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Abstract—An indexed compressed sequence of strings is a 
representation of a string sequence that on the one hand is 
more space efficient than the original sequence, but on the 
other hand supports more efficient operations on these strings. 
Whenever an indexed compressed sequence of strings supports 
efficient evaluation of typical database operations, like search-
ing for exact matches or prefixes, range queries, computing the 
union or the intersection of sets of strings, or data modifica-
tions, databases can strongly benefit from storing their table 
columns in form of an indexed compressed sequence. In this 
paper, we show how to extend the data structure of the 
Wavelet Trie to an indexed compressed sequence of strings 
that supports efficient operations on column oriented data-
bases. Therefore, we present algorithms for executing database 
operations like union, intersection, and range-queries on string 
sequences represented by an extended Wavelet Trie. Further-
more, in our evaluation, we show that performing these typical 
database operations on the extended Wavelet Trie is faster 
than simulating these operations on gzip- or bzip2-compressed 
data.  

Keywords—Column-oriented database management systems; 
compression; compressed indexed sequences of strings. 

I. INTRODUCTION  
The work presented in this paper extends the ideas pre-

sented in [1] at DBKDA 2017.  
Column-oriented DataBase Management Systems 

(DBMS) organize their data tables within column stores, 
each containing an ordered sequence of entries. This data 
organization technique is preferable, especially when used 
for read-intensive applications like data warehouses, where 
in order to analyze the data, queries and aggregates have to 
be evaluated on sequences of similar data contained in a 
single column [2]. A second advantage of column-oriented 
data stores is that they can be compressed stronger than row 
oriented data stores, as each column and therefore each 
contiguous sequence of data contains data from the same 
domain and thus contains less entropy. 

As long as main-memory availability is a run-time 
bottleneck, data compression is beneficial to virtually “en-
hance” the capacity of the main-memory, i.e., column-
oriented data stores can benefit from storing their string 
columns in form of compressed indexed sequences of 
strings. A major challenge when using a compressed data 
structure for a string column is to support typical database 

operations in efficient time without full decompression of 
the compressed data structure. 

This paper is organized as follows. In Section III, we 
introduce the basic concepts used in the following sections. 
In Section IV, we explain different operations on the 
Wavelet Trie and discuss how to implement them. In 
Section V, we show an extensive performance evaluation, in 
which we compare the performance of these operations on 
the Wavelet Trie with the performance of the gzip and bzip2 
(de)compression. 

II. RELATED WORK 
Column stores like, for instance, C-STORE [2], Vertica 

[3], or SAP HANA [4] typically rely on combinations of 
compression techniques like Run-Length Encoding, Delta 
Encoding, or dictionary-based approaches. These compres-
sion techniques do not contain a self-index, but have to 
occupy additional space to store an index that allows for 
efficient operations like, for instance the evaluation of range 
queries. When main-memory availability is the major run-
time bottleneck, we consider this to be a disadvantage.  

In contrast, the Wavelet Tree [5] is a self-index data 
structure, and it can be regarded as an enhancement of 
variable length encodings (e.g., Huffman [6], Hu-Tucker 
[7]).  The Wavelet Tree rearranges the encoded string S in 
form of a tree and thereby allows for random access to S. 
Variations of the Wavelet Tree use the tree topology to 
enhance Fibonacci encoded data [8] or Elias and Rice varia-
ble length encoded data [9]. In [10] an n-ary Wavelet Tree is 
used instead of a binary Wavelet Tree (e.g., a 128-ary 
Wavelet Tree by using bytes instead of bits in each node of 
the Wavelet Tree). A pruned form of the Wavelet Tree is the 
Skeleton Huffman tree [11] leading to a more compressed 
representation. Although avoiding the need for an additional 
index, Wavelet Trees have the disadvantage that common 
prefixes in multiple strings are stored multiple times.  

This disadvantage is avoided by the Wavelet Trie 
[12][13], which is a self-index, i.e., avoids the storage of 
extra index structures, and can be regarded as a generaliza-
tion of the Wavelet Tree for string sequences S and the 
Patricia Trie [14]. The Wavelet Trie rearranges a sequence S 
of encoded strings s1,…,sn in form of a tree thereby storing 
common prefixes of s1,…,sn only once, and it allows for 
random access to each si of S. That is why in this paper, we 
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use a Wavelet Trie to store compressed indexed sequences 
of strings.  

Wavelet Tries support the following basic operations 
that are used within column-oriented DBMS: the operations 
access(n) that returns the n-th string of a given column and 
that is used for example when finding values of the same 
database tuple contained in other columns, or 
search(s)/searchPrefix(s) that searches for all positions 
within the current column that contain a string value s (or 
that contain a string value having the prefix s). Beside these 
elementary search operations, Wavelet Tries support 
elementary data manipulation operations on the compressed 
data format as, e.g., to insert a string at a given position, to 
append a string, or to delete a string from the sequence. 

[12] and [13] introduce the concept of the Wavelet Trie 
and discuss the complexity of the following operations, 
which are executed on the Wavelet Trie encoding a given 
string sequence:  
• Access(pos) returns the pos-th string of the string se-

quence 
• Rank(s, pos)/RankPrefix(s, pos) return the number of 

occurrences of string s (or strings starting with the pre-
fix s) up to position pos in the string sequence 

• Select(s, i)/SelectPrefix(s, i) returns the position of the 
i-th string s (or string starting with prefix s) of the 
string sequence 

• Insert(s,  pos) simulate on the Wavelet Trie an inser-
tion of the string s before position pos into the string 
sequence 

• Append(s) simulate on the Wavelet Trie an appending 
of the string s to the end of the string sequence 

• Delete(pos) simulate on the Wavelet Trie a deletion of 
the string at position pos of the string sequence 

Although this is sufficient to support the most elemen-
tary database operations in column stores, in order to sup-
port more enhanced data analysis, efficient query processing 
should go beyond these elementary operations. Hereby, the 
main challenge is to support efficient complex read opera-
tions like intersection, union, and range queries on column 
stores without decompression of large parts of the com-
pressed data. 

Our goal is that these operations on compressed data are 
executed not only with a smaller main-memory footprint, 
but also faster on compressed data compared to a decom-
press-read approach that first decompresses the data before 
a read operation (or write operation) is done. 

Our first contribution is to extend the Wavelet Trie 
[12][13] published in 2012 by Grossi and Gupta by concepts 
and efficient implementations of enhanced database opera-
tions (intersection, union, and range queries). 

When standard string compressors like gzip or bzip2 are 
used for compressing sequences of strings stored in a data-
base table column, such a compressed sequence of strings 
has to be decompressed, before a database operation can 
even be executed. That is why our second contribution is an 
evaluation, comparing the performance of database opera-
tions on our extended Wavelet Trie with the decompression 

time needed by bzip2 or by gzip for a compressed sequence 
of strings. We show that performing typical operations on 
string sequences like searching for exact matches or pre-
fixes, range queries, or update operations like insertion or 
deletion, or operations on two string sequences like merge 
or intersection, directly on the Wavelet Trie is faster than 
simulating these operations on bzip2- and gzip-compressed 
data.  

III. PREPROCESSING AND BASIC CONCEPTS  
In this section, we introduce the basic concepts used in 

the remainder of this paper. 

A. Preprocessing 
In order to allow a space-efficient storage of a string se-

quence SS, the Wavelet Trie requires the strings of the 
string sequence to be pairwise prefix-free, i.e., no string 
stiÎSS is allowed to be a prefix of another string stjÎSS. 
The requirement that SS has to be a prefix-free sequence, is 
not a critical restriction, as a prefix-free set of strings can be 
easily constructed for any set SS as follows. A special 
terminal symbol that is lexicographically smaller than each 
character occurring in each string stiÎSS is appended to 
each string stiÎSS. For example, in Figure 1, we added the 
symbol ‘$’ to the end of each string, thereby yielding a 
prefix free sequence, although the previously given string 
sequence (rob, romulus, robert) is not prefix free, as ‘rob’ is 
a prefix of ‘robert’. 

Furthermore, before we use the Wavelet Trie to store a 
sequence SS=(st1,…,stn) of strings, we apply the Hu-Tucker 
algorithm [7] to all  characters of all stiÎSS, i.e., we encode 
each character c of each stiÎSS by its Hu-Tucker code ht(c). 
Thereby, we get a sequence S=(s1,…,sn) of bit-strings, 
where si is the Hu-Tucker code of sti, yielding a lexico-
graphic Huffman code for the bit-strings si, i.e., si <lexi sj Û 
sti <lexi stj, where <lexi denotes “less than in lexicographical 
order”.  

In order to search for a string st in SS, we apply the 
same Hu-Tucker codes to the characters of st, yielding a bit-
string s that we can search for in the Wavelet Trie. 

For example, for the string sequence SS=(rob$, 
romulus$, robert$), and its Hu-Tucker codes listed in Table 
1, we get the sequence  
S=(s1, s2, s3) of bit-strings with  

s1 = 101 100 0100 00,   
s2 = 101 100 0111 111 0110 111 1100 00, and 
s3 = 101 100 0100 0101 101 1101 00. 

TABLE I.  HU-TUCKER CODES OF OUR EXAMPLES 

char c code(c) char c code(c) 
$ 00 o 100 
b 0100 r 101 
e 0101 s 1100 
l 0110 t 1101 
m 0111 u 111 
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Whenever we describe operations that work on two 
Wavelet Tries, we assume that both Wavelet Tries are based 
on the same Hu-Tucker-Encoding. 

After the preprocessing steps, we construct the Wavelet 
Trie according to the construction method given in the 
Wavelet Trie definition of the following section.  

In order to keep the following definition and the 
construction principle of the Wavelet Trie simple, we as-
sume that the string sequence SS represented by the 
Wavelet Trie always consists of at least two different 
strings, i.e., stiÎSS, stjÎSS, and sti ¹ sti. As a consequence, 
also SS’s Hu-Tucker encoded sequence S=(s1,…,sn) of bit-
strings contains at least two different bit-strings. Whenever 
this is not the case, we could simply store the size of S 
externally, or add a binary string snew, snew≠si, i Î {1,…,n} 
to the end of the sequence S, such that our Wavelet Trie 
represents a bit-string sequence S that consists of at least 
two different bit-strings.  

B. Basic Concepts 
Similarly to [12][13], we define the Wavelet Trie as fol-

lows: 
Definition (Wavelet Trie): Let S be a non-empty se-

quence of bit-strings, S=(s1,..., sn), si Î {0,1}*, whose 
underlying bit-string set Sset={s1,…,sn} is pair-wise prefix-
free. The Wavelet Trie of S, denoted WT(S), is a binary 
tree, which is built recursively as follows: 

(i) If the bit-string set Sset of S consists of a single bit-
string element only, i.e., s1 = … = sn, the Wavelet Trie is a 
single node labeled with α = s1 = … = sn and β=e, i.e., β is 
an empty bit-vector. 

(ii) Otherwise, WT(S), the Wavelet Trie of S is a binary 
tree whose root node is labeled with two bit-vectors, α and 
β, and whose children (respectively labeled with 0 and 1) 
are WT(Sα0) and WT(Sα1), the Wavelet Tries of sequences 
Sα0 and Sα1 of bit-strings, where α, β, Sα0, and Sα1 are de-
fined as follows. α is the longest common prefix of the bit-
strings si contained in S. For any 1 ≤ i ≤ n, we then can write 
si = αbiγi, where bi is a single bit. We then define the se-
quences Sα0 = (γi | α0γiÎS) and Sα1 = (γi | α1γiÎS) of bit-
strings, i.e., the first sequence contains suffixes γi of siÎS 
such that si begins with α0 and the second sequence con-
tains suffixes γi of siÎS such that si begins with α1. Finally, 
the bitvector β = (bi | αbiγiÎS) collects all the bits bi that 
discriminate for a given si = αbiγi, whether the suffix γi is in 
Sα0 or is in Sα1.  

Example: Continuing the previous example, Figure 1 
shows the Wavelet Trie representing the sequence S=(s1, s2, 
s3) of bit-strings  

s1  = 101 100 01  0  0 0   0,   
s2  = 101 100 01  1  1 111 0110 111 1100 00,  
s3  = 101 100 01  0  0 0   1 01 101 1101 00.  

representing the strings of the sequence SS= (rob$, 
romulus$, robert$). The characters are shown in Figure 1 
only for the purpose of illustration, but are not contained in 
the Wavelet Trie. All three bit-strings s1, s2, s3 share the 
common prefix α = 101 100 01 and differ in the next bit bi, 
which is 0 for s1 and for s3, but 1 for s2. The bit-string se-

quence Sα0 = (γ1, γ3) containing the suffixes γ1 and γ3 of s1 
and s3 is represented by the left sub-tree of the Wavelet 
Trie’s root node, and the bit-string sequence Sα1 = (γ2) is 
represented by the right child. Continuing with the left sub-
tree of the Wavelet Trie’s root node, γ1 and γ3 share the 
common prefix 00 and differ in the next bit, such that here 
we get a new bit-vector α=00 and a new bit-vector β that 
contains only two bits, one for s1, the other for s3. All leaf 
nodes contain the common bit-vector α and an empty bit-
vector β, as they represent a bit-string set containing a sin-
gle element only. 

Figure 1.  Wavelet Trie representing the bit-string sequence  
(101 100 01 0 0 0 0,  101 100 01 1 1 111 0110 111 1100 00,  

   101 100 01 0 0 0 1 01 101 1101 00) 

Remarks: If the whole Wavelet Trie consisted of a single 
node only, this node would be a leaf node having a bit-vec-
tor α, but having an empty bit-vector β, i.e., we could not 
derive the size of the sequence S represented by the leaf 
node. That is why we required S to contain at least two 
different bit-strings si,sjÎS with si≠sj. Given this require-
ment, in the following, we can assume that the whole 
Wavelet Trie considered always consists of more than one 
node.  

If we reach a leaf node of the Wavelet Trie, i.e., the se-
quence represented by that leaf node has a bit-string set 
containing a single element only, we know the size n of the 
sequence by counting the number of bits within the β bit-
vector of the leaf’s parent node.   

IV. DATABASE OPERATIONS ON TOP OF THE WAVELET 
TRIE 

In the following sections, we denote the left child of a 
Wavelet Trie node also as its 0-child, and the right child of a 
Wavelet Trie node also as its 1-child. 

For the following operations, we assume that they are 
methods of an object of type WaveletTrie and that they can 
directly access the object variables a, b, and size. The size 
of a Wavelet Trie wt is |b|, i.e., the number of bits of b if wt 
is an inner node, and for a leaf node, it is the number of 0-
bits in wt’s parent node p, if wt is p’s left child, and the 
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number of 1-bits in wt’s parent node p, if wt is p’s right 
child. 

A. Search/Query Operations 
Let S=(s1,..., sn) be a given bit-string sequence that is 

represented by a Wavelet Trie wt having the root node 
wt.root, and let s be a given bit-string that we search for in 
S. The search(s) operation applied to wt.root returns a list of 
all the positions i in S of those bit-strings si that are equal to 
s. Similarly, the searchPrefix(s) operation applied to wt.root 
returns a list of the positions i in S of all those bit-strings si 
that have a prefix s. 

For example, assume, we want to search for robert$ in 
the string sequence SS2=(rob$, romulus$, robert$, robert$, 
romulus$, robert$), and we use the same Hu-Tucker coding 
as before. We search for the bit-string 101 100 0100 0101 
101 1101 00 corresponding to robert$ in the Wavelet Trie 
corresponding to SS2 (c.f. Figure 3), and we get the result 
position list [3,4,6].  

In order to search for all matching positions in the 
Wavelet Trie, the function search(s) (c.f. Code 1) recur-
sively traverses down the tree representing the Wavelet 
Trie, until we have found all bits of the binary string s, and 
bottom-up “translates” all matching positions into matching 
positions in the Wavelet Trie’s root node.  

In more detail, the search works as follows: Let n be the 
current node having a bit-vector α, a bit-vector β, and (if n 
is not the Wavelet Trie’s root node) having a parent node 
pa, such that n is the b-child of pa and β of pa contains k b-
bits. Assume that we search for all positions where a given 
bit-string s occurs. 

 
 1 Function search(BitString s):  
 2 if s=α and isLeaf then 
 3    return [1,...,size]; 
 4 else if α.isPrefixOf(s) and !isLeaf then 
 5    Bit b = α.getFirstDifferentBit(s); 
 6    γ = s.getSuffix(α); 
 7    [p1,...,pm] = getChild(b).search(γ);  
 8    return β.select(b, [p1,...,pm]); 
 9 return ∅;	  

Code 1. Search for all exact occurrences of a word 

The search has to distinguish 3 cases:  
1. If we have found all bits of s and we have reached the 

end of the α of a leaf node (line 2), we have reached an 
exact match. For the leaf node representing the exact match, 
we return a vector [1,…,size] (line 3), where size is the 
number of bit-strings represented by that leaf, i.e., each 
position in [1,…,size] is a matching position for s in this 
leaf node. 

2. If s≠α, α is a prefix of s and n is no leaf node (lines 4-
8), s is of the form s=αbγ (lines 5-6) with a potentially 
empty γ. In this case, we perform the search operation for 
the bit-string γ on n’s b-child (c.f. Figure 2), resulting in a 
list of matching positions [p1,…,pm] in the current node’s b-
child (c.f. line 7). These positions are then (line 8) translated 
into matching positions of the current node as described 
below.  

 
Figure 2.  Search operation, if α is a prefix of search string s.  

3. If none of the above cases matches, the Wavelet Trie 
does not contain a binary string matching the search criteria, 
and we return an empty list of positions (line 9). 

 
In order to determine the exact matching positions in S, 

matching positions in the Wavelet Trie’s nodes are com-
puted bottom-up, i.e., we start in the matching leaf node and 
“translate” matching positions in a Wavelet Trie node n to 
matching positions in n’s parent node pa (line 8).  

Hereby, the method b.select(b, [p1,…, pm]), called in line 
8 of Code 1, is implemented as shown in Code 2, where 
b.select(b,pi) returns the position of the pi

th b-bit in the bit-
vector b.  

Code 2. Auxiliary method b.select(b, [p1,…, pm]) 

Figure 3.  Search for “robert$”. 

Example: Figure 3 shows a slightly modified version of 
the Wavelet Trie of Figure 1 that represents the string se-
quence SS2=(rob$, romulus$, robert$, robert$, romulus$, 
robert$). In order to search for all occurrences of “robert$”, 
i.e., of the binary string s = 101 100 01 0 0 0101 101 1101 
00, we start with the root node. As α = 101 100 01 is a pre-
fix of s, and the next bit b in s is 0, we continue to search for 
the remaining substring sL = 0 0101 101 1101 00 of s within 
the left child of the root node. Here, α = 0 0 is again a prefix 

↵ : �

� : 1 . . . 101 . . . 1

↵ : � ↵ : �

� : �n

n0 n1

↵ : ↵n

� : 0⇤

↵ : ↵0

� : �0

n0 n1

. . . )
↵ : ↵n0↵0

� : �0

n0 n1

↵ : ↵n

� : �n

↵ : ↵0

� : �0
search(�)

search(↵0�)

1

1 Function select(Bit b, [p1,...,pm]):  
2    return [select(b,p1),...,select(b,pm)]; 
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of s1, and the next bit b of sL is 1. Therefore, we continue to 
search for the remaining substring sLR = 01 101 1101 00 of 
sL in the right child node. As now, α = sLR, and the current 
node is a leaf node, all strings represented by this leaf node 
are matches. From the leaf’s parent’s ß-bit-vector, we know 
that our leaf node represents 3 occurrences of s, thus, we 
return the list of positions [1, 2, 3] from the leaf node to its 
parent. Recursive execution returns to the previous call of 
this method executed for the leaf’ parent, i.e., the left child 
of the root. As the leaf is the right child of its parent and 
here, the 1st, 2nd, and 3rd 1-bits occur at positions 2, 3, and 4 
in b, we return [2, 3, 4]. Similarly, when execution returns 
from its left child to the root node, the 2nd, 3rd, and 4th 0-bits 
occur at positions 3,4, and 6 in b. Therefore, the final result 
is that the strings on positions [3, 4, 6] are equal to the 
search string ‘robert$’. 

 
Similarly, if we do not want to search for exact matches, 

but for prefixes, i.e., we search for all positions of binary 
strings starting with the given prefix s, we just have to 
slightly modify our algorithm: 

If we have found all bits of s on the current path in the 
Wavelet Trie, we do not care, whether or not we have 
reached a leaf node, and translate the current positions into 
positions of the Wavelet Trie’s root node. That is, the code 
for searchPrefix() is as follows:  

 

Code 3. Search for all strings that start with a given prefix 

B. Between/Range Queries (less than, greater than) 
The operation between(sL,sH) returns a list of positions 

of strings siÎS, such that sL ≤ lexi si ≤ lexi sH. Similarly, the 
operation lessThan(s) returns a list of positions of bit-strings 
si, such that si ≤ lexi s, and the operation greaterThan(s) re-
turns a list of positions of bit-strings si, such that si ≥ lexi s.  

For example, assume, we want to search for all strings 
greater than robb$ in the string sequence SS2=(rob$, 
romulus$, robert$, robert$, romulus$, robert$), and we use 
the same Hu-Tucker coding as before. We search for all bit-
strings that are greater than the bit-string 101 100 0100 0100 
00 corresponding to robb$ in the Wavelet Trie cor-
responding to SS2 (c.f. Figure 4), and we get the result posi-
tion list [2,5,3,4,6] corresponding to the positions of either 
one of the strings robert$ or one of the strings romulus$. 

In this section, we explain how to implement the opera-
tion greaterThan(s). To adapt this operation in order to 
implement between(sL,sH) or lessThan(s) is quite straightfor-
ward. 

Let the current node n be a node with labels α and β. 

Code 4. Search for positions of all words greater than a given string 

If α≥s (which includes the case that s is a prefix of α, 
i.e., α=sbδ with a potentially empty δ), we know that all bit-
strings represented by the Wavelet Trie rooted in n are 
greater than or equal to s, i.e., we return the list of positions 
[1, …, size] (lines 2-3). 

In the other case, if α is a prefix of s, i.e., s= αbλ (lines 
4-16), we have to consider the value of b and get two sub-
cases.  

Lines 8-10 treat the sub-case b=1. Here, all remaining 
bit-strings represented by the Wavelet Trie rooted in n’s 0-
child start with a 0-bit and therefore cannot be greater than 
the remaining search bit-string 1λ of s, i.e., only n’s 1-child 
can represent greater remaining bit-strings. As the 1-bit of 
the remaining search bit-string 1λ is consumed while search 
moves to n’s 1-child, we have to apply the operation 
greaterThan(λ) only to n’s 1-child (line 9) with the remain-
ing search bit-string λ, and translate the matching positions 
[p1,...,pm] within n’s 1-child’s β-vector into matching posi-
tions wihtin n’s β-vector (line 10).  

Lines 11-15 treat the other sub-case, b=0:  

Figure 4.  Search for strings greater than “robb$” 

 

 1 Function searchPrefix(BitString s):  
 2 if s=α or s.isPrefixOf(α) then 
 3    return [1,...,size]; 
 4 else if α.isPrefixOf(s) and !isLeaf then 
 5    Bit b = α.getFirstDifferentBit(s); 
 6    γ = s.getSuffix(α); 
 7    [p1,...,pm] = getChild(b).search(γ);  
 8    return β.select(b, [p1,...,pm]); 
 9 return ∅;	

 1 Function greaterThan(BitVector s):  
 2 if α>=s then 
 3   return [1...size]; 
 4 else if α.isPrefixOf(s) then 
 5   if not isLeaf then 
 6     Bit b = α.getFirstDifferentBit(b); 
 7     λ = s.getSuffix(α); 
 8     if b=1 then 
 9       [p1,...,pm] = getChild(1)   
                         .greaterThan(λ)); 
10       return β.select(1, [p1,...,pm]); 
11     else  
12       [p1,...,pm] = getChild(0)   
                         .greaterThan(λ)); 
13       return  
14       β.select(0, [p1,...,pm]) ⊕  
15                β.select(1, [1,...,rank(1,| β |]); 
16 else return ∅; 
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Figure 5.  greaterThan if α is a prefix of search string s. 

Here, the returned result list r1 Å r2 of matching positions 
wihtin n’s β-vector consists of two sub-lists r1  (line 14) and 
r2 (line 15), which are computed as follows. We search for 
the positions [p1,...,pm] of remaining bit-strings greater than 
λ within n’s 0-child (line 12) and translate these positions 
into positions of n’s β bit-vector (line 14) to get r1 However, 
as all remaining bit-strings represented by the Wavelet Trie 
rooted in n’s 1-child start with a 1-bit and are therefore 
greater than the remaining search bit-string 0λ of s, each 1-
bit of n’s β bit-vector represents a match to our search. That 
is why we also return the positions of all 1-bits in β in line 
15 of Code 4, i.e., r2 = β.select(1,[1,…,rank(1, |β|]). This is 
also illustrated in Figure 5. Finally, we return r=r1 Å r2 (lines 
13-15). 

In the last case, α<s and α is not a prefix of s, no string 
represented by this Wavelet Trie rooted in n can be greater 
than or equal to s, i.e., we return the empty list (line 16). 

Example: Figure 4 shows the search for all strings 
greater than the binary string s = 101 100 0100 0100 00 
(=”robb$”) within the string sequence SS2=(rob$, romulus$, 
robert$, robert$, romulus$, robert$). We compare s with α of 
the Wavelet Trie’s root. As α is a prefix of s and the next bit 
after α in s is 0, we select all 1-bits of β (positions 2 and 5) 
and compute greaterThan applied to the remaining bit-string 
sL = 0 0100 00 and the left child of the root. Again α is a 
prefix of sL, but this time, the next bit after α in s is 1, so we 
continue with the right child and the remaining bit-string sLR 
= 0000  and compute greaterThan(0000). As α > sLR for sLR = 
0000, we return positions [1, 2, 3], which correspond to the 
1st, 2nd, and 3rd 1-bit of the β bit-vector of its parent, i.e., to 
the positions [2, 3, 4]. The positions [2, 3, 4] correspond to 
the 2nd, 3rd, and 4th 0-bit of the β bit-vector of the root, i.e., to 
positions [3, 4, 6]. So the final result are the positions [2, 5] 
Å [3, 4, 6] = [2, 5, 3, 4, 6]. 

 
Note that we can similarly create a new Wavelet Trie that 

consists of all bit-strings greater than s, if we first copy the 
Wavelet Trie, and then, using the list [p1,…, pm] of result 
positions returned by greaterThan(s), for deleting all strings 
at a position pi Î [p1,…, pm] from the copy of the Wavelet 
Trie. Note that the algorithm for deleting a string at a given 
position is explained in the following section, Section C. Of 

course, we do not need to search first and delete in a second 
pass, but can nest both operations by deleting the bits while 
propagating the positions up to the root node. 

C. Delete 
This operation deletes the binary string spos at position 

pos from the Wavelet Trie. 
For example, assume, we want to delete the 3rd string 

from string sequence SS=(rob$, romulus$, robert$), and we 
use the same Hu-Tucker coding as before. We delete the 
binary string 101 100 0100 0101 101 1101 00 correspond-
ing to robert$ from the Wavelet Trie corresponding to SS 
(c.f. Figure 7). As a consequence, we have to collapse the 
left child of the root, i.e., to combine it with its remaining 
single child into a single node. 

 

 
Code 5. Delete word from WaveletTrie 

In order to delete the binary string spos at position pos 
from the current node n (initially the root node), we delete 
the bit b at position pos from β (Code 5, line 4). If β after-
wards still contains 0-bits and 1-bits and n’s b-child is not a 
leaf node, we continue to delete the bit at position 
rank(b,pos) from the β-vector of n’s b-child (lines 7-8). 

If β contains either only 0-bits or only 1-bits (i.e., β=0* 
or β=1*, in general β=b*), we have to collapse the current 
node with its b-child nb and thereby delete its (1-b)-child 
(lines 5-6). 

Figure 6 shows the state before and after collapsing the 
node for b=0. To collapse a node n with its b-child nb means 
the following: Let n0 be the 0-child of nb and n1 be the 1-
child of nb. Let furthermore αb and βb be the labels of node 
nb. Then the new labels of node n are α=αnbαb and β=βb. 
Furthermore, n0 becomes the new 0-child of n and n1 be-
comes the new 1-child of n.  

Figure 6.  Before and after collapsing the node. 

Example: Figure 7 shows the process of deleting the 
string s=101 100 0100 0101 101 1101 00 (=robert$) at 
position 3 from the WaveletTrie. In the root, we delete the 3rd 
bit, which is a 0-bit. We compute its rank within β. As it is 
the second 0-bit, the rank is two. We continue with deleting 

1 Function delete (int pos):  
2 if not isLeaf then 
3    boolean b = β.getBit(pos);  
4    int rank = β.delete(pos);  
5    if β.hasOnly(1-b) then 
6       collapse(1-b);  
7    else  
8       getChild(b).delete(rank);	
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the second bit of the left child. As it is the single 1-bit, we 
can delete the right child. As the node now only has a left 
child and no right child, we finally collapse it with its left 
child. 

Figure 7.  Deleting the 3rd string 

D. Insert/Append 

Figure 8.  Result of insert operation if s and αn have a common prefix. 

This operation inserts a binary string s into the Wavelet 
Trie representing a string sequence S=(s1,…,sn) at position 
pos (or appends it to the end, if pos>n). Note that this opera-
tion is only defined if the set Sset È{s} is prefix free. 

For example, assume, we want to insert the string 
romulus$ (bit-string s=101 100 01  1  1 111 0110 111 1100 
00) at position 2 into the string sequence SS3=(rob$, 
robert$), and we use the same Hu-Tucker coding as before. 
We insert s into the Wavelet Trie corresponding to SS3 (c.f. 
Figure 9), thereby splitting the previous root into the new 

root representing the common binary sub-string 101 100 01 
of all three binary strings and a new 0-child representing the 
remaining common binary sub-string 00 of the binary 
strings of SS3. 

Code 6.  Append or insert a word to WaveletTrie at position pos  

Code 6 summarizes the implementation of the insert 
operation. We consider the current node n of the Wavelet 
Trie (initially the root node) having the labels αn and βn and 
the binary string s to be inserted at position pos. As we 
require the Wavelet Trie before and after the insertion to be 
prefix free, we know that s must not be a prefix of αn. 

If αn=s (lines 2-3), n must be a leaf node of the Wavelet 
Trie (as otherwise the Wavelet Trie would not be prefix free 
after the insertion). As the size of the leaf node is stored in 
the β-bit-vector of its parent, the insertion is completed and 
we do not need to do anything else. 

If αn is a prefix of s (lines 4-8), i.e., s=αnbδ, where b is a 
bit, we insert bit b at position pos into βn(line 6) and remem-
ber its rank, and insert the binary string δ into the b-child of 
n at the position remembered in that rank, i.e., rank(b,pos) 
(line 8). 

Otherwise (lines 9-19), let γ be the common prefix of αn 
and s (line 10) and let us assume w.l.o.g. that αn=γ1δ (line 
12) and s=γ0λ (line 13). This scenario is illustrated in 
Figure 8. Note that γ might even be an empty binary string. 
Let n0 be the 0-child of n, and let n1 be the 1-child of the 
current node. In this case, we change n into a node with α=γ 
(line 14), and β consists of |βn| 1-bits (line 15) and one 0-bit 
at position pos (line 16). The new 0-child of n is a node n’ 
with α=λ (line 17). The new 1-child of n is a node n’’ with 
α=δ and β=βn(line 18). n’’ gets n0 as 0-child and n1 as 1-
child (line 19). Figure 8 shows this case after having in-
serted s into αn.  
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 1 Function insert (int pos, BitVector s): 
 2 if αn = s then 
 3  return; 
 4 if αn.isPrefixOf(s) then 
 5  boolean b =αn.getFirstDifferentBit(s); 
 6  int rank = βn.insert(pos, b); 
 7  δ = s.getSuffix(αn); 
 8  getChild(b).insert(rank, δ); 
 9 else 
10  BitVector γ = αn.getCommonPrefix(s); 
11  boolean b = γ.getFirstDifferentBit(s); 
12  BitVector δ  = αn.getSuffix(γ); 
13 BitVector λ = s.getSuffix(γ); 
14  α = γ; 
15  BitVector β =BitVector(1-b, |βn|); 
16  β.insert(pos, b); 
17  setChild(b, WaveletTrie(λ)); 
18  setChild(b, WaveletTrie(δ, βn,  
19                    child 0 , child 1 ));	
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Figure 9.  Inserting “romulus$” into the WaveletTrie 

Example: Figure 9 shows the process of inserting the 
string s=101 100 0111 111 0110 111 1100 00 (=romulus$) 
as second string into the Wavelet Trie representing the 
string sequence SS3=(rob$, robert$). We split s into the 
common prefix of s and α c=101 100 01, the next bit b=1, 
and the suffix s’=1 111 0110 111 1100 00 . And we split α 
into c, the next bit b’=0 and the suffix α’=00. The α-bit-
vector of the new root is α=c, β consists of 2 bits b’=0 
representing the existing Wavelet Trie, in which we insert 
the bit b=1 at position 2. The left child of the new root be-
comes a node with α= α’ and the beta of the left child is a 
copy of β=01. Furthermore, the two children of the left child 
are copies of the two child nodes of the previous root of the 
existing Wavelet Trie. The right child of the new root node 
becomes a new node with α=s’ and b=e. 

E. Merge/Append + Union 
This operation simulates the insertion of one string se-

quence SS2 at a given position pos into another string se-
quence SS1 on two Wavelet Tries t1 representing SS1 and t2 
representing SS2. Note that this operation is only defined if 
the set s1Ès2 is prefix free.  

For example, if we merge a copy of the Wavelet Trie in 
Figure 1 representing the string sequence SS= (rob$, 
romulus$, robert$) at position 2 into another copy of that 
Wavelet Trie, we get a new Wavelet Trie that represents the 
string sequence (rob$, romulus$, rob$, romulus$, robert$, 
robert$) 

Let n1 be the current node of t1, i.e., the given Wavelet 
Trie, and n2 be the current node of t2, i.e., the Wavelet Trie 
to be merged or appended, where n1 has the labels α1 and β1 
and n2 has the labels α2 and β2. 

If α1=α2 and n1 and n2 are leaf nodes, nothing has to be 
done, and the operation is finished (lines 3-4).  

Note that if α1=α2, the cases that n1 is a leaf node, but n2 
is not a leaf node, and vice versa, cannot occur for the 

following reason. If α1=α2 and at least one node, n1 or n2 is 
not a leaf, also the other node must not be a leaf (line 5), 
because otherwise, s1Ès2 would not be prefix-free. Then, we 
insert β2 at position pos into β1 (line 6), merge the 0-child of 
n2 at position β1.rank(0,pos) into the 0-child of n1 (line 7) 
and merge the 1-child of n2 at position β1.rank(1,pos) into 
the 1-child of n1 (line 8).  

Code 7. Merge two Wavelet Tries 

If α1 is a prefix of α2, i.e., α2=α1bδ (lines 9-14), we in-
sert b |β2| times at position pos into β1 (lines 10-12). We 
change α2 into δ (line 13) and merge n2 into the b-child of n1 
at position β1.rank(b,pos) (line 14). 

If α2 is a prefix of α1, i.e., α1=α2bλ (lines 15-23), we cre-
ate a new node n with labels α=α2 (line 18) and β consisting 
of |β1| bits b, in which we insert β2 at position pos (lines 19-
20). The b-child of the node n is then the result of merging 
the b-child of n2 at position β1.rank(b,pos) into a node with 
labels α=γ and β=β1, having the children of n1 as children 
(lines 17, 22). The (1-b)-child of the node n is the (1-b)-
child of n2 (line 23). 

 1 Function merge(int pos, WaveletTrie t):  
 2 if t.α= α then 
 3   if isLeaf and t.isLeaf then  
 4     return; 
 5   /*neither the current node nor t  
                   is a leaf node */ 
 6   Rank r = β.insert(pos, t.β);  
 7   getChild(0).merge(r(0),t.getChild(0); 
 8   getChild(1).merge(r(1),t.getChild(1); 
 9 if α.isPrefixOf(t.α) then 
10   Bit b = α.getFirstDifferentBit(t.α); 
11   for i in 1..|t. β| do 
12     Rank r = β.insert(pos, b); 
13   t.α = t.α.getSuffix(α); 
14   getChild(b).merge(r(b),t); 
15 else if t.α.isPrefixOf(α) then 
16   Bit b = t. α.getFirstDifferentBit(α); 
17   WaveletTrie tmp = WaveletTrie  
        (α.getSuffix(t.α), β,getChildren()); 
18   α = t.α; 
19   β = BitVector(b, |tmp|); 
20   Rank r = β.insert(pos, t.β); 
21   tmp.merge(r(b),t.getChild(b)); 
22   setChild(b,tmp); 
23   setChild(1-b,t.getChild(1-b)); 
24 else  
25   BitVector γ = α.getCommonPrefix(t.α); 
26   Bit b = γ.getFirstDifferentBit(t.α); 
27   WaveletTrie t1 = WaveletTrie 
    (t.α.getSuffix(γ),t.β,t.getChildren()); 
28   WaveletTrie t2 = WaveletTrie 
        (t.α.getSuffix(γ),β,getChildren()); 
29   α = γ; 
30   β = BitVector(1-b, | β|); 
31   for i in 1..|t. β| do 
32     β.insert(pos, b); 
33   setChild(b,t1); 
34   setChild(1-b,t2); 
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Otherwise, α1 and α2 share a common prefix (lines 25-
34). Let γ be the common prefix of α1 and α2, and let us 
assume w.l.o.g. that α1=γ1δ and α2=γ0λ (c.f. Figure 10). 
Then, we modify the current node n by setting the label α=γ 
(line 29) and β to a bit-vector consisting of |β1| bits 1, in 
which we insert |β2| bits 0 at position pos (lines 30-32). The 
0-child of node n is then a node with α=λ and β=β2 having 
the children of n2 as child nodes (lines 28,34), and the 1-
child of node n is a node with α=δ and β=β1 having the 
children of n1 as child nodes (lines 27,33). 

Figure 10.  Appending t1 and t2 if α1 and α2 share a common prefix. 

F. Intersection 
This operation (c.f. Code 8) computes the set-

intersection of two Wavelet Tries t1 and t2, i.e., it computes a 
Wavelet Trie that represents a lexicographically ordered list 
of all bit-strings s that occur in both, t1 and in t2.  

Let n1 be the current node of t1 and n2 be the current 
node of t2, where n1 has the labels α1 and β1 and n2 has the 
labels α2 and β2. 

If α1=α2 and n1 and n2 are leaf nodes, we can return n1 as 
resulting Wavelet Trie (lines 3-4), as n1 represents the 
intersection.  

If α1=α2 and n1 and n2 are inner nodes, we compute the 
result node r0 of the intersection of the 0-child of n1 and of 
the 0-child of n2 (line 6) and the result node r1 of the 
intersection of the 1-child of n1 and of the 1-child of n2 (line 
7). If both, the intersection of the 0-children of n1 and n2 and 
the intersection of the 1-children of n1 and n2 are empty (line 
8), we return that the intersection of n1 and n2 is empty. 
Otherwise (lines 10-14), we return a new node n, with α=α1, 
β consists of |r0| 0 bits followed by |r1| 1 bits, and n has r0 as 
0-child and has r1 as 1-child. Note that by using this order of 
0-bits and 1-bits in n’s β-vector, we get the intersection in 
lexicographical order. If only one of the intersections is 
empty, we collapse the new node with the child representing 
the non-empty intersection (lines 10-11). 

Let now either α1 be a prefix of α2 (lines 15-16) or vice 
versa (lines 17-18). Let us assume w.l.o.g. that α2 is a prefix 
of α1, i.e., α1=α2bγ (c.f. Figure 11). In this case, we change 
α1 into α1=γ and intersect this new node with the b-child of 
n2 (line 4a). If the intersection does not return an empty 
node (line 5a), the β of the result node contains only bits b 
(i.e., only 1 bits or only 0 bits) as it does not have a (1-b)-
child. Therefore, we collapse it with its single child node b-
child nb and thereby delete its (1-b)-child (lines 7a-10a). 

Code 8. Compute the intersection of two Wavelet Tries 

Figure 11.  Intersection if α2 is a prefix of α. 

In all other cases, the intersection is empty (line 19). 
This includes the case that neither α1 is a prefix of α2 nor α2 
is a prefix of α1 nor α1=α2 and the case that α1=α2 and ex-
actly one node of n1, n2 is a leaf node and the other is an 
inner node. 

V. EVALUATION 
To evaluate our implementation of the Wavelet Trie, we 

want to compare it with an approach that supports all the 
desired operations and provides a compression of the string 
sequences.  

A natural approach to compare our implementation of 
the Wavelet Trie with is the approach to compress string 
sequences with a standard compressor like gzip or bzip2, to 
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 1 Function intersection(WaveletTrie t1,  
                         WaveletTrie t2):  
 2 if t1.α= t2.α then 
 3   if t1.isLeaf and t2.isLeaf then 
 4     return t1 
 5   else if not t1.isLeaf and  
             not t2.isLeaf then 
 6     WaveletTrie r0 = intersection 
        (t1.getChild(0), t2.getChild(0)); 
 7     WaveletTrie r1 = intersection  
         (t1.getChild(1),t2.getChild(1)); 
 8     if r1=∅ and r2=∅ then return ∅; 
 9     else  
10       res = WaveletTrie(t1.α,-,r0,r1); 
11       if r0 = ∅ then res.collapse(1); 
12       if r1 = ∅ then res.collapse(0); 
13       res.β  = 1|r0|0|r1|; 
14       return res; 
15 if t1.α isPrefixOf t2.α then 
16   return intersectionPrefix(t1,t2); 
17 else if t2.α isPrefixOf t1.α then 
18   return intersectionPrefix(t2,t1); 
19 else return ∅; 
 
1a Function intersectionPrefix( 
      WaveletTrie pre, WaveletTrie other):  
2a Bit b = pre.α.getFirstDifferentBit 
                               (other.α); 
3a other.α = other.α.getSuffix(pre.α); 
4a WaveletTrie res_b =  
      intersection(pre.getChild(b),other); 
5a if res_b = ∅ then return ∅; 
6a else 
7a   res. α = pre. α; 
8a   res.setChild(b,res_b); 
9a   res.collaps(b); 
10a  return res; 
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decompress them on demand, and to do the desired 
operations on the decompressed string sequence.  

Figure 12.  Compression ratio. 

We did not compare our implementation with delta-
encoding as delta-encoding has the following disadvantage. 
Delta-encoding cannot support any of the range queries, i.e., 
our prefix search (III.A), Between, LessThan, and 
GreaterThan (III.B), because equal strings are encoded 
different, depending on the previous string. Even intersec-
tion (III.F) is not supported. Therefore, delta-encoding does 
not meet our requirements.  

The dictionary-based approach, assigning a segregated 
Huffman code to each entry results in a bit sequence that 
supports alphabetical comparisons. Run-length encoding 
compressing longer bit sequences also supports alphabetical 
comparisons. Both approaches are orthogonal and compati-
ble to our approach, i.e., can be combined with it. As there-
fore, a performance comparison with dictionary-based ap-
proaches or with RLE is not useful, we have compared our 
approach with the powerful and widely use compressors 
gzip und bzip2. 

We ran our tests on Mac OS X 10.5.5, 2.9 GHz Intel 
Core i7 with 8 GB 1600 MHz DDR3 running Java 1.8.0_45. 

To evaluate rather text-centric operations, we used 114 
texts of the project Gutenberg [15] with file sizes from 78 
kB up to 7.3 MB to build a heterogeneous corpus. In order 
to simulate database operations of a column-oriented data-
base, we used author information extracted from DBLP 
[16]. Out of these information, we generated lists consisting 
of 2500 up to 100000 authors. 

In all time measurements, we performed 10 redundant 
runs and computed the average CPU time for all these runs. 

A. Compression and Decompression 
When evaluating the pure compression and decompres-

sion of Wavelet Trie, gzip and bzip2, we get the result that 
bzip compresses strongest while Wavelet Trie compresses 
worst (c.f. Figure 12), and that gzip compresses and decom-
presses fastest while Wavelet Trie compresses and decom-
presses slowest (c.f. Figure 13).  

Figure 13.  Compression and decompression time. 

The main difference between the Wavelet Trie and the ge-
neric compressors is that the Wavelet Trie supports many 
operations on the compressed data, while gzip and bzip2 
require to at least decompress the compressed data first, and 
for some operations to recompress the modified data after-
wards. This means, there are a lot of applications that do not 
require the Wavelet Trie to decompress, as the concerning 
operations can be evaluated on the compressed data directly. 
We show the benefit of using the Wavelet Trie in the 
following subsections, in which we evaluate the perfor-
mance of the different operations.  

B. Search and searchPrefix  
Figure 14 shows the search times for (a) a single word 

and (b) all words starting with a given prefix directly in the 
Wavelet Trie compared to the time needed for the pure 
decompression of bzip2 and gzip.  

We searched within our Gutenberg corpus for all posi-
tions of the word ‘file’, which is contained in each file, and 
for all positions of words starting with the prefix ‘e’. Alt-
hough the times for bzip2 and for gzip comprise only the 
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pure decompression, i.e., no search operation is performed 
on the decompressed bzip2 or the decompressed gzip file, 
the search directly on the Wavelet Trie is faster than the 
pure decompression times of bzip2 and of gzip. 

 

Figure 14.  Search times for words in the Wavelet Trie compared to pure 
decompression time of bzip2 and of gzip. 

C. Range queries 
Figure 15 shows the results of comparing the search 

times (a) for words greater than ‘e’ but less than ‘f’ and (b) 
for words greater than ‘identification’ and less than ‘identi-
fier’ directly on the Wavelet Trie with the pure decompres-
sion time of bzip 2 and gzip. These operations were again 
evaluated on the Gutenberg corpus. Although the times for 
bzip2 and for gzip comprise only the pure decompression, 
i.e., no search operation is performed, the search directly on 
the Wavelet Trie is faster than the pure decompression times 
of bzip2 and of gzip. The more specific the search query is, 
and thus the smaller the search result, the better is the 
performance benefit of the Wavelet Trie compared to bzip2 
and gzip. 

 

Figure 15.  Range queries on the Wavelet Trie compared to pure 
decompression time of bzip2 and gzip. 

D. Insert and Delete 
As a first operation, we compared the insert and the de-

lete operation directly on the Wavelet Trie with the pure 
decompression time of bzip2 and of gzip. We performed 
these operations on the documents of our Gutenberg corpus. 
Figure 16 shows the results. The insertion of the word ‘data-
base’, which does not occur in any of the documents, as 50th 
word is faster than the pure decompression of bzip2 and as 
fast as the pure decompression of gzip. The same holds for 
the deletion of the 50th word.  

Note that the decompression times for bzip2 and gzip 
neither contain the time needed to insert (or to delete respec-
tively) a string nor the time needed to recompress the modi-
fied results. 
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Figure 16.  (a) Insertion and (b) Deletion in the Wavelet Trie compared to 
bzip2 and gzip decompression time.  

E. Merge/Union 
Finally, we evaluated the time to append one list to an-

other list (c.f. Figure 17) and the time to insert a list at posi-
tion 50 into a second one (c.f. Figure 18).  

We performed both tests for disjoint lists as well as for 
lists that overlap in 50% of the entries. Again, we compared 
the time with the sequence of decompression and 
recompressing the concatenated list by using either bzip2 or 
gzip, i.e., we did not perform any merge or append opera-
tion for bzip2 or gzip. In both cases and for both operations, 
this operation on the Wavelet Trie is faster than the simula-
tion of this operation for bzip2 and for gzip. The benefit of 
the Wavelet Trie in comparison to bzip2 and gzip is bigger 
for append operations than for the merge operation that 
inserts one list at a given position into the second one.  

 

Figure 17.  Comparison of the time to append two lists for Wavelet Trie, 
bzip2 and gzip. 

F. Intersection 
The following tests were performed on our dblp author 

corpus. Figure 19 shows the results of comparing the 
intersection operation on two author lists with the sequence 
of decompression and recompressing the result list of the 
intersection using bzip2 and gzip. We computed the result 
list of the intersection prior to the test runs, i.e., the time 
needed to compute the intersection was not measured. We 
used two different sets of lists: the first is duplicate-free, 
whereas, in the second set, 50% of the list entries of the 
second list occur also in the first list. If the lists are com-
pletely disjoint, the intersection computed directly on the 
Wavelet Trie is faster than the sequence of decompression 
and recompression for bzip2 and as fast as this sequence of 
operations for gzip. If there is a large overlapping of the 
lists, gzip is faster than the Wavelet Trie, which still is faster 
than bzip2. Note that we did not perform any intersection 
operation for gzip and bzip2 compressed data. 
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Figure 18.  Comparison of the time to merge a list into another one for 
Wavelet Trie, bzip2 and gzip. 

VI. CONCLUSION  
In this paper, we presented and evaluated an extension 

of the Wavelet Trie [12][13] that allows to represent com-
pressed indexed sequences of strings. As our evaluations 
have shown, operations like insertion, deletion, search que-
ries, range queries, intersection and union can be performed 
on the compressed data as fast as or even faster than the 
simulation of these operations with the help of generic com-
pressors like bzip2 or gzip. We therefore believe that the 
Wavelet Trie is a good approach to be used, e.g., in column-
oriented main-memory databases to enhance the storage or 
memory capacity at the same time as the search perfor-
mance. 

 

Figure 19.  Computing the intersection directly on the Wavelet Trie 
compared to decompression, list concatenation and recompression time of 

bzip2 and gzip. 
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