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Abstract—Allen’s interval algebra is a calculus for temporal
reasoning that was introduced in 1983. Reasoning with quali-
tative time in Allen’s full interval algebra is nondeterministic
polynomial time (NP) complete. Research since 1995 identified
maximal tractable subclasses of this algebra via exhaustive
computer search and also other ad-hoc methods. In 2003, the
full classification of complexity for satisfiability problems over
constraints in Allen’s interval algebra was established alge-
braically. Recent research proposed scheduling based on the
Fishburn-Shepp correlation inequality for posets. This article first
reviews Allen’s calculus and surrounding computational issues in
temporal reasoning. We then go on to describe three potential
temporal-related application areas as candidates for scheduling
using the Fishburn-Shepp inequality. We also illustrate through
concrete examples, and conclude the importance of Fishburn-
Shepp inequality for the suggested application areas that are the
development of smart homes, intelligent conversational agents
and in physiology with emphasis during time-trial physical exer-
cise. The Fishburn-Shepp inequality will enable the development
of smart type devices, which will in turn help us to have a better
standard of living.

Keywords—Allen’s interval algebra; artificial intelligence; qual-
itative temporal reasoning; scheduling; smart-type reasoning.

I. INTRODUCTION

The study of problems involving temporal information or
constraints can yield ornate patterns and structures [1]. Tempo-
ral reasoning is a mature research endeavor and arises naturally
in numerous diverse applications of artificial intelligence, such
as: planning and scheduling [2], natural language processing
[3], diagnostic expert systems [4], behavioural psychology
[5], circuit design [6], software tools for comprehending the
state of patients in intensive care units from their temporal
information [7], business intelligence [8], and timegraphs, that
is graphs partitioned into a set of chains supporting search,
which originated in the context of story comprehension [9].

Allen [10] introduced an algebra of binary relations on
intervals (of time), for representing and reasoning about time.
These binary relations, for example before, during, meets,
describe qualitative temporal information, which we will be
concerned with here. The problem of satisfiability for a set
of interval variables with specified relations between them is
that of deciding whether there exists an assignment of intervals
on the real line for the interval variables, such that all of the

specified relations between the intervals are satisfied. When the
temporal constraints are chosen from the full form of Allen’s
algebra, this formulation of satisfiability problem is known
to be NP-complete. However, reasoning restricted to certain
fragments of Allen’s algebra is generally equivalent to related
well-known problems such as the interval graph and interval
order recognition problems [11], which in turn find application
in molecular biology [12][13][14].

The scope of this paper is to explore applications of Allen’s
interval algebra in the context of smart environments. Further,
we combine theory from correlation inequalities with temporal
reasoning concepts targeted towards smart-type scheduling
applications. The inequality of interest is the Fishburn-Shepp
inequality.

This paper is structured as follows: Section II, we describe
various applications in temporal reasoning that include appli-
cations in smart homes, applications in intelligent conversa-
tional agents, and also applications in exercise physiology,
followed by Section III, which describes conclusions and
future work.

A. Allen’s Interval Algebra

Allen’s [10] calculus for reasoning about time is based on
the concept of time intervals together with binary relations on
them. In this approach, time is considered to be an infinite
dense ordered set, such as the rationals R, and a time interval
X is an ordered pair of time points (X−, X+) such that X− <
X+.

Given two time intervals, their relative positions can be
described by exactly one of the members of the set B of 13
basic interval relations, which are depicted in Table I; note
that the relations X− < X+ and Y − < Y + are always valid,
hence omitted from the table. These basic relations describe
relations between definite intervals of time. On the other hand,
indefinite intervals, whose exact relation may be uncertain, are
described by a set of all the basic relations that may apply.

The universe of Allen’s interval algebra consists of all the
binary relations on time intervals, which can be expressed as
disjunctions of the basic interval relations. These disjunctions
are written as sets of basic relations, leading to a total of
213 = 8192 binary relations, including the null relation Ø (also
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TABLE I. THE SET B OF THE THIRTEEN BASIC QUALITATIVE
RELATIONS DEFINED BY ALLEN [15].

Basic Interval Relation Symbol Endpoint Relations
X precedes (before) Y p (≺) X+ < Y −

Y preceded-by (after) X p ^ (�)
X meets Y m X+ = Y −

Y met-by X m ^
X overlaps Y o X− < Y − < X+ < Y +

Y overlapped-by X o ^
X during Y d X− > Y −, X+ < Y +

Y includes X d ^
X starts Y s X− = Y −, X+ < Y +

Y started-by X s ^
X finishes Y f X− > Y −, X+ = Y +

Y finished-by X f ^
X equals Y ≡ X− = Y −, X+ = Y +

denoted by ⊥) and the universal relation B (also denoted by
>). The set of all binary relations 2B is denoted by A; every
temporal relation in A can be defined by a conjunction of
disjunctions of endpoint relations of the form X < Y,X = Y
and their negations.

The operations on the relations defined in Allen’s algebra
are: unary converse (denoted by ^), binary intersection
(denoted by ∩) and binary composition (denoted by ◦), which
are defined as follows:

∀ X,Y : Xr^Y ↔ Y rX
∀ X,Y : X(r

⋂
s)Y ↔ XrY

∧
XsY

∀ X,Y : X(r ◦ s)Y ↔ ∃Z : (XrZ
∧

ZsY ),

where X,Y, Z are intervals, and r, s are interval relations.
Allen [10] gives a composition table for the basic relations.

Fundamental reasoning problems in Allen’s framework have
been studied by a number of authors, including Golumbic and
Shamir [16][17], Ladkin and Maddux [18], van Beek [19] and
Vilain and Kautz [20].

A graph is an ordered pair G = (V,E) comprising a set
V of vertices together with a set E of edges, which are 2-
element subsets of V ; if these subsets comprise ordered pairs
of vertices then the graph is said to be directed. The following
example illustrates a directed constraint graph expressing
indefinite qualitative temporal information.

Example 1.1:

Consider the following CSP (constraint satisfaction prob-
lem) where the constraints are the relations of Allen’s interval
algebra, and each Ji, say job to be scheduled, is a time interval
of the form (X−, X+).

J2

J1 J3

{m} {≡, s, o}

{p}

This temporal constraint satisfaction problem has a unique
solution as follows:

J1 J2
| | |

J3
| |

In contrast, the following CSP has no solution.

J2

J1 J3

{p} {p}

{p}

B. Subclasses of Allen’s Interval Algebra

In this section we consider restricted temporal reasoning
problems in which the relations are chosen from specified
subsets of the set of all temporal relations on intervals, A. Note
that there are 2|A| such subsets, that is 28192, or approximately
102466 – clearly a massive combinatorial issue.

For every subset Γ ⊆ A of temporal relations, the corre-
sponding restricted satisfiability problem ISAT(Γ) is equivalent
to CSP(Γ) - hence the complexity of ISAT(Γ) can be obtained
via the complexity of CSP(Γ).

We now consider some well-known tractable subclasses of
Allen’s algebra.

Example 1.2 (The continuous endpoint class, C):
This class includes all temporal relations, which may be

defined using conjunctions of clauses of endpoint relations of
the form x = y, x ≤ y and x 6= y, such that (1) there are only
unit clauses, and (2) for each unit clause x 6= y, the clause
form also contains a unit clause of the form x ≤ y or y ≤ x.

It contains 83 relations, including {d, o, s},
{s^, o^, ≡, f}, and {d^, f^, o, m, p}, (as
well as the null relation, ⊥). For example, the relation
{d, o, s} is defined by the following conjunction of endpoint
relations (see Table I):

{(X− ≤ X+), (X− 6= X+), (Y − ≤ Y +), (Y − 6= Y +),
(X− ≤ Y +), (X− 6= Y +), (Y − ≤ X+), (X+ 6= Y −),
(X+ ≤ Y +), (X+ 6= Y +)}.

The continuous endpoint class was first described and
shown to be tractable by Vilain, Kautz and van Beek
[21], and subsequently described by Ligozat in terms of
“convex relations” with respect to a lattice representation
[22]. This subclass has the computational advantage that the
path-consistency method solves ISI(C) [23], [24], [21].

Example 1.3 (The pointisable class, P):
This slight generalization of class C is defined in the same

way as C, but without the condition (2). It contains 188
relations, including all relations in C together with (non-
convex) relations such as {d, o}, {d^, o^, f^, f}, and
{d^, f^, o, p}.
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This class of temporal relations was first described and
shown to be tractable by Ladkin and Maddux [18] and studied
by van Beek and Cohen [24]. Although path-consistency is not
sufficient for solving ISI(P) [23], it is for deciding ISAT(P)
[18], [20]. Van Beek [23], [25] and van Beek and Cohen [24]
give algorithms for solving ISI(P) in O(n4) time; van Beek
specifies an algorithm for deciding ISAT(P) in O(n2) time
[25].

Example 1.4 (The ORD-Horn class, H):

This class is a strict superset of P , defined using
conjunctions of disjunctions of the endpoint relations in P ,
and where each disjunction contains at most one relation,
which is not of the form x 6= y. That is, the relations permit
an ORD-clause form containing only clauses with at most
one positive literal. It contains 868 relations, including all
those in P together with relations such as {f^, s, o}, whose
endpoint relations are given by the set:

{(X− ≤ X+), (X− 6= X+), (Y − ≤ Y +), (Y − 6=
Y +), (X− ≤ Y −), (X− ≤ Y +),

(X− 6= Y +), (Y − ≤ X+), (X+ 6= Y −), (X+ ≤
Y +), (X− 6= Y − ∨ X+ 6= Y +)}.

Nebel and Bürckert [15] identified this, via machine enu-
meration, to be the first known maximal tractable subclass,
and, the unique greatest tractable subclass amongst those that
contain all 13 basic relations – comprising over 10% of the
full algebra. Further, they established that the path-consistency
method is sufficient for deciding ISAT(H), implying its wider
applicability [15].

Ligozat [26] showed that any subalgebra which contains
all basic relations, and a relation, which is not ORD-
Horn, will contain at least two of four “corner” relations:
{d^, s^, o^, f, d}, {o^, s^, d^, f^, o} and their
converses.

Example 1.5 (Starting point and ending point algebras):

Drakengren and Jonsson [27] discovered a large family of
maximal tractable subclasses, “starting point” and “ending
point” algebras, denoted S(b), S∗, E(b), E∗ - the parameter b
is chosen from specified basic relations. The six algebras S(b)
& E(b) contain 2312 elements each, and S? & E? contain
1445 elements each. For brevity we only define S(b); for E(b),
S? and E? see [27].

Let rs = {�, d, o^, m^, f}, and let
re = {≺, d, o, m, s}. Then, for b ∈ {�, d, o^},
define S(b) to be the set of relations r such that:

{b, b^} ⊆ r
{b} ⊆ r ⊆ rs ∪ {≡, s, s^}

{b^} ⊆ r ⊆ r^s ∪ {≡, s, s^}
r ⊆ {≡, s, s^}.

The algebras allow for metric constraints on interval starting
or ending points.

Initially, various computer-assisted exhaustive searches led
to a classification of complexity within parts of Allen’s algebra

[27], [28], [29]. For further progress, it was understood that
theoretical studies of the structure of Allen’s algebra would be
necessary, since using these methods to obtain a classification
would require dealing with more than 1050 individual cases -
clearly not feasible.

We proceed to consider an algebraic approach to the char-
acterisation of tractable subclasses of relations.

C. Algebraic Closure Properties of Constraints

Jeavons et al. [30] developed a theory of algebraic closure
properties of constraint relations, which can be used to dis-
tinguish between sets of relations, which give rise to tractable
CSPs and those which give rise to NP-complete CSPs. In this
theory the significant algebraic properties of a relation are
the operations under which it is closed: in the sense of the
following definition.

Definition 1.1: [30] Let R be an n-ary relation over a
domain D, and let ϕ : Dk → D be a k-ary operation
on D. The relation R is said to be closed under ϕ if,
for all t1, t2, . . . , tk ∈ R, ϕ(t1, t2, . . . , tk) ∈ R, where
ϕ(t1, t2, . . . , tk) =
〈ϕ(t1[1], t2[1], . . . , tk[1]), ϕ(t1[2], t2[2], . . . , tk[2]), . . . ,
ϕ(t1[n], t2[n], . . . , tk[n])〉.

The algebraic approach to tractability refers to special prop-
erties of operations including: idempotent, constant, unary,
projection, semiprojection, majority, affine, or ACI (associa-
tive, commutative & idempotent) - details in [30].

Further theoretical advances followed. In 2003, Krokhin et
al. [31] completed the analysis of complexity for satisfiability
problems expressed in Allen’s algebra by showing that all
known maximal subclasses were the only forms of tractability
within this interval algebra: Allen’s algebra contains exactly
eighteen maximal tractable subalgebras and that reasoning
within any subset not included in one of these is NP-complete.

Their purely analytical method makes extensive use of the
operations defined in the algebra (converse, intersection and
composition), while exploiting the fact that tractability of a
subalgebra is a pertinent hereditary property in Allen’s algebra.
Importantly, both the result and the algebraic method can be
used to classify the complexity in other temporal and spatial
formalisms.

See [32] for a fuller account of this survey of temporal
reasoning. The discussion of complexity and related compu-
tational issues leads naturally to the next section involving
heuristics.

D. Posets and the Fishburn-Shepp Inequality

We now consider novel research proposed in [32], namely,
to specify heuristics for scheduling based on representing a
collection of intervals of time with constraints as a poset, and
applying the Fishburn-Shepp inequality to guide a scheduling
algorithm. In [32], applications are sought for this approach:
we address this first step here by describing potential appli-
cations, which are also related to smart-type reasoning. First,
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we commence with overviews of the scheduling problem and
the Fishburn-Shepp inequality.

Generally, a schedule of tasks (or simply schedule) is the
assignment of tasks to specific time intervals of resources,
such that no two tasks occupy any resource simultaneously
– additionally, a requirement can be that the capacity of
resources is not exceeded by the tasks. A schedule is optimal
if it minimizes a given optimality criterion. However, our
ultimate interest is in providing an algorithm to solve, or
schedule, temporal constraint satisfaction problems; since we
also consider indefinite qualitative temporal information, the
solution may assign events simultaneously to intervals.

Let Q be a finite poset (partially ordered set) with n
elements and C be a chain 1 < 2 < · · · < c. For (Q,C), a map
ω : Q→ C is strict order-preserving if, for all x, y ∈ Q, x < y
implies ω(x) < ω(y). Let λ : Q → {1 < 2 < · · · < n} be a
linear extension of Q, that is, an order-preserving injection.

A poset Q is equivalently a directed acyclic graph (DAG),
G = (V,E); for temporal reasoning, the vertices represent
time intervals, and edges between vertices are labeled with
relations in Allen’s algebra, which satisfy the partial ordering.
For scheduling problems, a linear extension λ of Q (or
G) can be used to schedule tasks: λ must respect interval
constraints, that is relations between comparable elements.
Algorithmically, a linear extension of a DAG, G, can be
determined in linear time by performing a depth-first search
of G; while G (Q) can be represented by an adjacency matrix.

The Fishburn-Shepp inequality [33] [34] is an inequality
for the number of extensions of partial orders to linear orders,
expressed as follows. Suppose that x, y and z are incomparable
elements of a finite poset, then

P (x < y)P (x < z) < P ((x < y) ∧ (x < z)) (1)

where P(*) is the probability that a linear extension has
the property *. By re-expressing this in terms of conditional
probability, P (x < z) < P ((x < z) | (x < y)), we see that
P (x < z) strictly increases by adding the condition x < y.
The problem posed in [32] concerns applying the Fishburn-
Shepp inequality to efficiently find a favourable schedule under
specified criteria, where a naive scheduling algorithm is also
given together with an illustrative example. However, our focus
here is in introducing application scenarios.

II. APPLICATIONS IN TEMPORAL REASONING

A. Applications in Smart Homes

Buildings consume a considerable amount of energy. Man-
aging that energy is challenging, though is achievable through
building control and energy management systems. These sys-
tems will typically monitor, measure, manage and control
services for the lighting, Heating, Ventilation and Air Condi-
tioning (HVAC), security, and safety of the building. They also
permit a degree of scheduling, albeit they are often limited by
static programming and may have no awareness incorporated
of external events. For example, a building’s HVAC system

Fig. 1. Smart Home Temporal Data captured over 24 hours.

may heat rooms that are unoccupied as the setpoint has been
programmed to be a certain temperature for a specified interval
of the day (Figure 1). Clearly this is quite inefficient, and
though motion detectors can play a role in actuating lights
during periods of room occupancy, maintaining a comfortable
indoor climate using similar sensors to detect people cannot
provide the same benefits. Furthermore, the indoor climate
is impacted by outdoor thermodynamic processes, as well
as internal heat gains, which can be unaccountable (e.g.,
people, mobile equipment, etc). However, most modern non-
residential building’s energy management systems will be
configured to turn building services on and off throughout
the day using a pre-programmed schedule (e.g., a repeating
daily pattern of heating use) and can also employ intelligent
start-up controllers with external temperature compensation to
delay the turning on of heating for example. Modern heating
controllers (i.e., programmable thermostats) in homes can also
have setpoints configured in a daily schedule (e.g., 6-8am:
increase setpoint to 20◦C, representing a waking-up phase;
9am - 4pm: heating deactivated or set to a maximum (e.g.,
15◦C); and from 5pm - 6pm: 21◦C, representing a heating-up
phase to anticipate arrival of an occupant from a workplace,
and so forth).

Aside from heating control, homes can now also employ
smart home systems to perform some degree of energy
management and appliance automation. These systems are
becoming more commonplace, particularly as the Internet of
Things (IoT) paradigm is gaining more traction, whereby
humans are bypassed, and machine to machine communication
takes place (e.g., Smart Homes communicating with Smart
Grids [35]) [36]. This gives rise to smart automation and
reasoning where decision making can take place and determine
when home appliances can be scheduled, particularly in the
case of peak-load shaving [37] or demand response optimiza-
tion [38]. In these cases, consumption patterns can be shifted
to times of lower cost electricity. Appliance scheduling can
be further classified by, for instance, their minimum required
periods of operations, whether or not their operations can
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be interrupted, and if a human occupant is involved (i.e., in
climate control scenarios). For instance, washing machines
will have varying periods of operation depending on the
program (wash, spin, dry) and cannot (typically) be interrupted
if scheduled. Heating or cooling systems will have optimum
start-up times to turn on in anticipation of occupants requiring
the temperature of the house to be at a preset setpoint upon
arrival. The Internet of Things has even enabled this particular
scenario to be influenced by the distance an occupant is from
the home or building, whereby the driving time is estimated
via tracking of a Global Positioning System (GPS signal) [39].
In [40], driving patterns were analysed, and a programmable
thermostat augmented with GPS control enabled energy sav-
ings of 7%.

The emerging Internet of Things in this respect will be
responsible for huge volumes of temporal pattern data as
shown in Figure 1 (i.e., timestamped sequences of events, be
it a change in temperature, or a light being turned on and
off, or the duration of activity of an entertainment system, etc
[41]), thus also incorporating quantitative temporal informa-
tion. In the smart home, the ability to detect user behaviour
or house activities from this kind of temporal pattern data can
provide a better understanding of how to identify patterns of
energy use and thus determine when or how to gain energy
savings. Naturally, the accumulative savings factor is increased
many-fold in the smart city concept. Temporal pattern event
detection inspired by Allen’s relations has proved useful in
smart environments: for anomaly detection in assisted living
applications [42], and in activity monitoring [43]. In these
examples, intervals represent the sensed data (cooking would
imply the stove being on while an inhabitant is present in the
kitchen [44] [45]). Such kinds of recognition are useful for
determining normal behaviour of elderly occupants, and thus,
for instance, detecting any onsets of dementia [46].

Clearly, efficient, or ideally optimized, scheduling of events
can lead to enhanced savings of time and energy – it is
with this goal that we propose applying the Fishburn-Shepp
inequality, possibly to a specified subset of events in a larger
complex system. Regarding this goal we consider Example 8
from [32] and illustrate applying it to a potential smart-type
environment.

Example 2.1 (adapted from Example 8 in [32]): Consider
a set of time intervals of events (alternatively jobs as in
[32]), E = {E1, E2, E3, E4, E5, E6} with a partial order
≤ defined by (X− < Y −) ∧ (X+ ≤ Y +), which requires
scheduling – note the partial order defines a subclass of
Allen’s interval algebra. Suppose that E is the poset / DAG
shown below, where the edges have been labeled with
satisfying temporal relations, and there are two triples of
incomparable elements: {E2, E3, E5} and {E2, E3, E6}. Then

P (E2 < E3) ∧ (E2 < E5)) = 6/30, P ((E3 < E2) ∧ (E3 <
E5)) = 6/30, and P ((E5 < E2) ∧ (E5 < E3)) = 18/30;

P ((E2 < E3)∧ (E2 < E6)) = 12/30, P ((E3 < E2)∧ (E3 <
E6)) = 12/30, and P ((E6 < E2) ∧ (E6 < E3)) = 6/30.

The largest set of linear extensions corresponding to the
first triple is when (E5 < E2) ∧ (E5 < E3) and for the
second triple is (w.l.o.g.) when (E2 < E3) ∧ (E2 < E6).
Their intersection has 6 linear extensions and we arbitrarily
choose E1 < E5 < E2 < E6 < E3 < E4 as a schedule – so,
although any linear extension would suffice we are selecting
one which appears more “suitable” to satisfy: this illustrates
the heuristic – the proposed algorithm is described in [32].

A parallel solution to this temporal constraint satisfaction
problem from [32] is: E1 = (10, 20), E5 = (5, 10), E2 =
(12, 23), E6 = (20, 22), E3 = (15, 20) and E4 = (18, 23).
We will proceed to make this somewhat abstract schedule more
concrete in a smart scenario.

E4

E2 E3

E1

E6

E5

f ^ o

o f ^

p

Suppose that the time intervals corresponding to the
duration of events are interpreted in an integrated smart
working and home environment as follows.

• E1 denotes working in a flexible mode such as driving
between locations and using mobile devices.

• E2 denotes commuting home.
• E3 denotes smart HVAC-type home ventilation.
• E4 denotes activating and running a home appliance such

as an oven.
• E5 denotes robotic mowing of the lawn.
• E6 denotes automated watering of the mowed lawn.

The temporal relations for this example are clarified as
follows:

• E1 overlaps E2 as the employee could optimize work
flow to organize driving home while completing their
work assignment.

• E2 finishes ^ E4 (E2 finished-by E4) as the
GPS system tracking the employee’s return home will
synchronize with the oven timer so that the meal is
cooked when the employee arrives.

• E1 finishes ^ E3 (E1 finished-by E3) as the GPS
tracker will also synchronize with the ventilation system
so that the house is aired appropriately.

• E3 overlaps E4 as the ventilation should be completed
before the meal is ready as the HVAC heating or air
conditioning is likely to be activated with the residents’
meal.

• E5 precedes E6 as the [electric & electronic] robot must
return to a storage area before the watering starts.
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Then an alternative “suitable” schedule (from the set of 6
linear extensions) can be specified as: E1 < E5 < E2 <
E3 < E4 < E6. A solution using a 24-hour clock is given by:
E1 = (09 : 00, 17 : 00), E5 = (10 : 00, 11 : 00), E2 = (16 :
15, 17 : 30), E3 = (15 : 30, 17 : 00), E4 = (16 : 30, 17 : 30)
and E6 = (23 : 00, 24 : 00). Note that the noisy lawn mowing
occurs after the resident has gone to work, while the garden
is watered during an off-peak water consumption period and
also when there is no sun.

We demonstrate another abstract type example of a “suit-
able” schedule for this poset, again with (E5 < E2) ∧ (E5 <
E3), but this time choosing (E3 < E2) ∧ (E3 < E6). Then
a linear extension is E5 < E1 < E3 < E6 < E2 < E4. A
solution is E5 = (5, 10), E1 = (10, 20), E3 = (14, 20), E6 =
(15, 25), E2 = (16, 50), E4 = (18, 50). Note that each edge
on this chain satisfies the partial order ≤. We conclude this
section with:

Question, does this heuristic based on the Fishburn-Shepp
inequality make finding a solution to a temporal constraint
satisfaction problem easier?

B. Applications in Intelligent Conversational Agents

Intelligent conversational agents (CA) enable natural lan-
guage interaction with their human participant. Following an
input string, the CA works through its knowledge-base in
search of an appropriate output string. The knowledge-base
consists of natural language sentences based on a specific
domain. Through the use of semantic processing using a lex-
ical database with grouped sets of cognitive synonyms, word
similarity is determined, with thus the highest semantically
similar ranked string returned to the user as output.

Scripts consist of contexts that relate to a specific theme
or topic of conversation. Each context contains one or more
rules, which possess a number of prototype natural language
sentences. An example of a scripted natural language rule is
shown below, where s is a natural language sentence and r is
a response statement.
<Rule-01>
s: I am having problems accessing my email account.
r: I’m sorry to hear that. Have you tried contacting IT support?

One such CA, as proposed by O’Shea et al. ([47] [48] [49]),
uses semantics as a means to measure sentence similarity. The
semantic-based CA is organized into contexts consisting of a
number of similarly related rules. Through the use of a sen-
tence similarity measure, a match is determined between the
user’s utterance and the scripted natural language sentences.
Similarity ratings are measured in the range from 0 to 1,
in which a value of 0 denotes no semantic similarity, and 1
denotes an identical sentence pair. The highest ranked sentence
is ’fired’ and its associated response is sent as output. The
following algorithm describes the application:

1. Natural language dialogue is received as input from the
user.

2. Semantic-based CA receives natural language dialogue
from the user, which is sent to the sentence similarity measure.

3. Semantic-based CA receives natural language sentences
from the scripts files, which are sent to the sentence similarity
measure.

4. Sentence similarity measure calculates a firing strength
for each sentence pair, which is returned and processed by the
semantic-based CA.

5. The highest ranked sentence is fired and its associated
response is sent as output.

The use of CAs can be applied to educational settings to
better support teaching and learning and provide alternative
learning environments. Computing underpins almost all areas
of the modern world and many new opportunities in science
and engineering could not have been realized without it.
Thus, computer scientists have the potential to revolutionize
societies, develop economic wealth and change peoples’ lives.
Employers need to ensure that the future generations have
the skills required, which is only achieved through effective
teaching and learning practices at our schools. If we do not
engage at this level, we are unlikely to produce the number of
computer scientists required to satisfy the demands of industry.
However, teachers need support from the science community
and industry to increase the number of students (especially
girls) leaving school confident in coding, algorithmic thinking
and computer science.

In order to develop knowledge exchanges, evidence is
needed to assess its provision and accessibility. This would
lead to studies discussing effective pedagogy and research into
developing alternative approaches for engagement. However,
opportunities may exist using alternative approaches, includ-
ing artificial intelligence (AI). Artificial intelligence within
teaching and learning is an opportunity to seek novel ways
to deliver curriculum content. This may come in the form of
a CA using intelligent adaptive learning methodologies. Such
CAs or learning companions can accompany students asking
questions, providing encouragement, offering suggestions and
connections to resources, and help talk through difficulties as a
teacher would demonstrate in class. Over time, the companion
would ’learn’ what you know, what interests you, and what
kind of learner you are. Such research would raise ethical
questions to the use of AI applications alongside human edu-
cators; however is it a challenge that will impact profoundly
on the nature of teaching and learning? There is enormous
potential for such research that remains undiscovered along
with its associated benefits. AI will empower teachers, which
will better inform them on how to manage the learning of their
students.

The use of CAs using intelligent learning methodologies
may also provide a means to support different types of
conversations and thus, learning styles. The premise for such
CAs is to guide students through the questioning process
as opposed to simply providing an answer. Students will
gain independence by answering questions for themselves
through appropriate dialogue. This appropriate dialogue can
be modelled using Allens interval algebra: the intervals of
speech could satisfy the basic relation p, if one speaks before
the other, or the relation o if their speech overlaps, and so on.
In terms of scheduling a set of speech events with specified
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relations, that is constructing a linear extension by applying the
Fishburn-Shepp inequality, we envisage an application for the
learning impaired, which schedules the events sequentially to
reduce confusion from simultaneous speech. This could then
be integrated with the CA technology.

C. Applications in Physiology

In exercise physiology, the study of complex rhythms arising
from the peripheral systems (for example, the cardiovascular
system) and the central nervous system of the human body
is important to optimize athletic performance while using a
suitable type of pacing. Pacing plays an important part during
athletic competition so that the metabolic resources are used
effectively to complete the physical activity in the minimum
time possible, as well as to maintain enough metabolic re-
sources to complete that task [50].

Moreover, according to the Central Governor Model (CGM)
[51], there is a central regulator that paces the peripheral
systems during physical activity to reach the endpoint of that
physical activity without physiological system failure. This
central governor model of fatigue is a complex integrative
control model, which involves the continuous interaction, in a
deterministic way, among all the physiological systems, and
that of the central system. There has been good evidence
that the brain decreases its neural drive to protect the body
from irreversible damage. The brain subconsciously controls
the status of all systems of the body and it continuously
calculates the metabolic costs to continue at the current pace
as well as it compares that to the existing physical state.
Based on this important information the brain adjusts the
optimum pace so that the physical task can be completed in
the most efficient way while simultaneously maintaining the
overall homeostasis of the body by sustaining physical and
mental capacity reserves. The brain protects the body through
the regulation of power output during any form of physical
exercise (especially long distance running or cycling exercise)
with the ultimate aim of maintaining the body’s homeostasis
and protecting life.

Fig. 2 shows the CGM model of exercise regulation [52],
which proposes that it is the brain that regulates exercise
performance by changing continuously the number of motor
units that are recruited in the exercising limbs. This change
occurs in response to conscious and subconscious feedbacks
that are present before and during the physical activity.

The goal of this central controller is to ensure that one
always exercises with reserve and terminates the physical
exercise bout without catastrophic failure of the body systems.
The brain employs the feelings of fatigue to control the
exercise intensity and duration of maintaining that exercise
intensity so that these factors are always within the exercis-
ers’ physiological capacity. Therefore, Allen’s interval algebra
basic relations (precedes, meets, overlaps etc.) can be used to
express those time intervals of switching among different pac-
ing in a particular endurance physical activity for instance. The
switching times between different pacing strategy themselves
depend on many physiological factors (that have relation with

Fig. 2. The Central Governor Model of Exercise Regulation
[52]

time of experiencing that factor) including exogenous factors
such as surrounding temperature (change in temperature),
change in air pressure especially running at higher altitudes
and endogenous factors such as one’s metabolic energy reserve
(that are different at different times), accumulation of lactic
acid (low or high depending on the duration of the exercise
and the physiological processes’ time to discard it), fluid
loss through sweating depends on body heat, which changes
through time, level of muscle damage as well as level of
skeletal muscle fatigue change through time.

In this context, the decision making process involved when
an athlete changes his or her pacing strategy during a particular
race (and especially during endurance exercise) seems quite
complex. However, the change in the decision making process
could be simply explained by the basic relations in Allen’s
interval algebra. Consider the following scenario, shown in
Fig. 3, where an athlete or runner needs to complete a 20-
km race. An experienced runner will subconsciously be aware
of the amount of energy resources they will need during the
race so that they can effectively complete the race without
catastrophic failure. During the race, there are both exogenous
and endogenous factors, which will influence the optimal
performance of the runner, and therefore she or he has to
make important decisions as to when, or when not, to change
their pacing during the race so that they can complete the
race in the minimum time possible. For instance, there may
be three major changes in the patterns of the running speed,
power output, or pacing strategies that the runner could adopt
for a long distance race such as the 20-km race [53]. Initially,
on the first stage of the race, he or she will accelerate from
a resting standing (or crouching) position to reach a constant
optimal speed as determined by the runner’s physical ability;
meanwhile their heart rate (HR) will accelerate as well as their
volume of oxygen consumption (VO2). In the second stage,
they will maintain the same constant running speed for most of
the race while their heart rate will be quite steady; moreover,
the volume of oxygen consumption will be kept practically
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Fig. 3. Physiological data for a 2nd ranked club level cyclist for a 20km self
pace under laboratory conditions under ambient body temperature

constant throughout the race. Finally, in the third stage of the
race, the runner will accelerate or sprint in order to complete
the race, which will at the same time, increase their heart rate
as well as the rate of volume of oxygen consumption.

This represents one possible scenario that may occur during
a race, which illustrates that Allen’s temporal relations can be
exploited to more clearly express the complex decision-making
processes related to the human body during physical exertion,
and hence allow for scheduling the pacing strategy adopted by
a runner during a particular race. In fact, the Allen’s interval
algebra can be applied in smart-type devices, which in turn
can help an athlete or sportsman in their decision-making
process in real time. For instance, these smart-type devices
can integrate various biomarkers computed from measured
biosignals or physiological data (such as heart rate, pulse
rate, sweating rate, volume of oxygen consumption) of the
human body under physical activity (for example, running
or cycling). These intelligent devices will help the users or
the athletes in making important decisions by providing them
useful biofeedbacks and will notify them whether they need to
slow down to avoid catastrophic physiological systems failure,
or they can just continue with same pace or speed.

III. CONCLUSION AND FUTURE WORK

This paper has brought together our previous findings with
support for further and future developments. The management
for appropriate dialogue using CAs or learning companions
has been highlighted with the potential to support and enhance
teaching and learning. This would be applied through the use
of novel AI technologies and the application of intelligent
conversational approaches using scheduling.

Previous research in temporal pattern reasoning surrounding
smart homes has largely focused on activity recognition of
inhabitants, and gaining an understanding from sensor data
retrieved from indoor environments (such as electricity, tem-
perature, light, or motion). The Internet of Things, however,

will provide further dimensions of data from people (wearable
sensors, tracking of GPS, etc.). This kind of outdoor data will
provide additional context to the smart home and enable it to
make better and more informed decisions as to how to actuate
and control building services.

For example, returning to the case of augmented heating
control using GPS - an occupant leaves the house and goes
for a short jog (automatically disabling the heating as they
leave) - as they run their own body temperature rises. The
wearable sensors will be monitoring their temperature and
their GPS coordinates. As they return and approach their
home, the augmented heating control with the GPS system
will turn on the heating, but will also take into account
the occupant’s current body temperature, and accordingly
apply the appropriate heating control strategy (i.e., reducing
the return-to-home setpoint from a previously higher setting
and actuation time). In this case, the quantitative temporal
information between arrival and heating activation will be
lengthened as the temperature setpoint requirement will be
reduced. This is just one of a myriad of possibilities that can be
realized from the abundance of potential sensor data generated
from the Internet of Things. We believe the relation between
indoor and outdoor sensing (as well as any other sensing
source for that matter) and reasoning strategies requires further
exploration, and as part of our future research strategy we will
investigate smart home event and action temporal reasoning
from multiple data streams beyond enclosed indoor scenarios.
In particular, smart-type scheduling is a key factor in energy-
related issues.

We envisage enhanced synergy in the smart-environment by
integrating intelligent CAs. Useful responses to even simple
sentences such as Where are my keys? can have impact on
human energy and stress levels and allow for more efficient
use of time.

To date, physiological research into pacing strategies has
focused on the amount of energy resources that are available
for a runner to complete a long distance race. Also, pacing
is crucial for improving human performance in time-trial
physical exercise. Therefore, we propose that the future area
in, which the exercise physiology field should endeavour to
concentrate more on, is the optimal time in switching between
the different types of pacing strategies, so that a race is
completed successfully and in the minimum time possible
without body systems’ homeostatic failure. In order to achieve
this, the various changes in pacing, namely, increasing pace,
constant pace or decreasing pace, depends on each individual’s
resource capacity and endurance for each type of pacing so as
to achieve the target or complete a physical endurance activity
in the least possible time.

Therefore, we suggest that the decision-making process
underlying the choice of the various pacing strategies can
be informed through the application of Allen’s time interval
algebra, and the resulting scheduling can be easily controlled
and applied to promote and improve world elite athletic per-
formance. For example, the impact of facilitating the decision-
making process of an elite athlete is enormous as he or she
will feel more comfortable to tap into their inner optimized
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physical potentials, and hence boost overall confidence, which
may contribute further to greater physical performances.
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