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Abstract - While Virtual Reality (VR) has been applied to 
various domains to provide new visualization and interaction 
capabilities, enabling programmers to utilize VR for their 
software development and maintenance tasks has been 
insufficiently explored. In this paper, we present the Hyper-
Display Environment (HyDE) in the form of a mixed-reality 
(HyDE-MR) or virtual reality (HyDE-VR) variant respectively, 
which provides simultaneous multiple operating system 
window visualization with integrated keyboard/mouse viewing 
and interaction using MR or in pure VR via a virtual 
keyboard. This paper applies HyDE in a software development 
case study as an alternative to typical non-VR Integrated 
Development Environments (IDEs), supporting software 
engineering tasks with multiple live screens in VR as an 
augmented virtuality. The MR solution concept enables 
programmers to benefit from VR visualization and virtually 
unlimited information displays while supporting their more 
natural keyboard interaction for basic code-centric tasks. 
Thus, developers can leverage VR paradigms and capabilities 
while directly interacting with their favorite tools to develop 
and maintain program code. A prototype implementation is 
described, with a case study demonstrating its feasibility and 
an initial empirical study showing its potential. 

Keywords - virtual reality; mixed reality; augmented 
virtuality; integrated development environments; software 
engineering; computer-aided software engineering; 
programming. 

I.  INTRODUCTION 
This paper is an extension of [1], which described our 

Mixed-Reality Fly-Thru-Code (MR-FTC) approach for 
visualizing software structures in virtual reality (VR) and 
supported coding via a virtual tablet and integration of a 
mixed-reality (MR) keyboard. 

As digitalization sweeps across society, the amount of 
program source code created and maintained worldwide is 
steadily increasing. Google is said to have at least 2bn lines 
of code (LOC) accessed by over 25K developers [2], while 
GitHub has over 79m repositories and 28m developers [3]. It 
has been estimated that well over a trillion LOC exist with 
33bn added annually [4]. This is exacerbated by a limited 
supply of programmers and high employee turnover rates for 
software companies, e.g., 1.1 years at Google [5]. This has 
ramifications on the labor expenses involved in software 
development and maintenance. Approximately 75% of 
technical software workers are estimated to be doing 
maintenance [6]. Moreover, program comprehension may 
consume up to 70% of the software engineering (SE) effort 

[7]. As an example, the Year 2000 (Y2K) crisis [8] with 
global costs of $375-750 billion provided an indicator of the 
scale and importance of program comprehension. Activities 
involving program comprehension include investigating 
functionality, internal structures, dependencies, run-time 
interactions, execution patterns, and program utilization; 
adding or modifying functionality; assessing the design 
quality; and domain understanding of the system [9]. 

Some of the challenges faced by software developers 
who are now more than ever often facing unfamiliar 
preexisting codebases are: 1) effectively and efficiently 
familiarizing and comprehending the structure and intent of 
collaboratively developed code, 2) programming and testing 
code changes, and 3) maintaining (debugging, optimizing, 
or securing) the code. Yet the tools programmers use to 
work with this code have not significantly changed over the 
years. The Jolt Productivity Award for 2015 went to an IDE, 
the Jetbrains IntelliJ IDEA, and other IDEs, Apple’s Xcode 
and Microsoft’s Visual Studio, were finalists [10]. 
RebelLabs Developer Productivity Report asked what tools 
developers most used and 3 IDEs were reported (IDEA, 
Eclipse, NetBeans) [11].  

Within the scope of developer’s program comprehension 
and informational challenges, one could hypothesize that the 
simultaneous access to situationally relevant information by 
developers is at least in part hampered by current physical 
limitations for viewability on computer displays. This can 
be observed by the - not infrequent - use of multiple 
displays (when space and budget allow), high resolutions 
(when visibility allows), and the multiple windows and tabs 
open by developers during their tasks, where quick access to 
relevant information is critical.  

As to possible visual interface solutions, a survey of over 
21K developers by SlashData in 2017 showed that 25% of 
professional game developers were targeting VR or MR 
headsets [12]. That indicates that a growing segment of 
software developers are becoming familiar with and have 
access to these headsets during development, whereby the 
target environment for which the headsets are intended are 
gamers and not developers. Thus, it may be viable to instead 
leverage the opportunities afforded by VR [13] and MR 
interfaces to support and target software developers during 
their development and provide more comprehensive 
information. However, a peculiarity and challenge regarding 
using VR with software developers in contrast to typical VR 
users is their affinity to keyboard interfaces when interacting 
with program code. This would thus typically require 
frequent (un)fastening of the VR headset to view and utilize 
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the real keyboard - an annoying disruption, visually 
disconcerting from the immersion experience, and 
inefficient. Alternatively, virtual keyboards would require 
selecting one key at a time using the typical VR controllers 
(akin to one finger typing) or some unfamiliar spin-dial 
approach and would be an inefficient means for code input 
for various programmers, since they often require special 
characters. While data gloves might become a future 
interface alternative for typing, they have not yet become 
sufficiently popular. 

In our prior work we described our Mixed-Reality Fly-
Thru-Code (MR-FTC) approach [1], which provided an 
immersive software structure visualization and fly-thru 
experience of code structure dependencies and enabled 
programmers to view code and make text changes on a 
virtual tablet using MR for keyboard and mouse access. Here 
we extend [1] by removing the limitations of the virtual 
tablet and focusing on enhancing the informational display 
capabilities in the VR environment with a multi-display and 
heterogeneous tool source capability while hiding the VR 
software structure visualization. 

This paper contributes the Hyper-Display Environment 
(HyDE) solution concept, and applies it in a case study to 
enhance available software developer environment 
capabilities by leveraging VR to integrate multiple 
information screens in support of software development and 
maintenance tasks. As visual IDEs often contain multiple 
sub-windows with information, HyDE displays an unlimited 
number of operating system (OS) windows that can contain 
any tool or information desired. Thus, direct integration 
support of various IDEs, tools, and information sources is 
enabled as a type of MR projection into the VR environment.  
The HyDE-MR variant also integrates real keyboard and 
mouse/trackpad; the HyDE-VR variant provides a virtual 
keyboard. The solution concept is sufficiently general to be 
applicable to any domain desiring simultaneous access to 
multiple informational screens. 

The paper is organized as follows: the next section 
discusses related work; Section III then describes the 
solution concept. Section IV provides details about our 
prototype implementation of the solution concept. In Section 
V, the evaluation, based on a case study, is described, which 
is followed by a conclusion. 

II. RELATED WORK 
    
Work related to viewing desktop applications in virtual 

or immersive environments or using hyper displays includes 
VEWL [14], a library for developing applications projecting 
windows onto polygons within an immersive virtual 
environment and provide additional information and controls 
including menus, windows, and buttons. The user’s head and 
a wand are tracked. CAVE2 [15] is a cylindrical system of 
72 passive stereo LCD panels that provide a 320-degree 
panoramic environment for displaying information, either 
dedicated to one virtual simulation or having a traditional 
tiled display wall enabling users to work with large numbers 
of documents at the same time. 

Work related to improving IDEs for SE includes IDE++ 
[16] is an IDE extension framework and interaction monitor 
and describes four applications (DevTime, Sage, Proctor, 
and Localizer) with the intent to make IDEs more intelligent. 
Code Bubbles [17] attempts to improve the IDE user 
interface with lightweight editable fragments of code using a 
bubble metaphor. 

VR-related work in support of SE tasks includes software 
visualization such as Imsovision [18], which visualizes 
object-oriented software in VR using electromagnetic 
sensors attached to shutter glasses and a wand for interaction. 
ExplorViz [19] is a JavaScript-based web application that 
uses WebVR to support VR exploration of 3D software cities 
using Oculus Rift together with Microsoft Kinect for gesture 
recognition. These approaches lack the integration of a 
keyboard and are thus limited in their ability to support 
programming. 

With regard to MR and augmented reality (AR) support 
for programming tasks, Tangible Windows [20] provides one 
open window per tablet and allows the user to switch their 
application by switching between tablets. Lee et al. [21] 
describe an approach for authoring tangible augmented 
reality applications with regard to scenes and object 
behaviors within the AR application being built, so that the 
development and testing of the application can be done 
concurrently and intuitively throughout the development 
process. However, integration of AR support for non-AR 
software development is not shown. Billinghurst and Kato 
[22] show possible concepts for collaboration in VR, but do 
not depict a keyboard or show how programming task 
support would work. Neumann et al. [23] do not appear to 
use VR goggles in augmented reality (AR) for projecting 
multiple PC screens. In 3d live [24], users view a two-
dimensional fiducial marker using a video-see-through 
augmented reality (AR) interface. Kato and Billinghurst [25] 
use optical see-through MR, whereby an AR conferencing 
system was developed that allowed virtual images of remote 
collaborators to be overlaid on multiple users’ real 
environments. Gupta et al. [26] use a tracking framework, 
wherein the 3D position of planar pages is monitored as they 
are turned back and forth by a user, and data is correctly 
warped and projected onto each page at interactive rates. In 
each frame, feature points are independently extracted from 
the camera and projector images and matched in order to 
recover the geometry of the pages in motion. The book can 
be loaded with multimedia content, including images, 
videos, and volumetric datasets. 

 
Figure 1. Coding with MR view of keyboard and mouse blended in and 

scroll bar shown on the virtual tablet. 
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In our prior MR-FTC approach [1], we visualized 
software structures using various metaphors and utilized MR 
with a virtual tablet (called the oracle) to view and edit code 
for programming tasks, as shown in Figure 1. However, it 
was limited in functionality and it was not possible to 
integrate and access other heterogeneous tools. 

In contrast to the above work, the HyDE approach 
leverages VR to enhance simultaneous informational display 
viewing and interaction, while also supporting basic 
programming and command-line interface tasks by 
integrating via MR keyboard and mouse viewing and display 
interaction in the VR environment. 

III. SOLUTION 
Our solution concept is domain independent and can be 

applied to various domains. The information screens 
displayed are the projections of actual windows from the real 
operating system and can thus be seen as a form of MR that 
mixes into the VR environment actual window screens, or 
more precisely augmented virtuality since the model is 
mostly virtual and only a relatively small portion is reality. 
We apply our solution here to the SE or software 
development area because of its challenges to highlight the 
solution’s potential and capabilities. For instance, to support 
software developers within the VR environment, our solution 
concept has an MR variant for integrating keyboard and 
mouse access which can provide enhanced Graphical User 
Interface (GUI) and textual interaction for program coding 
task support. 

A. Conceptual Architecture 

The GUI from a PC environment can be incorporated in 
the VR environment projected into the VR landscape of VR 
goggles or a VR screen (e.g., Google Cardboard) of a VR 
user, providing a form of MR. As shown in , the operating 
system (OS) environment (e.g., Windows, Linux, or MacOS) 
contains various windows or the entire screen of running 
processes or applications that are viewable ((A-F)). 

The VR Environment can incorporate any number of 
virtual displays of any size placed anywhere in VR space 
(e.g., a single gigantic virtual display showing all screens (A-
F) as separate windows on it) (n-to-1 relationship); 
correlating screens (1-to-1 relationship); or additional 
screens that perhaps show historical content or duplicated 
content (n-to-m relationship). This permits a user to have 
access to many more screens than physically feasible. 
Furthermore, various computers limit the number of physical 
displays that can be attached. 

The mechanism to integrate the content of some subset of 
these windows (or full screen) utilizes available screen 
capture mechanisms of the operating systems accessed from 
within the VR Game Engine ( (3)). Screenshots are then 
represented in the VR environment as a texture that can be 
placed and updated/refreshed (6) on any game object surface, 
such as one that looks like a virtual display ( A-F in the VR 
Environment Display). These screenshot sequences represent 
a stream (capture stream) and can be thought to be equivalent 
to a video stream. A historical view of older screen point in 

time can be displayed by storing the screenshots and 
retrieving them (5), permitting time lapse or pausing of 
screen content. A separate optional Screen Capture Server 
can be used to set the active window to the foreground and 
capture the screen (1), and then return it to the background 
and pass the captured screen image in a place accessible to 
the VR Game Engine (2). 

Interaction with the screens in the VR Environment 
Display can be supported to effect changes in the PC 
Environment by eliciting events (7) such as keyboard or 
mouse events via Input Device mechanisms (e.g., a VR 
controller, (virtual) keyboard, (virtual) mouse) that can then 
be transformed and passed on to the OS window (8) as OS 
events. By utilizing remote desktop applications, one can 
also view or interact with content across various remote 
operating system GUIs or windows from within the VR 
environment. 

 
Figure 2. HyDE conceptual architecture. 

For the MR variant, a live camera view of the keyboard 
and mouse can be integrated into the VR landscape. This 
allows the user to determine where their hands and fingers 
are relative to the actual hardware. Assuming the subject is 
seated, for instance, tilting their head down is interpreted as a 
gesture to activate a live webcam on the VR headset, 
activating MR mode, similar to the natural head movement 
made on a desktop PC to look at the keyboard.  

B. Process 
As shown in Figure 3, the process used by the solution 

approach can involve the following steps.  
For the Window Capture Server: 

1) Continually iterate over all processes with GUI 
windows. 

2) Place the window in the foreground.  
3) Capture an image of the window using the OS. This 

can alternatively be an image capture of the screen and then 
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cropped to the foreground window. For the special case of 
the desktop, the entire screen is captured. 

4) Place the image in the image capture stream queue. 
This can also be persisted if historical records are desired. 

5) Return the foreground window to the background. 

 
Figure 3. HyDE process steps. 

The steps involved in the game engine process for 
displaying the screen information are as follows: 

1) To create a display in VR, a game object is created 
and associated to a selected OS window process. 

2) In a continual iteration, the texture of any display (a 
game object) is replaced by the image from that window’s 
capture stream (equivalent to a refresh). As a potential 
optimization, if no change to the image is detected, no 
update is required. If the stream is paused, no refresh is 
invoked. On continuation, either time lapse display 
(historical playback) or current (discarding all images 
except the latest) are possible. From a persisted capture 
stream, any timestamp available can be displayed. This 
image is overlaid with the mouse pointer and cursor 
position. 

The steps involved in the game engine process to support 
screen interaction are as follows: 

1) For the active display, the associated target OS 
window is determined 

2) The window is brought to the foreground.  
3) The input event (mouse or keyboard) is applied to 

this window  
4) The window is returned to the background.  

The ongoing capturing process takes care of updating the 
screen for any resulting changes. 

IV. IMPLEMENTATION 
A prototype was implemented to determine the feasibility 

of the solution approach. The Unity game engine 2017.3.0b9 
was utilized for the visualization due to its multi-platform 
support, VR integration, and popularity. Blender 2.79 was 
used to develop all models. For VR hardware we used HTC 

Vive, a room scale VR set with a head-mounted display with 
an integrated camera and two wireless handheld controllers 
tracked using two 'Lighthouse' base stations.  

A. Mixed Reality Variant 
For MR, we integrated a live camera view into the VR 

landscape via a virtual plane object. For a better picture, a 
Logitech C920 webcam with a 1080p resolution was used 
instead of the Vive Front camera and a backlit keyboard 
Corsair K70 RGB Lux. Figure 4 shows the MR setup. 

 
Figure 4. MR setup. 

As shown in Figure 5, this allows the user to determine 
where their hands and fingers are relative to the actual 
keyboard.  

 
Figure 5. MR, showing real keyboard in cutout of VR desk and displays. 

Figure 6 shows a close-up view as to the readability of 
the keys on the keyboard, with a part of the monitor shown at 
the top (the webcam view could of course be adjusted to not 
show the monitor). One advantage of the MR view versus 
the VR keyboard variant is that the user can utilize their 
favorite keyboard and mouse that they are already 
accustomed to. 
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Figure 6. HyDE-MR variant closeup view of the keyboard. 

To avoid distraction, it can be configured to hide the MR 
view as follows: when the VR user tilts their head down, it is 
interpreted as a gesture to activate the live webcam on the 
VR headset and blend this into the virtual plane object. 
When the head is tilted starkly up, MR is deactivated. 

B. Virtual Reality Variant 
As shown in Figure 7, the HyDE-VR variant avoids MR, 

requiring the selection of all key and mouse control inputs on 
any screen be done via the VR controllers. 

 
Figure 7. HyDE-VR variant showing a VR (instead of the MR) keyboard. 

While data gloves might provide a better option for 
typing in VR, they are not yet in widespread use within the 
VR community. We thus opted at this time for practical 
variants, the MR utilizing any already available keyboard 
and mouse or the pure VR variant relying on VR controllers 
only. 

C. Display Placement and Interaction 
The left controller touchpad allows one to move forwards 

and backwards (like zoom in or out relative to the displays) 
and left and right. The right controller touchpad allows one 
to move up or down. The left controller pointer and trigger 
can be used to select a display and move it to another 
position (swap). By pointing and triggering with the right 
controller on a display, one can freeze (unfreeze) it if one 
wishes to pause (continue) the capturing (see Figure 8). 

 

 
Figure 8. HyDE-MR variant showing pause of capture stream. 

New displays are created by pressing the ‘+’ button near 
the keyboard (see Figure 6 or Figure 7) using the VR 
controller laser pointer (seen in Figure 9). Placement of the 
displays is as follows: the first display is placed in a fixed 
position in front of the keyboard. Further displays are placed 
relative to the first, the second and third are placed to the left 
and right of the first at a 45° vertical angle. The fourth 
through sixth are placed on a second higher row and tilted 
forward for a better viewing angle without having to move 
the VR camera position. A bottom third row is placed for the 
seventh through ninth in a tilted backward manner.  

 

 
Figure 9. Developer MR desktop setup, with Visual Studio shown on left 

virtual display, and Eclipse IDE on right virtual display. 

Once the tenth display is reached, a stacking 
configuration of rows of three displays is applied with all 
rows stacked vertically (no tilting) and the left and right 
columns angled at 45° without tilting (see Figure 10). By 
moving relative to this stack the view is adjusted to bring the 
display of interest up or down and in front to the best 
viewing angle. 

Arrows along the top edge allow one to scroll through the 
circular list of processes to pick the one to show on that 
display (see Figure 11). The one to pick is done by pointing 
the right controller at the process name text and selecting it 
with the trigger (the process name scrolls when the string is 
too long for the available space). 

As shown in Figure 12, the displays can be closed via an 
‘x’ button on their upper right corner. 
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Figure 10. HyDE display stacking. 

 
Figure 11. Selecting a process name. 

 
Figure 12. Closeup of a live IDE on virtual display. 

 
Figure 13. HyDE situationally-related multi-area concept. 

A new Area (a group of situationally-relevant displays) 
can be created by moving sufficiently away from the current 
Area and pressing the create display button. Figure 13 shows 
two areas. For example, one area could be focused on fixing 
a bug from a previous release, while another is focused on 
optimizing a performance issue, or another is focused on 
developing some new feature 

In case the desired process is not yet running, a special 
‘null’ process can be selected, which will display the desktop 
so the user can start the desired application, at which point 
the user can select the process name. 

D. Implementation Details 
The Server is programmed in C# using .NET 4.7 and 

runs on Microsoft Windows. The Server holds all pertinent 
information about each running process with an open 
window.  

Unity acts as a client and binds via TCP-IP with the 
Server to retrieve all process information in XML. 
Information provided are: process name, process ID, 
coordinates of the top left position of the open window, 
window width and height (in pixels), and the window handle. 
If a process name is selected, the window is captured. If a 
window is moved, the handle can be used to determine its 
new position. 

Capturing of a process window is done by making the 
process window the active one (in the foreground) and then 
capturing the entire screen and then this image is then 
cropped to the known coordinates of the desired window. 
This is done to support displaying the cursor. Using a 
variable of type CURSERINFO, information about the 
cursor position can be retrieved and its position drawn as an 
Icon and overlaid on the cropped window picture when a 
cursor is in that window. Each captured window is handled 
by a separate thread. For each window the mouse cursor is 
tracked so it displays the appropriate position for that screen. 

V. EVALUATION 
The evaluation of the HyDE solution concept consists of 

a case study and empirical study in software development. 

A. Case Study 
In this case study, we take a typical SE maintenance situation 
where a software developer is attempting to address a bug 
report that is related to a distributed application. Note that we 
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exemplify this fictional case with analogous screens that do 
not directly relate to each other nor show actual bug 
information, they are however from actual live screens.  

 
Figure 14. Closeup of a live IDE on virtual display. 

 
Figure 15. Closeup of a live Visual Studio IDE on virtual display. 

 
Figure 16. Closeup of a live Eclipse IDE on virtual display. 

Figure 14 shows the bug report information in the Google 
Chrome web browser in the center display of the upper row. 
Perhaps it is unclear if the .NET client is not making a 
network-based Representational State Transfer (REST) call 
to the backend Java-based service, or if the service did not 
return. For this, related information might be to analyze 
certain log files to see if there are any warnings or errors. 
Figure 14 shows the bottom left screen with a log file opened 
in the Sublime Text editor. The client may have been written 
in a Common Language Infrastructure (CLI) language and 
for which Visual Studio might be an applicable IDE, shown 

in the bottom center display. The documentation for the 
backend service web application programming interface 
(API) may need to be consulted to familiarize oneself with 
the call and parameters specifications, shown in the upper 
right display. Debugging of the backend service, which is 
written in Java, is done using another IDE, in this case 
Eclipse shown on the bottom right display. To actually 
monitor the network packets, the Wireshark tool might be 
used, shown in the upper left display. 

Figure 15 shows a close-up of the Visual Studio IDE, 
while Figure 16 shows a close-up of the Eclipse IDE. 

B.  Empirical Evaluation 
For an empirical evaluation, for our experiment design 

we chose to compare subject performance for program 
debugging tasks using HyDE-MR. The interface type (VR-
based HyDE vs. a non-VR notebook) is an independent 
variable and effectiveness and efficiency are dependent 
variables. A convenience sample of seven Computer Science 
(CS) students and one Information Systems (IS) student, who 
were either in their senior year or master students, was 
selected with only one unfamiliar with VR. Only one 
indicated not personally using a multi-monitor setup. 

The experiment was supervised and a brief training to 
show how to utilize HyDE functionality was initially given. 
Due to only having access to one (heavily shared) VR station 
and subject constraints, we chose to create an SE task set that 
required a maximum of 60 minutes per subject (30 minutes 
maximum in VR) and was basic enough that students across 
various semesters could do it. We intentionally injected 8 
errors into a webpage consisting of HTML, Cascading Style 
Sheets (CSS), and JavaScript errors (e.g., text that indicates 
it should be centered but is not). The intended functionality 
was documented directly in the webpage and it was up to the 
subject to analyze the text and determine if the webpage was 
functioning properly for that requirement, and if not, to 
indicate that a defect was found and then correct it. One set 
of errors were made for normal monitor (non-VR) usage 
scenario (see Figure 17), and another set for the VR usage 
scenario (see Figure 18). After correction, the non-VR 
webpage should like Figure 19 while the VR webpage 
should like Figure 20. In the non-VR scenario, the subjects 
had access to one display but could use multiple windows. In 
the VR scenario, we observed them creating and using 4-5 
displays.   

 

 
Figure 17. For non-VR: webpage with injected defects. 
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Figure 18. For VR: webpage with injected defects. 

 
Figure 19. For non-VR: corrected webpage. 

 
Figure 20. For VR: corrected webpage. 

We asked them for a self-assessment of their HTML, 
CSS, and Java Script competency, the results of which are 
shown relative to their performance in Figure 21. To 
determine if the task order of VR or non-VR affected the 
results distinctly, each subject was randomly assigned to 
either begin with VR or with non-VR, and subjects 1, 5, and 
8 initially began without VR. The total time needed until 
self-indicated completion was measured in seconds, and then 
this total duration was divided by the number of errors found 
(and corrected) to get an average duration per error for VR 
and non-VR separately. This is also shown in Figure 21. 
When comparing these average durations with the 
competency self-assessment, we see some correlation, with 
subject 1 who indicated little to no experience having some 
of the longest times, with subject 3 and 5 that have some 
experience have the second cluster of longer times, and 
subjects 2, 7, and 8 indicating the most competency and 
having some of the shortest times. Note that subject 1 was 
unfamiliar with VR, and unfamiliarity with this new 
environment may also have negatively affected this longest 
VR time; some prior training sessions may have reduced the 

duration. However, since the same subject is being compared 
in the two modes, the subject’s programming and debugging 
experience and competency self-assessment should not 
significantly impact their own performance relative to 
themselves. Rather, the independent variable will likely have 
the greater effect. 

 
Figure 21. Competency self-assessment and average defect correction 
duration results for each subject in both the VR and non-VR setting. 

As to task training or familiarity effects, as seen in Figure 
21 the three subjects that began with non-VR tasks (1, 5, and 
8) were slower on VR, faster on VR, and equivalently fast 
respectively. The other subjects also showed no bias trend 
with one or the other always faster. Thus, we conclude that 
there is little to no side effect as to task training in their 
ability to complete the task faster in the second environment.  

TABLE I.  HYDE-MR EFFICIENCY AND EFFECTIVENESS IMPROVEMENT 
VERSUS NON-VR 

Subject Experiencea 
HyDE-MR Improvement 

Efficiency Effectiveness 

1 1 -23% -13% 

2 4 -69% 0% 

3 2 -154% 0% 

4 3 -30% 13% 

5 2 60% 0% 

6 3 56% 13% 

7 4 11% 0% 

8 4 -2% 0% 

Average  -9% 13% 

a. Scale of 1-5 (5 best) 

Table I shows the performance difference of HyDE-MR 
relative to non-VR for the dependent variables efficiency and 
effectiveness. On average VR was overall 9% slower (97 
seconds) and effectiveness was improved by 13%. However, 
these are only slight variations Conceivably this might could 
be attributed to the subjects having less total experience in 
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VR or to the margin of error given the relatively small 
population sample size. We also assume that because of the 
relatively short sessions of less than 30 minutes, that no 
significant performance impacts are attributed to task fatigue. 
Subjects 7 and 8 show almost no performance difference 
with HyDE, whereas for subjects 5 and 6 performance 
improved, and for 1-4 performance was mostly worse. 

In the non-VR scenario, the subjects had access to one 
display but could use multiple windows. In the VR scenario, 
we observed them creating and using 4-5. After completing 
the tasks, subjects were debriefed as to how intuitive, 
suitable, and enjoyable HyDE was based on a Likert scale of 
1 to 5, with 5 being very high and 1 being very low. The 
results are shown in Figure 22, where all the results were 
either positive or neutral (except one regarding 
intuitiveness). This indicates that the HyDE solution 
approach had a positive or neutral effect on subjective 
factors. None of the subjects reported VR sickness 
symptoms, a type of visually-induced motion sickness 
exhibiting disorientation [27], despite the inclusion of MR 
keyboard and mouse in VR and ongoing multiple display 
refresh. We also asked how many VR displays they would 
consider utilizing in they were given the opportunity, and 
their preference is shown in Figure 23, where we see that 
they could see themselves using up to 7 or 9 displays, 
whereas for non-VR the majority would use 3 real monitors 
if they could. This indicates that the subjects understood the 
potential of HyDE. When asked what environment they 
preferred, 75% preferred the VR over the classic non-VR 
environment (see Figure 24). Even those who preferred the 
classic environment liked the HyDE solution concept and 
prototype and think it has potential. 

 
Figure 22. Rating given by the number of subjects for intuitiveness, 

suitability, and enjoyment of the HyDE prototype. 

 
Figure 23. Preferred number of VR displays. 

  
Figure 24. Subjects’ preferred environment after the experiment. 

As to interpreting the results, a convenience sample can 
obviously contain a number of biases, including under- or 
overrepresentation. The motivation of each individual at any 
point in time to find and fix a defect is another unknown 
factor, and we provided no reward system which 
gamification could induce. The differences observed in 
efficiency and effectiveness between HyDE on non-VR are 
in our opinion negligible, and we weight their subjective 
responses and the 75% preference of VR-based HyDE as an 
initial indicator of support for our solution approach or at a 
minimum an openness to utilizing VR for software 
development tasks. Further investigation is still needed. 

VI. CONCLUSION 
As VR devices become ubiquitous, it is only a matter of 

time before programmers wish to utilize VR capabilities for 
their development tasks as well. Our HyDE prototype 
demonstrated that the HyDE-VR and HyDE-MR hyper-
display solution approach is feasible and can be a viable 
alternative to desktop displays. The HyDE-MR variant 
enables touch typing and the use of the mouse for screen 
interaction where appropriate, enabling programmers to 
interact more naturally for their code-centric programming 
tasks in the VR environment while remaining immersed. 
They thus can avoid interrupting their VR experience to take 
of the goggles and do programming changes and then put the 
VR gear on again. The HyDE concept is also generalized 
such that it can be applied to various domains beyond 
software development requiring simultaneous viewing and/or 
interaction of informational screens. The domain software 
development was selected to show HyDE's potential in 
intensive informational screen settings where software and 
tool preferences are non-uniform and support of and access 
to a large spectrum of software is imperative. 

The evaluation based on a case-study and an empirical 
evaluation showed that the effectiveness in finding bugs was 
on par (1 bug more for one person), and although the sample 
size was small, the average task efficiency in VR was only 
slightly worse (-9% or 97 seconds per defect), which can be 
considered to be within the margin of error given the 
subjects’ first use of this environment, their competency 
level for fixing these types of defects, and the sample size. 

Future work includes a comprehensive empirical study 
including industrial usage, the inclusion of additional 
features, and performance optimizations. 
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