
Implementing a Framework for QoS Measurement in SOA

A Uniform Approach Based on a QoS Meta Model

Andreas Hausotter, Arne Koschel
University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science,

Hannover, Germany
email: Andreas.Hausotter@hs-hannover.de

email: Arne.Koschel@hs-hannover.de

Johannes Busch, Markus Petzsch, Malte Zuch
University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science,

Hannover, Germany
email: Johannes.Busch@stud.hs-hannover.de
email: Markus.Petzsch@stud.hs-hannover.de

email: Malte.Zuch@hs-hannover.de

Abstract—The globalized markets now offer customers a va-
riety of products and services as never before. This enormous
selection reduces the loyalty of the customers to the companies.
Today, products and services are highly interchangeable. This
requires a strategic rethinking of the companies from a product-
centric perspective to a customer-centric perspective. Therefore,
businesses need to change their operational processes in a flexible
and agile manner to maintain their competitive edge. A Service-
oriented Architecture (SOA) may help to meet these need.
Particularly in the insurance industry, this is an established key
technology. Old monolithic software architectures have already
been successfully transformed to ’traditional’ SOAs. This could
even be a good basis for future upgrades to micro-service
architectures. But, before this upgrade is accomplishable, it
is necessary to analyze and measure the already established
SOA. As the application landscape of enterprises is inherently
heterogeneous and highly distributed, it is a great challenge to
provide services with a certain quality. A measurement system
can help to capture the relevant QoS parameters of a software
architecture. This is, particularly the case, when services are
requested externally via the web. Therefore, quality of service
(QoS) measurement and analysis is a crucial issue in Service-
oriented Architectures. As the key contribution of this paper,
we present a generic SOA Quality Model (SOA QM) based on
the measurement standard ISO/IEC 15939, a SOA Information
Model (SOA IM), and an architectural concept of a QoS
System. The SOA IM is an XML-based specification for the
measurement to be performed. The QoS System provides an
execution platform for the SOA IM, based on a Complex Event
Processing (CEP) approach and guarantees minimal impact on
the SOA environment. The concepts are explained in detail using
a standard process of the German insurance domain. Moreover,
implementation details for our concept are given, including an
overview of the general deployment of such a technology.

Keywords—Service-oriented Architecture (SOA); Quality of Ser-
vice (QoS); Measurement Process; Complex Event Processing
(CEP).

I. INTRODUCTION

Distributed IT-systems are commonly used in today’s com-
panies to fulfill the needs of agility and scalability of their
business processes to manage the highly variable demand
of the market. Typical scenarios are real time logistics and
delivery, just in time supply chain management and in general,
handling services in real time to fit market demands.

The latter is commonly used within the finance and insur-
ance industry during their internal computation of risk and
money management and for their external customer services,
like proposal calculations (including the current market condi-
tions). Especially the external customer services must have a
high quality in terms of time behavior. Google has shown that
a latency of 100 ms up to 400 ms causes an impact of -0.2
% up to -0.6 % concerning the daily usage of web services
by the customers [2]. The integration of those services to
run business processes in a stable way, fulfilling the varying
demand of the market, is commonly realized with Service-
Oriented Architectures (SOA).

These architectures integrate services within distributed
systems to run business processes with a high capability in
terms of agility. Especially the distribution of the services over
several systems allows scaling with the market demands.

Distributing and handling several services is a common
concern of the insurance industry. But an increasing distri-
bution and more complex business processes will only gain
more agility with SOA, if the distribution of the services over
several systems is realized in a reasonable way. For getting
the required control of the distribution of those services,
a measurement system is required. Measuring the general
quality of service (QoS) in distributed systems is part of
the motivation of this work and is explained in detail in
the next subsection. The subsection thereafter will show our
contribution to the general problem of measuring QoS in SOA
within the application scenario of the insurance industry. This
scenario is detailed in Section III.

A. Motivation

In many cases it is not possible to forecast, how much
computing power and bandwidth the infrastructure needs to
host the allocated services within the distributed computing
system. Beside these design decisions of the infrastructure,
there is a further problem in allocating the services to the
right locations within the distributed system. This allocation
will influence how much bandwidth and calculation power is
available for the services and how many services will share
identical resources during the same time. So, if several services
will use the same part of the infrastructure, this could lead to

251

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



increasing latencies over the whole system, resulting in an
unfavorable time behavior for the users. Especially, if some
services are requested with intense demands of the market,
latencies could rise in an unpredictable manner.

This research is partly related to major German insurance
companies, where latency considerations are particularly im-
portant. In this regard, research and prototype development
can be tested by a quality of service (QoS) measurement
system on a practice-relevant application case. In this case,
the insurance companies’ partners provide a typical service-
oriented software architecture (SOA) for running business pro-
cesses. In this context, insurance companies have to guarantee
short response times of their services. Other quality of service
parameters such as the measurement of reliability, resource
consumption or error rate would also be possible. In the
context of the practical application case, here the focus is
on the measurement of the response time as it is particularly
significant in the insurance industry.

Such a scenario is typical for the German insurance industry.
At the end of the year, millions of users are able to switch
their insurance contracts and will request therefore designated
online services. The general demand is not foreseeable and
the intense interaction between the insurance industry and
the finance industry requires a high quality of those services.
Especially, the historically low interest rates in today’s market
provokes, fast changing business models and the need for a
fast adoption to new business processes.

Moreover, the ability to offer services of high quality to
fulfill the external user demands and the internal interaction
within the finance industry is very much required. To fulfill
these demands, distributed systems with SOA will benefit from
an across broader measurement of the quality of those services,
particularly in terms of latency. Such a measurement system is
the contribution of this work and is explained in the following
subsection.

B. Contribution

The need for a new development of a flexible measurement
system is influenced by the limitations of common solutions.
As a result, the scenario of this work is based on a German
insurance companies SOA, which already uses Dynatrace as
a measurement solution [3].

Since the partner from the insurance industry is currently
restructuring and modernizing his business processes and
therefore, he needs a more flexible and generic approach to
integrate an external measurement system for monitoring and
analyzing the time behavior of his services. Additionally, a
more detailed analyzer component was required to process the
measured data.

So on the one hand, the approach has to be integrated in a
generic way with minimal interaction points within the SOA of
the partner from the insurance industry to guarantee a simple
integration during the continuous development process. But on
the other hand, the solution should offer a flexible and detailed
analyzer component.

This article will present our currently ongoing applied
research work. It extends our previous work from, mentioned
in [1]. Since as a whole it is still ’work in progress’, here we
will mostly focus on measurement concepts and an adequate
measurement model here.

The concrete presentation of the results and the evaluation
would be beyond the scope of this work. Therefore, it will
take place directly in the next publication, which will be in
the direct context of this work. This following publication is
currently in the process of submission to the conference ’The
Tenth International Conference on Advanced Service Com-
puting - SERVICE COMPUTATION 2018’ and will appear
there as soon as the acceptance is completed. In that case, the
evaluation of the measuring system will be explicitly discussed
there. Here in this work the preparatory presentation of the
concept of the QoS measuring system takes place.

This work is the extension of our previous publication
’Agent based Framework for QoS Measurement applied in
SOA’ [1]. In this regard, we provide much more concrete
technical details for our current prototype implementation.
Based on the previous publication, this work here shows in
detail how the required QoS parameter (the response time) is
measured.

In particular, we will present more details on service call
sequences and measurement within our framework (cf. Sec-
tion VI-C). In addition, more implementation details on soft-
ware, hardware and deployment of our prototype are presented
in the whole Section VI. Detailed QoS measurement results
will be presented in future work.

The required solution was defined by the following:

• generic approach to generate the measurement system,
• automatic integration of the measurement system into the

existing SOA,
• lose couplings within the existing SOA,
• flexible agent based approach,
• technology independent approach using standards

(XML),
• individual and customizable analyzer component.

As stated above, besides technical concepts, we will also
present some details mainly from our utilized application
scenario, which is based upon the ideas from the ’Check 24’
process. Within this process, different offerings for the same
kind of insurance are compared. These offerings typically ori-
gin from several insurance companies. For example, there are
different offerings for car insurances. Based on certain input
parameters, the end user eventually gets different insurance
offers by this process. The proposal service used by ’Check
24’ is a common service throughout the German insurance
sector and is implemented by various insurance companies.

This service can be called externally by applications such as
’Check 24’ through a common interface given by a so called
’BiPro specification’. BiPro is widely used throughout the
German insurance sector and the availability of these services
has a significant impact on competitiveness. Internally the
proposal service is, for example, used in the process ’Angebot

252

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



erstellen’ (’create proposal’) of the general German ’Ver-
sicherungsanwendungsarchitektur (VAA)’ (cf. [4]). The VAA
describes a set of standardized insurance processes working
within a generalized ’insurance application architecture’. Our
project partner has implemented a similar process for its own
agent’s respective customer portal.

The remainder of this paper is structured as follows: In
Section II we discuss some related work. Section III describes
our application scenario in some detail. In Section IV and
Section V our general Quality of Service (QoS) measurement
model and overall concepts are described. Section VI looks
at implementation details of our prototypic work. Finally,
Section VII concludes this paper and gives some outlook to
future work.

II. PRIOR AND RELATED WORK

In prior work, we already discussed several aspects of
the combination of SOA, Business Process Management
(BPM), Workflow Management Systems (WfMS), Business
Rules Management (BRM), and Business Activity Monitoring
(BAM) [5][6][7] as well as Distributed Event Monitoring and
Distributed Event-Condition-Action (ECA) rule processing
[8][9]. Building on this experience, we now address the area
of QoS measurement for combined BRM, BPM, and SOA
environments within the (German) insurance domain context.

Work related to our research falls into several categories.
We will discuss these categories in sequence.

General work on (event) monitoring has a long history (cf.
[10][11] or the ACM DEBS conference series for overviews).
Monitoring techniques in such (distributed) event based sys-
tems are well understood, thus such work can well contribute
general monitoring principles to the work presented here. This
also includes commercial solutions, such as the Dynatrace [3]
system or open source monitoring software, like for example,
the NAGIOS [12] solution. In these systems, there is however,
no focus on QoS measurement within SOAs. Also, they
usually do not take application domain specific requirements
into account (as we do with the insurance domain).

Active DBMS (ADBMS) offer some elements for use in
our work (see [13][14] for overviews). Event monitoring
techniques in ADBMSs are partially useful, but concentrate
mostly on monitoring ADBMS internal events, and tend to
neglect external and heterogeneous event sources. A major
contribution of ADBMSs is their very well defined and proven
semantics for definition and execution of Event-Condition-
Action (ECA) rules. This leads to general classifications for
parameters and options in ADBMS core functionality [14].
We may capture options that are relevant to event monitoring
within parts of our general event model. QoS aspects are
handled within ADBMS, for example, within the context of
database transactions. However, since ADBMSs mostly do
not concentrate on heterogeneity (and distribution), let alone
SOAs, our work extends research into such directions.

The closest relationship to our research work is which
directly combines the aspects QoS and SOA. Since 2002,
several articles fall into this category. However, in almost all

known articles, the SOA part focuses on WS-* technologies.
This is in contrast to our work, which takes the operational
environment of our insurance industry partners into account.

Examples of WS-* related QoS work include QoS-based
dynamic service bind [15][16], related WS-* standards such
as WS-Policy [17], and general research questions for QoS in
SOA environments [18].

Design aspects and models for QoS and SOA are addressed
in [15][19][20][21][22], SOA performance including QoS in
[23], and monitoring for SOA is discussed in articles like
[24][25][26][27].

While the above articles discuss several aspects of QoS
work including performance monitoring in SOA style environ-
ments, none of them takes a standards based insurance domain
into account. In contrast, however, we do so by ground-
ing our work on typical insurance services and processes –
the Check 24 service and the German ’Versicherungsanwen-
dungsarchitektur (VAA)’ (cf. [4]) – as well as in the German-
speaking countries (cf. [30]) frequently utilized ISO/IEC 9126
standard for our adjusted SOA quality model.

III. APPLICATION SCENARIO
Customers are using online platforms to compare the condi-

tions and proposals offered by different companies. The online
platform check24.com allows customers to compare different
insurance proposals. Therefore, the insurance companies need
to respond to those requests to be aware of potential customers
on such platforms. The underlying scenario for this work is a
service for calculating individual proposals for such online
platforms. This scenario is automatically requested by the
online customer information platform and needs to respond
in a timely manner. The business process, for calculating the
proposal, follows four steps:

• check input parameters for plausibility,
• call all additional relevant services to get required data,
• calculate the proposal based on internal business rules,
• deliver the proposal to the requesting online platform.
The partner from the insurance industry has already devel-

oped a distributed system to create and run such business pro-
cesses. This system uses the approach of SOA and integrates
various SOA-style services located across several locations.

Measuring the time behavior is a feasible approach to
maintain the overall system and scale it to changing market
demands to fulfill the required quality of such services (QoS).
The distributed system is designed with the concept illustrated
in Fig. 1.

The system part alpha is the enterprise service bus (ESB) of
the system, which is responsible to integrate the business pro-
cesses with further applications and services. These business
processes are parameterized by specific business rules, stored
in a business rule database.

The communication with this business rule database is
realized via web service calls. In general, alpha is the central
communication component of the system.

The system part beta is the current process engine to run the
business processes and is connected via JMS with alpha. These

253

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1: The application scenario

business processes are influenced by the stored business rules
and the business process data, which are stored in a separated
database.

This distributed system defines the scenario where several
services are parameterized, called and integrated (via alpha)
over several locations. The generic and XML-based measure-
ment concept of this work will use this scenario to measure
QoS-Parameters, especially the time behavior of services. The
specific measurement model is described in the next section.

IV. MEASUREMENT MODEL

The assessment of the QoS in Service-oriented Architec-
tures is based on a SOA Quality Model (SOA QM), which
combines characteristics and sub-characteristics in a multilevel
hierarchy. For this purpose, we adjusted the ISO/IEC-Standard
9126 to meet the SOA-specific requirements. Fig. 2 illus-
trates the characteristics, sub-characteristics and relationships
between these concepts. In our research work, we will focus
on the Time Behavior, which contributes to Efficiency.

Although ISO/IEC 9126 was revised by the ISO/IEC-
Standard 25010 (Systems and software engineering – Systems
and software Quality Requirements and Evaluation (SQuaRE)
– System and software quality models, cf. [28][29]) we use
ISO/IEC 9126 as a starting point because of its high degree of
awareness in German-speaking countries (cf. [30]). Moreover,
the German version of the ISO/IEC 25000 series has been
prepared by the German Institute for Standardization (DIN)
but is not yet available (cf. [31]).

Instead of applying the quality metrics division of SQuaRE
(i.e., ISO/IEC 2503x), our approach is based on the compre-
hensive ISO/IEC-Standard 15939 (cf. [28]). The basic model,
as found in similar form in the contribution of Garcia et al.
([32]), has been aligned and extended by quality requirements,
quality models, and some system components. In the following
subsections, we describe the main concepts of our SOA Mea-
surement Information Model (SOA MM) as shown in Fig. 4.

A. Information Need and Information Product

The determination of the QoS in a SOA is always demand-
driven, since both the specification (’What and how should
be measured?’), execution of the measurement itself and the

subsequent interpretation of the results can cause a significant
organizational and technical effort.

So, first of all, the Information Need with objectives, poten-
tial risks and expected problems has to be defined and docu-
mented properly. In terms of the application scenario presented
in Section III, the objective is to assess the performance of the
business process for calculating the offer in order to identify
and resolve problems in time.

B. Core measurement process

The Information Product is the result of the execution of the
Core Measurement Process as depicted in Fig. 3 (cf. [33]). The
Information Need provides the input for the sub-process Plan
the Measurement Process (planning stage) and sub-process
Perform the Measurement Process (execution stage) generates
the output, i.e., the Information Product. The process goal is
to satisfy the Information Need. All concepts presented below
directly or indirectly contribute to the Information Product.

C. Concepts of the planning stage

SOA Services are investigated concerning their QoS, is the
main focus of this research work. For this purpose, Quality
Attributes are measured. In this context, the Measurable Con-
cept outlines in an abstract way, how the attributes values are
determined to satisfy the required Information Needs. In doing
so, it references one or more sub-characteristics of the SOA
QM.

For the application scenario described in Section III, the
process performance is to be determined first and then evalu-
ated. The corresponding Measurable Concept is the calculation
of the processing time. To do this, instantiation of a process
and termination of the process instance are to be determined.
The process identification represents the Quality Attribute to
be measured, and the sub-characteristic, referenced by the
Measurable Concept, is the Time Behavior.

In order to implement the Measurable Concept and to
perform measurements of attributes, first of all Measures are
to be specified. A Measure assigns each Quality Attribute a
value on a Scale of a particular Type. The ISO/IEC-Standard
15939 provides 3 different types of Measures, namely Base
Measures, Derived Measures, and Indicators respectively.

A Base Measure specifies by its Measurement Method how
the value of a Quality Attribute is to be determined. It is always
atomic and therefore independent on other Measures.

A Derived Measure uses one or more Basic Measures or
other Derived Measures, whilst the Measurement Function
specifies the calculation method and thus the combination of
the Measures used.

For the application scenario illustrated in Section III, the
Basic Measures process instantiation tinst and process in-
stance termination tterm are specified. The identification of
the processes instance piID represents the Quality Attribute
measured by tinst and tterm. As the Measurement Method,
we select the time of the start and end event respectively. The

254

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 2: SOA Quality Model

Figure 3: Process for determining the QoS (cf. [33])

Derived Measure processing time of the instance TProc will
be calculated by the Measurement Function

TProc(piID) = ∆t = tterm(piID) − tinst(piID) (1)

Another Derived Measure R calculates the percentage of
the process instances within a given time period. Than there
is a check, if the processing time TProc exceeds twice the
standard deviation. R will be calculated by the Measurement
Function

R =
m

n
· 100 (2)

where n is the number of all process instances in the given
time period and m the number of process instances with

TProc ≥ 2·σ. The standard deviation σ is given by the formula

σ =

√
1

n
·
∑

1≤i≤n

(T i
Proc − TProc)2 (3)

Finally, an Indicator is a qualitative evaluation of Quality
Attributes, which directly addresses the issue raised in the
Information Needs. Indicators always use a nominal scale with
qualifying values and thus show if necessary action is needed
for further root cause analysis. An Indicator is derived from
other Quality Measures, i.e., Base and Derived Measures, and
Indicators. The combination of the Quality Measures used and
the method of calculation is based on an Analysis Model in
conjunction with Decision Criteria using thresholds and target
values.

For the application scenario illustrated in Section III, the
indicator adequacy of the processing time of all process
instances in a given time period SLoTProc(R) is based on
the Derived Measure R according to Table I:

TABLE I. ADEQUACY OF THE PROCESSING TIME

R SLoTProc

0% ≤ R < 3% high
3% ≤ R < 5% medium
5% ≤ R < 100% low

D. Concepts of the execution stage

After the concepts of the planning stage have been pre-
sented, now we explain the execution phase in brief (subpro-
cess Perform the Measurement Process, depicted in Fig. 3).
Section V will discuss their conceptual implementation in
more detail.

255

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The actual measuring procedure, i.e., the execution of the
instructions for determining the value of a Quality Attribute,
is called Measurement. Hereby, Measurement Results are cre-
ated, collected in a container, namely Data, which is inserted
into a Data Store.

The measurement system comprises different supporting
software components, which are conceptually presented in
Section V. The QoS Measurement performs the instructions
specified in the Measurement Method or Measurement Func-
tion respectively, to generate the Measurement Results for
further processing. The QoS Analyser performs the statistical
analysis and evaluation of the collected data and creates the
Information Product. The QoS Reporting makes the Informa-
tion Product available to the Measurement User (cf. Fig. 3).

E. QoS Measurement Information Model

We designed a domain-specific language to specify the
values of the concepts introduced above according to the
Information Need. This specification document is referred
to as QoS Information Model (QoS IM). The aim of this
approach is to automate the measurement process by the
generation of artifacts required by the QoS system to execute
a measurement.

The QoS IM consists of an abstract and a concrete section.
In the abstract section, the concepts of the Planning Stage
and partly the Execution Stage are specified. In the concrete
section, the implementation specific definitions are explained.
Since our QoS-System is based on a complex event processing
(CEP) approach, the specification of events, agents and rules
is subject of this section.

A sophisticated XML Schema was developed to realize the
domain-specific language. We opted for XML as a universally
accepted standard that is highly flexible, platform and vendor
independent and supported by a wide variety of tools. In a
follow-up project an XText-based tool will be developed that
generates the (XML) QoS IM from a (XText) source code.

Its semantic model is shown in Fig. 4. The following rules
for modeling apply:

• Concepts are mapped to XML elements (graphically
represented by UML classes).

• Details of a concept are mapped to XML attributes of
the owning element (graphically represented by UML
instance variables).

• If possible, relationships between concepts are mapped
to element hierarchies (graphically represented by UML
associations).

• Otherwise, they are mapped to constraints (i.e., keyrefs)
(graphically represented by UML dependencies).

V. MEASUREMENT CONCEPT

In Section IV, a QoS IM based upon a SOA QM is
described. To execute a specific QoS IM (and thus sub-process
’Perform the Measurement Process’) an execution platform is
needed. This platform and the underlying QoS architecture are
given in this section. First reasons for choosing this specific

architecture are discussed shortly. Furthermore, an overview
is shown, detailing in the central agent concept and CEP.

A. Design decisions

As described above, the goal of the measurement concept
is to provide the execution platform for a specific QoS IM.
Therefore, basic design criteria for the measurement concept
are derived from the QoS IM. Furthermore, quality criteria are
given, which also have to be considered in the architecture
design. These criteria are:

• measurement of Quality Attributes as described by QoS
IM,

• flexibility of measurement and computation,
• low impact (modification, performance, etc.) onto SOA

components.
The proposed Measurement Concept is based upon a general

architecture given in [34]. The basic idea is to separate the
measurement (e.g., sensors, agents, etc.) and ’analysis and
statistics’ functionality into different modules. This separation
opens the opportunity to cater each module to their specific
functional and quality requirements.

Overall, the given general architecture already fulfills the
requirement to measure Quality Attributes and provide the
needed evaluations to produce Measurement Results and In-
formation Products.

The measurement module has to provide the QoS System
with information about the observed service. To provide the
needed flexibility a sensor has to be placed into it. To keep the
impact onto the SOA at a low level, an agent based approach
was chosen. Agents capsule the needed parsing and compu-
tation and thus can be easily integrated into arbitrary SOA
modules. Furthermore, minimizing the performance impact
(through threading, non-blocking, etc.) can be integrated into
the agents.

The ’analysis and statistics’ module does not have these
strict requirements on performance impact. Flexibility of
computation and measurement execution is the main quality
requirement. Thus, a platform approach was chosen. Basically,
artifacts generated through the QoS IM are placed into the QoS
Platform and executed.

B. Overall system architecture

On a high level, the QoS System splits the QoS Measure-
ment Agents and further processing (QoS Platform) into dif-
ferent components. This approach allows to easily split these
components into different processes to comply with the quality
requirements. While the Measurement Agents (encapsulating
the agent concept) represents the client component, the server
component is represented by the QoS Platform and contains
the CEP engine and further analysis processing. Fig. 5 shows
a high level overview of important components and their
relationships.

The general purpose of the Measurement Agents is to
emit specific events based on the defined Base Measures.
As described in Section IV events are emitted, e.g., for
process instance instantiation/termination. In general, concepts

256

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 4: QoS Measurement Information Model (QoS MIM)

for agent implementation can be categorized by agent location
and time of execution (cf. [35] and [36]). To measure a specific
process instance, agents can be placed into corresponding SOA
service calls. Thus, Measurement Agents are only logically
placed into the QoS System component. One and currently
used approach is to use the concept of interceptors, which
offers a low modification impact and can deliver precise
Measurement Results.

The QoS Platform consist of several components, most
notably the QoS Measurement and QoS Analyzer. In general,
the purposes of these modules are to collect, clean and
compute the emitted events and provide further analysis of
stored Measurement Results (specifically stored as complex
events).

Before any event is given to the Measurement Method, it
will be handled by the control module. Purpose of this module
is event routing, general cleaning steps and an optional filter
step. Cleaning (or formatting) events in the analyzer is needed
because Measurement Agents are placed in the monitored
system, thus shall minimize their performance impact. The
Measurement Method is implemented as a CEP rule executed
by the engine and emits complex events for further near real-
time processing and long term analysis.

The QoS Analyzer module provides a basis for statisti-
cal analysis and evaluations. Every complex event is stored
into a Data Store implemented as a relational database. The
different analysis and evaluations defined by Derived Mea-
sures and Indicators are implemented through SQL and plain
Java. Furthermore, the module provides an interface to the
computed Information Product. As of now, this interface is
not further defined. A comprehensive way to define a QoS
specific interface is given in [37]. It is defined upon the
ISO/IEC 25010 quality standard and specifically includes the
ability to describe relationships between QoS attributes. This
corresponds with our presented QoS IM approach.

C. Applying the described measurement concept

In Fig. 6, the given measurement concept (QoS Platform)
is applied onto the application scenario, thus providing the
missing link between the QoS IM and the insurance based
application scenario. In this example, a simplified scenario is
used consisting only of an external ’Check24’ mock-up service
(representing a simple consumer), the central ESB and the
proposal service (which represents the producer). The task of
the measurement model and thus the concept is to measure the

257

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 5: The QoS architecture

processing time of this service and to compute the Information
Product for further evaluations.

Figure 6: Applied QoS architecture

To measure this service the Measurement Agents, defined
through base measures, are placed directly into the ESB. This
offers a measurement independent of service location and
different load balancing scenarios. To minimize the integration
effort, functionality given by Spring Integration is extensively
used (especially the interceptors for message queues). In this
simplified example, base measures (and thus the agents) only
determine service call start / end times and announces these

Figure 7: Use case diagram for Proposal Service

to the QoS Platform. Furthermore, the agents try to minimize
their performance impact by using non-blocking techniques
and performing only necessary parsing steps (e.g., service call
IDs, etc.). These will be shown in detail in further publications.

As described above, the QoS Platform performs further
cleaning and processing steps to compute the QoS IM Indi-
cators (SLoTProc(TProc)) and provides these to downstream
systems (e.g., reporting, presentation, load balancing, etc.).

VI. IMPLEMENTATION DETAILS

Based on the above conceptual groundwork, this section
contains a deeper insight into several implementation areas of
the QoS System. First, a description of the measured services
is given, providing further information about the application
scenario. Second, the process of applying a specific QoS IM is
shown. After that a detailed walk through of a QoS Event call
is presented, describing the different stages and components
that are passed through. Furthermore, the distribution of the
components is shown, which culminates into a testable runtime
environment.

A. Proposal Service

In Section III, the overall application scenario is described.
Detailing on this a use case diagram is given in Fig. 7. When
a user (such as a customer) requests a proposal for a new
insurance contract, some information (birthday, coverage, etc.)
has to be given to complete the request. Furthermore, certain
parameters can be adjusted to gain better results.

After initial parameter checks (validity, completeness, etc.),
requests are passed to different companies by SOAP web
service calls containing all entered information. Responses
(computed proposals) are only considered when they arrive in
a timely manner to provide acceptable user experience. This
imposes a hard boundary for the QoS Measurement because
it has a considerable business impact in case of failures. If
a customer decides to sign a new contract, further business
processes (e.g., prepare an insurance offer) are started.

To evaluate the general approach and the QoS Platform,
a Proposal Service is needed. Using an actual service of
the insurance company wasn’t possible due to the potential
business impact. Also the implementation of a comprehensive
business logic was considered to be too complex and thus
abandoned. On the other hand, only special information (e.g.,

258

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 8: Interface of the (Mock) Proposal Service

correlation id) of the SOA (SOAP call) is needed to deter-
mine the Indicator. The Proposal request and result data isn’t
considered. Therefore, we decided to develop a Mock Service,
which also provides the opportunity to customize the desired
load behaviour.

The interface of the Mock Proposal Service is given in
Fig. 8. It consists of a method returning the monthly cost of
the contract to the customer. To calculate the costs, different
information is required. For reasons of simplicity, the number
of parameters was reduced to four attributes of a customer,
in particular her/his birth year, insurance coverage, duration
of the contract, and the marital status. Furthermore, these
parameters are used in the Mock Service to control the load
behaviour.

B. Relationship between IM and QoS platform

In Fig. 9, the general process for applying a specific IM by
the QoS Platform is shown. It is divided into different phases.
Not all phases have to be executed on each change of the IM.

The first step is to develop an IM for a specific Information
Need. As described before, an IM consists of abstract and
concrete parts. To satisfy the Information Need, an Indicator
and thus different Derived and Basic Measures have to be
defined. This represents the first phase. In addition to the
abstract part, every Measure and Indicator contains a concrete
part. The specification of these parts represents the second
phase. In order to develop concrete parts, specific technologies
and frameworks have to be chosen, which have to be provided
by the QoS Platform or added to it if missing.

Figure 9: General Process of applying a specific IM

The goal of next phase is to develop the different Gener-
ators. This can be skipped if fitting Generators are already
developed. The QoS Platform is designed around the concepts
of extensibility and modularization. The same ideas were
significant when designing the QoS Generator. In general, it
provides a parser step to build an optimized in-memory model
of an IM. Following this step the Generators are executed.
They use the concrete and abstract parts to generate usable

Figure 10: Determining an Indicator

artifacts (e.g., Java classes, SQL queries, etc.). A deeper
insight into the QoS Generator itself and the concrete parts
will be provided in future articles.

After the generation phase, the goal of the last phase
is to build a specific QoS Platform by the integration of
artifacts. This is done by developing the necessary bridges and
transformations between an artifact and the interfaces (e.g.,
Event interface) of the platform. Furthermore, the integration
of the agents into the SOA is part of this stage. After the last
phase is completed, the QoS System can be deployed.

C. Computing an Indicator

The computation of an Indicator is split into two phases.
Each phase is initiated by a particular system and refers to
different sections of the QoS IM. Furthermore, a specific stage
is executed by diverse modules of the QoS System.

The first phase to compute an Indicator is shown in Fig. 11.
It details the creation of base events and the persistence of the
resulting complex events for long term analysis. This step is
executed by the Measurement Agents and QoS Measurement
modules and focuses on short term computations.

The computation of an Indicator starts with a call of the
corresponding domain service (process, business, or basic
service) initiated by a service consumer. As shown in Fig. 11
currently the client is a JMeter based test client, which issues
a SOAP call against the Proposal Service. This call is routed
by the ESB to a corresponding service handler by passing
through several (Spring based) message queues. A QoS Agent
is attached to the ProposalRequestChannel as a message queue
interceptor which is shown by the handleMessage(request)
method call. All requests are parsed inside an Agent and rele-
vant data (e.g., service call id, timestamp, etc.) are combined
into raw event data package. A call of the QoS Measurement
endpoint of the QoS Platform completes the task of an Agent.

Inside the Measurement module, a new QoS Event is created
by formatting (and optionally filtering) the raw event data.
Subsequently, this new event is inserted into the CEP Engine.
Only if corresponding start and end QoS Events are inserted,
the CEP rule is fired and a defined Measurement Method is
executed. The method execution results in a complex event /

259

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



QoS Event which is send to the QoS Analyzer module. After
persisting the event by the module, the first part is completed.

The second phase to compute an Indicator is given in
Fig. 10. It includes the computation of further Derived Mea-
sures and concludes with the calculation of an Indicator. This
step is executed by the QoS Analyzer module and focuses on
long term analyses. Actually, this phase is executed only if
it is requested by a downstream system (e.g., a system for
alerting). For this, the downstream system sends a REST call
to the Analyzer module of the Platform.

To get the current Indicator value, several Derived Measures
have to be computed first. This is performed by the Derived
Measure module. For this application scenario, the Indicator
depends on several Measures based upon the standard devia-
tion and number of ’failed’ requests.

First, the percentage of requests with a duration above
the doubled standard deviation is computed as shown by the
getSTDevPercentage() method call. It is done by a combina-
tion of Java code and other Derived Measures. The Measures
(e.g., getEventCount() method call) are computed by SQL
queries against the Data Store. The percentage value is then
computed by Java code. The getFailedRequestsCount() method
call includes a SQL query. All long term analysis is performed
by SQL queries and designed to be based on a specific time
frame. The Indicator itself is determined via a Java based
decision table which is created by the QoS Generator. The
different computation approaches offer the required flexibility
for various types of Indicators.

D. Deployment

Fig. 12 shows the current distribution of nodes and compo-
nents within the QoS-aware SOA. The ESB and the Proposal
Service are representing the core of the system. They are
deployed in a combined .war file into a Tomcat web appli-
cation server. Furthermore, it contains the Spring framework
dependencies and a company-specific enterprise framework.
The Measurement Agents are part of the Framework.jar.
Also several configuration files are part of the .war, handling
message routing, database access and further functions. The
Service Schema .jar file bundles required schemas and classes
to allow SOAP communication.

The Proposal Service (e.g., the Service handler and domain
logic) itself is part of the ESB Service .jar file. All necessary
configurations for an Agent to intercept a service request
are part of this file. The corresponding database schema
(e.g., for business objects, process and service call relevant
data) is deployed into a DB2 database. A JMeter client was
used during development and will be applied for further load
testing. The Config.xml contains the SOAP request call and
further JMeter configuration. The QoS Platform is deployed as
a .war file into another Tomcat application server, separating
the measured system from the analysis modules.

Table II summarizes our software versions in use. Especially
the versions of the OpenSuse virtual machines are based on
requirements of our partners from the insurance industry to
achieve certain compatibility. The JMeter virtual machine is

only relevant for functional testing. Thus, matching versions
are irrelevant.

TABLE II. USED SOFTWARE PRODUCTS

Virtual Machine Software versions

JMeter Ubuntu VM Apache JMeter: 3.2, Oracle Java:
1.8.0.131, Ubuntu: 14.04.5 LTS

ESB OpenSuse VM Apache Tomcat: 6.0.44, Oracle Java:
1.6.0.45, OpenSuse: 13.2

DB2 OpenSuse VM DB2: 10.5.0.5, OpenSuse: 13.2
QoS Platform Ubuntu VM Apache Tomcat: 6.0.45, Oracle Java:

1.6.0.45, Ubuntu: 14.04.5 LTS

For development and initial testing, the QoS-aware SOA
is deployed into virtual machines for several reasons. First,
this deployment provides an easy handover procedure with
the partner companies. Second, a ’clean’ environment for
development could be achieved, which helps especially with
the database and ESB parts. Third, the distribution of these
VMs on a more sophisticated hardware platform is easier. This
is the next step and will be followed with more complex tests
and first measurements in our ongoing work.

VII. CONCLUSION AND FUTURE WORK

The presented approach for monitoring a distributed SOA
environment is a promising path to take: Our SOA QM is
aiming to follow the ISO/IEC-Standard 15939 (cf. [33]), which
enables a wide range of use cases. The Measurement Concept
outlines an execution platform for the specific QoS IM, which
should cause minimal impact on the SOA environment. The
separation of Measurement Agents and QoS-Analyzer allows
lightweight agents on the one hand and a very capable analyzer
component on the other hand.

Our ongoing work of applying the QoS System to an
application scenario is very much relevant to our partner in
the insurance industry (the ’Check 24 process’). It will provide
evidence of the practical usability of the created framework. In
the present article, the framework and the corresponding plat-
form are applied onto a basic, business relevant scenario (the
Proposal Service). Furthermore, it is planned to apply these
techniques to the more complex process ’Angebot erstellen’
(’create individual proposal’) of the VAA, thus implementing
a more complex scenario.

It is expected that the monitoring system will help to
discover potential bottlenecks in the current system design of
our partner’s distributed services and therefore creating high
value in the process of solving these issues.

In future work, the actual measurement and analysis of
the results will be done. It is also planned to apply these
results onto cloud based environments. Moreover, a further
sub-division or extraction from the current coarse granular
SOA services into more fine-grained micro-services ’where
it makes sense’, (e.g., to allow for a better scalability of
individual micro-services) will be investigated by us in future
work.

260

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 11: Integration and sequence of a QoS Event call

Figure 12: Deployment of the QoS system

REFERENCES

[1] A. Hausotter, A. Koschel, J. Busch, M. Petzsch, and Malte Zuch, ”Agent
based Framework for QoS Measurement Applied in SOA,” in: The Ninth
International Conferences on Advanced Service Computing (Service
Computation), IARIA, Athens, Greece, pp. 16-23, 2017.

[2] J. Brutlag, ”Speed Matters for Google Web Search,” Google Inc.,

Mountain View, 2009, [Online]. URL: http://services.google.com/fh/
files/blogs/google delayexp.pdf [accessed: 2016-12-26].

[3] Dynatrace LLC, ”Dynatrace Application Monitoring,” [Online]. URL:
https://www.dynatrace.com/de/products/application-monitoring.html
[accessed: 2016-12-26].

[4] GDV (Gesamtverband der Deutschen Versicherungswirtschaft e.V. –
General Association o.t. German Insurance Industry), ”Die Anwen-
dungsarchitektur der Versicherungswirtschaft: Das Objektorientierte
Fachliche Referenzmodell (The application architecture of the German
insurance business – The functional object-oriented reference model”,
VAA Final Edt. Vers. 2.0, 2001, [Online]. URL: http://www.gdv-online.
de/vaa/vaafe html/dokument/ofrm.pdf [accessed: 2017-01-11].

[5] C. Gäth et al., ”Always Stay Agile! – Towards Service-oriented In-
tegration of Business Process and Business Rules Management,” in:
The Sixth International Conferences on Advanced Service Computing
(Service Computation), IARIA, Venice, Italy, 2014, pp. 40-43.

[6] A. Hausotter, C. Kleiner, A. Koschel, D. Zhang, and H. Gehrken, ”Al-
ways Stay Flexible! WfMS-independent Business Process Controlling in
SOA,” in: IEEE EDOCW 2011: Workshops Proc. of the 15th IEEE Intl.
Enterprise Distributed Object Computing Conference, IEEE: Helsinki,
Finnland, 2011, pp. 184-193.

[7] T. Bergemann, A. Hausotter, and A. Koschel, ”Keeping Workflow-
Enabled Enterprises Flexible: WfMS Abstraction and Advanced Task
Management,” in: 4th Int. Conference on Grid and Pervasive Computing
Conference (GPC), 2009, pp. 19-26.

[8] A. Koschel and R. Kramer, ”Configurable Event Triggered Services for
CORBA-based Systems,” Proc. 2nd Intl. Enterprise Distributed Object
Computing Workshop (EDOC’98), San Diego, U.S.A, 1998, pp. 1-13.

[9] M. Schaaf, I. Astrova, A. Koschel, and S. Gatziu, ”The OM4SPACE
Activity Service - A semantically well-defined cloud-based event notifi-
cation middleware,” in: IARIA Intl. Journal On Advances in Software,
7(3,4), 2014, pp. 697-709.

[10] B. Schroeder, ”On-Line Monitoring: A Tutorial,” IEEE Computer, 28(6),
pp. 72-80, 1995.

[11] S. Schwiderski, ”Monitoring the Behavior of Distributed Systems,”
PhD thesis, Selwyn College, University of Cambridge, University of
Cambridge, Computer Lab, Cambridge, United Kingdom, 1996.

[12] Nagios.ORG, ”Nagios Core Editions,” [Online]. URL: https://www.
nagios.org/ [accessed: 2016-12-26].

[13] N. W. Paton (ed.), ”Active Rules for Databases,” Springer, New York,
1999.

[14] ACT-NET Consortium, ”The Active DBMS Manifesto,” ACM SIGMOD
Record, 25(3), 1996.

[15] M. Garcia-Valls, P. Basanta-Val, M. Marcos, and E. Estévez, ”A bi-
dimensional QoS model for SOA and real-time middleware,” in: Intl.
Journal of Computer Systems Science and Engineering, CLR Publishing,
2013, pp. 315-326.

[16] V. Krishnamurthy and C. Babu, ”Pattern Based Adaptation for Service
Oriented Applications,” in: ACM SIGSOFT Softw. Eng. Notes 37,
2012(1), 2012, pp. 1-6.

261

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[17] T. Frotscher, G. Starke (ed.), and S. Tilkov (ed.), ”Der Webservices-
Architekturstack,” in: SOA-Expertenwissen, Heidelberg, dpunkt.verlag,
2007, pp. 489-506.

[18] F. Curbera, R. Khalaf, and N. Mukhi, ”Quality of Service in SOA
Environments. An Overview and Research Agenda,” in: it - Information
Technology 50, 2008(2), 2008, pp. 99-107.

[19] G. Wang, A. Chen, C. Wang, C. Fung, and S. Uczekaj, ”Integrated
Quality of Service (QoS) Management in Service-Oriented Enterprise
Architectures,” in: Proceedings of the 8th IEEE Intl. Enterprise Dis-
tributed Object Computing Conference (EDOC’04), Washington DC,
USA, IEEE, 2004, pp. 21-32.

[20] S.W. Choi, J.S. Her, and S.D. Kim, ”QoS Metrics for Evaluating Services
from the Perspective of Service Providers,” in: Proc. of the IEEE
International Conference on e-Business Engineering, Washington DC,
USA : IEEE Computer Society (ICEBE’07), 2007, pp. 622-625.

[21] M. Varela, L. Skorin-Kapov, F. Guyard, and M. Fiedler, ”Meta-Modeling
QoE”, PIK-Praxis der Informationsverarbeitung und Kommunikation,
2014, Vol. 37(4), pp. 265-274.

[22] Z. Balfagih and M.F. Hassan, ”Quality Model for Web Services from
Multi-stakeholders’ Perspective,” in: Proceedings of the 2009 Inter-
national Conference on Information Management and Engineering,
Washington DC, USA : IEEE Computer Society (ICIME’09), 2009, pp.
287-291.

[23] R.W. Maule and W.C. Lewis, ”Performance and QoS in Service-Based
Systems”, Proc. of the 2011 IEEE World Congress on Services, IEEE
Computer Society, 2011, pp. 556-563.

[24] F. Rosenberg, C. Platzer, and S. Dustdar, ”Bootstrapping Performance
and Dependability Attributes of Web Services,” in: Proc. International
Conference on Web Services (ICWS’06), 2006, pp. 205-212.

[25] M. Schmid, J. Schaefer, and R. Kroeger, ”Ein MDSD-Ansatz zum QoS-
Monitoring von Diensten in Serviceorientierten Architekturen,” in: PIK
Praxis der Informationsverarbeitung und Kommunikation, 31 (2008) 4,
2008, pp. 232-238.

[26] B. Wetzstein et al., ”Monitoring and Analyzing Influential Factors of
Business Process Performance,” in: Proc. IEEE Intl. Enterprise Dis-
tributed Object Computing Conf. (EDOC’09), 2009, pp. 141-150.

[27] S.M.S. da Cruz, R.M. Costa, M. Manhaes, and J. Zavaleta, ”Monitoring
SOA-based Applications with Business Provenance”, Proc. of the 28th
Annual ACM Symposium on Applied Computing (ACM SAC), ACM,
2013, pp. 1927-1932.

[28] ISO - International Organization for Standardization (ed.), ”ISO/IEC
25010:2011 - Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software
quality models”, 2011.

[29] M. Azuma, ”SQuaRE: the next generation of the ISO/IEC 9126 and
14598 international standards series on software product quality, ” in:
Proc. of European Software Control and Metrics (ESCOM), 2001, pp.
337-346.

[30] H. Balzert, ”Lehrbuch der Softwaretechnik: Softwaremanagement”,
Springer Spektrum, Heidelberg, 2008.

[31] DIN NIA, ”ISO/IEC 25000 System und Software-Engineering -
Qualitätskriterien und Bewertung von System- und Softwareprodukten
(SQuaRE - Leitfaden für SQuaRE,” [Online]. URL: http:
//www.din.de/de/mitwirken/normenausschuesse/nia/normen/wdc-beuth:
din21:204260933 [accessed: 2017-01-01].

[32] F. Garcia et al., ”Towards a consistent terminology for software mea-
surement,” in: Information and Software Technology, vol. 48, 2006, No.
8, pp. 631-644.

[33] ISO - International Organization for Standardization (ed.), ”ISO/IEC
15939:2007 - Systems and software engineering - Measurement pro-
cess,” 2007.

[34] A. Wahl, A. Al-Moayed, and B. Hollunder, ”An Architecture to Measure
QoS Compliance in SOA Infrastructures,” Service Computation, 2010,
pp. 27-33.

[35] E. Oberortner, S. Sobernig, U. Zdun, and S. Dustdar, ”Monitoring
Performance-Related QoS Properties in Service-Oriented Systems: A
Pattern-Based Architectural Decision Model,” EuroPLoP, 2011, pp. 1-
37.

[36] E. Oberortner, U. Zdun, and S. Dustdar, ”Patterns for Measuring
Performance-related QoS Properties in Service-oriented Systems,” Pat-
tern Languages of Programs Conference, 2010, pp. 1-21.

[37] L. Lavazza, S. Morasca and D. Tosi, ”Enriching Specifications to
Represent Quality in Web Services in a Comprehensive Way,” IEEE

Symposium on Service-Oriented System Engineering, 2015, pp. 203-
208.

262

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


