
Smartphone-based Data Collection with Stunner, the Reality of Peer-to-Peer

Connectivity and Web Real-Time Communications Using Crowdsourcing: Lessons

Learnt while Cleaning the Data

Zoltán Szabó∗, Vilmos Bilicki∗, Árpád Berta†, and Zoltán Richárd Jánki∗
∗Department of Software Engineering

University of Szeged, Hungary
Email: {szaboz, bilickiv, jankiz}@inf.u-szeged.hu

†MTA-SZTE Research Group on AI
University of Szeged, Hungary

Email: berta@inf.u-szeged.hu

Abstract—The increasing popularity of smartphones makes them
popular tools for various big data collecting crowdsourcing
campaigns, but there are still many open questions about the
proper methodology of these campaigns. Beyond this, despite the
growing popularity of this type of research, there are familiar
difficulties and challenges in handling a wide range of uploads,
maintaining the quality of the datasets, cleaning the datasets
containing noisy, incorrect data, motivating the participants, and
providing support for data collection regardless of the remoteness
of the device. In order to collect information about the Network
Address Translation (NAT)-related environment and the Peer-
to-Peer (P2P) networking capabilities of mobile phones, we
utilized a crowdsourcing approach. We collected more than 70
million data records from over 100 countries measuring the NAT
characteristics of more than 1,300 carriers and over 35,000 WiFi
environments during the three-year project. Since then, we have
also expanded and released our application to collect even more
data concerning the Peer-to-Peer capabilities. Here, we introduce
our data collecting and Peer-to-Peer architectures, some of the
most prominent problems we have encountered since its launch,
some of the solutions and proposed solutions to handle difficulties.

Keywords–smartphones; data cleaning; Peer-to-Peer; crowd-
sourcing.

I. INTRODUCTION

In recent years, smartphones have become part of our
everyday lives. Their wide range of uses along with multiple
sensors, networking and computational capabilities have also
made them seemingly ideal platforms for research. One re-
search area is data collection, with the collected datasets avail-
able for a wide area of analysis, including network mapping,
discovering and analysing various networks, and the network
coverage of certain areas.

Different research teams from all over the world have dis-
covered these new opportunities, and they employ smartphones
as crowdsourcing tools in a wide variety of ways. Through
crowdsourcing, they assign tasks to different users with dif-
ferent device types to collect data in real-life situations, or a
monitored environment, providing huge amounts of realistic
data. In recent years, we have seen a lot of successful, and
interesting approaches to this methodology. In our conference
paper, we have shown our approach to data collection and data
cleaning [1].

However, there is still a question of how exactly crowd-
sourcing campaigns should be implemented. Several research
projects, such as SmartLab [2], the behaviour-based malware

detection system Crowdroid [3], and the cross-space public
information crowdsensing system FlierMeet [4] recruited a
small number of users, who could be trusted, contacted if nec-
essary, and provided the data taken from a known environment,
specifically chosen, or created for the crowdsourcing project.
This limited the variability and the amount of the data, but the
results were of a high quality and easy to validate.

Another approach for recruitment is to upload the smart-
phone application to the Google Play store, or the Apple App
Store, making it available for download by anyone world-wide,
and opening up data collecting opportunities for anyone who
agreed to the terms and services of the software package. With
proper marketing, the results could include enormous datasets
obtained from around the world. The NoiseTube project [5]
for crowdsourcing noise pollution detection was downloaded
by over 500 people from over 400 regions world-wide. The
Dialäkt App [6], one of the most well-known crowdsourcing
campaigns in recent years, was the most downloaded iPhone
app in Switzerland after its launch, with wide media coverage,
and over 78,000 downloads from 58,923 users by the time they
had published their results. Many more datasets were collected
in the Bredbandskollen project, later to be used in various
smartphone-based research projects [7], which has collected
network data from 3,000 different devices and over 120 million
records since its launch in 2007, and the OpenSignal [8]
application, which between 2012 and 2013 collected over 220
million data records from more than 530,000 devices and from
over 200 countries.

However, collecting data using smartphones is not without
its difficulties, and there are a number of challenges when
smartphones are used as the prime source of information.
Among these, battery consumption and network state are
among the most important elements, as constantly accessing
the state of the phone sensors and listening to specific events
takes a heavy toll on the battery, making data collection
inadvisable in certain situations (for example, after a device
signalled a battery low event), and it is feasible, but pointless
in other situations (the phone is on a charger while the user is
asleep - the energy is there, but the valuable information is only
a fraction of what we would get from an active user). Network
state again has to be taken into account, as even today in many
environments, we cannot ensure that a device will always have
a connection strong enough to send the collected data to the
server. Privacy is also an issue, since the data has to remain
identifiable yet not contain any trace of personal information.

120

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Aside from all of the above, if data collection was success-
ful, we still have the problem of noisy, incorrect, disorganised
data. We have to take into consideration the fact that there are
different devices, different versions of the same OS, bugs, such
as duplicated records uploaded by the client on network error
and damaged records resulting from a similar event. We also
have to take user interference into account, who may not wish
to provide valuable data (e.g., by deliberately leaving the phone
at home on a charger or having it switched off during specific
hours, etc.). Their results will still be counted as valuable data,
but this can severely distort the collected dataset, as well as
the results used in evaluations.

An even bigger problem, when crowdsourcing is a global
campaign, is that of time synchronisation. Not only do we
have to find a good solution for the various time zones of
the devices, but also the different time codes of the phone
collecting and sending the data and the server storing this data,
and recognize the possibility that the user might have manually
altered the date and time on the test phone as well.

All of the possibilities mentioned above result in a mixed
situation where the power and potential of the smartphones, as
research tools cannot be denied, but to acquire correct, useful
data is a challenge in itself. This requires careful planning,
taking into account almost every possible cause of data distor-
tion, well-defined filters and data cleaning algorithms before
any actual research can be performed on the data collected.
In this article, we are going to present our solutions with this
type of data collection, and our solutions to the problems that
emerged.

Our goal was to develop an Android app in order to
collect important network information for research on the P2P
capabilities of smartphones, including the NAT type, network
type and network provider. It does so by taking measurements
on a regular basis as well as during specific events. When
taking the measurements, the app sends a request to a randomly
chosen Session Traversal Utilities for NAT (STUN) Server
from a list, displaying useful network information, such as
the IP address and NAT type to the user, while also storing
the necessary data in an SQLite database, which later gets
uploaded to a data collector server for analysis. The application
called Stunner has been available for download from the Play
Store since December 2013 [9].

Since then we have continued the development, and the
current version of the application also contains the implemen-
tation of the WebRTC project. Soon, we aim to implement P2P
algorithms through P2P connections and collect the specific
P2P metrics of the results. In our latest developments we also
upgraded the data storage, along with the classic data collector
server, both the NAT measurements and the new P2P data are
stored on a Parse database server. The new version of Stunner
is available in the Play Store since 25th April, 2018.

Using the collected data, we can compare the earlier
NAT measurements to the new P2P measurements. Also, in
the future, we will be able to define the graph model of
a worldwide, P2P smartphone network. In this model, we
seek to test various P2P protocols to measure the capabilities
of a serverless network architecture, where the phones can
slowly update their datasets and generate various statistics,
without the data ever leaving this smartphone network. The
ultimate goal of our research is the creation of an Application
Programming Interface (API), through which developers can
utilize these P2P capabilities to create various data collecting
and processing applications (for example, general mood or

health statistic researching applications for a specific region)
without the need of a processing server.

II. RELATED WORK

The challenges outlined above have been collected from
the research results of other teams (Table I) - and nearly all of
them offered good design viewpoints during the development
of our own data collecting application.

Perhaps the best overview of the possible difficulties was
provided by Earl Oliver [10]. While developing a data col-
lecting application for BlueBerry, he defined five of the most
common and serious problems, namely volatile file systems
on mobile devices (as file systems can be easily mounted
and unmounted on nearly any device), the energy constraints,
the intervention of third-party applications running in the
background, the non-linear time characteristics of the devices,
and malicious user activity (file manipulation, simulated ma-
nipulation, etc.).

He solved these by exploiting many trends of BlackBerry
users: the general maintenance of high battery levels, retrieving
manifests of active applications, and data analysis for patterns
of manipulation attacks. However, even he could not define a
general solution for every problem, and these problems were
not the only ones encountered by other research teams. In fact,
they found other challenges to be rather common among data
collecting applications.

The researchers at Rice University, while developing Live-
Lab [11], a methodology used to measure smartphone users
with a similar logging technique, encountered the problem
of energy constraints, with various optimisations needed to
lower the high consumption of the logging application. They
also recognized the problem associated with data uploading,
namely the connectivity to the server which collects the data
from the devices and updates them with new information. They
chose rsync for its ability to robustly upload any measurement
archive which failed earlier.

A similar method of re-uploading the failed archives was
used by a research team at the University of Cambridge in
their Device Analyzer project [12], which sought to build a
dataset that captured real-world usage of Android smartphones,
again with a similar event logging based solution. They found
that repeated attempts at uploading caused duplicated data
on the server, which could simply be removed by the server
before saving it to a database. They also solved the above-
mentioned problem of nonlinear time by timestamping every
measurement with the device’s uptime in milliseconds, record-
ing the wall-clock time of the device when their application
started, and later recording every adjustment to it by listening
to the notifications caused by these adjustments. From these
three elements, a simple server-side processing algorithm was
able to reconstruct the exact wall-clock time of any given
measurement.

Members of the Italian National Research Council [13]
also confirmed these challenges (i.e., the scarcity of resources,
difficulties with network monitoring and privacy) while also
highlighting two more problems, caused by the participants
using the devices - the much more complex control tasks
in these types of research projects, and the issue of user
motivation to get them carry out the tasks required to get valid
data.

The collected data - even after correction - did not give
satisfactory answers to the emerging questions of P2P con-
nections with mobile devices. Therefore, we have to examine

121

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. COMPARISON OF DATA COLLECTING PROJECTS

Problem BlackBerry logger Device Analyzer Portolan Livelab

Energy constraints OS callback based logging
Only 2% of the
energy
consumption

Computational and
analyzation processes are
run by the server and the
collecting is not too
energy consuming

The logging events are
optimized,
some of the data being
collected directly from the
system logs

Non-linear time

Dates are logged in a
UTC timezone;
datetime modifications
recorded

Every measurement
stamped with a device
uptime in milliseconds;
on startup, the device
time is logged, like
every modification
on device time

Not described (there is a
strict communication
between client and server,
probably kept in sync by
this procedure)

Not described,
the datetime is
most likely to
be among the
logged data

Offline state, unsuccessful upload -

Batched uploads only
when the device is
online and the charger
is connected

Uploads are handled by
proxy servers

Rsync protocol
keeps trying
until the upload
is successful

Multiplicated data -

Every device has a file
on the server, multiple
copies of data being
detected by the server

This is solved by proxy
servers

Not described
most likely to
be filtered by
the server

Figure 1. WebRTC Architecture

how the mobile devices behave in a real P2P environment.
In most use cases the peers are computers that execute
Web applications in a browser. In these environments the
requirements of power and network are not as important
as in mobile environments. To establish a P2P connection
between two mobile devices we choose the Web Real-Time
Communications (WebRTC) technology, which is an open
source project that provides browsers and mobile applications
with Real-Time Communications (RTC) capabilities via APIs
[14]. The WebRTC exploits the concept of differentiating
the media plane and the signaling plane. The signaling is
managed solely on the application layer. It is so because the
different applications prefer diverse signaling protocols [15].
Managing P2P connections via WebRTC, we have to handle
NAT traversal and signaling. These are implemented in the
Libjingle C++ library, which was integrated into the WebRTC
implementation. The Libjingle library is a collection of C++
programming code and sample applications that help develop-
ers with building P2P applications. The Libjingle team created
its own protocol based on Jingle and Extensible Messaging and
Presence Protocol (XMPP). Figure 1 shows the architecture of
WebRTC in our Android environment.

In this article, we present our experiences with
crowdsourcing-based data collection along with our methods
and results of data cleaning on the present dataset.

• We propose a solution for the biggest challenge of the
batched data uploads, namely the time synchronisa-
tion among the different elements of the architecture,
utilising a 3-way logging solution, and lightweight log
synchronisation.

• We introduce heuristics to analyse incorrect NAT
values, in order to decide which cases failed because
of server side problems, and which cases originated
from the client side.

• We also introduce a data cleaning algorithm to correct
timestamp overlaps, using battery-based smartphone
heuristics to detect anomalies among consecutive mea-
surements, such as excessively rapid charging, or
charging when the smartphone is in a discharging state
or when no charger is connected.

• We represent a P2P architecture operating on mobile
devices using WebRTC and we share the experiences
gathered from establishing the connections.

III. OUR FRAMEWORK

A. Peer-to-Peer Architecture
We also needed to see how these NAT types and network

information both affect a real P2P communication model. To
achieve this, we have implemented a P2P module using only
STUN servers and the Google Firebase Cloud Message (FCM)
service. When starting the P2P measurement, the first step is to
initialize a few important attributes, such as the list of STUN
servers to be used and the various parameters of the commu-
nication channel. With the STUN servers, the application can
determine the IP address and ports available for the outside
world. After these parameters were achieved, the initiating peer
has to create an offer for the Signaling Server containing the
available address and port. Based on this, the signaling server
(the FCM service in our case) saves the device and returns
a package with the Session Description Protocol (SDP) and
several packages for the Interactive Connectivity Establishment
(ICE) mechanism. These packages contain all the information
on the peer needed by the future partner devices for commu-
nication. The most important attributes include the ice-pwd,
which is the device’s password to the server, the ice-ufrag
containing the username of the device, and the IP address -
port combination contained by the SDP. The ICE packages

122

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

also describe the protocol, which is needed to communicate
with the port they represent (the two most common being
TCP and UDP). For these kinds of P2P measurements, the
UDP is much more suitable since the acknowledgement-based
approach of the TCP is too slow and not necessary when a
small degree of package loss is acceptable in the typical P2P
applications (streaming, video chat, etc.). After the offer was
saved on the initiating peer, it sends the SDP description and
the ICE candidates to the target peer through the signaling
server. The Google FCM supports multiple types of messages,
from which we chose the data message. The main benefit of
this is being a special ”silent push” message type, requiring no
activity from the device owner, and being able to even wake
the background service if it is in a sleeping state. The receiving
peer has to know which peer is initiating the session, what is
the type of the message (SDP or ICE) and naturally, the con-
tents of the message. The connection-handling is implemented
in the class called P2PService. This receives the messages,
SDP packages and ICE candidates sent via push notification.
The SDP is immediately saved with a response description
created instantly and sent back to the initiating peer. The ICE
candidates are handled by a specific algorithm. The received
candidates are organized in a list, with the lower port number
receiving the higher priority. The algorithm always tries to
connect to the port with the highest priority, moving on through
the candidates if the most recent attempt failed. The Service
sends a STUN protocol message based on the chosen ICE
candidate. If a response is received, the target IP address and
port for the P2P session is successfully chosen. After this step,
the previously initialized parameters of the communication
channel are altered. Our datachannel implementation includes
built-in functions for sending messages and a default listener
for receiving these. The current state of the P2P session is also
determined with listeners. The localPeerConnectionObserver
in our code is an instance of the PeerConnection.Observer
class, which monitors every step of the connection initializing
process, the SdpObserver instance in the P2PService listens
to updates concerning the SDP packages, and the DataChan-
nel.Observer class is responsible for monitoring the state of the
communication channel. The device ids are stored in a Firebase
Realtime Database, this is the source from which initiating
peers can choose their targets for P2P communication. Every
time the application is opened, the MainActivity component
sends a query to this database for the available peers. Later on,
when a P2P connection is needed, a random device id is chosen
from the result of this query. The list is also dynamically
updated. When an instance of the Stunner application is closed,
the destroying process sends a last message to the signaling
server, notifying it to remove its id from the database. Similarly
to the NAT measurements, the logs of the P2P connections are
collected on our Parse database server. The attributes of these
logs are described in Table II.

B. Statistics
Our application went live on 20th December, 2013. To

promote the usage of the application we also launched a
campaign, during which we provided 80 university students
and users with smartphones, who agreed to download and
provide data with the application for the duration of one year.
On 14th February, 2018 the application had been downloaded
and installed by 20,634 users on 1,184 different device types
representing 1,300+ carriers and 35,000+ WiFi networks.

Our target API level was originally 19 (Android 4.4), but
the application is still being downloaded and installed on more

TABLE II. P2PMEASUREMENT

P2PMeasurement

chosenID The android ID of the device chosen by
the initiating peer.

selfID The android ID of the initiating device.

sender A boolean value, whether or not this device
was the initiator of the connection.

startConn

A timestamp for when the connection was initiated,
meaning the moment of the HAVE LOCAL OFFER
event on the initiating side and the HAVE REMOTE OFFER
on the chosen peer

completedConn A timestamp for when the creation of the
connection finished and the devices connected.

channelOpen A timestamp for when the state of the data channel
became OPEN.

channelClosed A timestamp for when the state of the data channel
became CLOSED.

timezone An integer, the difference between the UTC and
the local time on the device.

Figure 2. The plot shows the uploaded data per device

and newer devices, with Android 8.0 being currently the most
popular on active installs.

We have also reached a wide variety of different types
of devices, upon which the application got installed. The
application also successfully reached hundreds of different
mobile providers in different countries, which provided us with
various, realistic NAT patterns and traces - which will be im-
portant later on, after the data cleaning phase is completed, and
the analysis and usage of the data collected has commenced.

1) The collected data and the most important descriptive
statistics: Based on the size of the dataset collected and our
good track record since the 2013 release, it is safe to say
that our application and data collecting campaign were both a
success (with 70+ million records).

The chart (see Figure 2) shows the number of uploaded
records per device. The majority of users did not provide any
measurements, but the decline of the slope lessened, indicating
that the users who provided data were more likely to stay and
keep providing data.

During the summer of 2015 we had to reassign some
resources to other projects, resulting in an absence of data
in the given time period. However, after restarting the server,
our input declined only slightly, resulting in a steady amount

123

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. The plot shows the uploaded data per day during the whole
measurement period.

PSEUDO CODE:
d a t a [’ d u p l i c a t e d ’] = = d a t a . d u p l i c a t e d (s u b s e t =[a l l c l i e n t s i d e columns] , keep = ’ f i r s t ’)

Figure 4. JSON sample

of data arriving to this day despite a gap of a few months
(Figure 3).

An interesting aspect is that although the daily uploads
have been pretty steady since the hiatus, the number of active
devices providing the uploads has been on a steady decline
since early 2016. We hope that with our current developments,
this decline can be reversed, and a new record on both the
number of active devices and daily uploads can be obtained.

Following the hiatus, the first spike above shows all the
collected data uploaded to the server at the same time. While
the WiFi-based tests closely follow the trends of active devices
and daily uploads, the Mobile Operator-based measurements
have been taken at a relatively low, but steady rate. We
can monitor more than 200 mobile networks and over 500
WiFi environments day after day. Here we have shown that a
significant amount of data has been collected over the three-
year period. The real value of the data depends on the quality
of the timestamps. Now, we will describe our findings in the
area of data cleaning.

IV. ISSUES WITH COLLECTED DATA

A. Data Duplication
In spite of the theoretically sound software environment

where the server-side logic was implemented in JEE with
transactional integrity taken into account, it turned out that a
significant proportion of the dataset had been duplicated. We
applied simple heuristics in order to filter out the duplicate
measurement records by comparing only the client-side content
and skipping the server-side timestamp and other added infor-
mation. In practice, we utilized the Python Pandas framework
duplicate filtering method shown in Figure 4 to remove the
duplicates.

We found that out of the 70+ million rows only 30+ million
rows were unique, while the remaining rows were duplicates.
We investigated the possible root cause of this phenomenon.
Figure 5 shows the total submitted records per device versus
the duplicated records per device. It clearly shows that there is
a linear relationship between the two values. This is evidence
that this is a system-level symptom and not a temporal one
related to server overloading. The same is true if we check the

Figure 5. The plot shows the duplicated data per device vs the total number
of records submitted by that device

Figure 6. The plot concerning the duplicated data per day (server side)

temporal dimension of the duplicated records during the given
period (Figure 6).

After an in-depth investigation of the client code, we found
that the default HttpClient configuration contained a very
robust upload model, with a default value of 3 retries for every
HyperText Transfer Protocol (HTTP) operation, if it failed with
a timeout. This is a very useful method for simple data upload,
but in our case, if the timeout chosen in the settings was too
short, the client might have uploaded the same batch of records
up to four times to the server, which would acknowledge and
store all of them. In order to stop further multiple uploads,
we will need to carefully look at the correct timeout and retry
values and also identify the upload batches, so the server will
be able to detect the retries on upload.

1) Detecting the overlap of the client-side timestamps:
The actual unreliability of the client-side timestamps was a
surprise for us. Figure 7 shows the difference between the
Android timestamp and the date captured on the server side.
A significant number of measurements have big differences
between these two dates. The difference between the two

124

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Difference between the Android and Server date

TABLE III. HEURISTICS FOR DETECTION

Name Description Detection capability

Fast change detector (ABC
and SBC) (the first letter
codes the ordering applied:
A - android, S - server side,
this coding being consistent
among the different
detectors)

We used the battery percentage and its sluggish
behaviour to detect the fast changes. We defined
the speed of change as the ratio of the two
consecutive timestamps and the battery
percentage difference between these two
timestamps. We defined a threshold high enough
to be able to recognize the measurement as an
error.

For time-reset starting
date estimation.

Rules based on charging and
plugged state

This method focuses on the rules defined without
time being included.
Rules: Charging (more than 20% change) while
not on charger (ACEU-SCEU)
Charging (more than 20% change) while in
discharging state (ACED-SCED)
Big changes between consecutive elements
(charging 20%, discharging 6%) (AP-SP)
Charging (more than 20% change) while not on
the charger and the phone is in a discharging
state (ASC-SSC)

These methods could be
applied in order to detect
the beginning of a new
measurement period
(among the overlapped
timestamps)

timestamps is only an indication that there could be an error
in the measurements as a week or weeks may pass by after
capturing and uploading the data to the server in the case of
missing or inadequate network conditions.

We started to examine the nature of the Android timestamp.
First, we noticed records with timestamps that were signifi-
cantly earlier (e.g., 01.01.1970) or later (01.01.2023) than our
other measurements. Finding invalid time periods was trivial
(like 2023), but it transpired during our in-depth investigation
that several phones were reset to a valid date that lay within the
observation period. In order to be able to properly detect this
anomaly, we elaborated several simple heuristics for detection,
these being shown in Table III.

We applied the anomaly detection heuristics mentioned
above in order to compare two basic sorting approaches;
namely, sorting by the server-side information (e.g., serial
number) and the sorting based on the mobile timestamp. We
observe that for about 6-7 thousand devices the number of
errors is zero. So, about 1/8 of the total devices are affected by
the time overlap. Figure 8 shows the results of the fast change
detector applied for the two ordering approaches (it was run
on a filtered dataset, skipping the valid data). The green line
(server-side sorting) indicates fewer fast change errors in most
cases (it was able to eliminate this error on about 40% of the
affected devices). The scatterplot below (Figure 9) also shows
a clear correlation between the two sorting approaches and
the number of fast change errors. The slope of the correlation
line (and the points under the line) tells us that the server
side sorting was able to reduce the fast change errors in most

Figure 8. Fast change errors

Figure 9. Mobile timestamp and server-side ordering

cases. Based on these findings, one simple approach for time
overlap fixing might be the hybrid sorting approach where a
given number of records are located after a fast change error
had been sorted based on the server-side sorting.

The effectiveness of the simple server-side sorting is also
shown in the Figure 10 concerning the correlation between
different error detection heuristics and the sorting methods. It
is apparent that server-side sorting can significantly decrease
the error level for all error detectors (when comparing the same
method with S and A sorting, most of the points are below or
above the similarity line).

With the previously described heuristics, we were able to
demonstrate that the server-side sort order can reduce the rows
suspected of being in the wrong position to about 1/10 of
the total dataset. A further decrease in the suspected errors
could be achieved with a richer ruleset that incorporated
different mathematical models for batteries. For our purposes,
the current reliability level of the causality dimension of the
dataset is quite sufficient.

B. Sorting by client-side timestamps
Another advanced utilisation of our collected data is inter-

preting the multiple user-sessions as a trace of a real network,
where each user can communicate to each other in real time.
In an ideal world, we may assume sorting by client-side
timestamps while the client-side timers are synchronised with

125

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Error detectors

each other. However, as we mentioned above, there is a lot
of uncertainty on the local timer, which is a major concern
for us. In addition to this, the previously proposed methods
do not fully cover this problem. This is because we need a
sorting based on the local timestamps, which is in the same
timeline with respect to actual time and we also need a filtering
process for all the potential errors. Hence, here we will present
a filtering proposal which ensures that the retained client-side
timestamps are reliable.

Every examined timestamp has the same format, and it
represents the number of milliseconds that has elapsed since
Unix Epoch (UTC). The client-side timestamps are captured
from the local timer. However, there is no further information
about the local timer. All the methods below are performed for
each user. In a nutshell, our solution is a three-step filtering
procedure. First, we prefilter the data based on some basic
rules. Second, we assume that we can trust the client-side timer
and perform a sort. After, we look for clues about remaining
errors. In the case of a hit the affected phase is filtered. From
a bird’s eye view, the method is permissive while everything
seems to be normal and the method performs a systematic
search for errors when an unconventional event has occurred.

At the very beginning, we perform a rule-based prefiltering.
We discard all the records that have a more recent client-side
timestamp than the server-side timestamp. We also discard
all the records that have an older client-side timestamp than
the actual appversion release date. The duplications are also
prefiltered as described in Section IV-A.

Then, as we mentioned before we assume that the uncer-
tainty about local timer is negligible. With this assumption,
we can perform a sorting by client-side timestamps. Also, we
record the previous position number from sorting by server-
side timestamps for further examination. Now let us look at the
assumption that we made. In the prefiltering phase we handled
a lot of misleading measurement records, but not the whole.
Therefore, our assumption is basically wrong. Hence, we need
to analyse the new order and filter the remaining error.

Next, we will describe the essential part of our method.
We look for a pattern that indicates the start of an error in
consecutive records. If we find an error, we discard every
record until any evidence is found for a certain phase. And we
start the troubleshooting process repeatedly to the end. The
consecutive pairs are expected to have the same incremen-
tation for the previous and the recent sorting. Consequently,
the main clue for a potential error is the difference in the
incrementation of previous position number from server-side
timestamp sorting. However, the examined record pair may
still be in the correct order. This by itself is not a proof of
an error. Therefore, further examination is needed. After, this
event triggers a leap to a questionable state. In a questionable
state, we are looking for evidence about consistency of the two
consecutive records. If we do not find any error then we leave
it as it is. In most cases, an error in obviously offline pairs does
not bother us. This is because the order of the offline records
does not have an effect on the properties of the network. Only
the online ones do. To explain what we mean by a reliable
pair, let us first check the uptime information of the device.
If both records have one, we compare their difference against
the difference between the local timestamps. A one-second
deviation is tolerated. If the deviation is sufficiently small,
then the pair is reliable. We continue our examination with
the change in battery level. An increasing or identical battery
level is the proper change when the device is charging up.
Similarly, a decreasing or identical battery level is the proper
change when the device is not charging up. In both cases, a
one-unit deviation is tolerated in the opposite direction because
of the inaccuracy of the measured battery level. A change in
the charger status is not permitted, unless a proper trigger
event about the change has occurred. These are very strict
conditions for deciding whether a pair is reliable or not. In any
other case the correctness is not guaranteed and this causes the
troubleshooter to move into the error state, which is a substate
of questionable state. We also look for many reliable pairs to
end these sessions. More specifically, these phases need to be
at least one hour long from the last known questionable or error
pair. This is the event that triggers the end of the questionable
state and the error state. Upon quitting a questionable state
without an error state, the whole examined phase is left as
it is. However, when quitting an error state, the first record
is left, as at the end of the previous session, and the whole
phase is deleted (good or bad pairs equally) up to the last
questionable or error pair. From these pairs, the first is also
deleted and the last will be the first record of the next session.
The troubleshooting process is restarted from the end of the
previously found, reliable one-hour session. Also, a one-hour
difference between two consecutive records separates them.
In this case, the first record ends the previous phase, and the
second starts a new one.

Lastly, let us discuss the number of discarded records. As
the result of our filtering method, 2.33% of the records have
been erased. Thanks to our consistency check, another 0.45%
of the records were temporal candidates for deletion, but they
have survived.

C. NAT discovery result code corrections
The main feature of our application is the discovery of

the NAT type. Users can ask the application about their NAT
information and public IP address. This method is based on
User Datagram Protocol (UDP) message-based communication
between the device and a randomly picked STUN server. A
STUN server can discover the public IP address and the type
of NAT that the clients are behind.

126

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

We were faced with a problem that was caused by the
prefixed STUN server list. It contains a list of 12 reliable
servers that are suitable for NAT detection, this list being
embedded inside the application code. It allows the device
to randomly pick a STUN server. As a result, every measured
NAT type in the timeline is based on a different STUN server’s
NAT test. Hence it makes the measured data more trustworthy.
This random pick approach was well designed and worked
very well initially. However, after a time four of the STUN
servers went offline without any prior notice. Since then these
four failed STUN servers provide the same NAT discovery
result code as firewall blocked connections. As a result of
this error, some uncertainty exists in the NAT discovery result
code. Therefore, we propose a solution on how to correct it
and make the collected data useable afterwards. Quite clearly,
another solution is needed to avoid connections to a failed
STUN server.

Now we need to discuss the obscure NAT discovery result
code. This is the 16.76% of the total measurement records.
We carried out this examination over the dataset, which had
already been prefiltered and processed, the order being based
on the approach defined above (see Figure 11).

Firstly we need to discuss the FIREWALL BLOCKS result
code. This code corresponds to NAT tests that have an open
communication channel, but never get any response from the
STUN server. In the normal case it means that the firewall
blocks the connection. Unfortunately, the records also have no
response from failed server, even though a part of these records
may have an online NAT type. Therefore, these records are
uncertain and further examination is required.

Below, we present a method for filtering the STUN server
errors from the FIREWALL BLOCKS discovery result code.
This set of records contains uncertain potential online states.
The server fails with a 4/12 probability, and the event of
consecutive repeated fails has an exponential pattern. Conse-
quently, we define sessions with consecutive repeated FIRE-
WALL BLOCKS discovery result codes and look at their
distribution. If the distribution has roughly an exponential
distribution, then we can interpret them as online and we can
define their network properties. Otherwise, those that do not
have an exponential fit will remain FIREWALL BLOCKS.
This means that in this way we cannot prove the opposite
(the firewall blocks the connection). In general, we are looking
for a session that begins and ends with the same network
property and there are only uncertain online states between
them. These sessions may be interpretable based on the begin-
end enclosures. More specifically, the sessions must
• begin and end with the same NAT discovery result

code
• begin and end with the same Service Set Identifier

(SSID) in the case of a WiFi connection
• begin and end with the same mobile operator in the

case of a mobile data connection
• contain only uncertain online states
• contain a time gap between two records only in a range

of 0 to 15 minutes based on the fact that the maximum
time gap between two regular online records is almost
10 minutes. However, it is not very accurate because of
the Android support scheduler with its inexact trigger
time requirements.

• not be interrupted by trigger events that correspond to
any potential change in the network properties.

We show the above-defined candidate sessions in Figure
13 and Figure 14. Let us first take a look at how many

uncertain discovery result codes are enclosed by these sessions
in Figure 13. It is clear that the first four points seem to
fit an exponential curve. Consequently, it is still open to
interpretation and the rest of the points remain undefined.
Next, Figure 14 shows length of the above-defined sessions.
There are some peaks every 10 minutes or so. These peaks
correspond to the BATTERY SCHEDULED trigger event,
which is scheduled every 10 minutes and this is the most
common trigger event. For example, if there is exactly one
uncertain FIREWALL BLOCKS value in the appropriate ses-
sion and every taking of a measurement is triggered by this
schedule event, then its length of time is around 20 minutes.
Based on this example, an above-defined session that contains
three unknown records lasts for 50 minutes. Accordingly, we
examined the points from the first phase up to 50 minutes. Our
examination revealed that it also had an exponential pattern.
In contrast to the distribution in Figure 13, this distribution
appears more complex, but it is still acceptable. Next, we
associate the two findings. More specifically, the intersection
of the two sets is an above-defined session that contains
fewer than five uncertain elements and it lasts no longer than
50 minutes. Based on this rule, we can correct the network
properties of 6.7% of the measurement records.

Next, we should mention some other minor errors asso-
ciated with data collection. In very few cases there was no
network connection, but it still has some errors in the discovery
result code (mainly code 0). Here, we simply correct all of
them to the no-connection state (-2).

Now let us have a look at the final results of the
NAT data correction in Figure 12. The records with FIRE-
WALL BLOCKS code have dropped to 10%, and the records
with an online state have increased.

V. LESSONS LEARNT

A. NAT measurements
Based on our findings, some of the challenges encountered

proved to be quite trivial, and required only some small
modifications to the algorithm, while others still have to be
tested with our proposed solutions.

On the client side, we have found several elements where
the default approach of Android development proved insuffi-
cient, and special consideration was needed for proper data
collection. We found that the timeout value of the Android
application should be increased in proportion to the connectiv-
ity quality with the data collector server, while the number of
retries should be reconsidered and perhaps revised with upload
batches accompanied by identifiers to make duplicate detection
easier.

The detection of the NAT anomalies was made significantly
easier through the NetworkInfo and WifiInfo objects of the
Android system. When collecting network data, we found it
highly advisable to include as many attributes from these rich
objects as possible - such as SSID, whether the phone is in the
roaming mode and whether the network is connection metered
-, since any of these could explain possible anomalies in the
dataset. For example, the phone might be connected to a WiFi
network, but the router is not necessarily connected to the
Internet; or, if it is located at a public establishment, it may
redirect the requests to the establishment’s login site instead of
the original destination - all of which are serious problems, and
they could go unnoticed without detailed information about the
network.

Regarding the NAT problem, it is also advisable to recon-
sider storing the list of external servers in a constant array

127

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Others

4

3

76

12

1
17

5

21

-2
40

NAT Discovery Result Code

-2 NO CONNECTION 11951611 40.03%

-1 ERROR 29 < 0.01%

0 OPEN ACCESS 706662 2.37%

1 FIREWALL BLOCKS 5002770 16.76%

2 SYMMETRIC FIREWALL 198442 0.66%

3 FULL CONE 1993739 6.68%

4 RESTRICTED CONE 280969 0.94%

5 PORT RESTRICTED CONE 6240586 20.90%

6 SYMMETRIC CONE 3482591 11.66%

Figure 11. Discovery Result Code

Others

3

3

8
1

10

6 14

5

24

-2
42

NAT Discovery Result Code after correction

-2 NO CONNECTION 12401805 41.53%

-1 ERROR 29 < 0.01%

0 OPEN ACCESS 284206 0.95%

1 FIREWALL BLOCKS 2999985 10.05%

2 SYMMETRIC FIREWALL 230693 0.77%

3 FULL CONE 2295290 7.69%

4 RESTRICTED CONE 318136 1.07%

5 PORT RESTRICTED CONE 7272018 24.35%

6 SYMMETRIC CONE 4055237 13.58%

Figure 12. NAT Discovery Result Code after correction

Figure 13. Discovery result code enclosed by sessions

Figure 14. Length of candidate sessions

(a practice which is very common based on our experiences),
because if one of those servers goes offline, it might generate
huge amounts of incorrect data. A proxy which stores the
server list, keeps it updated by using regular checkups, and
forwards the list to the phones on request, would be a better
solution here.

Also, while the deletion of previous data is a good practice
to stop the application from taking up too much storage space,
the 24-hour limit might be too short, since important events
could get lost in that time period. The time limit for storage
before deletion should be featured among the settings. Even
after a delete, it is necessary to leave some trace of the deleted
data - at least a log -, so the anomalies in the later, successful
uploads could be interpreted.

The timestamp desynchronisation between the server and
the client remains perhaps the most challenging problem, with
the battery-based sortings providing some improvements in the
dataset. One solution might be a lightweight log timestamping.
In this case only a hash of the log would be sent to the server
frequently (in order to minimise the mobile traffic and save
the battery), where a reliable timestamp would be attached
on the server side to this hash and saved in a permanent
storage. In this way, we may define reliable milestones which
are independent of the mobile side timestamps. On the mobile

side, it is important to preserve the total order of the events.
This could be achieved by using a simple increasing indexing
procedure in the SQLite database.

We mentioned earlier that even NAT types may be mislead-
ing, despite the quality of the connection. Once again, some of
these incorrect values could be corrected by simply checking
the actual state of connectivity during the upload. The NAT
type in the remaining records is mostly corrected by a pattern
recognition method. Hopefully, this problem may never occur
again after the proposed changes have been made to handle a
dynamic STUN server list.

B. Peer-to-Peer measurements
After the first implementation of the P2P connection we

wanted to know about the time of establishing a connection,
making a disconnection and detecting the peer’s disappearance.
In addition, we wanted to know what happens to the peers if
they make a reconnection or if they connect to another access
point.

In order to discover the capabilities of WebRTC and
understand how the peers work in practice, we have to keep
the whole signaling mechanism in hand. These expectations
address several challenges.

Firstly, we want the measurements not to be influenced
by users, so we cannot use the normal push notifications.
Firebase Cloud Messaging (FCM) provides a solution for
sending notifications without visible alerts, this is the so-called
silent push notification. With the help of FCM, we can send
data to the application that runs on a device; however, the
process does not need user interaction.

Using the silent push notification, we have recognized other
issues. This type of notification can wake up a device if the
application runs in the background. If we kill the application
that runs in the background, the silent push cannot address

Unanswered

94

Answered

6

Figure 15. Ratio of answered and unanswered offers

128

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Others

5

4-5

3

6-3

3

3-5

4
5-4

4
5-6 11

5-3

14

6-5

14

5-5
43

Caller’s NAT type Callee’s NAT type Ratio of P2P connections
Open Access (0) Full Cone (3) 2.5%
Symmetric Firewall (2) Full Cone (3) 1.8%
Full Cone (3) Port Restricted Cone (5) 3.6%
Restricted Cone (4) Port Restricted Cone (5) 2.7%
Port Restricted Cone (5) Open Access (0) 0.7%
Port Restricted Cone (5) Full Cone (3) 14.3%
Port Restricted Cone (5) Restricted Cone (4) 3.9%
Port Restricted Cone (5) Port Restricted Cone (5) 42.8%
Port Restricted Cone (5) Symmetric Cone (6) 10.7%
Symmetric Cone (6) Full Cone (3) 2.9%
Symmetric Cone (6) Port Restricted Cone (5) 14.3%

Figure 16. Number of P2P connections with different NAT types

the device. When the application starts, the mobile device
subscribes to the Firebase Realtime Database. Hence, we store
the set of available devices in this database with a hashed
identifier. If the user quits from the application, the device
unsubscribes from the database. Since killing an application is
a different event compared to the sophisticated quit method,
the onDestroy() method will never be called. Hence, we had
to catch the small time gap that occurs right before killing the
application.

During the tests we have also discovered that the resources
for an application that runs in the background are only allo-
cated for a given time. Unfortunately, we cannot catch the
exact timestamp of deallocation, so the devices that take the
resources away from Stunner are shown as still available, but
the notification cannot wake up them. We also have to take
into account this anomaly.

Under the examination of the collected logs, we have
also realized that in many cases the SDP information are not
satisfying to establish P2P connection. In some cases, only
IPv6 information are retrieved from the STUN server and the
necessary IPv4 information are missing. Sometimes the public
IP address and available ports are missing and only the private
IP address is given. Due to lack of necessary information, the
P2P connection cannot be established between two peers.

Knowing these issues, we have cleaned the collected P2P
logs first, then we started to analyze the remaining data.
The first version of Stunner - that contains the P2P module
- was published on 25th April, 2018. Since then we have
released 3 different updates that improved the performance
of the application a lot. Since the new version of Stunner was
released, we have collected more than 200,000 logs.

The collected data showed that more than 90% of the offers
were unsuccessful because the silent push notification could
not awake the slept application. As it can be seen in Figure
15, the number of sent offer dominates the number of sent
answers. The ratio was calculated from the Firebase server
logs.

After the data cleaning, we still have a huge number
of useful data. From the remaining data, we have seen that
the peers behind different NAT types show an interesting
pattern to the P2P connections. Figure 16 shows ratios of the
successful P2P connections. An interesting fact is that most of
the successful P2P measurements were done by devices behind

Port restricted NATs. Surprisingly, we have also experienced
that in many cases, the mobile devices with Symmetric Cone
NAT could also connect to other devices.

Another interesting point is how much time the P2P
connection takes to establish. We determined this by logging
four different timestamps. The first one is the time when
the peer started to gather its information from the STUN
server, and the second one is the time when both the peers
shared their information with each other. The third one is the
beginning of the time when the datachannel is created and the
fourth one is the time when the connection is totally closed.
The disconnection is a very fast process, but establishing a
connection takes 6.745 seconds on average. It takes this much
time, because the device that begins the connection has to
turn to the STUN server for getting the information about the
IP addresses and available ports, get a list of available peers,
choose one from the list, send the data via signaling server
and create the datachannel between the two WebRTC clients.

VI. CONCLUSIONS

As the reader can no doubt see, our approach worked
well in the above-mentioned areas of data cleaning. Since the
application was launched in 2013, it has been downloaded by
more than 20,000 users from over 1,300 different carriers and
35,000 different WiFi areas, to hundreds of different device
types, which is providing enormous amounts of valuable data
for the analysis of NAT traces, patterns, and later on, for the
simulation of the above attributes.

Compared to other crowdsourcing projects, our crowd-
sourcing approach was a hybrid methodology, where we pro-
vided a certain number of users with smartphones, and released
the app to the Play Store for wider availability, and took more
data measurements from different parts of the world. We did
not reach the volume of OpenSignal or Bredbandskollen with
their 100-200+ million datasets, but this hybrid solution still
provided us with a much bigger amount of valuable data than
a closely monitored environment like FlierMeet or SignalLab
that had roughly 40 devices, a shorter collection time period,
and operated in a restricted environment like a university
campus or a development environment.

Lastly, we have implemented the WebRTC project in our
application, and have started gathering useful information
about the various metrics of P2P connections. With this data,

129

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

we will be able to create an even better smartphone simulation
network, where the events and metrics will be able to reflect
the actual, real-life behaviour of the test algorithms. Our next
major step will be the in-depth testing of P2P algorithms, find-
ing better solutions for the keep-alive issues of the application
and the determination of the speed and stability of smaller
applications running in a simulated environment.

ACKNOWLEDGMENT

This research was supported by the Hungarian Govern-
ment and the European Regional Development Fund under
the grant number GINOP-2.3.2-15-2016-00037 (”Internet of
Living Things”).

REFERENCES
[1] Z. Szabó, V. Bilicki, Á. Berta, and Z. R. Jánki, “Smartphone-based Data

Collection with Stunner Using Crowdsourcing: Lessons Learnt while
Cleaning the Data,” in ICCGI 2017, The Twelfth International Multi-
Conference on Computing in the Global Information Technology, July
2017, pp. 28–35.

[2] G. Chatzimilioudis, A. Konstantinidis, C. Laoudias, and D. Zeinalipour-
Yazti, “Crowdsourcing with smartphones,” IEEE Internet Computing,
vol. 16, no. 5, 2012, pp. 36–44.

[3] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, “Crowdroid: behavior-
based malware detection system for android,” In Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile
devices, October 2011, pp. 15–26.

[4] B. Guo and et al., “FlierMeet: a mobile crowdsensing system for
cross-space public information reposting, tagging, and sharing,” IEEE
Transactions on Mobile Computing, vol. 14, no. 10, 2015, pp. 2020–
2033.

[5] M. Stevens and E. D’Hondt, “Crowdsourcing of Pollution Data using
Smartphones,” in Workshop on Ubiquitous Crowdsourcing, held at
Ubicomp ’10, September 2010, pp. 1–4.

[6] A. Leemann, M. J. Kolly, R. Purves, D. Britain, and E. Glaser,
“Crowdsourcing language change with smartphone applications,” PloS
one, vol. 11, no. 1, 2016, pp. 1–25, e0143060.

[7] T. Linder, P. Persson, A. Forsberg, J. Danielsson, and N. Carlsson,
“On using crowd-sourced network measurements for performance pre-
diction,” in In Wireless On-demand Network Systems and Services
(WONS), 2016 12th Annual Conference on. IEEE, January 2016,
pp. 1–8.

[8] A. Overeem and et al., “Crowdsourcing urban air temperatures
from smartphone battery temperatures,” Geophysical Research Letters,
vol. 40, no. 15, 2013, pp. 4081–4085.

[9] Á. Berta, V. Bilicki, and M. Jelasity, “Defining and understanding
smartphone churn over the internet: a measurement study. In Peer-to-
Peer Computing (P2P),” in 14-th IEEE International Conference on.
IEEE, September 2014, pp. 1–5.

[10] E. Oliver, “The challenges in large-scale smartphone user studies,” In
Proceedings of the 2nd ACM International Workshop on Hot Topics in
Planet-scale Measurement, June 2010, p. 5.

[11] C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum, “LiveLab:
measuring wireless networks and smartphone users in the field,” ACM
SIGMETRICS Performance Evaluation Review, vol. 38, no. 3, 2011,
pp. 15–20.

[12] D. T. Wagner, A. Rice, and A. R. Beresford, “Device Analyzer:
Large-scale mobile data collection,” ACM SIGMETRICS Performance
Evaluation Review, vol. 41, no. 4, 2014, pp. 53–56.

[13] A. Faggiani, E. Gregori, L. Lenzini, V. Luconi, and A. Vecchio,
“Smartphone-based crowdsourcing for network monitoring: Opportu-
nities, challenges, and a case study,” IEEE Communications Magazine,
vol. 52, no. 1, 2014, pp. 106–113.

[14] A. B. Johnston and D. C. Burnett, WebRTC: APIs and RTCWEB
Protocols of the HTML5 Real-Time Web. Digital Codex LLC, 2012.

[15] M. H. Rahaman, “A Survey on Real-Time Communication for Web,”
Scientific Research Journal (SCIRJ), vol. 3, no. 7, 2015, pp. 39–45.

130

International Journal on Advances in Software, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/software/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

