
WaveletTrie: a Compressed Self-Indexed Data Structure Supporting Efficient
Database Operations

Stefan Böttcher, Rita Hartel, Jonas Manuel
Department of Computer Science,

University of Paderborn,
Paderborn, Germany

email: stb@uni-paderborn.de, rst@uni-paderborn.de, jmanuel@live.uni-paderborn.de

Abstract—An indexed compressed sequence of strings is a
representation of a string sequence that on the one hand is
more space efficient than the original sequence, but on the
other hand supports more efficient operations on these strings.
Whenever an indexed compressed sequence of strings supports
efficient evaluation of typical database operations, like search-
ing for exact matches or prefixes, range queries, computing the
union or the intersection of sets of strings, or data modifica-
tions, databases can strongly benefit from storing their table
columns in form of an indexed compressed sequence. In this
paper, we show how to extend the data structure of the
Wavelet Trie to an indexed compressed sequence of strings
that supports efficient operations on column oriented data-
bases. Therefore, we present algorithms for executing database
operations like union, intersection, and range-queries on string
sequences represented by an extended Wavelet Trie. Further-
more, in our evaluation, we show that performing these typical
database operations on the extended Wavelet Trie is faster
than simulating these operations on gzip- or bzip2-compressed
data.

Keywords—Column-oriented database management systems;
compression; compressed indexed sequences of strings.

I. INTRODUCTION
The work presented in this paper extends the ideas pre-

sented in [1] at DBKDA 2017.
Column-oriented DataBase Management Systems

(DBMS) organize their data tables within column stores,
each containing an ordered sequence of entries. This data
organization technique is preferable, especially when used
for read-intensive applications like data warehouses, where
in order to analyze the data, queries and aggregates have to
be evaluated on sequences of similar data contained in a
single column [2]. A second advantage of column-oriented
data stores is that they can be compressed stronger than row
oriented data stores, as each column and therefore each
contiguous sequence of data contains data from the same
domain and thus contains less entropy.

As long as main-memory availability is a run-time
bottleneck, data compression is beneficial to virtually “en-
hance” the capacity of the main-memory, i.e., column-
oriented data stores can benefit from storing their string
columns in form of compressed indexed sequences of
strings. A major challenge when using a compressed data
structure for a string column is to support typical database

operations in efficient time without full decompression of
the compressed data structure.

This paper is organized as follows. In Section III, we
introduce the basic concepts used in the following sections.
In Section IV, we explain different operations on the
Wavelet Trie and discuss how to implement them. In
Section V, we show an extensive performance evaluation, in
which we compare the performance of these operations on
the Wavelet Trie with the performance of the gzip and bzip2
(de)compression.

II. RELATED WORK
Column stores like, for instance, C-STORE [2], Vertica

[3], or SAP HANA [4] typically rely on combinations of
compression techniques like Run-Length Encoding, Delta
Encoding, or dictionary-based approaches. These compres-
sion techniques do not contain a self-index, but have to
occupy additional space to store an index that allows for
efficient operations like, for instance the evaluation of range
queries. When main-memory availability is the major run-
time bottleneck, we consider this to be a disadvantage.

In contrast, the Wavelet Tree [5] is a self-index data
structure, and it can be regarded as an enhancement of
variable length encodings (e.g., Huffman [6], Hu-Tucker
[7]). The Wavelet Tree rearranges the encoded string S in
form of a tree and thereby allows for random access to S.
Variations of the Wavelet Tree use the tree topology to
enhance Fibonacci encoded data [8] or Elias and Rice varia-
ble length encoded data [9]. In [10] an n-ary Wavelet Tree is
used instead of a binary Wavelet Tree (e.g., a 128-ary
Wavelet Tree by using bytes instead of bits in each node of
the Wavelet Tree). A pruned form of the Wavelet Tree is the
Skeleton Huffman tree [11] leading to a more compressed
representation. Although avoiding the need for an additional
index, Wavelet Trees have the disadvantage that common
prefixes in multiple strings are stored multiple times.

This disadvantage is avoided by the Wavelet Trie
[12][13], which is a self-index, i.e., avoids the storage of
extra index structures, and can be regarded as a generaliza-
tion of the Wavelet Tree for string sequences S and the
Patricia Trie [14]. The Wavelet Trie rearranges a sequence S
of encoded strings s1,…,sn in form of a tree thereby storing
common prefixes of s1,…,sn only once, and it allows for
random access to each si of S. That is why in this paper, we

539

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

use a Wavelet Trie to store compressed indexed sequences
of strings.

Wavelet Tries support the following basic operations
that are used within column-oriented DBMS: the operations
access(n) that returns the n-th string of a given column and
that is used for example when finding values of the same
database tuple contained in other columns, or
search(s)/searchPrefix(s) that searches for all positions
within the current column that contain a string value s (or
that contain a string value having the prefix s). Beside these
elementary search operations, Wavelet Tries support
elementary data manipulation operations on the compressed
data format as, e.g., to insert a string at a given position, to
append a string, or to delete a string from the sequence.

[12] and [13] introduce the concept of the Wavelet Trie
and discuss the complexity of the following operations,
which are executed on the Wavelet Trie encoding a given
string sequence:
• Access(pos) returns the pos-th string of the string se-

quence
• Rank(s, pos)/RankPrefix(s, pos) return the number of

occurrences of string s (or strings starting with the pre-
fix s) up to position pos in the string sequence

• Select(s, i)/SelectPrefix(s, i) returns the position of the
i-th string s (or string starting with prefix s) of the
string sequence

• Insert(s, pos) simulate on the Wavelet Trie an inser-
tion of the string s before position pos into the string
sequence

• Append(s) simulate on the Wavelet Trie an appending
of the string s to the end of the string sequence

• Delete(pos) simulate on the Wavelet Trie a deletion of
the string at position pos of the string sequence

Although this is sufficient to support the most elemen-
tary database operations in column stores, in order to sup-
port more enhanced data analysis, efficient query processing
should go beyond these elementary operations. Hereby, the
main challenge is to support efficient complex read opera-
tions like intersection, union, and range queries on column
stores without decompression of large parts of the com-
pressed data.

Our goal is that these operations on compressed data are
executed not only with a smaller main-memory footprint,
but also faster on compressed data compared to a decom-
press-read approach that first decompresses the data before
a read operation (or write operation) is done.

Our first contribution is to extend the Wavelet Trie
[12][13] published in 2012 by Grossi and Gupta by concepts
and efficient implementations of enhanced database opera-
tions (intersection, union, and range queries).

When standard string compressors like gzip or bzip2 are
used for compressing sequences of strings stored in a data-
base table column, such a compressed sequence of strings
has to be decompressed, before a database operation can
even be executed. That is why our second contribution is an
evaluation, comparing the performance of database opera-
tions on our extended Wavelet Trie with the decompression

time needed by bzip2 or by gzip for a compressed sequence
of strings. We show that performing typical operations on
string sequences like searching for exact matches or pre-
fixes, range queries, or update operations like insertion or
deletion, or operations on two string sequences like merge
or intersection, directly on the Wavelet Trie is faster than
simulating these operations on bzip2- and gzip-compressed
data.

III. PREPROCESSING AND BASIC CONCEPTS
In this section, we introduce the basic concepts used in

the remainder of this paper.

A. Preprocessing
In order to allow a space-efficient storage of a string se-

quence SS, the Wavelet Trie requires the strings of the
string sequence to be pairwise prefix-free, i.e., no string
stiÎSS is allowed to be a prefix of another string stjÎSS.
The requirement that SS has to be a prefix-free sequence, is
not a critical restriction, as a prefix-free set of strings can be
easily constructed for any set SS as follows. A special
terminal symbol that is lexicographically smaller than each
character occurring in each string stiÎSS is appended to
each string stiÎSS. For example, in Figure 1, we added the
symbol ‘$’ to the end of each string, thereby yielding a
prefix free sequence, although the previously given string
sequence (rob, romulus, robert) is not prefix free, as ‘rob’ is
a prefix of ‘robert’.

Furthermore, before we use the Wavelet Trie to store a
sequence SS=(st1,…,stn) of strings, we apply the Hu-Tucker
algorithm [7] to all characters of all stiÎSS, i.e., we encode
each character c of each stiÎSS by its Hu-Tucker code ht(c).
Thereby, we get a sequence S=(s1,…,sn) of bit-strings,
where si is the Hu-Tucker code of sti, yielding a lexico-
graphic Huffman code for the bit-strings si, i.e., si <lexi sj Û
sti <lexi stj, where <lexi denotes “less than in lexicographical
order”.

In order to search for a string st in SS, we apply the
same Hu-Tucker codes to the characters of st, yielding a bit-
string s that we can search for in the Wavelet Trie.

For example, for the string sequence SS=(rob$,
romulus$, robert$), and its Hu-Tucker codes listed in Table
1, we get the sequence
S=(s1, s2, s3) of bit-strings with

s1 = 101 100 0100 00,
s2 = 101 100 0111 111 0110 111 1100 00, and
s3 = 101 100 0100 0101 101 1101 00.

TABLE I. HU-TUCKER CODES OF OUR EXAMPLES

char c code(c) char c code(c)
$ 00 o 100
b 0100 r 101
e 0101 s 1100
l 0110 t 1101
m 0111 u 111

540

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Whenever we describe operations that work on two
Wavelet Tries, we assume that both Wavelet Tries are based
on the same Hu-Tucker-Encoding.

After the preprocessing steps, we construct the Wavelet
Trie according to the construction method given in the
Wavelet Trie definition of the following section.

In order to keep the following definition and the
construction principle of the Wavelet Trie simple, we as-
sume that the string sequence SS represented by the
Wavelet Trie always consists of at least two different
strings, i.e., stiÎSS, stjÎSS, and sti ¹ sti. As a consequence,
also SS’s Hu-Tucker encoded sequence S=(s1,…,sn) of bit-
strings contains at least two different bit-strings. Whenever
this is not the case, we could simply store the size of S
externally, or add a binary string snew, snew≠si, i Î {1,…,n}
to the end of the sequence S, such that our Wavelet Trie
represents a bit-string sequence S that consists of at least
two different bit-strings.

B. Basic Concepts
Similarly to [12][13], we define the Wavelet Trie as fol-

lows:
Definition (Wavelet Trie): Let S be a non-empty se-

quence of bit-strings, S=(s1,..., sn), si Î {0,1}*, whose
underlying bit-string set Sset={s1,…,sn} is pair-wise prefix-
free. The Wavelet Trie of S, denoted WT(S), is a binary
tree, which is built recursively as follows:

(i) If the bit-string set Sset of S consists of a single bit-
string element only, i.e., s1 = … = sn, the Wavelet Trie is a
single node labeled with α = s1 = … = sn and β=e, i.e., β is
an empty bit-vector.

(ii) Otherwise, WT(S), the Wavelet Trie of S is a binary
tree whose root node is labeled with two bit-vectors, α and
β, and whose children (respectively labeled with 0 and 1)
are WT(Sα0) and WT(Sα1), the Wavelet Tries of sequences
Sα0 and Sα1 of bit-strings, where α, β, Sα0, and Sα1 are de-
fined as follows. α is the longest common prefix of the bit-
strings si contained in S. For any 1 ≤ i ≤ n, we then can write
si = αbiγi, where bi is a single bit. We then define the se-
quences Sα0 = (γi | α0γiÎS) and Sα1 = (γi | α1γiÎS) of bit-
strings, i.e., the first sequence contains suffixes γi of siÎS
such that si begins with α0 and the second sequence con-
tains suffixes γi of siÎS such that si begins with α1. Finally,
the bitvector β = (bi | αbiγiÎS) collects all the bits bi that
discriminate for a given si = αbiγi, whether the suffix γi is in
Sα0 or is in Sα1.

Example: Continuing the previous example, Figure 1
shows the Wavelet Trie representing the sequence S=(s1, s2,
s3) of bit-strings

s1 = 101 100 01 0 0 0 0,
s2 = 101 100 01 1 1 111 0110 111 1100 00,
s3 = 101 100 01 0 0 0 1 01 101 1101 00.

representing the strings of the sequence SS= (rob$,
romulus$, robert$). The characters are shown in Figure 1
only for the purpose of illustration, but are not contained in
the Wavelet Trie. All three bit-strings s1, s2, s3 share the
common prefix α = 101 100 01 and differ in the next bit bi,
which is 0 for s1 and for s3, but 1 for s2. The bit-string se-

quence Sα0 = (γ1, γ3) containing the suffixes γ1 and γ3 of s1
and s3 is represented by the left sub-tree of the Wavelet
Trie’s root node, and the bit-string sequence Sα1 = (γ2) is
represented by the right child. Continuing with the left sub-
tree of the Wavelet Trie’s root node, γ1 and γ3 share the
common prefix 00 and differ in the next bit, such that here
we get a new bit-vector α=00 and a new bit-vector β that
contains only two bits, one for s1, the other for s3. All leaf
nodes contain the common bit-vector α and an empty bit-
vector β, as they represent a bit-string set containing a sin-
gle element only.

Figure 1. Wavelet Trie representing the bit-string sequence
(101 100 01 0 0 0 0, 101 100 01 1 1 111 0110 111 1100 00,

 101 100 01 0 0 0 1 01 101 1101 00)

Remarks: If the whole Wavelet Trie consisted of a single
node only, this node would be a leaf node having a bit-vec-
tor α, but having an empty bit-vector β, i.e., we could not
derive the size of the sequence S represented by the leaf
node. That is why we required S to contain at least two
different bit-strings si,sjÎS with si≠sj. Given this require-
ment, in the following, we can assume that the whole
Wavelet Trie considered always consists of more than one
node.

If we reach a leaf node of the Wavelet Trie, i.e., the se-
quence represented by that leaf node has a bit-string set
containing a single element only, we know the size n of the
sequence by counting the number of bits within the β bit-
vector of the leaf’s parent node.

IV. DATABASE OPERATIONS ON TOP OF THE WAVELET
TRIE

In the following sections, we denote the left child of a
Wavelet Trie node also as its 0-child, and the right child of a
Wavelet Trie node also as its 1-child.

For the following operations, we assume that they are
methods of an object of type WaveletTrie and that they can
directly access the object variables a, b, and size. The size
of a Wavelet Trie wt is |b|, i.e., the number of bits of b if wt
is an inner node, and for a leaf node, it is the number of 0-
bits in wt’s parent node p, if wt is p’s left child, and the

541

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

number of 1-bits in wt’s parent node p, if wt is p’s right
child.

A. Search/Query Operations
Let S=(s1,..., sn) be a given bit-string sequence that is

represented by a Wavelet Trie wt having the root node
wt.root, and let s be a given bit-string that we search for in
S. The search(s) operation applied to wt.root returns a list of
all the positions i in S of those bit-strings si that are equal to
s. Similarly, the searchPrefix(s) operation applied to wt.root
returns a list of the positions i in S of all those bit-strings si
that have a prefix s.

For example, assume, we want to search for robert$ in
the string sequence SS2=(rob$, romulus$, robert$, robert$,
romulus$, robert$), and we use the same Hu-Tucker coding
as before. We search for the bit-string 101 100 0100 0101
101 1101 00 corresponding to robert$ in the Wavelet Trie
corresponding to SS2 (c.f. Figure 3), and we get the result
position list [3,4,6].

In order to search for all matching positions in the
Wavelet Trie, the function search(s) (c.f. Code 1) recur-
sively traverses down the tree representing the Wavelet
Trie, until we have found all bits of the binary string s, and
bottom-up “translates” all matching positions into matching
positions in the Wavelet Trie’s root node.

In more detail, the search works as follows: Let n be the
current node having a bit-vector α, a bit-vector β, and (if n
is not the Wavelet Trie’s root node) having a parent node
pa, such that n is the b-child of pa and β of pa contains k b-
bits. Assume that we search for all positions where a given
bit-string s occurs.

 1 Function search(BitString s):
 2 if s=α and isLeaf then
 3 return [1,...,size];
 4 else if α.isPrefixOf(s) and !isLeaf then
 5 Bit b = α.getFirstDifferentBit(s);
 6 γ = s.getSuffix(α);
 7 [p1,...,pm] = getChild(b).search(γ);
 8 return β.select(b, [p1,...,pm]);
 9 return ∅;	

Code 1. Search for all exact occurrences of a word

The search has to distinguish 3 cases:
1. If we have found all bits of s and we have reached the

end of the α of a leaf node (line 2), we have reached an
exact match. For the leaf node representing the exact match,
we return a vector [1,…,size] (line 3), where size is the
number of bit-strings represented by that leaf, i.e., each
position in [1,…,size] is a matching position for s in this
leaf node.

2. If s≠α, α is a prefix of s and n is no leaf node (lines 4-
8), s is of the form s=αbγ (lines 5-6) with a potentially
empty γ. In this case, we perform the search operation for
the bit-string γ on n’s b-child (c.f. Figure 2), resulting in a
list of matching positions [p1,…,pm] in the current node’s b-
child (c.f. line 7). These positions are then (line 8) translated
into matching positions of the current node as described
below.

Figure 2. Search operation, if α is a prefix of search string s.

3. If none of the above cases matches, the Wavelet Trie
does not contain a binary string matching the search criteria,
and we return an empty list of positions (line 9).

In order to determine the exact matching positions in S,

matching positions in the Wavelet Trie’s nodes are com-
puted bottom-up, i.e., we start in the matching leaf node and
“translate” matching positions in a Wavelet Trie node n to
matching positions in n’s parent node pa (line 8).

Hereby, the method b.select(b, [p1,…, pm]), called in line
8 of Code 1, is implemented as shown in Code 2, where
b.select(b,pi) returns the position of the pi

th b-bit in the bit-
vector b.

Code 2. Auxiliary method b.select(b, [p1,…, pm])

Figure 3. Search for “robert$”.

Example: Figure 3 shows a slightly modified version of
the Wavelet Trie of Figure 1 that represents the string se-
quence SS2=(rob$, romulus$, robert$, robert$, romulus$,
robert$). In order to search for all occurrences of “robert$”,
i.e., of the binary string s = 101 100 01 0 0 0101 101 1101
00, we start with the root node. As α = 101 100 01 is a pre-
fix of s, and the next bit b in s is 0, we continue to search for
the remaining substring sL = 0 0101 101 1101 00 of s within
the left child of the root node. Here, α = 0 0 is again a prefix

↵ : �

� : 1 . . . 101 . . . 1

↵ : � ↵ : �

� : �n

n0 n1

↵ : ↵n

� : 0⇤

↵ : ↵0

� : �0

n0 n1

. . .)
↵ : ↵n0↵0

� : �0

n0 n1

↵ : ↵n

� : �n

↵ : ↵0

� : �0
search(�)

search(↵0�)

1

1 Function select(Bit b, [p1,...,pm]):
2 return [select(b,p1),...,select(b,pm)];

542

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of s1, and the next bit b of sL is 1. Therefore, we continue to
search for the remaining substring sLR = 01 101 1101 00 of
sL in the right child node. As now, α = sLR, and the current
node is a leaf node, all strings represented by this leaf node
are matches. From the leaf’s parent’s ß-bit-vector, we know
that our leaf node represents 3 occurrences of s, thus, we
return the list of positions [1, 2, 3] from the leaf node to its
parent. Recursive execution returns to the previous call of
this method executed for the leaf’ parent, i.e., the left child
of the root. As the leaf is the right child of its parent and
here, the 1st, 2nd, and 3rd 1-bits occur at positions 2, 3, and 4
in b, we return [2, 3, 4]. Similarly, when execution returns
from its left child to the root node, the 2nd, 3rd, and 4th 0-bits
occur at positions 3,4, and 6 in b. Therefore, the final result
is that the strings on positions [3, 4, 6] are equal to the
search string ‘robert$’.

Similarly, if we do not want to search for exact matches,

but for prefixes, i.e., we search for all positions of binary
strings starting with the given prefix s, we just have to
slightly modify our algorithm:

If we have found all bits of s on the current path in the
Wavelet Trie, we do not care, whether or not we have
reached a leaf node, and translate the current positions into
positions of the Wavelet Trie’s root node. That is, the code
for searchPrefix() is as follows:

Code 3. Search for all strings that start with a given prefix

B. Between/Range Queries (less than, greater than)
The operation between(sL,sH) returns a list of positions

of strings siÎS, such that sL ≤ lexi si ≤ lexi sH. Similarly, the
operation lessThan(s) returns a list of positions of bit-strings
si, such that si ≤ lexi s, and the operation greaterThan(s) re-
turns a list of positions of bit-strings si, such that si ≥ lexi s.

For example, assume, we want to search for all strings
greater than robb$ in the string sequence SS2=(rob$,
romulus$, robert$, robert$, romulus$, robert$), and we use
the same Hu-Tucker coding as before. We search for all bit-
strings that are greater than the bit-string 101 100 0100 0100
00 corresponding to robb$ in the Wavelet Trie cor-
responding to SS2 (c.f. Figure 4), and we get the result posi-
tion list [2,5,3,4,6] corresponding to the positions of either
one of the strings robert$ or one of the strings romulus$.

In this section, we explain how to implement the opera-
tion greaterThan(s). To adapt this operation in order to
implement between(sL,sH) or lessThan(s) is quite straightfor-
ward.

Let the current node n be a node with labels α and β.

Code 4. Search for positions of all words greater than a given string

If α≥s (which includes the case that s is a prefix of α,
i.e., α=sbδ with a potentially empty δ), we know that all bit-
strings represented by the Wavelet Trie rooted in n are
greater than or equal to s, i.e., we return the list of positions
[1, …, size] (lines 2-3).

In the other case, if α is a prefix of s, i.e., s= αbλ (lines
4-16), we have to consider the value of b and get two sub-
cases.

Lines 8-10 treat the sub-case b=1. Here, all remaining
bit-strings represented by the Wavelet Trie rooted in n’s 0-
child start with a 0-bit and therefore cannot be greater than
the remaining search bit-string 1λ of s, i.e., only n’s 1-child
can represent greater remaining bit-strings. As the 1-bit of
the remaining search bit-string 1λ is consumed while search
moves to n’s 1-child, we have to apply the operation
greaterThan(λ) only to n’s 1-child (line 9) with the remain-
ing search bit-string λ, and translate the matching positions
[p1,...,pm] within n’s 1-child’s β-vector into matching posi-
tions wihtin n’s β-vector (line 10).

Lines 11-15 treat the other sub-case, b=0:

Figure 4. Search for strings greater than “robb$”

 1 Function searchPrefix(BitString s):
 2 if s=α or s.isPrefixOf(α) then
 3 return [1,...,size];
 4 else if α.isPrefixOf(s) and !isLeaf then
 5 Bit b = α.getFirstDifferentBit(s);
 6 γ = s.getSuffix(α);
 7 [p1,...,pm] = getChild(b).search(γ);
 8 return β.select(b, [p1,...,pm]);
 9 return ∅;	

 1 Function greaterThan(BitVector s):
 2 if α>=s then
 3 return [1...size];
 4 else if α.isPrefixOf(s) then
 5 if not isLeaf then
 6 Bit b = α.getFirstDifferentBit(b);
 7 λ = s.getSuffix(α);
 8 if b=1 then
 9 [p1,...,pm] = getChild(1)
 .greaterThan(λ));
10 return β.select(1, [p1,...,pm]);
11 else
12 [p1,...,pm] = getChild(0)
 .greaterThan(λ));
13 return
14 β.select(0, [p1,...,pm]) ⊕
15 β.select(1, [1,...,rank(1,| β |]);
16 else return ∅;

543

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. greaterThan if α is a prefix of search string s.

Here, the returned result list r1 Å r2 of matching positions
wihtin n’s β-vector consists of two sub-lists r1 (line 14) and
r2 (line 15), which are computed as follows. We search for
the positions [p1,...,pm] of remaining bit-strings greater than
λ within n’s 0-child (line 12) and translate these positions
into positions of n’s β bit-vector (line 14) to get r1 However,
as all remaining bit-strings represented by the Wavelet Trie
rooted in n’s 1-child start with a 1-bit and are therefore
greater than the remaining search bit-string 0λ of s, each 1-
bit of n’s β bit-vector represents a match to our search. That
is why we also return the positions of all 1-bits in β in line
15 of Code 4, i.e., r2 = β.select(1,[1,…,rank(1, |β|]). This is
also illustrated in Figure 5. Finally, we return r=r1 Å r2 (lines
13-15).

In the last case, α<s and α is not a prefix of s, no string
represented by this Wavelet Trie rooted in n can be greater
than or equal to s, i.e., we return the empty list (line 16).

Example: Figure 4 shows the search for all strings
greater than the binary string s = 101 100 0100 0100 00
(=”robb$”) within the string sequence SS2=(rob$, romulus$,
robert$, robert$, romulus$, robert$). We compare s with α of
the Wavelet Trie’s root. As α is a prefix of s and the next bit
after α in s is 0, we select all 1-bits of β (positions 2 and 5)
and compute greaterThan applied to the remaining bit-string
sL = 0 0100 00 and the left child of the root. Again α is a
prefix of sL, but this time, the next bit after α in s is 1, so we
continue with the right child and the remaining bit-string sLR
= 0000 and compute greaterThan(0000). As α > sLR for sLR =
0000, we return positions [1, 2, 3], which correspond to the
1st, 2nd, and 3rd 1-bit of the β bit-vector of its parent, i.e., to
the positions [2, 3, 4]. The positions [2, 3, 4] correspond to
the 2nd, 3rd, and 4th 0-bit of the β bit-vector of the root, i.e., to
positions [3, 4, 6]. So the final result are the positions [2, 5]
Å [3, 4, 6] = [2, 5, 3, 4, 6].

Note that we can similarly create a new Wavelet Trie that

consists of all bit-strings greater than s, if we first copy the
Wavelet Trie, and then, using the list [p1,…, pm] of result
positions returned by greaterThan(s), for deleting all strings
at a position pi Î [p1,…, pm] from the copy of the Wavelet
Trie. Note that the algorithm for deleting a string at a given
position is explained in the following section, Section C. Of

course, we do not need to search first and delete in a second
pass, but can nest both operations by deleting the bits while
propagating the positions up to the root node.

C. Delete
This operation deletes the binary string spos at position

pos from the Wavelet Trie.
For example, assume, we want to delete the 3rd string

from string sequence SS=(rob$, romulus$, robert$), and we
use the same Hu-Tucker coding as before. We delete the
binary string 101 100 0100 0101 101 1101 00 correspond-
ing to robert$ from the Wavelet Trie corresponding to SS
(c.f. Figure 7). As a consequence, we have to collapse the
left child of the root, i.e., to combine it with its remaining
single child into a single node.

Code 5. Delete word from WaveletTrie

In order to delete the binary string spos at position pos
from the current node n (initially the root node), we delete
the bit b at position pos from β (Code 5, line 4). If β after-
wards still contains 0-bits and 1-bits and n’s b-child is not a
leaf node, we continue to delete the bit at position
rank(b,pos) from the β-vector of n’s b-child (lines 7-8).

If β contains either only 0-bits or only 1-bits (i.e., β=0*
or β=1*, in general β=b*), we have to collapse the current
node with its b-child nb and thereby delete its (1-b)-child
(lines 5-6).

Figure 6 shows the state before and after collapsing the
node for b=0. To collapse a node n with its b-child nb means
the following: Let n0 be the 0-child of nb and n1 be the 1-
child of nb. Let furthermore αb and βb be the labels of node
nb. Then the new labels of node n are α=αnbαb and β=βb.
Furthermore, n0 becomes the new 0-child of n and n1 be-
comes the new 1-child of n.

Figure 6. Before and after collapsing the node.

Example: Figure 7 shows the process of deleting the
string s=101 100 0100 0101 101 1101 00 (=robert$) at
position 3 from the WaveletTrie. In the root, we delete the 3rd
bit, which is a 0-bit. We compute its rank within β. As it is
the second 0-bit, the rank is two. We continue with deleting

1 Function delete (int pos):
2 if not isLeaf then
3 boolean b = β.getBit(pos);
4 int rank = β.delete(pos);
5 if β.hasOnly(1-b) then
6 collapse(1-b);
7 else
8 getChild(b).delete(rank);	

↵ : �

� : 1 . . . 101 . . . 1

↵ : � ↵ : �

� : �n

n0 n1

↵ : ↵n

� : 0⇤

↵ : ↵0

� : �0

n0 n1

. . .)
↵ : ↵n0↵0

� : �0

n0 n1

↵ : ↵n

� : �n

↵ : ↵0

� : �0
search(�)

search(↵0�)

1

↵ : ↵n

� : �n

↵ : ↵0

� : �0
r1 = �.select(0, greaterThan(�))

↵ : ↵1

� : �1

�.select(1, [1, . . . , rank(1, |�|)])

greaterThan(↵0�)

↵ : ↵20�

� : �1

.

\

↵ : ↵2

� : �2

n0 . . .

)
↵ : �

� : �1

.

\
n0

.

2

544

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the second bit of the left child. As it is the single 1-bit, we
can delete the right child. As the node now only has a left
child and no right child, we finally collapse it with its left
child.

Figure 7. Deleting the 3rd string

D. Insert/Append

Figure 8. Result of insert operation if s and αn have a common prefix.

This operation inserts a binary string s into the Wavelet
Trie representing a string sequence S=(s1,…,sn) at position
pos (or appends it to the end, if pos>n). Note that this opera-
tion is only defined if the set Sset È{s} is prefix free.

For example, assume, we want to insert the string
romulus$ (bit-string s=101 100 01 1 1 111 0110 111 1100
00) at position 2 into the string sequence SS3=(rob$,
robert$), and we use the same Hu-Tucker coding as before.
We insert s into the Wavelet Trie corresponding to SS3 (c.f.
Figure 9), thereby splitting the previous root into the new

root representing the common binary sub-string 101 100 01
of all three binary strings and a new 0-child representing the
remaining common binary sub-string 00 of the binary
strings of SS3.

Code 6. Append or insert a word to WaveletTrie at position pos

Code 6 summarizes the implementation of the insert
operation. We consider the current node n of the Wavelet
Trie (initially the root node) having the labels αn and βn and
the binary string s to be inserted at position pos. As we
require the Wavelet Trie before and after the insertion to be
prefix free, we know that s must not be a prefix of αn.

If αn=s (lines 2-3), n must be a leaf node of the Wavelet
Trie (as otherwise the Wavelet Trie would not be prefix free
after the insertion). As the size of the leaf node is stored in
the β-bit-vector of its parent, the insertion is completed and
we do not need to do anything else.

If αn is a prefix of s (lines 4-8), i.e., s=αnbδ, where b is a
bit, we insert bit b at position pos into βn(line 6) and remem-
ber its rank, and insert the binary string δ into the b-child of
n at the position remembered in that rank, i.e., rank(b,pos)
(line 8).

Otherwise (lines 9-19), let γ be the common prefix of αn
and s (line 10) and let us assume w.l.o.g. that αn=γ1δ (line
12) and s=γ0λ (line 13). This scenario is illustrated in
Figure 8. Note that γ might even be an empty binary string.
Let n0 be the 0-child of n, and let n1 be the 1-child of the
current node. In this case, we change n into a node with α=γ
(line 14), and β consists of |βn| 1-bits (line 15) and one 0-bit
at position pos (line 16). The new 0-child of n is a node n’
with α=λ (line 17). The new 1-child of n is a node n’’ with
α=δ and β=βn(line 18). n’’ gets n0 as 0-child and n1 as 1-
child (line 19). Figure 8 shows this case after having in-
serted s into αn.

Prof. Dr. Stefan B

¨

ottcher

u. v. a.

Paderborn, 28. Mai 2015

Pr

¨

asenz

¨

ubung zur Vorlesung

Grundlagen von Datenbanken

SS 2015

Blatt 4

Aufgabe 1:

↵ : �

� : 1 . . . 101 . . . 1

↵ : � ↵ : �

� : �n

n0 n1

1

 1 Function insert (int pos, BitVector s):
 2 if αn = s then
 3 return;
 4 if αn.isPrefixOf(s) then
 5 boolean b =αn.getFirstDifferentBit(s);
 6 int rank = βn.insert(pos, b);
 7 δ = s.getSuffix(αn);
 8 getChild(b).insert(rank, δ);
 9 else
10 BitVector γ = αn.getCommonPrefix(s);
11 boolean b = γ.getFirstDifferentBit(s);
12 BitVector δ = αn.getSuffix(γ);
13 BitVector λ = s.getSuffix(γ);
14 α = γ;
15 BitVector β =BitVector(1-b, |βn|);
16 β.insert(pos, b);
17 setChild(b, WaveletTrie(λ));
18 setChild(b, WaveletTrie(δ, βn,
19 child 0 , child 1));	

545

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Inserting “romulus$” into the WaveletTrie

Example: Figure 9 shows the process of inserting the
string s=101 100 0111 111 0110 111 1100 00 (=romulus$)
as second string into the Wavelet Trie representing the
string sequence SS3=(rob$, robert$). We split s into the
common prefix of s and α c=101 100 01, the next bit b=1,
and the suffix s’=1 111 0110 111 1100 00 . And we split α
into c, the next bit b’=0 and the suffix α’=00. The α-bit-
vector of the new root is α=c, β consists of 2 bits b’=0
representing the existing Wavelet Trie, in which we insert
the bit b=1 at position 2. The left child of the new root be-
comes a node with α= α’ and the beta of the left child is a
copy of β=01. Furthermore, the two children of the left child
are copies of the two child nodes of the previous root of the
existing Wavelet Trie. The right child of the new root node
becomes a new node with α=s’ and b=e.

E. Merge/Append + Union
This operation simulates the insertion of one string se-

quence SS2 at a given position pos into another string se-
quence SS1 on two Wavelet Tries t1 representing SS1 and t2
representing SS2. Note that this operation is only defined if
the set s1Ès2 is prefix free.

For example, if we merge a copy of the Wavelet Trie in
Figure 1 representing the string sequence SS= (rob$,
romulus$, robert$) at position 2 into another copy of that
Wavelet Trie, we get a new Wavelet Trie that represents the
string sequence (rob$, romulus$, rob$, romulus$, robert$,
robert$)

Let n1 be the current node of t1, i.e., the given Wavelet
Trie, and n2 be the current node of t2, i.e., the Wavelet Trie
to be merged or appended, where n1 has the labels α1 and β1
and n2 has the labels α2 and β2.

If α1=α2 and n1 and n2 are leaf nodes, nothing has to be
done, and the operation is finished (lines 3-4).

Note that if α1=α2, the cases that n1 is a leaf node, but n2
is not a leaf node, and vice versa, cannot occur for the

following reason. If α1=α2 and at least one node, n1 or n2 is
not a leaf, also the other node must not be a leaf (line 5),
because otherwise, s1Ès2 would not be prefix-free. Then, we
insert β2 at position pos into β1 (line 6), merge the 0-child of
n2 at position β1.rank(0,pos) into the 0-child of n1 (line 7)
and merge the 1-child of n2 at position β1.rank(1,pos) into
the 1-child of n1 (line 8).

Code 7. Merge two Wavelet Tries

If α1 is a prefix of α2, i.e., α2=α1bδ (lines 9-14), we in-
sert b |β2| times at position pos into β1 (lines 10-12). We
change α2 into δ (line 13) and merge n2 into the b-child of n1
at position β1.rank(b,pos) (line 14).

If α2 is a prefix of α1, i.e., α1=α2bλ (lines 15-23), we cre-
ate a new node n with labels α=α2 (line 18) and β consisting
of |β1| bits b, in which we insert β2 at position pos (lines 19-
20). The b-child of the node n is then the result of merging
the b-child of n2 at position β1.rank(b,pos) into a node with
labels α=γ and β=β1, having the children of n1 as children
(lines 17, 22). The (1-b)-child of the node n is the (1-b)-
child of n2 (line 23).

 1 Function merge(int pos, WaveletTrie t):
 2 if t.α= α then
 3 if isLeaf and t.isLeaf then
 4 return;
 5 /*neither the current node nor t
 is a leaf node */
 6 Rank r = β.insert(pos, t.β);
 7 getChild(0).merge(r(0),t.getChild(0);
 8 getChild(1).merge(r(1),t.getChild(1);
 9 if α.isPrefixOf(t.α) then
10 Bit b = α.getFirstDifferentBit(t.α);
11 for i in 1..|t. β| do
12 Rank r = β.insert(pos, b);
13 t.α = t.α.getSuffix(α);
14 getChild(b).merge(r(b),t);
15 else if t.α.isPrefixOf(α) then
16 Bit b = t. α.getFirstDifferentBit(α);
17 WaveletTrie tmp = WaveletTrie
 (α.getSuffix(t.α), β,getChildren());
18 α = t.α;
19 β = BitVector(b, |tmp|);
20 Rank r = β.insert(pos, t.β);
21 tmp.merge(r(b),t.getChild(b));
22 setChild(b,tmp);
23 setChild(1-b,t.getChild(1-b));
24 else
25 BitVector γ = α.getCommonPrefix(t.α);
26 Bit b = γ.getFirstDifferentBit(t.α);
27 WaveletTrie t1 = WaveletTrie
 (t.α.getSuffix(γ),t.β,t.getChildren());
28 WaveletTrie t2 = WaveletTrie
 (t.α.getSuffix(γ),β,getChildren());
29 α = γ;
30 β = BitVector(1-b, | β|);
31 for i in 1..|t. β| do
32 β.insert(pos, b);
33 setChild(b,t1);
34 setChild(1-b,t2);

546

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Otherwise, α1 and α2 share a common prefix (lines 25-
34). Let γ be the common prefix of α1 and α2, and let us
assume w.l.o.g. that α1=γ1δ and α2=γ0λ (c.f. Figure 10).
Then, we modify the current node n by setting the label α=γ
(line 29) and β to a bit-vector consisting of |β1| bits 1, in
which we insert |β2| bits 0 at position pos (lines 30-32). The
0-child of node n is then a node with α=λ and β=β2 having
the children of n2 as child nodes (lines 28,34), and the 1-
child of node n is a node with α=δ and β=β1 having the
children of n1 as child nodes (lines 27,33).

Figure 10. Appending t1 and t2 if α1 and α2 share a common prefix.

F. Intersection
This operation (c.f. Code 8) computes the set-

intersection of two Wavelet Tries t1 and t2, i.e., it computes a
Wavelet Trie that represents a lexicographically ordered list
of all bit-strings s that occur in both, t1 and in t2.

Let n1 be the current node of t1 and n2 be the current
node of t2, where n1 has the labels α1 and β1 and n2 has the
labels α2 and β2.

If α1=α2 and n1 and n2 are leaf nodes, we can return n1 as
resulting Wavelet Trie (lines 3-4), as n1 represents the
intersection.

If α1=α2 and n1 and n2 are inner nodes, we compute the
result node r0 of the intersection of the 0-child of n1 and of
the 0-child of n2 (line 6) and the result node r1 of the
intersection of the 1-child of n1 and of the 1-child of n2 (line
7). If both, the intersection of the 0-children of n1 and n2 and
the intersection of the 1-children of n1 and n2 are empty (line
8), we return that the intersection of n1 and n2 is empty.
Otherwise (lines 10-14), we return a new node n, with α=α1,
β consists of |r0| 0 bits followed by |r1| 1 bits, and n has r0 as
0-child and has r1 as 1-child. Note that by using this order of
0-bits and 1-bits in n’s β-vector, we get the intersection in
lexicographical order. If only one of the intersections is
empty, we collapse the new node with the child representing
the non-empty intersection (lines 10-11).

Let now either α1 be a prefix of α2 (lines 15-16) or vice
versa (lines 17-18). Let us assume w.l.o.g. that α2 is a prefix
of α1, i.e., α1=α2bγ (c.f. Figure 11). In this case, we change
α1 into α1=γ and intersect this new node with the b-child of
n2 (line 4a). If the intersection does not return an empty
node (line 5a), the β of the result node contains only bits b
(i.e., only 1 bits or only 0 bits) as it does not have a (1-b)-
child. Therefore, we collapse it with its single child node b-
child nb and thereby delete its (1-b)-child (lines 7a-10a).

Code 8. Compute the intersection of two Wavelet Tries

Figure 11. Intersection if α2 is a prefix of α.

In all other cases, the intersection is empty (line 19).
This includes the case that neither α1 is a prefix of α2 nor α2
is a prefix of α1 nor α1=α2 and the case that α1=α2 and ex-
actly one node of n1, n2 is a leaf node and the other is an
inner node.

V. EVALUATION
To evaluate our implementation of the Wavelet Trie, we

want to compare it with an approach that supports all the
desired operations and provides a compression of the string
sequences.

A natural approach to compare our implementation of
the Wavelet Trie with is the approach to compress string
sequences with a standard compressor like gzip or bzip2, to

↵ : ↵n

� : �n

↵ : ↵0

� : �0
r1 = select(greaterThan(�), 0)

↵ : ↵1

� : �1
�.selectAll(1)

greaterThan(↵0�)

↵ : ↵20�

� : �1

.

\

↵ : ↵2

� : �2

n0 . . .

)
↵ : �

� : �1

.

\
n0

.

↵ : �1�

� : �1

n10 n11

�
↵ : �0�

� : �2

n20 n21

)

↵ : �

� : 1 . . . 10 . . . 0

↵ : �

� : �2

n20 n21

↵ : �

� : �1

n10 n11

2

↵ : ↵n

� : �n

↵ : ↵0

� : �0
r1 = select(greaterThan(�), 0)

↵ : ↵1

� : �1
�.selectAll(1)

greaterThan(↵0�)

↵ : ↵20�

� : �1

.

\

↵ : ↵2

� : �2

n0 . . .

)
↵ : �

� : �1

.

\
n0

.

2

 1 Function intersection(WaveletTrie t1,
 WaveletTrie t2):
 2 if t1.α= t2.α then
 3 if t1.isLeaf and t2.isLeaf then
 4 return t1
 5 else if not t1.isLeaf and
 not t2.isLeaf then
 6 WaveletTrie r0 = intersection
 (t1.getChild(0), t2.getChild(0));
 7 WaveletTrie r1 = intersection
 (t1.getChild(1),t2.getChild(1));
 8 if r1=∅ and r2=∅ then return ∅;
 9 else
10 res = WaveletTrie(t1.α,-,r0,r1);
11 if r0 = ∅ then res.collapse(1);
12 if r1 = ∅ then res.collapse(0);
13 res.β = 1|r0|0|r1|;
14 return res;
15 if t1.α isPrefixOf t2.α then
16 return intersectionPrefix(t1,t2);
17 else if t2.α isPrefixOf t1.α then
18 return intersectionPrefix(t2,t1);
19 else return ∅;

1a Function intersectionPrefix(
 WaveletTrie pre, WaveletTrie other):
2a Bit b = pre.α.getFirstDifferentBit
 (other.α);
3a other.α = other.α.getSuffix(pre.α);
4a WaveletTrie res_b =
 intersection(pre.getChild(b),other);
5a if res_b = ∅ then return ∅;
6a else
7a res. α = pre. α;
8a res.setChild(b,res_b);
9a res.collaps(b);
10a return res;

547

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

decompress them on demand, and to do the desired
operations on the decompressed string sequence.

Figure 12. Compression ratio.

We did not compare our implementation with delta-
encoding as delta-encoding has the following disadvantage.
Delta-encoding cannot support any of the range queries, i.e.,
our prefix search (III.A), Between, LessThan, and
GreaterThan (III.B), because equal strings are encoded
different, depending on the previous string. Even intersec-
tion (III.F) is not supported. Therefore, delta-encoding does
not meet our requirements.

The dictionary-based approach, assigning a segregated
Huffman code to each entry results in a bit sequence that
supports alphabetical comparisons. Run-length encoding
compressing longer bit sequences also supports alphabetical
comparisons. Both approaches are orthogonal and compati-
ble to our approach, i.e., can be combined with it. As there-
fore, a performance comparison with dictionary-based ap-
proaches or with RLE is not useful, we have compared our
approach with the powerful and widely use compressors
gzip und bzip2.

We ran our tests on Mac OS X 10.5.5, 2.9 GHz Intel
Core i7 with 8 GB 1600 MHz DDR3 running Java 1.8.0_45.

To evaluate rather text-centric operations, we used 114
texts of the project Gutenberg [15] with file sizes from 78
kB up to 7.3 MB to build a heterogeneous corpus. In order
to simulate database operations of a column-oriented data-
base, we used author information extracted from DBLP
[16]. Out of these information, we generated lists consisting
of 2500 up to 100000 authors.

In all time measurements, we performed 10 redundant
runs and computed the average CPU time for all these runs.

A. Compression and Decompression
When evaluating the pure compression and decompres-

sion of Wavelet Trie, gzip and bzip2, we get the result that
bzip compresses strongest while Wavelet Trie compresses
worst (c.f. Figure 12), and that gzip compresses and decom-
presses fastest while Wavelet Trie compresses and decom-
presses slowest (c.f. Figure 13).

Figure 13. Compression and decompression time.

The main difference between the Wavelet Trie and the ge-
neric compressors is that the Wavelet Trie supports many
operations on the compressed data, while gzip and bzip2
require to at least decompress the compressed data first, and
for some operations to recompress the modified data after-
wards. This means, there are a lot of applications that do not
require the Wavelet Trie to decompress, as the concerning
operations can be evaluated on the compressed data directly.
We show the benefit of using the Wavelet Trie in the
following subsections, in which we evaluate the perfor-
mance of the different operations.

B. Search and searchPrefix
Figure 14 shows the search times for (a) a single word

and (b) all words starting with a given prefix directly in the
Wavelet Trie compared to the time needed for the pure
decompression of bzip2 and gzip.

We searched within our Gutenberg corpus for all posi-
tions of the word ‘file’, which is contained in each file, and
for all positions of words starting with the prefix ‘e’. Alt-
hough the times for bzip2 and for gzip comprise only the

●●

●●

●●

●●

●●
●●

●

●●

●●●●● ●●●

●●
●●

●●●●●

●●

●●●●

●●

●●●●

●●

●●●●●●●●●
●●

●●●●
●

●● ●●●●
●

●●●●●●●● ●●●●●●●●●● ●●
●●

●●●●●●●●●●●●
●●

●●
●

●●●
●

●
●

0 1 2 3 4 5 6 7

0
50

0
10

00
15

00
20

00
25

00
30

00 (a) Compression

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●●

●●

●●

●●

●●
●●

●

●●

●●●●● ●●●

●
●

●
●

●●●●●

●●

●●●●

●
●

●●●●

●●

●●●●●●●●●

●●
●●●●

●
●● ●●●●

●
●●●●●●●● ●●●●●●●●●● ●●

●●
●●●●●●●●●●●●

●●

●●

●

●●●
●

●

●

0 1 2 3 4 5 6 7

0
20

0
40

0
60

0
80

0
10

00
12

00

(b) Decompression

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●●
●●

●●
●●●●

●● ●
●●●

●●

●
●

●●●
●●

●●

●●
●●● ●●
●●●●

●●

●●●●

●●
●●●●●

●●●●

●●

●●●●

●

●●

●

●
●●

●●●

●●●●●●
●●
●●●
●●

●
●●

●●
●●

●●
●

●●●●●●●
●● ●● ●● ●

●●
●

●● ●

0 1 2 3 4 5 6 7

0
20

40
60

80
10

0 Compression ratio

fileSize in MiB

siz
e(

co
m

pr
es

se
d

file
)/s

ize
(o

rig
in

al
 fi

le
) i

n
%

● bzip2
gzip
WaveletTrie

548

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pure decompression, i.e., no search operation is performed
on the decompressed bzip2 or the decompressed gzip file,
the search directly on the Wavelet Trie is faster than the
pure decompression times of bzip2 and of gzip.

Figure 14. Search times for words in the Wavelet Trie compared to pure
decompression time of bzip2 and of gzip.

C. Range queries
Figure 15 shows the results of comparing the search

times (a) for words greater than ‘e’ but less than ‘f’ and (b)
for words greater than ‘identification’ and less than ‘identi-
fier’ directly on the Wavelet Trie with the pure decompres-
sion time of bzip 2 and gzip. These operations were again
evaluated on the Gutenberg corpus. Although the times for
bzip2 and for gzip comprise only the pure decompression,
i.e., no search operation is performed, the search directly on
the Wavelet Trie is faster than the pure decompression times
of bzip2 and of gzip. The more specific the search query is,
and thus the smaller the search result, the better is the
performance benefit of the Wavelet Trie compared to bzip2
and gzip.

Figure 15. Range queries on the Wavelet Trie compared to pure
decompression time of bzip2 and gzip.

D. Insert and Delete
As a first operation, we compared the insert and the de-

lete operation directly on the Wavelet Trie with the pure
decompression time of bzip2 and of gzip. We performed
these operations on the documents of our Gutenberg corpus.
Figure 16 shows the results. The insertion of the word ‘data-
base’, which does not occur in any of the documents, as 50th
word is faster than the pure decompression of bzip2 and as
fast as the pure decompression of gzip. The same holds for
the deletion of the 50th word.

Note that the decompression times for bzip2 and gzip
neither contain the time needed to insert (or to delete respec-
tively) a string nor the time needed to recompress the modi-
fied results.

●●

●
●

●●

●
●

●●

●●

●

●●

●●●●
●

●●
●

●
●

●

●

●●●●●

●●

●●●●

●
●

●●●●

●●

●●●●●
●●●●

●●

●●●●

●

●●
●

●●●

●

●●
●●●●●●

●●●●●●●
●●●

●●

●●

●●●
●●●●●●●●●

●●

●
●

●

●●
●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0 (a) Between('e','f')

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●●

●●

●●

●

●

●●

●●

●

●●

●●●●
●

●●
●

●●
●

●

●●●●●

●●

●●●●

●●

●●●●

●●

●●●●●
●●●●

●●

●●●●

●

●●
●

●●●

●

●●
●●●●●●

●●●●●●●
●●●

●●

●●

●●●
●●●●●●●●●

●●

●●

●

●●●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0(b) Between('identification','identifier')

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●●

●●

●●

●●

●●

●●

●

●●

●●●●
●

●●
●

●● ●●

●●●●●

●●

●●●●

●●

●●●●

●●

●●●●●
●●●●

●●

●●●●

●

●●
●

●●●

●

●●
●●●●●●

●●●●●●●
●●●

●●

●●

●●●
●●●●●●●●●

●●

●●

●

●●
●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0 (a) Search('file')

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●●

●
●

●●

●●

●●

●●

●

●
●

●●●●
●

●●
●

●●

●

●

●●●●●

●
●

●●●●

●●

●●●●

●
●

●●●●●
●●●●

●●

●●●●

●

●●
●

●●●

●

●●
●●●●●●

●●●●●●●
●●●

●●

●●

●●●
●●●●●●●●●

●●

●
●

●

●●●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0 (b) searchPrefix('e')

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

549

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 16. (a) Insertion and (b) Deletion in the Wavelet Trie compared to
bzip2 and gzip decompression time.

E. Merge/Union
Finally, we evaluated the time to append one list to an-

other list (c.f. Figure 17) and the time to insert a list at posi-
tion 50 into a second one (c.f. Figure 18).

We performed both tests for disjoint lists as well as for
lists that overlap in 50% of the entries. Again, we compared
the time with the sequence of decompression and
recompressing the concatenated list by using either bzip2 or
gzip, i.e., we did not perform any merge or append opera-
tion for bzip2 or gzip. In both cases and for both operations,
this operation on the Wavelet Trie is faster than the simula-
tion of this operation for bzip2 and for gzip. The benefit of
the Wavelet Trie in comparison to bzip2 and gzip is bigger
for append operations than for the merge operation that
inserts one list at a given position into the second one.

Figure 17. Comparison of the time to append two lists for Wavelet Trie,
bzip2 and gzip.

F. Intersection
The following tests were performed on our dblp author

corpus. Figure 19 shows the results of comparing the
intersection operation on two author lists with the sequence
of decompression and recompressing the result list of the
intersection using bzip2 and gzip. We computed the result
list of the intersection prior to the test runs, i.e., the time
needed to compute the intersection was not measured. We
used two different sets of lists: the first is duplicate-free,
whereas, in the second set, 50% of the list entries of the
second list occur also in the first list. If the lists are com-
pletely disjoint, the intersection computed directly on the
Wavelet Trie is faster than the sequence of decompression
and recompression for bzip2 and as fast as this sequence of
operations for gzip. If there is a large overlapping of the
lists, gzip is faster than the Wavelet Trie, which still is faster
than bzip2. Note that we did not perform any intersection
operation for gzip and bzip2 compressed data.

●
● ●

●

●

●

0.0 0.5 1.0 1.5 2.0

0
10

0
20

0
30

0
40

0
50

0 (a) Append(disjoint)

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●● ●
●

●

●

0.0 0.5 1.0 1.5 2.0 2.5

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0 (b) Append(overlapping)

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●●

●●

●●

●

●

●●

●●

●

●●

●●●●
●

●●
●

●● ●

●

●●●●●

●

●

●●●●

●

●

●●●●

●
●

●●●●●
●●●●

●●

●●●●

●

●●
●

●●●

●

●●
●●●●●●

●●●●●●●
●●●

●●

●●

●●●
●●●●●●●●●

●●

●●

●

●●
●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0 (a) Insert(50,'database')

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●●

●●

●●

●

●

●●

●●

●

●●

●●●●
●

●●
●

●
● ●●

●●●●●

●
●

●●●●

●●

●●●●

●
●

●●●●●
●●●●

●●

●●●●

●

●●
●

●●●

●

●●
●●●●●●

●●●●●●●
●●●

●●

●●

●●●
●●●●●●●●●

●●

●●

●

●●●

●

●

●

0 2 4 6 8

0
10

0
20

0
30

0
40

0
50

0
60

0 (b) Delete(50)

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

550

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 18. Comparison of the time to merge a list into another one for
Wavelet Trie, bzip2 and gzip.

VI. CONCLUSION
In this paper, we presented and evaluated an extension

of the Wavelet Trie [12][13] that allows to represent com-
pressed indexed sequences of strings. As our evaluations
have shown, operations like insertion, deletion, search que-
ries, range queries, intersection and union can be performed
on the compressed data as fast as or even faster than the
simulation of these operations with the help of generic com-
pressors like bzip2 or gzip. We therefore believe that the
Wavelet Trie is a good approach to be used, e.g., in column-
oriented main-memory databases to enhance the storage or
memory capacity at the same time as the search perfor-
mance.

Figure 19. Computing the intersection directly on the Wavelet Trie
compared to decompression, list concatenation and recompression time of

bzip2 and gzip.

REFERENCES
[1] S. Böttcher, R. Hartel, and J. Manuel, “A Column-Oriented

Text Database API Implemented on Top of Wavelet Tries,” in
DBKDA 2017, The Ninth International Conference on
Advances in Databases, Knowledge, and Data Applications,
2017, pp. 54–60.

[2] M. Stonebraker et al., “C-Store: A Column-oriented DBMS,”
in Proceedings of the 31st International Conference on Very
Large Data Bases, Trondheim, Norway, August 30 -
September 2, 2005, 2005, pp. 553–564.

[3] A. Lamb et al., “The Vertica Analytic Database: C-Store 7
Years Later,” Proc. VLDB Endowment, vol. 5, no. 12, pp.
1790–1801, 2012.

[4] F. Färber et al., “SAP HANA Database - Data Management
for Modern Business Applications,” ACM Sigmod Rec., vol.
40, no. 4, pp. 45–51, 2012.

[5] R. Grossi, A. Gupta, and J. S. Vitter, “High-order entropy-
compressed text indexes,” in SODA ’03 Proceedings of the
fourteenth annual ACM-SIAM symposium on Discrete
algorithms, 2003, vol. 39, no. 1, pp. 841–850.

[6] D. A. Huffman, “A Method for the Construction of

●
● ●

●

●

●

0.0 0.5 1.0 1.5 2.0

0
10

0
20

0
30

0
40

0
50

0 (a) Merge(disjoint)

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●● ●
●

●

●

0.0 0.5 1.0 1.5 2.0 2.5

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0 (b) Merge(overlapping)

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●

●

●

●
●

●

0.0 0.5 1.0 1.5 2.0

0
50

10
0

15
0

20
0 (a) Intersection (disjoint)

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

●

●

●

●
●●

0.0 0.5 1.0 1.5 2.0 2.5

0
50

10
0

15
0

20
0

25
0

30
0 (b) Intersection (overlapping)

fileSize in MiB

tim
e

in
 m

s

● bzip2
gzip
WaveletTrie

551

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Minimum-Redundancy Codes,” in Proceedings of the IRE,
1952, vol. 40, no. 9, pp. 1098–1101.

[7] T. C. Hu and A. C. Tucker, “Optimal Computer Search Trees
and Variable-Length Alphabetical Codes,” SIAM J. Appl.
Math., vol. 21, no. 4, pp. 514–532, 1971.

[8] S. T. Klein and D. Shapira, “Random Access to Fibonacci
Codes,” Stringology, 2014, pp. 96–109, 2014.

[9] M. Külekci, “Enhanced variable-length codes: Improved
compression with efficient random access,” in Proc. Data
Compression Conference DCC–2014, 2014, pp. 362–371.

[10] N. R. Brisaboa, A. Fariña, S. Ladra, and G. Navarro,
“Reorganizing Compressed Text,” in Proceedings of the 31st
Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, 2008, pp. 139–
146.

[11] J. Herzberg, S. T. Klein, and D. Shapira, “Enhanced Direct
Access to Huffman Encoded Files,” in Data Compression

Conference, 2015, p. 447.
[12] R. Grossi and G. Ottaviano, “The Wavelet Trie: Maintaining

an Indexed Sequence of Strings in Compressed Space,”
CoRR, 2012. [Online]. Available:
http://arxiv.org/abs/1204.3581. [Accessed: Nov, 2017].

[13] R. Grossi and G. Ottaviano, “The Wavelet Trie: Maintaining
an Indexed Sequence of Strings in Compressed Space,” in
Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2012,
Scottsdale, AZ, USA, May 20-24, 2012, 2012, pp. 203–214.

[14] D. R. Morrison, “PATRICIA---Practical Algorithm To
Retrieve Information Coded in Alphanumeric,” J. ACM, vol.
15, no. 4, pp. 514–534, 1968.

[15] “Project Gutenberg,” 2015. [Online]. Available:
http://www.gutenberg.org/. [Accessed: Nov, 2017].

[16] “DBLP: computer science Bibliography.” [Online].
Available: http://dblp.uni-trier.de. [Accessed: Nov, 2017].

552

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

