1. Monitor using a reference model to verify communication behavior
of a system under observation.

II. PROBLEM DESCRIPTION

This work considers the problem of finding all differences
between an execution of a system under observation (SUO)
and its specification using a single monitor. The core of a
monitor is an analyzer which is created from the requirements.
Different languages can be used to specify the analyzer [6].
In the literature, several approaches can be found, e.g., linear
temporal logic [8]. Such a description can also be given as
a set of states and a set of transitions between the states [9],
i.e., a (finite) state machine. Further, in automotive and other
embedded system domains, state machines are often used for
specifying communication protocols or component interaction-
s. We suggest using them in the form of so-called reference
models [7], which focus on capturing valid behavior and
include only critical or exemplary deviations. Such reference
models can be learned from observed behavior or generated
from other specification artifacts and are quite versatile. They
can be used as reference for development, but may also serve
as basis for a restbus simulation, or the generation of test
cases. Further, a passive reference model can be used as
a monitor [7]. Any reference model can be passivated by
transforming actions into triggers and introducing intermediate
states. It is run in parallel to the SUO and cross-checks
the observed interactions with its own modeled transitions
(cf. Figure 1). The communication can use a hardware bus,
separate links, a middleware or other means. However, we
assume the monitor taps into a (virtual) communication bus at
a single point and observes the messages in order. Otherwise,
this may require additional efforts, e.g., to synchronize times
and merge traces, which is beyond the scope of this work.
For concurrent behavior, all possible orders are expected to
be modeled. The monitor uses the reference model to check
the communication and produces verdicts accordingly. As this
model is directly derived from the specification, the monitor
effectively compares observations with the specification.

A reference-model consists of three main layers: struc-
tual interface, mapping to events and behavior description.
Structural interface specifications define available messages
and their parameters. A mapping defines constraints on the
parameters. Thereby, each message can be labeled with a
semantic event. The semantic event also captures the sender
and receiver of the message. The set of semantic events is used
to distinguish the different interactions of the SUO relevant for
the specification. At runtime, there are various ways to extract
the semantic events by preprocessing and slicing the observed
interactions, e.g., [9][7][10][11]. In the following, we will refer
to them in general as events.

s0 s1 s2 s3
join ack

reject
info

leave

ack

info

Figure 2. Example illustrating a state machine used to describe the valid
communication behavior of a subscription service.

They are used to specify the expected behavior of the SUO
as a state machine SM = 〈E,S, δ〉.
• E is the set of events that can be observed.
• S is the set of states of the state machine, including

the initial state s0.
• δ ⊆ S × E → S is the relation of transitions. It is

incomplete, as unexpected behavior is omitted.
• Its size is defined as |SM| = |S|+ |δ |.

An example of such a state machine is shown in Figure 2.
Sender and receiver of the events have been omitted for clarity.
Where applicable, we use ei and si to refer to events and states
as known by the state machine; respectively, ai and qi are
used for events and states in the sequence of execution by the
SUO. For brevity, the labeling function e(ai) is omitted and
ai is used directly. Therefore, a trace is a sequence of events
a1a2 . . . an = v ∈ E∗. Moreover, δ is extended to accept traces
(1) and sets of states (2).

δ(q1, v) = δ(δ(q1, a1 . . . an−1), an) = δ(qn, an) = qn+1 (1)

δ(Q, v) = {s ∈ S | ∃q ∈ Q : δ(q, v) 7→ s} (2)

To facilitate referral to events and states with a defined
mapping in δ , let dom(δ) be the domain of the partial function
δ , i.e., the set of elements with a defined mapping. Further, Es
is the set of events with a defined transition in state s (3) and
Se is the set of states with a defined transition for event e (4).

Es = {e ∈ E | 〈e, s〉 ∈ dom(δ)} (3)

Se = {s ∈ S | 〈e, s〉 ∈ dom(δ)} (4)

A trace w is valid, if it describes a path through the state
machine SM starting at the initial state s0. Any subsequence of
a valid trace is expected behavior, i.e., at least one prefix vp and
suffix vs exist, such that vpvvs = w. In other words, expected
behavior v is contained in a valid trace w and, therefore, v is
a sequence of events that can be observed by following a path
in the state machine. If the behavior is unexpected, it contains
at least one event aj with 〈qj , aj〉 6∈ dom(δ). An invalid trace
w̄ contains unexpected behaviors and, thereby, contradicts the
specification. The SUO conforms to the specification if it is in
s ∈ S and emits e ∈ Es. Otherwise, it deviates and violates the
specification. In the example from Figure 2, any sequence of
events obtainable by starting at s0 and following a path through
the machine is a valid trace, e.g., join,ack,info,info,leave,ack.
Any subsequence of this is expected behavior. An invalid trace
has no path through the machine, e.g., if info is appended
to the previous example, the trace becomes invalid and any
subsequence containing leave,ack,info is unexpected behavior.
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Figure 3. State machine from Figure 2 extended with transitions added for
monitoring of any violation without resumption.

A monitor M = 〈E,S, δ,D, γ〉 defines specific outputs,
i.e., the verdicts, for each transition of the state machine that
reflect if a violation was detected. In addition to the elements
of a state machine, it contains

• a verdict domain D,
• and a verdict function γ : S × E → D.

Usually, it reports only one of the following violation kinds:
invalid traces, unexpected behaviors or deviations. Therefore,
the verdict domain contains at least an accepting verdict (>)
and a rejecting verdict (⊥). To produce a verdict for a set
of states Q, we assume that verdicts can be combined by an
operation ⊕. This results in the extended verdict function given
by (5).

γ(Q, ai) =
⊕
q∈Q

γ(q, ai) (5)

We call a monitor that uses E, S and δ of the reference
model a specification-based monitor. Because only expected
behavior is given in the reference model, each transition cor-
responds to an expected observation. However, if unexpected
behavior is observed, the current state of the SUO becomes
undefined by definition. If the deviation was not critical and
the SUO is implemented in a resilient way, the SUO will often
be able to continue. The SM in Figure 2 shows a SM that
specifies the communication behavior related to a subscription
service. It has only accepting transitions; a possible resolution
of implicit transitions is shown in Figure 3. The wild-card
’*’ matches any unbound event. Exactly all violations are
unbound in the original state machine. Hence, the extended
state machine enters the rejecting state s⊥ after a violation.
However, as the state machine remains there, the respective
monitor only detects invalid traces by a first deviation. To
detect further deviations or unexpected behaviors, the monitor
must be able to resume its observation.

III. RELATED WORK

Various areas address the problem of detecting differences
between a system’s behavior and its specification model. This
section gives a brief overview of how existing approaches
match specified model and observed behavior.

Conformance checking compares an existing process model
with event logs of the same process to uncover where the
real process deviates from the modeled process [12]. It is

used offline, i.e., after the SUO finished its execution, because
the employed data mining techniques to match model and
execution are computationally intensive. They can only be
used efficiently once the complete logs are available. Cook et
al. [13] use a best-first search to find the necessary insertions
and deletions of events to transform the given event stream
into one that exactly matches the model. Based on the least
changes needed, they give a measure for the difference of
an observed trace from its process description. Reger [14]
suggests including the origin of an event into the analysis to
find sensible edits that are consistent for the same origin and
correct the trace. He transforms trace, edits and state machine
into weighted transducers TT , TX and TS . Transducers are
composable algorithmic transformations, i.e., automations that
read an input sequence and write the result of the transforma-
tion as an output sequence. Each step of a weighted transducer
is associated with a cost. A three-way composition [15] of the
three transducers can be performed in O(|TX | |TT |) without
a large intermediate result. Every path in the composition
represents a way to edit the trace to match a path in the state
machine. This composed transducer can then be searched for
the lowest overall cost edit. The computational complexity to
find this edit sequence requires it to be executed offline. In
contrast, resumption does not yield precise edits, but can be
performed online, in parallel to the execution of the SUO.

Allauzen and Mohri [16] have shown that such a composed
transducer can be computed in linear-space. However, the
computation is still expensive with regard to time. Therefore,
Cook and Wolf [17] utilize pruning to reduce the cost of
finding a low-cost goal by discarding portions of the search
space that look unpromising. They reason that even though
pruning breaks the guarantee of identifying the lowest-cost
goal, it often has negligible effects on the result while reducing
the search space dramatically. They suggest using cost pruning
and position pruning. The former eliminates nodes that are
estimated to result in a higher than expected overall cost; the
latter removes nodes that are τprune steps in the trace behind
the current best node from the search. In contrast to these
mining algorithms, the verification with resumption presented
in this paper works at runtime. However, we would like to note
that, if position pruning is used, all information to perform the
search for an edit path is available at runtime with an offset of
τprune steps. Therefore, we chose the least changes approach
for comparison with resumption.

Model-based testing aims to find differences between the
behavior of a system under test (SUT) and a valid behavior
model [18]. An environmental [19] or embedded [20] test
context stimulates the SUT with test sets, i.e., selected input
sequences. The SUT’s outputs are then compared with the
expected output from the behavior model. Homing sequences
actively maneuver the SUT into a known state [21]. Gener-
ally, these sequences reduce the current state uncertainty by
utilizing separating or merging sequences [22]. Former assure
different outputs for two states, latter move the machine into
the same state for a given set of initial states. Minimized Mealy
Machines are guaranteed to have a homing sequence [22].
However, a passive monitor cannot influence the SUO. There-
fore, it cannot actively force the system to a known state.
Nevertheless, we utilize occurrences of separating and merging
sequences to reduce the number of possible candidates for the
current state.
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In general, runtime verification can be seen as a form
of passive testing with a monitor, which checks if a certain
run of a SUO satisfies or violates a correctness property [5].
Such a dynamic analysis is often incomplete, i.e., it may yield
false negatives; however, this incompleteness helps neutralize
limitations of static analysis [9], e.g., state-explosion. The
observation of communication is well suited for black box
systems, as no details about the inner states of the SUO are
needed. Further, the influence on the SUO by the test system
is reduced by limiting the intrusion to observation. In case the
deviations are solely gaps in the observation, a Hidden Markov
Model can be used to perform runtime verification with state
estimation [23]. Runtime verification frameworks, such as
TRACEMATCHES [10] or JAVAMOP [11], preprocess and filter
the input before it is passed to a monitor instance. Thereby,
each monitor only observes relevant events. These stages
implement the first two layers of a reference model [7]. The
monitor uses the reference model’s third layer to answers yes or
no to the question, if the provided trace fulfills or violates the
monitored property. This is also the case, if it contains multiple
violations. However, it may be of interest to identify all vio-
lations, similar to conformance checking. Simply keeping the
monitor running after it encountered and reported a violation
only works in very specific scenarios. This is similar to using
the resumption algorithm Waiting presented in Section IV-D.
Nevertheless, if the properties are carefully chosen, multiple
instances of the monitor can match different slices of an
input trace [10][24]. Such properties can be extracted from
the behavior model [3] or by data mining techniques from a
running system or traces [17][21][25][26][27]. However, the
former implies additional design work and the latter requires
a correctly working system to learn from. Furthermore, this
creates a secondary specification that needs to be maintained
and validated. In contrast, the presented resumption enables
reuse of an available specification by automatically augmenting
it with robustness for verification.

IV. RESUMPTION

A specification-based monitor, such as shown in Figure 3,
will only be able to find the first deviation from a specification,
since it enters the final state s⊥ at this point. Different tech-
niques can be applied in order to create robust monitors and
to find deviations beyond the first. Up to now, this is usually
done manually and requires additional design work, e.g., to
repeatedly add transitions and triggers or to artificially split
the specification into multiple properties that can be checked
separately. Therefore, we suggest using a generic definition
for how a monitor can resume its duty. This section describes
resumption, a method that enables a monitor to analyze a trace
for more than one violation with respect to the same property.

For illustration, runtime verification can be seen as a game
for two players: DECEIVER and VERIFIER. DECEIVER acts as
SUO and he covertly moves on a map, which represents SM,
while leaving a trace of moves. After each move, VERIFIER,
the monitor, has to tell if DECEIVER violated the specification
given by the map. She knows only the trace and the map. Fig-
ure 4a shows an example map for the game. Figure 4b depicts
the path that DECEIVER has chosen in this example, producing
a trace bus,tram,bus,bus,tram,bus. He starts at HOME. On step
a3 and a6, he choses to deviate and claims to move using bus,
actually not available at state PARK. For a3, he decides to go

HOME MALL

PARK

bus

tram

(a) Example map known by
DECEIVER and VERIFIER.

HOME MALL

PARK

bus

tram

a3

a6

(b) DECEIVER’s hidden movement. Arrows
show conforming, circles deviating moves.

Figure 4. Example illustrating a game of runtime verification, where
VERIFIER (monitor) tries to detect, if DECEIVER (SUO) violates the

specification given as a map (state machine).

HOME; for a6, he may still jump to any state. All other moves
conform to the map.

Knowing the current state of DECEIVER it is trivial for
VERIFIER to follow the conforming movement of DECEIVER
using only trace and map. She can infer his next states using
the moves recorded in the trace and δ . Further, she can
easily identify his first deviation. Then, DECEIVER’s move is
not contained in δ . This exemplifies how monitors without
resumption work.

Theorem 1: VERIFIER can detect deviations using the ver-
dict function given in (6), if she knows DECEIVER’s current
state is qi.

γ(qi, ai) 7→
{
>, if 〈qi, ai〉 ∈ dom(δ)

⊥, otherwise.
(6)

Proof: If VERIFIER knows DECEIVER is in state qi and
the event is ai, she can look up his next state in δ . If ai
is available at qi, i.e., 〈qi, ai〉 ∈ dom(δ), DECEIVER cannot
deviate using ai. If ai is not available at qi, he has to deviate
to be able to use it. Thereby, if VERIFIER knows the current
state of DECEIVER, she can directly tell if he deviates.

However, after a deviation, VERIFIER does not know to
which state DECEIVER has moved. She is uncertain of his cur-
rent state. Becoming aware of this uncertainty and reducing it
in order to be able to resume runtime verification is resumption.
To express multiple deviations in a sequence of verdicts, each
verdict refers to the trace after the last reported violation. First,
we show that detection of all unexpected behavior is possible
through resumption. Later, we demonstrate how resumption
can be employed to find minimal subsequences of a trace,
each containing exactly one detectable deviation.
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A. Resumption for Unexpected Behavior Detection
Unexpected behavior is defined as any sequence of events

the SUO may not emit according to the specification. Behavior
is unexpected if it cannot be matched to anywhere in the
specification. We assume it is unknown how the behavior of the
SUO’s components is implemented internally and only their
stimuli and responses are observable (black-box assumption).
We expect these interactions in the SUO to be specified by a
state machine SM. If the observed events can be matched to
SM, such behavior is assumed to conform to the specification.
Otherwise, i.e., in case of a violation, the new state of the
SUO is unknown as the observations are the only available
information. In general, no restrictions on the new state can
be given, i.e., such a transition may even be non-deterministic.
A monitor M knows only the specification and observes the
events emitted by the interactions in the SUO.

More formally, unexpected behavior is a trace that contains
an event aj with 〈qj , aj〉 6∈ dom(δ). As qj is unknown to
VERIFIER, it is replaced by Qkj = δ(S, ak . . . aj−1), the set of
states reachable with expected behavior from any state with
the trace starting at step k and ending before step j. Please
note that Qjj = S.

Theorem 2: A trace can be split within space O(|SM|) and
time O(|S|) per step so that each segment contains exactly
one unexpected behavior. For each appended event, it can be
decided in this space and time if it belongs to the same or a
new segment.

Proof: For brevity, we define ρi+1 = ρ′i. A valid seg-
mentation of the trace is a sequence of indexes determined
by (7). Each of the segments is delimited by two indexes ρi
and ρ′i. The trace vi = aρi . . . aρ′i always encloses exactly
one unexpected behavior. If there was no unexpected behavior
in vi, then Qρiρ′i

would not be empty. If there was additional
unexpected behavior at step ρ with ρi < ρ < ρ′i, then
Qρiρ would be empty already and ρ would have been chosen
as minimum. Therefore, exactly one unexpected behavior is
contained in vi.

ρ0 = 1 ∧ ρ′i = min{ρ | ρ > ρi ∧Qρiρ = ∅} (7)

For each step, the set of successors of the possibly active
states must be calculated, i.e., δ(Qρiρ′i

, ai). This requires up to
|S| lookups in the transition relation of size |δ |. Each lookup
takes time O(1), if perfect hashing is used. Therefore, each
step needs time O(|S|) and space O(|S|+ |δ |) = O(|SM|).

To relate this to resumption, we explain how VERIFIER
checks DECEIVER’s movement with no information about
DECEIVER’s initial state. VERIFIER has to find a verdict for all
possible locations of DECEIVER. The transition function δ is
already extended by (2) to accept a set of states Q and to return
all states reachable with event e from a state in Q. δ will return
an empty set if none of the possible states has a matching
transition for the event. To continue verification, this function
needs to be extended with the actual resumption. VERIFIER’s
uncertainty of DECEIVER’s state resets if she cannot confirm
his movement. The most general assumption is that DECEIVER
is in any state. This is reflected in transition function δ+ (8).

δ+(Q, e) =

{
δ(Q, e), if γ (Q,e) = >
S, otherwise.

(8)

HOME MALL

PARK

HOME,
PARK

MALL,
PARK

HOME,
MALL

HOME,
MALL,
PARK

bus

tram

bus

a3

a6

Figure 5. Power map of the example from Figure 4a including the
interpretation of DECEIVER’s trace for unexpected behavior from

VERIFIER’s perspective.

Similar, the verdict function γ is extended by (5) to produce
a verdict for multiple states using a combination operation ⊕.
For detecting unexpected behavior, this may be done using
⊕eb (9), where Γ is the set of verdicts to merge. As long
as Qe is not empty, there is a state in Q with an accepting
transition for e and the behavior remains expected. Otherwise,
unexpected behavior is detected and the next segment of the
trace starts.

⊕eb (Γ) =

{
>, if > ∈ Γ

⊥, otherwise
(9)

Instead of analyzing the model at runtime, power set con-
struction can be used to resolve the non-determinism before-
hand. Also, this allows to illustrate resumption for the game
example. DECEIVER’s moves are translated to the power map
SMP =

〈
E,P (S), δP

〉
, starting at state sS . P (S) is the set of

all subsets, the power set, of S. δP is δ+, except that it returns
the respective state for the set of states instead of the set itself.
Transitions that were unexpected behavior in SM are routed
to sS in SMP . δP is complete and deterministic. Thereby,
VERIFIER always knows DECEIVER’s precise state in SMP

and merely has to follow his movement (see Theorem 1). She
starts assuming DECEIVER is in any state of the original map,
i.e., in sS (cf. Figure 5). After step a3, the states DECEIVER
could be in using only expected behavior are narrowed down
to HOME. As we know from Figure 4b, DECEIVER deviated at
a3 to HOME. However, this is still expected behavior as there
would be no deviation if DECEIVER started at MALL. This is
shown in Figure 6. The second deviation at a6 is unexpected
behavior, as there are no other valid options left. Compared to
Theorem 2 above, checking for unexpected behavior in SMP

only takes time O(1) for each step; however, the extended map
requires significantly more space: O(2|S|).
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HOME MALL

PARK

bus

tram

a3

a6

Figure 6. Alternative of DECEIVER’s hidden movement producing the same
trace as Figure 4b, but with no deviation at a3 by starting at a different state.

B. Resumption for Deviation Detection
The previous section revealed that it is possible for a

monitor to detect all unexpected behaviors of a SUO. This
section examines how resumption can help to detect deviations
of a SUO. A deviation is an event that is not allowed in
the SUO’s current state. Therefore, deviations are directly
linked to the SUO’s state. In terms of the example, VERIFIER
must detect if DECEIVER chose to deviate with a move.
This changes how VERIFIER can handle uncertainty about
DECEIVER’s state. She may be unable to decide if DECEIVER
deviated. This requires a third verdict to express that she is
inconclusive (⊥>).

Theorem 3: VERIFIER is exactly then conclusive about
DECEIVER’s move ai, if the move is defined or undefined
for all states Q she knows he could be in (10).

γ(Q, ai) = ⊥> ⇐⇒ ∃s1, s2 ∈ Q : γ(s1, ai) 6= γ(s2, ai)
(10)

Proof: The implication from left to right follows from
the limitations of DECEIVER’s moves. If none of the states in
Q has a transition for the event, DECEIVER cannot conform;
therefore, he obviously deviates. If all of the states in Q have a
transition for the event, DECEIVER cannot deviate; therefore,
he obviously conforms. In all other cases, VERIFIER cannot
give a conclusive verdict, as there is at least a state s1 in Q
that has a transition for event ai and a state s2 that has not.
If her verdict was ⊥, DECEIVER may in fact have been in s1
and actually conforms; if it was >, he may have been in s2
and deviates. Thereby, her verdict must be ⊥>. If the verdict is
the same for all individual states in Q, it must be > or ⊥ and
it follows the implication from right to left.

This helps to formulate ⊕d (11) for combining verdicts.
Identical verdicts combine to the same verdict and different
verdicts combine to an inconclusive verdict.

⊕d (Γ) =


>, if {>} ≡ Γ

⊥, if {⊥} ≡ Γ

⊥>, otherwise
(11)

This sounds promising, as at least in some cases there can be
conclusive verdicts. Further, one might expect that VERIFIER
should be able to close in on DECEIVER’s position eventually.
However, as it is always possible that DECEIVER deviates,
Qi+1 must be the set of all states, unless he obviously
conforms. This is enforced by δ+.

HOME,
MALL,
PARK

bus tram

Figure 7. Power map of the example from Figure 4a for deviation detection
from VERIFIER’s perspective.

As a consequence, VERIFIER can only reduce her current
state uncertainty, if she observes a sequence of obviously
conforming events. Further, the sequence must eliminate s-
tates from her current state uncertainty. In the following,
we examine if such sequences exist. Sandberg [22] describes
how synchronization and homing sequences can be found in
completely specified, deterministic Mealy machines in time
O(|S|3 + |S|2 · |E|) — in case one exists. A synchronization
sequence is a trace x ∈ E∗ that transitions the machine
into a single known state, regardless the initial state, i.e.,
|δ+(S, x)| = 1. In essence, it consists of a sequence of merging
sequences. A homing sequence may also include separating
sequences. It is a trace x ∈ E∗ that guarantees different outputs
for different target states (12). While a state machine is not
guaranteed to have any synchronization sequences, e.g., the
automation in Figure 4a has none, a minimized Mealy machine
always has a homing sequence [22].

∀s1, s2 ∈ S :

δ(s1, x) 6= δ(s2, x) =⇒ γ(s1, x) 6= γ(s2, x)
(12)

Homing sequences can be mapped to the deviation game.
SM contains no output and is incomplete. For former, γ could
act as replacement and latter can be mitigated by using δ+.
Then, we call them unique sequences, as they identify a unique
state. However, the pure possibility of DECEIVER deviating
negates the benefit of a separating sequence as this resets
VERIFIER’s search; i.e., she has to consider all possible states
again after the possible deviation. As there is no other output
available, separating sequences would work only under the
assumption that no violations occur during resumption. As SM
has no merging sequence, SMP for deviation detection could
be trimmed to Figure 7. VERIFIER knows DECEIVER confirms
using tram but this does not tell anything about DECEIVER’s
location. DECEIVER could be in PARK; therefore, if he uses
bus, VERIFIER is inconclusive and has to restart at sS . An
option would be to resolve undefined transitions differently.
However, this would impose additional assumptions on the
deviations. Nevertheless, we can use the knowledge about
unexpected behavior to conclude on deviations.

Theorem 4: Each trace segment aρi . . . aρ′i of the split
trace contains at least one deviation.

Proof: For proof by contradiction, we assume that there
is no deviation in the trace segment. If there is no deviation,
only conforming moves were used by DECEIVER. Then, there
must be at least one path in SM matching the trace, i.e.,
δ(S, aρi . . . aρ′i) 6= ∅. Therefore, the current state uncertainty
Qρiρ′i

should contain at least one state. However, this conflicts
with (7), that ensures Qρiρ′i = ∅. Hence, the trace segment must
contain at least one deviation.

23

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The trace segments span from one unexpected behavior to
the next. Somewhere within each segment is a deviation. Yet,
we want to locate the deviations as precise as possible. The
segments are constructed in a way so that they always end with
unexpected behavior. Therefore, they cannot be cut on that
side. The following will show that their length can be limited
by maximizing the start index while retaining the constraint for
the trace segment, i.e., that it contains unexpected behavior.

Theorem 5: The trace aκi . . . aρi+1 is the closest possible
enclosure of a deviation before step ρi+1 that retains the notion
of unexpected behavior in the segment, with κi defined by (13).

κi = max{κ | ρi ≤ κ < ρ′i ∧Qκρ′i = ∅} (13)

Proof: The proof for existence of a deviation in the trace
stays the same as for Theorem 4: Qκρ′i is only empty if it
contains a deviation. Thus, it remains the proof that there is no
shorter segment that could enclose the deviation. If κi = ρ′i−1
DECEIVER is obviously deviating with aρ′i , as no state in S
has a transition for the event. Since there must be at least
one event to deviate, there cannot be a shorter sequence in
this case. Equation (13) selects the greatest start index κi that
still contains unexpected behavior and thereby a deviation. We
cannot reduce the end index as it was already selected to be
minimal when starting at ρi by (7). Starting at a later index
than ρi can only increase the current state uncertainty, because
the later starting segment must consider at least all paths from
the earlier, i.e., Qkj ⊆ Q

k+1
j . Moreover, Qκi

ρ′i
can only be empty

if Qρiρ′i is empty. Therefore, the closest possible enclosure is the
trace aκi . . . aρi+1 .

κ can be calculated by searching unexpected behavior using
backwards steps, starting from step ρ′i. As following transitions
backwards may yield up to |S| source states for the same event,
the time needed for each of the ρ′i − κi ≤ ρ′i − ρi ≤ |v| steps
is increased to O(|S|2) compared to what was shown for the
forward search in Theorem 2. Preparing the reverse lookup
tables will require space O(|S|2 · |E|). It follows that there is
at least one deviation located in the intersection of unexpected
behavior found forward and backward. Moreover, the existence
of κi implies that each segment aρi . . . aκi−1 must be expected
behavior, even if it actually contains deviations. The deviations
perfectly mimic expected behavior and cannot be detected.
This can also be seen by the options of DECEIVER in SMP .

Theorem 6: Deviations in the trace segment aρi . . . aκi−1
cannot be detected.

Proof: According to Theorem 5, segment aκi
. . . aρ′i con-

tains exactly one unexpected behavior and the unexpected
behavior happens at or after step κi. As there is only one
unexpected behavior in the complete segment, there cannot be
another before step κi. Therefore, any deviation that may have
occurred in this part of the segment is observed as expected
behavior and cannot be detected.

The deviations cannot be detected because there is no
possibility to distinguish them from expected behavior with
the available information. However, if additional or more
detailed observations can be obtained from the system, they
may become detectable.

Moreover, if the current state uncertainty is reduced to
a single state without the (unobservable) occurrence of a
deviation, the detected unexpected behavior is the deviation.

Therefore, if given enough time between deviations, monitor-
ing with resumption will identify exactly the deviations.

Theorem 7: If n non-overlapping unique sequences are
observed without unexpected behavior, the assumed state is the
actual state of the SUO, unless n or more undetected deviations
occurred. However, unless one unique sequence is an obviously
conforming synchronization sequence, there may have been at
least n deviations.

Proof: For the first part, we show that not all unique
sequences can be mislead with n− 1 deviation. As the unique
sequences do not overlap, there remains at least one unique
sequence u without a deviation. As u does not contain a
deviation, it reveals the actual state of DECEIVER. Theorem 1
guarantees the detection of deviations if the current state is
known. Moreover, u must be the last of the unique sequences.
Otherwise, the deviation would have been detected and there
would be unexpected behavior. With an additional n-th devia-
tion, DECEIVER can mislead all unique sequences, therefore,
his actual state may remain uncertain. For the second part, we
recall how unique sequences are constructed. Each sequence
is unique, as it reduces |Q| to 1. Like homing sequences, the
reduction can be achieved by merging or separation sequences.
A merging sequence uses the structure of the state machine,
e.g., if transitions for the same event lead from two states to a
single one. During a merging sequence, no deviation can occur
by definition. As a synchronization sequence consists of con-
catenated merging sequence, it is obviously conforming and
no deviations could have happened when it is observed. The
observation of the synchronization sequence itself guarantees
the actual state of DECEIVER is known. Separation sequences,
however, work differently. They remove states from the current
state uncertainty for which DECEIVER would have to deviate
for the chosen event. Hence, there is at least one possibility to
deviate in each separation sequence. If none of the observed
unique sequences is a synchronization sequence, each contains
at least one distinct separation sequence. As there are n unique
sequences, there may have been at least n deviations.

Detecting multiple unique sequences before detecting unex-
pected behavior may sound unlikely. Nevertheless, sometimes
rare deviations are of interest. In this case, there may be
many events between deviations that can be used to resume
verification. Protocols such as the subscription service in
Figure 2, often contain unique events. Therefore, detecting
multiple unique events or short unique sequences increases
the confidence that you were not deceived. However, only the
detection of unexpected behavior can be guaranteed.

C. Resumption Extension
Any specification-based monitor may be extended with a

resumption extension. Even a monitor that has a complete
transition function may be improved by resumption, if it has
unrecoverable states, like s⊥ in Figure 3. Sub-scripts are
used to distinguish between the original monitor (L), the
extension (R), the extended monitor (E ) and their components
respectively. ME is created by combining the sets and functions
of ML with MR , where ML is preferred. However, δR may
override δL for selected verdicts, e.g., ⊥.

Example 1 (Resumption Extension): Figure 8a depicts a
possible extensions of the SM in Figure 2. Instead of entering
a final rejecting state for unexpected events, the extended
monitor ignores the event and stays in the currently active state.
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The resulting ME has a complete transition function and is able
to continue monitoring after reporting deviations. Thereby, the
original monitor is extended by resumption.

While a resumption extension can be created in an arbitrary
way, we suggest to use a resumption algorithm (R) to create
the extension. The algorithm’s core function (14) takes an
event and a set of (possible) active states as input. It returns
the set of states that are candidates for resumption. The
R-based resumption extension can be easily exchanged to
adjust the monitor to the current application scenario. Let
SC = SL ∪ {sR} and P (SC ) be the set of all its subsets.

R : P (SC )× E → P (SC ) (14)

Using R, the additional states and transitions needed for
the extension of the original monitor can be derived. For finite
sets SL and E, a preparation step creates the states P (SC ) \
SC . The transitions are derived by evaluating R to find the
target state. If R(q, e) returns an empty set or solely states
that cannot reach any state in SC , it reached a finally non
resumable state. The existence of such states depends on R
and the specification. All states not reachable from a state in
SC can be pruned.

An alternative is using R at runtime as transition function
during resumption. IfR returns solely a single state in SL , ML
can resume verification in that state. Otherwise, the candidates
are tracked in parallel while removing non-conforming ones.
If sR is a candidate, R is used to transition the candidate set,
otherwise δL . γR is created using (5) with a suitable ⊕.

D. Resumption Algorithms
This section introduces algorithms that can be used for

resumption. These algorithms are often mimicked to extend
specifications manually for creating robust monitors. Based
on an observed event and a set of candidates for the active
state, R will determine possible states of SUO with respect
to the observed property. The presented algorithms can gen-
erally be categorized into local and global algorithms. The
former are influenced by the state that was active before the
deviation, while the latter analyze all states equally. Each of
the algorithms can be used to construct a replacement for
δ+ introduced in subsection IV-A and represents a different
error model. They are only guaranteed to find all unexpected
behaviors, if all occurring deviations match this error model.
However, certain assumptions can lead to a significantly sim-
pler ME . The results of applying the algorithms on the SM
from Figure 2 are shown in Figure 8.

The local algorithm Waiting (15) is inadvertently used
when interpreting a trace with an unaltered state machine. Im-
plementations usually ignore superfluous messages and remain
in the same state, waiting for the next valid event. Therefore,
the algorithm introduces no runtime overhead. It resumes
verification with the next event accepted by the previously
active state q, i.e., it stays in q and skips all events not in
Eq . This creates loops at every state as shown in Figure 8a
for the example. However, Rwait requires that all deviations
are superfluous message that may be ignored. Otherwise, the
guarantee to find all unexpected behaviors will no longer hold.
Therefore, it is expected to perform badly for other deviations
and may stall in many scenarios.

Rwait(Sin, e) = Sin (15)

An obvious danger is, SUO may never emit an event that
is accepted by the active state. Therefore, the next algorithms
also considers states around the active state. The used distance
measure ‖ss, st‖ is the number of transitions ∈ δL in the
shortest path between a source state qs and a target state qt.
The extension ‖Ss,St‖ is the transition count of the shortest
path between any state in Ss and any state in St. The algorithm
Nearest (16) resumes verification with the next event that is
accepted by any state reachable from the active state. Figure 8b
shows the extension of the example. If multiple transitions
match, it chooses the transition reachable with the fewest
steps from the previously active state. A static calculation of
Rnear requires additional states only if tie-breakers are needed.
Rnear assumes that the deviations will be caused by skipped
messages. It will resume on the next matched event, unless
the two closest valid states require the same number of steps.
As it only looks forward, superfluous or altered messages may
cause it to errantly skip ahead.

Rnear(Sin, e) = argmin
qt∈δL (SC ,e)

min
qs∈Sin

‖qs, qt‖ (16)

The algorithm Nearest-or-Waiting (17) is a combination of
Nearest and Waiting. It measures the length of the shortest
path from the active state to a state returned by Nearest and
the shortest path of any candidate state with an accepting
transition to the active state. If the latter path is shorter, Waiting
is used. The extension of the example using Rn-o-w is depicted
by Figure 8c. The idea is to ignore superfluous messages and
identify them by looking as far back as was required to look
forward to find a match.

Rn-o-w(Sin, e) =

{
Rwait, if ‖SeC ,Sin‖ < ‖Sin,Rnear‖
Rnear, otherwise

(17)

Global algorithms consider the whole specification to iden-
tify the current communication state. Therefore, they analyze
all states equally to keep all options open for resumption.

Unique-Event (18) resumes verification if the event is
unique, i.e., the event is used on transitions to a single state
only. Ru-e is the only examined R that ignores all input states.
As there is only one target state of a unique event in the
state machine, the algorithm considers this a synchronization
point. For other events, a resumption state (sR ) is entered. This
extension is illustrated for the example in Figure 8d. Therefore,
a static calculation only needs a single additional state.

Ru-e(Sin, e) =

{
δL(SC , e), if |δL(SC , e)| = 1

{sR}, otherwise
(18)

Unique-Sequence (19) extends the previous algorithm to
unique sequences of events, as unique events may not be
available or regularly observable in every specification. Ru-s
follows all valid paths simultaneously and resumes verification
if there remains exactly one target state for an observed
sequence. Similar to homing sequences used in model-based
testing, Ru-s aims to reduce the current state uncertainty with
each step. It evaluates which of the input states accept the
event. If the observed event is part of a separating sequence,
the non-matching states are removed from the set. If a merging
sequence was found, the following δL -step returns the same
state for two input states and the number of candidates is
further reduced. If there are homing sequences for L and the
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Figure 8. SMs with states and transitions added (dashed) by different R. Bold labels indicate an accepting and regular labels a rejecting verdict. The wild-card
’*’ matches all events that have no other transition in the state.
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SUO emits one, Ru-s will detect it. Any unexpected behavior
causes δL(Sin, e) to be empty and therefore resets the set
of possible candidates to any state accepting the event, i.e.,
the resumption is reset. New intermediate states are created
to capture the current state uncertainty during resumption.
For example, ’s2, s3’ in Figure 8e means that ME considers
the SUO in state s2 or s3. Therefore, the size of the static
calculation is limited by |SMP |.

Ru-s(Sin, e) =


δL(Sin, e), if δL(Sin, e) 6= ∅
δL(SC , e), else if δL(SC , e) 6= ∅
{sR}, otherwise

(19)

The formal analysis in this extended version of [1] has
shown that Ru-s is not the most general case. Like the other
algorithms, it can be used to extract trace segments containing
deviations matching its error model. However, resumption with
Ru-s uses the last event of the previous unexpected behavior.
Hence, verification may be deceived as this reflects a deviation
to a state accepting the event instead of any state. Therefore, we
introduce the algorithm Expected-Behavior (20) that takes into
account all expected behavior. It is the resumption algorithm
version of the candidate selection δ+ given in (8). As shown
in Figure 8f, sS is always entered in case of a violation. This
reflects the assumption that the SUO could be in any state
after a deviation. Theorem 7 indicates that multiple unique
sequences of expected behavior can further improve a monitors
confidence when identifying deviations. R2-e-b uses 2 of such
sequences.

Re-b(Sin, e) =

{
δL(Sin, e), if δL(Sin, e) 6= ∅
SC , otherwise

(20)

A variety of resumption algorithms have been introduced.
And this enumeration is not conclusive. More could be created
to match specific requirements. The next section presents an
evaluation framework that identifies strength and weaknesses
in the algorithms’ performance. It can be used to judge the
algorithm for a given application scenario and identify the best.

V. EVALUATION

This section presents an evaluation of the introduced
method for automatic resumption of runtime verification moni-
tors. We have already given proof that all unexpected behaviors
can always be found and used to encircle the detectable
deviations in Theorems 2 and 5. They are also confirmed by
the collected raw data. The evaluation examines how well the
presented resumption algorithms perform for different SMs
and kinds of deviations. If the monitor’s uncertainty of the
SUO’s state is reduced to a single state without missing a
deviation, a detected unexpected behavior equals a deviation.
Therefore, if ME can identify deviations well, it performs a
good resumption.

A. Evaluation Framework
An overview of the evaluation setup is depicted in Fig-

ure 9. The framework is employed to compare the presented
resumption algorithms. A specific application scenario usually
provides the specification and, thereby, a reference model.
However, to make statements about the general performance
of the algorithms, a generator creates the models. A single

Figure 9. Overview of the evaluation framework for resumption algorithms.

state is used as initial seed. In each iteration step, one state is
randomly selected and replaced by a randomly chosen number
of states. The input and output transitions of the replaced
state are assigned to random states in the subset. The subset
of states is then connected with transitions, guaranteeing that
each state is reachable from an incoming transition and can
reach an outgoing transition of the original state. Otherwise,
the states are connected randomly. The used set of events
changes with each iteration step, i.e., some events are removed
or some new events are added. This is repeated to create SMs
of various sizes. The resulting SMs use global events across the
whole machine and local groups. To classify the SMs, different
metrics of their structure are collected, e.g., number of states
and uniqueness. Uniqueness is the likelihood of an occurring
event being unique. It is approximated by the fraction of all
transitions in the SM that have a unique event.

For each reference model, multiple traces are generated by
randomly selecting paths from SM′. The deviation generator
creates SM′ by adding new states and transitions to SM for
the deviations shown in Figure 10. The added transitions use
undefined events (χ 6∈ Eqs ) of the source state qs. The different
deviations are characterized by their choice of transition targets
qt: superfluous (qt = qs), altered (∃e : δL(qs, e) 7→ qt),
skipped (∃e : δL(qs, e) 7→ qi ∧ δL(χ, qi) 7→ qt) and random
events (qt ∈ SL ). The generated transitions for deviations are
equivalent to faults in a real implementation. If a scenario
expects more complex deviations, they can be simulated by
combining these deviations. However, to evaluate the influence
of each deviation kind, we apply only one kind of deviation
per trace. For later analyses, the injected deviations are marked
in the meta-data of the trace, which is invisible to the monitor.

The traces are eventually checked using SM extended
with the individual R. For the evaluation, our Eclipse-based
tool DANA was used and extended. It is capable of using
reference models as monitors [7]. Using hooks in its model
execution runtime, resumption is injected if needed. Thereby,
all introduced algorithms can easily be exchanged. In addition,
we include Rl-c, an offline least changes (see Section III)
algorithm, for comparison.

The goal of the evaluation framework is to measure how
well a monitor is at finding multiple deviations in a given
application scenario. Therefore, the reported deviations eval-
uator rates each algorithm’s performance by comparing the
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Figure 10. Examples illustrating the different deviation modules used in
evaluation. The deviations are shown by dotted arrows.

detected and the injected deviations. It calculates for each
extended monitor the well-established metrics from informa-
tion retrieval: precision and recall [28][29]. Precision (21)
is the fraction of reported deviations (rd) that were true
(td), i.e., injected by the deviation generator. Recall (22) is
the fraction of injected deviations that were reported. Both
values are combined to their harmonic mean, also known as
F1 score (23).

p = |td ∩ rd|/|rd| (21)

r = |td ∩ rd|/|td| (22)

F1 = 2 · p · r
p+ r

(23)

A monitor that reports only and all true deviations has a
perfect precision p = 1 and recall r = 1. Up to the first
deviation, all extended monitors exhibit this precision, as they
work like regular monitors in this case. Regular monitors only
maintain this precision by ignoring everything that follows.
Extended monitors may lose precision as they attempt to find
further deviations. Therefore, recall estimates how likely all
true deviations are reported. A regular monitor reports only
the first deviation; thus, its recall is |td|−1.

B. Comparison of Resumption Algorithms
The subscription service example (cf. Figure 2) evaluates

to the F1 scores: Rwait 7→ 0.56, Rnear 7→ 0.71, Rn-o-w 7→ 0.82,
Ru-e 7→ 0.82, Ru-s 7→ 0.81, Re-b 7→ 0.99, R2-e-b 7→
0.99,Rl-c = 0.93. For the general evaluation, traces with
a total of 80 million deviations in 220 different SMs with
up to 360 states have been generated and were analyzed by
monitors extended with the algorithms. Each trace included
20 injected deviations on average, so the recall for a monitor
reporting only the first deviation is 0.05 and its F1 score
0.095. Figure 11 shows the precision and recall for each R
per kind of deviation. While Rwait has the worst precision for
most deviations, it shows very high recall scores overall and
a perfect result for superfluous deviations. Besides that, each
algorithm performs very similar for altered and superfluous
deviations. When comparing Rnear and Rn-o-w, the former has
slightly less precision; however, it provides a better recall. Ru-e
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Figure 11. Precision and recall of R compared for different kinds of
deviations.

has a low recall independent of the kind of deviation but also
a good precision for skipped deviations. Overall, Ru-s has a
high recall. The offline algorithm Rl-c has a perfect result for
superfluous and altered deviations. For skipped deviations, it
also provides the missing event very reliably. While hardly
visible at the scale of the figure,Re-b’s precision of 0.9878 was
improved to 0.9995 by a second unique sequence in R2-e-b.

Figure 12 compares the F1 scores of the algorithms for
different levels of uniqueness and numbers of states of the
generated SMs. For clarity, SMs are grouped into buckets
based on the metrics and the scores are averaged for each
bucket. This allows a quick comparison of the algorithms, but
hides the distribution of the scores across the evaluated SMs.
These details are visible in the scatter plots in the Appendix,
Figure 16. For example, R2-e-b performed nearly perfect for all
tested scenarios, whereas the results of Rnear are much more
distributed. The low overall score of Rwait is clearly visible for
both metrics. For SMs with low uniqueness, Ru-s outperforms
many other algorithms. However, its F1 score slightly drops
with increased uniqueness. The other algorithms benefit from
an increase of uniqueness, especially Ru-e. For very high
uniqueness, Ru-s and Ru-e are identical. Nevertheless, both
Rn-o-w and Rnear perform better in this case. An increase of the
state count leads to a declined performance forRu-e,Rn-o-w and
Rnear. Ru-e even drops below Rwait. Re-b and R2-e-b are hardly
affected by state count and uniqueness and provide a near
perfect overall performance. The slight advantage of R2-e-b
can be seen by the small decline of Re-b for low uniqueness
and high state counts. Rl-c cannot match this performance, but
still excels the remaining algorithms. For higher state counts,
its score is comparable to Ru-s.
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Figure 12. F1 scores of R compared for metrics uniqueness and state count.

C. Discussion
In this evaluation, Rl-c is outperformed by Re-b and R2-e-b.

They perform almost perfectly for all tested scenarios. So does
Rl-c for deviations matching its edits. However, it is challenged
by random deviations. For example, a random deviation can
transition out of a dead end or a completely different part of
SM. Rl-c can only match this, if it steps back in its search
space and introduces further edits. In contrast, Re-b and R2-e-b
can match such behaviors. The slight improvement with R2-e-b
also shows that a higher precision for detecting deviations can
be reached by requiring more than a single unique sequence to
resume verification. While we could provide an upper bound
for the worst case space and time requirements of Re-b, which
is equal to segmenting the trace by unexpected behaviors,
sometimes more efficient algorithms are desired.

The perfect precision and recall of Rwait for superfluous
deviations were as expected, since this deviation matches ex-
actly the resumption behavior of the algorithm. This shows that
knowing the kind of deviation expected in a scenario can help
formulate specialized, highly efficient algorithms. However,
Rwait performs worst for all other kinds of deviations, as the
SUO transitioned already internally to a different state and
would have to return to its original state. It benefits from
unique events, because they prevent taking wrong transitions
in the meantime.
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Figure 13. Scatter plot comparing uniqueness and state count of the state
machines used for evaluation.

The metric uniqueness can be used as indication for the
class of algorithm that is needed for a scenario. For low
values, the algorithm needs to combine multiple events in
order to reliably synchronize model and SUO. Therefore, in
this case, algorithms should be preferred that take multiple
events into account, e.g., Ru-s. However, Ru-s slightly drops its
precision with increasing uniqueness, as the chance increases
to overeagerly synchronize with an erroneous unique event.
For example, if all events are unique, any observed deviation
is a unique event and the algorithm will resume with the
associated state. As the next valid event is unique again, the
monitor will jump back. However, in this case it registered
two deviations when there actually was only one. The same
holds for Ru-e. Therefore, especially with a high uniqueness, it
may be desirable to limit the number of options for which an
algorithm may resume and use a local resumption algorithm
instead. The choice between Rnear and Rn-o-w depends on
the desired precision and recall. According to the F1 score,
Rn-o-w is slightly favorable. However, as these algorithms may
maneuver themselves into dead-ends, they are less suited for
higher state counts. A bias towards lower uniqueness for higher
state counts in the sample set severs the impact on Ru-e.
This bias is indicated by the diagonal arrangement in the
comparison of uniqueness and state count for the evaluated
SMs depicted in Figure 13. Nevertheless, in all cases, the F1

scores of the extended monitors always show better results
than for a regular monitor.

The results for the subscription service example (unique-
ness 0.43, 4 states) and the respective results from Figure 12
match well. While the evaluation framework can be used to
identify the best suited algorithm, this example shows that the
metrics state count and uniqueness can be used as indicators
for such a selection.

VI. REAL WORLD APPLICATION SCENARIOS

In this section, we provide examples where resumption has
been applied successfully to real world use cases. DANA is the
platform for description and analysis of networked applications
that the presented resumption concepts were implemented in.
Previous work has already shown how the platform can be
used to analyze various in-vehicle infotainment functions at
runtime, e.g., an auxiliary input service [7], and a parking
assistance service [30]. In both cases, preliminary versions of
the resumption algorithms were employed.
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(a) Illustration of the use case.

(b) Behavioral model for the use case.

Figure 14. Use case of a hazard warning application.

In a more recent use case, we successfully employ re-
sumption to support the development of a hazard warning
application. A sudden obstacle in traffic can be dangerous;
especially, if drivers realize the obstacle too late. A hazard
warning can help to inform drivers in time. For example,
in Figure 14a the driver in the car on the left notices an
obstacle and brakes hard. As the view of the right car’s driver
is occluded by the van in the middle, she would only be able to
notice the reaction of the van in front. With a hazard warning
message from the front car, she could start braking imme-
diately. However, such an application involves multiple cars,
thus, multiple systems have to be considered. DANA is also
capable to address such distributed networked systems, e.g.,
connected cars. We can capture the behavior to be verified of
all involved cars in a model and use this for verification. Hooks
in the used communication stack for car-to-car communication
are employed to monitor the different communication layers.
Thereby, deviations in the hazard warning implementations can
be identified. For instance, the reason why a hazard warning
was not displayed in the receiving car can easily be located
by monitoring the progress of the animated state machine.
Resumption helps to analyze the underlying problem: By
providing a model containing the expected interactions, all
violations of a single run can be identified.

Besides the automotive domain, resumption has been suc-
cessfully applied to other application scenarios. Figure 15a
shows a small industrial plant composed of three stations.
The plant assembles cubes from two halves. The first station

(a) Illustration of the use case.

(b) Behavioral model for the use case.

Figure 15. Use case of a small industrial plant.

collects parts from two magazines and checks their orientation
and material. The second station joins the two halves in
a hydraulic press. The third station stores the assembled
cubes. For each station, the changes of internal sensors and
actuators controlled by the respective station are reported.
This enables monitoring the plant’s operation without having
to alter the original control program. The communication
between the stations is recorded by tapping into the switch
of the Ethernet-based Modbus TCP connection. Actually, the
model shown in Figure 15b contains much more details as it
was automatically learned from observed behavior, i.e., each
of the states contains sub-states, which are hidden in this
example for clarity. Nevertheless, the sub-states are still used
for verification, while this diagram provides a comprehensive
overview of the plant’s overall operation. Resumption helps
to overcome imperfections, which such a learned model may
have. While the monitor will report unexpected behavior in the
case of an imperfection, resumption can often realign model
and system so that verification can continue. A developer
analyzing the (falsely) reported unexpected behaviors can use
this feedback to improve the behavior description.

VII. CONCLUSION

To conclude the paper, the contributions are summarized
and the findings are discussed before an outlook to future work
is provided.
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A. Contributions
This work examined the identification of all differences

between a trace of a system under observation (SUO) and
its specification at runtime through resumable monitoring. We
have shown under which conditions deviations of the SUO
can be detected and when they will be missed. As the main
problem of detecting deviations is the current state uncer-
tainty, the detection of unexpected behavior was examined.
Unexpected behavior is independent of the SUO’s actual state.
By definition, the verification only needs to consider possible
states of the SUO. We could show that all occurrences of
unexpected behavior can be found within space O(|SM|) and
time O(|S|) per step at runtime. Such unexpected behavior is
always an indication for a deviation, but there may still be de-
viations that cannot be detected with the available information.
Using these results, we have introduced a method for extending
runtime monitors with resumption. Such an extension allows
a specification-based monitor to find subsequent deviations.
Thereby, an existing reference model of the system can be
used directly without creating a secondary specification for test
purposes only. Each of the introduced resumption algorithms
has its strength and weaknesses. The presented framework and
metrics help to find the best suited algorithm for an application
scenario. Nevertheless, expected-behavior is the most general
case of a resumption algorithm, as it has the least assumptions
on possible deviations. Identifying all unexpected behaviors
guarantees that all subsequences containing detectable devia-
tions are reported.

By the result of the evaluation, Re-b that tests for any
expected behavior is the most stable and reliable of the
compared algorithms. Yet, the evaluation result is not surpris-
ing, considering it is the resumption algorithm equivalent to
the general candidate function δ+ used in subsection IV-A.
Therefore, using runtime verification with Re-b resumption is
equal to segmenting a trace by unexpected behaviors for any
kind of deviation. Further, this fulfills our main research goal
of reporting all detectable deviations using a single monitor
instance.

B. Discussion
The biggest misery for resumption shown in this paper is

that the current state uncertainty can only be provably reduced
by an obviously conforming merging sequence and there is
no guarantee that such a sequence exists. While the evaluation
has demonstrated that for many cases it is still possible to
identify deviations with a high likelihood using resumption,
there may be cases where it is impossible to identify devia-
tions. The problem is not limited to resumption. How is this
handled by other approaches? Some consider certain events or
sequences to be trusted, e.g., model-based testing can rely on
the input it provides to the SUO. A fixed initial state is another
example. If such events are integrated into the specification,
they can be used as a kind of checkpoint to reliably resume
verification. Other approaches may only attempt to detect
unexpected behavior. There are runtime verification approaches
that expect the specification to be split into multiple properties.
They rely on detecting trigger sequences before they verify a
constraint. However, their verdict always judges trigger and
constraint. Further, these triggers can get quite complex and,
for example, check for necessary or sufficient conditions of
the property. With many properties to test, these checks may
quickly become redundant. Therefore, it may be more efficient

to use a single state machine, as we could show that it can
detect all unexpected behaviors. Different verdicts can be
associated with missing transitions and, thereby, used to retain
the categorization of unexpected behaviors provided by a set
of properties.

Resumption strives to resume verification after a deviation
was observed. In general, the quality of the resumption de-
pends on carefully selecting candidates for the actual state of
the SUO. This entails a strong relation to the deviations that
are possible or expected. Different assumptions on the system,
e.g., the kind of deviations, will lead to different selections
of optimal candidates. The selection of candidates is made
by a resumption algorithm. This replaces δ+ from (8) with a
different function. δ+ determines the current state uncertainty
for the next step. Therefore, all other findings in this paper
remain untouched, even if a different algorithm is chosen.
However, any deviation that does not match the candidates
provided by δ+, breaks the guarantee of detecting all unex-
pected behaviors. Nevertheless, this allows to use specialized
algorithms for specific application scenarios. Several different
resumption algorithms have been evaluated and compared with
regard to how well they detect deviations. Rwait is often
(unintentionally) used, as it just ignores deviating events and
waits in the same state. For the general case, this is not always
correct and usually very unreliable. However, if deviations
are only superfluous - the SUO stays in the same state when
deviating - Rwait provides perfect identification of deviations.
The proof is simple, as the current state uncertainty always
contains exactly one state. Thereby, we can apply Theorem 1.

C. Future Work
Currently, the resumption algorithms are designed for plain

state machines. This is still useful, as many advanced design
concepts for state machines, like hierarchical state machines
and orthogonal regions can be directly mapped to plain state
machines. The event model in the layered reference model
allows the state machine to be oblivious to parameter values,
which would otherwise require extended state machines. If the
event model can store parameters for comparison, this implies
there is a state of the event model in the parameter space
in addition to the state of the state machine. However, the
event model is currently not updated by resumption. This is
the equivalent of using Rwait for states. Therefore, future work
will extend resumption to include the parameter space, i.e., the
event model.

Moreover, we currently expect a total order on the observed
events. In a distributed system, events can be collected in
independent traces at many different sources and a global time
is not always available. Therefore, obtaining a total order for
all observations is not always feasible. The reference model
needs to be extended to better support modeling such behavior.
Possibly, a special kind of resumption can be utilized to
synchronize the different traces.
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APPENDIX
DETAILED RESULTS FROM EVALUATION

The scatter-plots in Figure 16 show the average results of
the presented resumption algorithms for each machine.
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(a) Rwait
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(b) Rnear
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(c) Rn-o-w
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Figure 16. Scatter plots of the algorithms’ F1 score, precision and recall on the y axis. The x axis of the three left plots shows uniqueness, the right ones’
show the state count of the evaluated machine. Each dot represents the result of all evaluations for one machine with the respective algorithm.
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