
Control Mechanisms for Managed Evolution of
Automotive Software Product Line Architectures

Christoph Knieke, Marco Körner, Andreas Rausch,
Mirco Schindler, Arthur Strasser, and Martin Vogel

TU Clausthal, Department of Computer Science, Software Systems Engineering
Clausthal-Zellerfeld, Germany

Email: {christoph.knieke|marco.koerner|andreas.rausch|
mirco.schindler|arthur.strasser|m.vogel}@tu-clausthal.de

Abstract—The high time and cost pressure in the automotive
market encourages reuse of components and software in different
vehicle projects leading to a high degree of variability within
the software. Often, a product line approach is used to handle
variability. However, the increasing complexity and degree of
variability of automotive software systems hinders the capabilities
for reusability and extensibility of these systems to an increasing
degree. After several product generations, software erosion is
growing steadily, resulting in an increasing effort of reusing
software components, and planning of further development. Here,
we propose control mechanisms for a managed evolution of
automotive software product line architectures. We introduce a
description language and its meta model for the specification of
the software product line architecture and the software archi-
tecture of the corresponding products. Based on the description
language we propose an approach for architecture conformance
checking to identify architecture violations as a means to prevent
architecture erosion. We demonstrate our methodology on a real
world case study, a brake servo unit (BSU) software system from
automotive software engineering. To show the benefits of our
approach, we define several metrics on architecture and software
level and apply the metrics on the BSU example.

Keywords–Architecture Conformance Checking; Architecture
Description Language; Software Product Lines; Automotive Soft-
ware Engineering.

I. INTRODUCTION

This paper is a substantial extension of the work presented
at the ADAPTIVE 2017 conference [1]. In the development
of electronic control unit (ECU) software for vehicles, the
reduction of development costs and the increase of quality
are essential objectives. A significant measure to achieve
these goals is the reuse of software components [2]. The
reuse is mainly achieved by a product-wide development for
different vehicle variants: Different configurations of driver
assistance systems, comfort functions, or powertrains can be
variably combined, creating an individual and unique product.
Furthermore, for each new vehicle generation, the software of
preceding generations of the vehicle is reused or adopted [3].

However, the possibilities for reuse and extensibility of
existing functions can not be fully exploited in many cases.
Rather, it can be observed that due to the increase in so-called
“accidental” complexity [3] (see Section VI-B), the reusability
and further developability reaches its limits. One reason for
this is the lack of a product-line-oriented overall planning,
based on the concepts of software product line engineering
already established in other domains. A central factor here is
the planning based on a product line architecture (PLA), on the
specification of which the individual products are derived. The

PLA describes the structure of all realizable products. Each
product that is developed has an individual product architecture
(PA) whose structure should be mapped onto the PLA.

An important challenge with regard to the architecture is to
minimize architecture erosion as illustrated in the following.
In [4], architecture erosion is defined as “the phenomenon that
occurs when the implemented architecture of a software system
diverges from its intended architecture.” As shown in Figure 1
a PLA is designed initially and develops over time [5]. It makes
no difference whether the PLA is explicitly planned or exists
only implicitly in the minds of the participants. In the further
development, it must be ensured that the product architecture
remains compliant with the product line architecture. However,
due to the high time and cost pressure in the automotive
sector, it is not possible for every further development to be
controlled via the product line. Rather, some product-specific
adjustments have to be made. This can lead (intentionally
or unintentionally) to a product architecture that differs in
comparison to the product line architecture: the architecture
erodes. In the long-term, this leads to reduced reusability and
extensibility of the software artifacts.

Time

Degree of
degeneration

P
ro

d
u

ct
 L

in
e

A
rc

h
it

ec
tu

re
P

ro
d

u
ct

A
rc

h
it

ec
tu

re

? ? ?

Applying the methodology

Architecture
conformance

checking

Architecture
conformance

checking

Figure 1. Avoiding architecture erosion by applying our methodology

To prevent architecture erosion, we propose control mecha-
nisms for a managed evolution of automotive software product
line architectures in this paper. We refer to the results shown in
a preceding paper [5] to create a PLA as a prerequisite for our
approach by applying strategies for architecture recovery and
discovery. First, we introduce a description language and its
meta model for the specification of the software product line
architecture and the software architecture of the corresponding
products. Based on the description language we propose an
approach for architecture conformance checking to identify
architecture violations as a means to prevent architecture

191

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

erosion (indicated on the right side of Figure 1). Due to the
size of the product line architecture, an automated consistency
check is necessary, which is an essential part of our approach
to counteract architecture erosion.

The application of the software product line development
must take into account the special properties, boundary condi-
tions and requirements that exist in the automotive environment
[6]. Therefore, a method adapted to the automotive environ-
ment is required and is presented in this paper.

An important aspect is the design and planning of further
developments of the product line architecture. When designing
the product line architecture, the architecture must be based on
architecture principles appropriate for the automotive domain,
aiming at reusability and further development [3]. Since a wide
range of products can be affected by the further development
of the product line architecture, changes must be carefully
planned: High demands are placed on the reliability of the
systems, but the reliability is endangered by extensive adapta-
tions.

The major objectives of our approach can be summarized
as follows:

1) Maintaining stability of the PLA and minimizing
product architecture erosion even if extensive further
development of the system takes place.

2) Achieving high scalability, and a high degree of usage
of the modules.

The first objective primarily addresses the software ar-
chitecture: The PLA should be based on appropriate design
principles that allow further developments with a minimal
adjustment effort of the PLA. At the same time, the erosion
of product architecture is to be minimized.

The second objective focuses on the software components:
These should be kept scalable so that they can be used for
as many variants as possible. Nevertheless, the software com-
ponents should be able to be reused over time in subsequent
product generations. However, the high variability within the
components increases the complexity of the components and
thus makes reuse more difficult.

The paper is structured as follows: Section II gives an
overview on the related work. In Section III we propose
a methodology for managed evolution of automotive soft-
ware product line architectures. Section IV introduces an
architecture description language for the specification of the
product line architecture and the product architecture. Based
on this description language Section V proposes an approach
for architecture conformance checking. In Section VI, we
apply our approach on a real world example, a brake servo
unit, from automotive software engineering. The results of
a corresponding field study are evaluated and discussed in
Section VII. Section VIII concludes.

II. RELATED WORK

To the best of our knowledge, no continuous overall
development cycle for automotive software product line ar-
chitectures exists. Several aspects of our process are already
covered in literature:

A. Reference Architectures
The purpose of the reference architecture is to provide

guidance for future developments. In addition, the reference

architecture incorporates the vision and strategy for the future.
The work in [7] examines current reference architectures
and the driving forces behind development of them to come
to a collective conclusion on what a reference architecture
should truly be. Furthermore, in [7], reference architectures
are assumed to be the basis for the instantiation of product
line architectures (so-called family architectures, see [7]).

Nakagawa et. al. discuss the differences between reference
architectures and product line architectures by highlighting
basic questions like definitions, benefits, and motivation for
using each one, when and how they should be used, built,
and evolved, as well as stakeholders involved and benefited
by each one [8]. Furthermore, they define a reference model
of reference architectures [9], and propose a methodology to
design product line architectures based on reference architec-
tures [10][11].

B. Software Erosion
In [4], de Silva and Balasubramaniam provide a survey

of technologies and techniques either to prevent architecture
erosion or to detect and restore architectures that have been
eroded. However, each approach discussed in [4] refers to ar-
chitecture erosion for a single PA, whereas architecture erosion
in software product lines are out of the scope of the paper.
Furthermore, as discussed in [4], none of the available methods
singly provides an effective and comprehensive solution for
controlling architecture erosion.

Van Gurp and Bosch [12] illustrate how design erosion
works by presenting the evolution of the design of a small
software system. The paper concludes that even an optimal
design strategy for the design phase does not lead to an optimal
design. The reason for this are unforeseen requirement changes
in later evolution cycles. These changes may cause design
decisions taken earlier to be less optimal.

The work in [13] describes an approach to flexible ar-
chitecture erosion detection for model-driven development
approaches. Consistency constraints expressed by architectural
aspects called architectural rules are specified as formulas on
a common ontology, and models are mapped to instances
of that ontology. A knowledge representation and reasoning
system is then utilized to check whether these architectural
rules are satisfied for a given set of models. Three case studies
are presented demonstrating that architecture erosion can be
minimized effectively by the approach.

C. Software Product Line Architectures
As discussed in [5] an overall automotive product line

architecture is often missing due to software sharing. Thus,
architecture recovery and discovery has to be applied by
concepts of software product line extraction [5]. The aim of
software product line extraction is to identify all the valid
points of variation and the associated functional requirements
of component diagrams. The work in [14] shows an approach
to extract a product line from a user documentation. The Prod-
uct Line UML-based Software Engineering (PLUS) approach
permits variability analysis based on use case scenarios and the
specification of variable properties in a feature model [15]. In
[16], variability of a system characteristic is described in a
feature model as variable features that can be mapped to use
cases. In contrast to our approach, these approaches are based

192

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on functional requirements whereas our approach is focused
on products.

In numerous publications, Bosch et. al. address the field
of product line architecture, software architecture erosion, and
reuse of software artifacts: The work in [17] proposes a method
that brings together two aspects of software architecture: the
design of software architecture and software product lines.
Deelstra et al. [18] provide a framework of terminology and
concepts regarding product derivation. They have identified
that companies employ widely different approaches for soft-
ware product line based development and that these approaches
evolve over time. The work in [19] discusses six maturity levels
that they have identified for software product line approaches.
In [20], a methodical and structured approach of architecture
restoration in the specific case of the brake servo unit (BSU) is
applied. Software product lines from existing BSU variants are
extracted by explicit projection of the architecture variability
and decomposition of the original architecture.

The work in [21] gives a systematic survey and analysis
of existing approaches supporting multi product lines and a
general discussion of capabilities supporting multi product
lines in various domains and organizations. They define a multi
product line (MPL) as a set of several self-contained but still
interdependent product lines that together represent a large-
scale or ultra-large-scale system. The different product lines
in an MPL can exist independently but typically use shared
resources to meet the overall system requirements. According
to this definition, a vehicle system is also an MPL assuming
that each product line is responsible for a particular subsystem.
However, in the following, we only regard classic product
lines, since the dependencies between the individual product
lines in vehicle systems are very low, unlike MPL.

D. Software Product Line Architecture Evolution
Thiel and Hein [22] propose product lines as an approach

to automotive system development because product lines facil-
itate the reuse of core assets. The approach of Thiel and Hein
enables the modeling of product line variability and describes
how to manage variability throughout core asset development.
Furthermore, they sketch the interaction between the feature
and architecture models to utilize variability.

Holdschick [23] addresses the challenges in the evolution
of model-based software product lines in the automotive do-
main. The author argues that a variant model created initially
quickly becomes obsolete because of the permanent evolution
of software functionalities in the automotive area. Thus, Hold-
schick proposes a concept how to handle evolution in variant-
rich model-based software systems. The approach provides an
overview of which changes relevant to variability could occur
in the functional model and where the challenges are when
reproducing them in the variant model.

Automotive manufacturers have to cope with the erosion
of their ECU software. The work in [3] proposes a systematic
approach for managed and continuous evolution of dependable
automotive software systems. It is described how complexity
of automotive software systems can be managed by creating
modular and stable architectures based on well-defined re-
quirements. Both architecture and requirements have to be
managed in relation. Furthermore, to face the lack of flexibility
of existing hieratic automotive software systems development
approaches, they are focusing on four driving factors: systems

engineering and agile function development, feature and func-
tion driven team development, agile management principles,
and a seamless tooling infrastructure supporting continuously
and iteratively evolving automotive software systems in a
flexible manner.

To counteract erosion it is necessary to keep software com-
ponents modular. But modularity is also a necessary attribute
for reuse. Several approaches deal with the topic reuse of
software components in the development of automotive prod-
ucts [2][24]. In [2], a framework is proposed, which focuses
on modularization and management of a function repository.
Another practical experience describes the introduction of a
product line for a gasoline system from scratch [24]. However,
in both approaches a long-term minimization of erosion is not
considered.

A previous version of our approach is described in [5]
focusing on the key ideas of the management cycle for
product line architecture evolution. Furthermore, an approach
for repairing an eroded software consisting of a set of product
architectures by applying strategies for recovery and discovery
of the product line architecture is proposed.

III. OVERALL DEVELOPMENT CYCLE

Our methodology for managed evolution of automotive
software product line architectures is depicted in Figure 2.
The left part of Figure 2 depicts the recovery and discovery
activity introduced in a previous paper [5]. This activity is
performed once before the long term evolution cycle (right
side of Figure 2) can start. The latter consists of two levels of
development: The cycle on the top of Figure 2 constitutes the
development activities for product line development, whereas
the second cycle is required for product specific development.
Not only both levels of development are executed in parallel
but even the activities within a cycle may be performed
concurrently. The circular arrow within the two cycles indicates
the dependencies of an activity regarding the artifacts of the
previous activity. Nevertheless, individual activities may be
performed in parallel, e.g., the planned implementations can
be realized from activity PL-Plan, while a new PLA is
developed in parallel (activity PL-Design). The large arrows
between the two development levels indicate transitions requir-
ing an external decision-making process, e.g., the decision to
start a new product development or prototyping, respectively.

Eroded
Software

Product line (PL)

PL-Design PL-Plan

PL-Check PL-Implement

PL-Requirements

P to PL

PL to P

P-Requirements

Recovery &
Discovery

Product (P)

P-Design P-Plan

P-Check P-Implement

Figure 2. Overall development approach

In the following three subsections, we will explain the basic
activities of our approach in detail by referring to the terms
depicted in Figure 2. Table I gives a brief overview on the

193

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. Explanation of the activities in Figure 2.

Activity Input Objective Output
PL-Design Software system / component require-

ments and documentation from product
development.

Further development of PLA with consideration of design prin-
ciples. Application of measuring techniques to assess quality of
PLA.

New PLA (called “PLA vision”).

PL-Plan PLA vision. Planning of a set of iterations of further development toward the
PLA vision taking all affected projects into account.

Development plan including the planned
order of module implementations and
the planned related projects.

PL-Implement Development plan for product line. Implementation including testing as specified by the development
plan for product line development.

Implemented module versions.

PL-Check Architecture rules and set of imple-
mented modules to be checked.

Minimization of product architecture erosion by architecture con-
formance checking based on architecture rules.

Check results.

P-Design Project plan and product specific re-
quirements.

Designing product architecture and performing architecture adap-
tations taking product specific requirements into account. Compli-
ance checking with PLA to minimize erosion.

Planned product architecture.

P-Plan Product architecture. Definition of iterations to be performed on product level toward
the planned product architecture.

Development plan for product develop-
ment.

P-Implement Development plan for product develop-
ment.

Product specific implementations including testing as specified by
the development plan for product development.

Implemented module versions.

P-Check Architecture rules and set of imple-
mented modules to be checked.

Architecture conformance checking between PLA and PA. Check results.

PL to P Development plan for product line. Defining a project plan by selecting a project from the the product
line.

Project plan.

P to PL Developed product. Providing product related information of developed product for
integration into product line development.

Product documentation and implemen-
tation artifacts of developed products.

PL-Requirements Requirements. Specification and validation of software system and software
component requirements by requirements engineering.

Software system and software compo-
nent requirements.

P-Requirements Requirements in particular from calibra-
tion engineers.

Specification of special requirements for a certain vehicle product
including vehicle related parameter settings.

Vehicle related requirements.

Recovery & Dis-
covery

Source artifacts (developed products). Recovery of the implemented PLA from the source artifacts
(developed products) and discovery of the intended PLA.

Implemented and intended PLA.

objectives of each of the 13 activities, including inputs and
outputs.

We distinguish between the terms ‘project’ and ‘product’
in the following: A project includes a set of versioned soft-
ware components, so-called modules. These modules contain
variability so that a project can be used for different vehicles.
On the other hand, a product is a fully executable software
status for a certain vehicle based on a project in conjunction
with vehicle related parameter settings.

A. Planning and Evolving Automotive Software Product Line
Architectures

(PL-Requirements) Software system requirements and
software component requirements from requirements engineer-
ing serve as input to the management cycle of the PLA.
Errors occurring during the phase of requirements elicitation
and specification have turned out to be major reasons for the
failure of IT projects [25]. In particular, errors occur in case the
requirements are specified erroneous or the requirements have
inconsistencies and incompleteness. Errors during the phase of
requirements elicitation and specification can be avoided by
choosing an appropriate specification language enabling the
validation of the requirements. In [26], e.g., activity diagrams
are considered for the validation of system requirements by
directly executable models including an approach for symbolic
execution and thus enabling validation of several products
simultaneously.

(P to PL) Artifacts of the developed product from the
product cycle in Figure 2 serve as further input to the manage-
ment cycle of the PLA: The product documentation contains
architectural adaptations and change proposals, which can be
integrated in the PLA. Furthermore, the modified modules in

their new implementation are committed to the management
cycle of the PLA for integration in product line.

(PL-Design) Next, we consider the design of the PLA.
Generally, a software system architecture defines the basic
organization of a system by structuring different architectural
elements and relationships between them. The specification
of “good” software system architecture is crucial for the
success of the system to be developed. By our definition,
a “good” architecture is a modular architecture that is built
according to the following: (a) design principles for high
cohesion, (b) design principles for abstraction and information
hiding, and (c) design principles for loose coupling. In [3],
we propose methods and techniques for a good architecture
design. Based on these methods and techniques a new PLA
is defined (called PLA vision) taking the new requirements
(PL-Requirements) and product related information (P
to PL) into account. To assess the quality of the designed
PLA, it is necessary to measure complexity and to describe
the results numerically. In particular, we consider properties
such as cohesion, coupling, reusability and variability in order
to draw conclusions about the quality of the PLA.

(PL-Plan) As further development of the PLA will effect
a high number of products, the changes have to be planned
carefully in order to avoid errors within the corresponding
products and to avoid architecture erosion. Thus, the planning
phase has to define a set of iterations of further development
towards the PLA vision. All allowed changes are planned as
a schedule containing the type of change and timestamp. It is
planned, in which order the implementation of corresponding
modules should take place. It should be emphasized that there
are many parallel product developments, which must be taken
into account when planning. Next, either affected projects and
modules are determined or a pilot project is selected.

194

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Some further developments can lead to extensive archi-
tectural changes. In this case the effects of the architectural
changes on the associated projects have to be closely exam-
ined. For this purpose further development projects can be
defined as prototype projects for certain iterations of the PLA.
These projects are then tested within the product cycle.

B. Automotive Product Development and Prototyping
(PL-Implement) The former planning activity has deter-

mined the schedule for PLA adaptations and product releases.
Thus, on the implementation level, new versions of the soft-
ware are planned, too. Vehicle functions are modeled using a
set of modules, specifying the discrete and continuous behavior
of the corresponding function. As required by ISO 26262
[27], each module needs to be tested separately. Established
techniques for model-based testing necessitate a requirements
specification, from which a test model can be derived. In
practice, requirements are specified by natural language and
on the level of whole vehicle functions instead of modules so
that test models on module level can not be derived directly.
Therefore, in [28], a systematic model-based, test-driven ap-
proach is proposed to design a specification on the level of
modules, which is directly testable. The idea of test-driven
development is to write a test case first for any new code that
is written [29]. Then the implementation is improved to pass
the test case. Based on the approach in [28] we use the tool
Time Partition Testing (TPT) because it suits particularly well
due to the ability to describe continuous behavior [30]. The
modules may be developed in ASCET or MATLAB/Simulink.

(P-Requirements) Releasing a fully executable soft-
ware status for a certain vehicle product requires a specification
of vehicle related parameter settings. Furthermore, special
requirements for a specific product may exist necessitating fur-
ther development of certain implementation artifacts. Building
an executable software status for a certain vehicle product is
realized by the cycle at the bottom of Figure 2. In contrast,
the product line cycle in Figure 2 includes the development of
sets of software artifacts of all planned projects.

(PL to P) Automotive software product development and
prototyping starts with selecting a product from the product
line. Therefore, the project plan is transferred containing
module descriptions and descriptions of the logical product
architecture integration plan with associated module versions.

(P-Plan) The product planning defines the iterations to
be performed. An iteration consists of selected product archi-
tecture elements and planned implementations. An iteration is
part of a sequence of iterations.

(P-Implement) An iteration is completed when all
planned elements of an iteration are implemented according
to the test-driven approach of [28].

C. Architecture Conformance Checking
Architecture erodes when the implemented architecture of

a software system diverges from its intended architecture.
Software architecture erosion can reduce the quality of soft-
ware systems significantly. Thus, detecting software archi-
tecture erosion is an important task during the development
and maintenance of automotive software systems. Even in
our model-driven approach where implementation artifacts are
constructed w.r.t. a given architecture the intended architecture

and its realization may diverge. Hence, monitoring architecture
conformance is crucial to limit architecture erosion.

Each planned product refers to a set of implementation
artifacts, called modules. These modules constitute the prod-
uct architecture. The aim of PL-Check and P-Check is
the minimization of product architecture erosion. In [13], a
method is described to keep the erosion of the software to a
minimum: Consistency constraints expressed by architectural
aspects called architectural rules are specified as formulas on a
common ontology, and models are mapped to instances of that
ontology. Based on this approach we are extracting rules from
a PLA to minimize the erosion of the product architecture.
During the development of implementation artifacts the rules
can be accessed via a query mechanism and be used to check
the consistency of the product architecture. Those rules can,
e.g., contain structural information about the software like
allowed communications. In [13], the rules are expressed as
logical formulas, which can be evaluated automatically to the
compliance to the PLA.

(PL-Check) After each iteration planned in activity
PL-Plan all related product architectures have to be checked.
As P-Check refers to one product only, the check is per-
formed after all related implementation artifacts of the product
are developed.

(P-Design) The creation of a new product starts with
a basically planned product architecture commonly derived
from the product line. For the development of the product,
new functionalities have to be realized and thus necessary
adaptations to the planned product architecture are made. In
order to keep the erosion to a minimum we have to ensure
the compliance to the architecture design principles of the
PLA. Therefore, we check consistency of the planned product
architecture by applying architecture rules from the PLA.

However, in the case of prototyping it may be desired
that the planned product architecture differs from PLA speci-
fications. Thus, as a consequence, the architecture rules are
violated. As pointed out in Section III-A, product related
information is returned to the management cycle of the PLA
after product delivery. If the development of a product required
a differing product architecture w.r.t. the PLA, this could
advance the erosion. Necessary changes must be communi-
cated to PL-Design and PL-Plan s.t. the changes can be
evaluated and adopted. As changes to the PLA can have severe
influences on all the other architectures the changes are not
applied immediately but considered for further development.

IV. ARCHITECTURE DESCRIPTION LANGUAGE

The software architecture serves as input for the subsequent
development steps, e.g., for implementation and test. In this
architecture, the software building blocks of the cars embedded
system are documented. Thereby, the implementation step
follows the model-based development approach, where code is
generated from architecture models using tools of the industrial
partner. To model these architectures in the industrial projects
we introduced the EMAB (Einheitliche Modulare Architektur
Beschreibung) architecture description language. The EMAB
is applied for the architecture extraction and the managed
evolution approach presented in this paper. In addition, the
EMAB includes all aspects to describe the static structure of
the project partners electronic control unit system domains.

195

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Coordinator
Filter
...

<<Enumeration>>
Role

LogicalArchitecture

name: String [1..1]
role: Role [0..1]
version: String [1..1]

LogicalArchitectureElement

containedLAEs

AtomicElement GroupElement

type : CommunicationType [0..1]

Channel

name: String [1..1]

VariableGroup

declaredVariableGroups

referencedVariableGroup

referencedTarget

*

1

1

*

1

1

variableMapping

0...1

maeMapping

*

*

containedLAEs

1

*

0...1

portType:PortType [1..1]
multiPort:MultiplicityPort [1..1]

AbstractPort

*

1

AtomicElementPort GroupElementPort

aggregatedAbstractPorts

0...1

*

IN
OUT

<<Enumeration>>
PortType

*

containedPorts 1

*

State and Data
Data
Sate

<<Enumeration>>
CommunicationType

0...1

0...1

referencedTarget

referencedSource

name:String [1..1]
version : String [1..1]
creationDate: String [0..1]
metric : HashMap<String, Double> [0..1]

ModuleArchitectureElement

ModuleArchitecture
Group

Module

name: String [1..1]
version : String [1..1]
usageType : usageType [1..1]
dataType : dataType [1..1]
isDeactivated : Boolean [0..1]
type: communicationType [0..1]

Variable

declaration

import

export

containedMAE

Constant
...

<<Enumeration>>
UsageType

1

*

1

*

**

*

1

IntegartionArchitect
ureElement

BOOL
...

<<Enumeration>>
DataType

usageType

dataType

ModuleArchitecture

containedMAEs
*

1

*

1

*

1

*

IMPLEMENTDESIGN

AtomicElementPort
(AEP)

Elm2 Elm1

AtomicElm1

AtomicElm2

AtomicElm3

AE NameAtomicElement

(GEP) PortType:OUT
Channel

GroupElementPort
 (GEP)

GroupElement

LAG Name

(GEP) PortType:IN

k

k

z

x

r

r

x

z

G2

Mod1G1

var1var2

Import, export variable pair

Import variable
Name

Name Export variable

Export variable
name

var1

Variable
declaration

Module

var1

ModuleArchitectureGroup
(MAG) MAG Name

var1
var2

var2

Atomic
Elm4 r

r

k

k

Variable Mapping

MAE Mapping

1 3

2 4

Atomic
Elm5 xx

varLoc

Local variable

MAG

MAG
M

SingleOUTChannel
MultiOUTChannel

<<Enumeration>>
MultiplicityPort

referencedSource

Figure 3. EMAB: The meta model (1,3) and the two views as instances of the meta model (2,4).

EMAB is used to describe two layered architectures con-
sisting of the logical architecture layer called DESIGN and
the technical software architecture layer called IMPLEMENT.
Both are defined by the syntax and semantics of the EMAB
meta model elements. For each layer, the EMAB also defines
the appropriate block diagram based views for architecture
description. In our approach, the two layers DESIGN and
IMPLEMENT refer to activities PL-Design/P-Design and
PL-Implement/P-Implement, respectively.

The following subsections IV-A, IV-B illustrate the details
of the EMAB syntax and appropriate semantics of the DESIGN
layer and IMPLEMENT layer and their appropriate views.
Figure 3 shows the meta model to illustrate the description

language syntax (top) and also shows an exemplary instance
of the meta model to illustrate the syntax of the views (bottom).
Each layer and view are identified by one of the four quadrants
in Figure 3.

A. Meta Model and View of the DESIGN Layer
Logical Architecture Element: The first quadrant of Fig-

ure 3 shows the syntax of the logical architecture comprising
the building blocks. The LogicalArchitecture con-
tains a set of LogicalArchitectureElements (LAEs).
The LAE is defined by at least the name attribute, the
version attribute and optionally by the role attribute. The
meta model contains the roles Coordinator, Support,
Filter, which are used for several architecture concepts.

196

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

There are two types of LAEs: Decomposable GroupEle-
ment and not decomposable AtomicElement architecture
building blocks. The GroupElement is used to describe
a hierarchy of building blocks. A GroupElement can be
decomposed into smaller LAEs.

The second quadrant of Figure 3 shows the DESIGN view
by a meta model instance example of the logical architecture.
The diagram represents a logical architecture consisting of
two GroupElement building blocks and five AtomicEl-
ement building blocks. The block named Elm1 represents
a GroupElement and the building block AtomicElm1
represents an AtomicElement. The hierarchy is shown by
nesting of the AtomicElement block AtomicElm1 in the
GroupElement block Elm1.

Interface of a LAE: The interface of a building block
is defined by ports. There are two kinds of ports: Decom-
posable ports called GroupElementPort (GEP) and not
decomposable ports called AtomicElementPort (AEP).
GEPs can be used only by GroupElement building blocks
whereas AEP ports can be used by both, GroupElement
and AtomicElement, building blocks. A GEP of the outer
GroupElement block enables the composition of ports of
nested inner LAEs. Thereby, several ports of a GroupEle-
ment building block can be grouped to one port. The type of
information that is used to pass by a port to extern is defined
by a VariableGroup. A VariableGroup represents the
functional information that abstracts existing interfaces of the
IMPLEMENT layer.

The syntax to describe ports of a building block is depicted
in the first quadrant of Figure 3. Therefore, the LAE has
a containment association aggregatedAbstractPorts
to any number of AbstractPorts. The AbstractPort
element has to define at least the attribute portType, which is
an enumeration type of IN, OUT. GEP and AEP have an inherit
association to AbstractPort. Though, an Abstract-
Port can be associated to zero or one GEP. The AEP has
a containment association referencedVariableGroup
to any number of VariableGroups. A VariableGroup
must be associated to exactly one AtomicElement and can
be associated by any number of AEPs.

The second quadrant of Figure 3 shows the block diagram
notation of instances of AEP and GEP meta model elements.
The right border of the GroupElement block Elm2 has
a rectangular block that consists of several smaller squares-
shaped blocks. The rectangular block represents a GEP el-
ement and the smaller square-shaped blocks represent AEP
elements. The GEP composes the two out ports of the Atom-
icElements AtomicElm4 and AtomicElm5. Thereby, to
represent that a AEP owned by the inner AtomicElement
is composed by the GEP of the outer GroupElement, the
following must be modeled: For each AEP of an inner Atom-
icElement that has to be composed, a second AEP is de-
scribed that is contained by the GEP. Both, the AEP contained
by the inner AtomicElement and the AEP contained by the
GEP must reference the same VariableGroup and must
be connected to each other. For example, the two connected
OUT AbstractPorts that reference the VariableGroup
x in the Elm2 block represent the composed OUT AEP of
the AtomicElement AtomicElm5. This modeling step is
used to enable a more detailed visualization of the composition
of different kinds of information. Connections are modeled by

the Channel meta model element, which is introduced in the
following.

Channel: The communication in the development of con-
trol systems is modeled by data flow. The data flow represents
functional information of the communication. Each data flow
has a source, a target and forms a point to point connection for
a source, target pair. The point to point connection is called
Channel. In the industrial projects several kinds of functional
information (e.g., states, functional data) have been identified.
These represent the types of the Channel.

The Channel meta model element is shown in the first
quadrant of Figure 3. This element has an optional attribute
type to define the functional information, which can be
one of the three CommunicationType items. The items
of this enumeration type are State and Data, Data,
and State. The Channel has at least one association
referencedSource to a source AbstractPort and at
least one association referencedTarget to a target Ab-
stractPort.

The connections, which are instances of the Channel
meta model element, are depicted in the second quadrant of
Figure 3. For example, the connections of ports, which have
associations to VariableGroups x,r of AtomicElm1,
AtomicElm4, and AtomicElm5, specify the communica-
tion of these AtomicElements. These connections comprise
the ports of the GroupElements Elm1 and Elm2, as each
AtomicElement is contained in a different GroupEle-
ment. Therefore, ports of the inner AtomicElements are
connected to ports of the outer GroupElements to model
the communication path along with the connections of the
GroupElements.

B. Meta Model and View of the IMPLEMENT Layer
Module Architecture Element: The building block of

the software system is described by the ModuleArchitec-
tureElements (MAE). These building blocks are used to
form a module architecture, which describes the structure of
the software system. Each MAE is managed in a versioning
system and is identified by its name and its version. Moreover,
each MAE has a time stamp to identify the last time of modi-
fication and a quality degree regarding modularity measuring.
The following kinds of MAEs are distinguished:

• Not decomposable building blocks called Module
representing code artifacts.

• Building blocks that can be composed are called
ModuleArchitectureGroup (MAG) to describe
hierarchical structures.

• The IntegratedArchitectureElement that is
used to describe building blocks of software subsys-
tems developed by software suppliers.

The third quadrant of Figure 3 shows the syntax of the
meta model for the description of the IMPLEMENT layer
of the module architecture. The ModuleArchitecture
is the root of the architecture that has a containment as-
sociation containedMAEs to any number of MAEs. The
MAE has at least the attributes name, version and has the
optional attributes creationDate, metric. The MAG, the
IntegratedArchitectureElement and the Module
have an inheritance association to MAE. The MAE has the

197

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

association containedMAE to any number of MAEs. A
MAE can be associated via containedMAE by exactly one
MAG.

The fourth quadrant of Figure 3 shows the block diagram
syntax as meta model instance example of the view of the
IMPLEMENT layer. The diagram represents an instance of
the meta model module architecture that contains two MAG
instances named G1, G2. Moreover, in the block G2, another
block named M1 is nested. M1 represents an instance of the
meta model Module element.

Interface - Variable: The interface of a MAE is defined by
the set of all import and export variables that can be compared
to the imports/exports of an ANSI C header file. Only Module
declares its signals called Variables that are used for com-
munication to other MAEs. A Variable is globally known
and has a system global unique identifier that is identified by
its name and its version and has at least a DataType
(e.g., byte) and at least the UsageType. The UsageType is
used to describe whether the data of a Variable is constant
at run time or not. Moreover, some Variables are used in
some software systems but in others not. Therefore, the flag
isDeactivated is used to define the presence of a variable
declaration. The flag is retrieved at compile time to remove
variable declarations from code. Several kinds of variable types
for communication have been identified from the functional
point of view. For this purpose, a variable can have one of
the following CommunicationTypes: State and Data,
Data, and State. Another special feature of the MAG is that
its interface can only be defined by its inner MAE interfaces.
For example, an export interface v1 of a MAG can only
be defined when the MAG has an inner MAE that declares
variable v1 and exports this variable.

The syntax of the meta model to describe the MAE inter-
face is depicted in the third quadrant of Figure 3. The MAE
has several associations to describe the interface. First, the
MAE has an association import to a number of Variables.
Each import can be associated by a Variable to a number
of MAEs. Second, the MAE has an association export to
a number of Variables. Each export Variable can be
associated by exactly one MAE. Third, the MAE has an
association declaration to any number of Variables.
Each declaration can be associated by exactly one MAE. For
each declared Variable, at least attributes name, version,
dataType, usageType have to be defined. The other
attributes isDeactiveable und type are optional.

In the fourth quadrant of Figure 3 each diagram element
represents an instance of the appropriate meta model element.
In the case of the interfaces, the diagram shows three declared
variables varLoc, var1, var2. Import variables are shown
on the left border side within each block. For example, the
MAG G2 has the import variable var2. Export variables are
shown on the right border side of each block. Module Mod1
has the export variable var1. Moreover, var1 is declared by
Mod1, which is shown by the underlined name of the variable.
If a variable is only declared but not used as an interface, then
it is used only local by the module. For example, varLoc is
used by Mod1 locally.

Communication: The communication in software control
systems is modeled as data flow in structures that represent
directed graphs. For example, executable models in Mathlab

Simulink or ASCET, represent this kind of data flow based
graphs. The ModuleArchitecture is used to describe the
communication implicitly by a pair of MAE interfaces. An
interface pair has to describe a variable that is shared by
the pair of an import interface and an export interface of
two MAE. These two MAEs describe the same variable for
communication from one MAE to another MAE. One MAE
must declare the variable as an export interface. The other
MAE must have the same variable as an import interface.

The syntax of the meta model to describe the commu-
nication is shown in the third quadrant of Figure 3. The
communication is described implicitly by two MAE. One
MAE must have an association import to a Variable. The
other MAE must have an association export to the same
Variable as the other MAE.

The fourth quadrant of Figure 3 shows an example model
of the view where the communication of G2 and G1 is
described by a connection of the export var1 block of G2
to import var1 of G1. Thereby, a connection is shown only
in the case where the pair of import interface and export
interface belong two inner MAEs of common outer MAE as
root architecture element.

Mapping of the implement layer and the design layer:
The structure of the logical architecture description of the
DESIGN layer must be fulfilled by the module architecture of
the IMPLEMENT layer. The EMAB description is called con-
sistent, if the DESIGN layer is fulfilled by the IMPLEMENT
layer. Therefore, each AtomicElement and each Vari-
ableGroup must have equivalent Variable elements and
MAE elements in the IMPLEMENT layers.

The first quadrant and third quadrant of Figure 3 show
the syntax of the meta model for the Variable mapping
and the MAE mapping. The mapping is necessary to describe
equivalent elements of the two layers. The MAE element
from the first quadrant has the association maeMapping to
any number of AtomicElements. The Variable has the
association variableMapping to zero or one Variable-
Group. Each VariableGroup is associated by any number
of Variables and each AtomicElement to any number
of MAEs.

Figure 3 shows the syntax of the view where an instance
of a mapping is represented by a connection. The export
interface var1 of block G2 and the VariableGroup k are
mapped by a connection, which represents an instance of the
variableMapping. The connection between block G2 and
block Elm1 represents an instance of the maeMapping.

C. Valid Descriptions
From the technical point of view, the EMAB models are

stored as XML files. During the export or import the file
validity against the XML schema is checked. But not every
model that is valid against the XML schema, is also a valid
architecture description. Therefore, in the following several
rules are introduced for each layer in detail. These rules must
be fulfilled to ensure the validity of the description of the
two architecture layers. In the following all necessary rules
ensuring that EMAB models from the technical point of view
are valid XML files are specified in prose. Each rule can be
implemented using some constraint language. Figure 7 (see
Section V) shows an example of some conformance checking

198

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Elm2 Elm1

AtomicElm1

AtomicElm2

AtomicElm3
z

k

k

z

x

r

r

x

z

Atomic
Elm4 r

r

k

k

Atomic
Elm5 x

x

q

q

z

G2

M1
G1

var1

var2var1

var1var1var2
var2

varLoc

var2

Type = State

Type = Data

MAG

MAG

M

var3 var3

Type = Data

Figure 4. Example of invalid EMAB descriptions

rule that is implemented in the object constraint language
(OCL).

Design layer rules: The EMAB description of the logical
architecture is valid, if the following rules are fulfilled:

1) A Channel can connect two ports of two LAEs,
only if both LAEs are children of the same Group-
Element father.

2) A Channel can connect two ports of two LAEs,
only if both ports of the two LAEs have a reference
to the same VariableGroup.

3) A Channel connects exactly a IN port, OUT port
pair with each other.

4) Ports of the outer GroupElement must be con-
nected to ports of the inner LAEs.

5) A Channel connects exactly two ports.
6) A Channel must have an association refer-

encedSource to the OUT port and must have an
association referencedTarget to the IN port.

7) A VariableGroup can only be associated by ex-
actly one OUT port.

8) Only an AbstractPort of Multiplicity-
Port type MultiOUTChannel can be associated
by more then one referencedSource.

On the left side of Figure 4 a further developed block
diagram of Figure 3 is shown. The logical architecture in
the diagram violates rules 1, 2, 4. The diagram elements
that violate a rule are shown in red. For example, the port
of AtomicElm3 in GroupElement Elm1 is directly con-
nected by a channel to the port of the inner AtomicElm3
of GroupElement Elm2. This is a violation against rule
1. Rule 4 is also violated, because Elm2 has an OUT port
that is unconnected. Moreover, at the block AtomicElm3
two ports are connected that have associations to different
VariableGroups.

Implement layer rules: The EMAB description of the
module architecture is valid, if the following rules are fulfilled:

1) An export variable of an outer MAG must have an ap-
propriate export variable of a inner MAE. Both MAE
have associations to the same variable declaration.

2) A MAE may declare a Variable, if it is a Module
or an IntegratedArchitectureElement.

3) A MAE may have the association import to a
Variable v1, when there already exists a Vari-
able v1 that is associated as export by a MAE.

4) A Variable that is associated as import by an
outer MAG, must have an inner MAE that has an
import association to the same Variable.

5) A Variable v1 can be associated as export by an
MAE m, when the Variable v1 is declared by the
MAE m.

On the right side of Figure 4 an extended module archi-
tecture block diagram of Figure 3 is shown. The architecture
in the diagram violates implement layer rule 1. Elements in
the block diagram that violate a rule are shaped in red. For
example, the outer block G2 has an association to Variable
var2 but G2 has no inner MAE with has the appropriate
export interface.

Mapping rule: The EMAB description for mapping the
module architecture to the logical architecture is valid, if the
following rules are fulfilled:

1) A Variable v1 may have an association Vari-
ableMapping to a VariableGroup vg1, only
if the VariableGroup vg1 and the Variable
v1 are of the same CommunicationType.

The block diagram of Figure 4 contains mapping el-
ements. One of these mappings is shaped in red, be-
cause mapping rule 1 is violated. Rule 1 is vio-
lated, as var3 of CommunicationType State and
var1 of CommunicationType Data have a different
CommunicationType and are mapped by a connection.

In contrast to these technically originated rules, the con-
formance checking rules ensure the validity of some domain
specific layered architectural concept (see Section V).

V. ARCHITECTURE CONFORMANCE CHECKING

In the Section IV-C the syntax and general low-level
semantic checking of an EMAB model instance is performed.
This section focuses on the individual product and the corre-
sponding product line. Conformance checking and its objec-
tives were shortly introduced in Section III-C, now we center
the technical aspects. The architectural concepts defined by
the dedicated architecture and represented by its architectural
rules are the input for this architecture conformance checking
activity together with the implemented modules, respectively
the realized parts of the systems. Output of a check is a set of
violations, so a list of pointers where the implementation does
not fulfill the defined architecture.

As it is known from the field of architectural concepts and
design patterns, these can be defined generally but it is not

199

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

uncommon, that a software architecture contains more than
one concept or pattern. Thereby the patterns can be adapted
or modified to meet special requirements in a different level
of specialization. Furthermore, the number of concepts and its
variations are increasing stately in practice. On the other hand,
it might happen that realized concepts are dropped during the
ongoing evolution steps. Hence, this activity has to be managed
and supported by tools to support architects and developers,
and for making concepts explicit.

In the following subsections the fundamentals are described
individually and explained with the help of a simple example.
Next, the individual checking activities, which are part of our
methodology, are illustrated in detail.

A. The ”Checking” Views
As explained in Section IV and shown in Figure 3, we

provide different views towards visualizing the architecture of
a product and a product line. LAEs have to be referred to
implementation artifacts for product development. Therefore,
the EMAB meta model determines that the MAE can reference
at most one LAE using the mapArchitectureElement
to determine the appropriate module elements of a logical
element.

The DESIGN layer focuses on the logical architecture.
In the block diagram in Figure 5 a very simple example is
given with three instances of a LAE, two AtomicElements
and one GroupElement. Whereby the LAE3 declares the
VariableGroup X and references it by an AEP as an OUT
port type. The LAE2 defines an AEP as an IN port type, which
references the same VariableGroup X. Nevertheless, a
Channel is specified within our simple example connecting
this two ports. This is the typical view, in which a high-level
architecture is specified on the PLA as well as on the PA level.

Figure 5. DESIGN view as part of the meta model instance

The IMPLEMENT view shown in Figure 6 represents the
MAEs instances as blocks and their connection as concrete
connections. Moreover, each MAE is referencing one LAE
visualized by dashed connections between a module element
block and logical element block. Regarding the development
process this is, e.g., the typical view a concrete realization of
a product is developed.

One simple conformance checking activity is the review of
valid connections between MAEs towards the constraints spe-
cialized by the product line architecture. During development
it might happen that a communication between two elements is
implemented, which is not allowed with respect to the logical
architecture. Because of the mapping between LAE and MAE
this violations can be detected automatically and visualized.

Figure 7 shows the CHECK view for our simple example,
checking the conformance rule on connections of the DESIGN
layer’s logical architecture elements and IMPLEMENT layer’s
module architecture elements. In this case the rule can be
specified by an object constraint language (OCL) rule. This
OCL rule is drawn at the top of Figure 7 and is fulfilled as

Figure 6. IMPLEMENT view as part of the meta model instance

the specified connection between the two module architecture
elements corresponds to the connection between the mapped
logical architecture elements.

As illustrated in Figure 7 only one of the three existing
communication channels existing in the realization is permit-
ted. Two of them (marked with the red X) are architecture
violations. The connection between MAE3 and MAE1 is not
allowed because of the mapping to LAE3, respectively LAE1,
this communication is not specified. Therefore it is not valid
to establish a communication between these elements in a
concrete implementation.

Figure 7. CHECK view as part of the meta model instance

The violation between MAE3 and MAE2 results of how
the communication between these elements is established over
variable Y. In the design it is specified that the variable is
exported by LAE3, which is mapped to MAE3 and this element
is importing and not exporting variable Y. Hence, this results
in a violation, as the realization is not conform to the specified
architecture.

This simple example illustrates how the checking activity
is performed in general. In the next subsections this general
approach is discussed in detail corresponding to the concrete
activities defined by our overall development cycle.

B. The ”Checking” Activities
In this subsection the specific checking activities are de-

scribed in detail. The checking takes place between a DESIGN
and an IMPLEMENT instance in general and is performed on
a model-to-model checking level due to the high degree of
code generation from models in the automotive domain.

200

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As illustrated in Figure 2 we defined two explicit checking
activities, one on the product line level, and one on the product
level.

1) Activity PL-Check: This activity contains of two scenar-
ios, first the conformance checking of the realized elements
on the product line level, these are elements, which are
realized for reuse in nearly every product. Second, the holistic
conformance checking taking the PLA and all products, which
are existing and derived from this product line architecture,
into account.

The first case is equivalent to the checking activity on
product level and is described in detail in the following
subsection. In the other case special challenges exit contingent
on the characteristics of a product line itself. As outlined a
product line architecture specifies a set of concepts, which
are represented as architectural rules. The goal of the holistic
conformance checking on PLA level is to check if all existing
products are fulfilling these requirements. What leads to vio-
lations on this level? - Because of the high number of parallel
existing product variants, which are developed individually
from different teams with different know-how available using
development paradigms. Nevertheless, each product has its
own additional requirements. Theses are reasons why given
presets by the PLA architecture are violated during develop-
ment.

But also the planned extensions can lead to inconsistencies.
In these cases it is very important to make the effects of
architectural changes visible to get a feeling of it and to act in
an adequate way. A simple example for this are the different
versions of modules existing in parallel. Each architecture
element of the product line development and of the product
development is kept in a repository, which provides a version
control capability. Predecessor relations are defined in case
of modifications of an existing version. The repository also
enables the selection of elements for product line development
or product development. As defined in the meta model in
Figure 3 an AtomicElement can be realized by more than
one Module, e.g., by the same Module in different versions,
respectively. This can lead to architectural violations if the
architecture of a MAE changes during development and older
versions of the same MAE are in use in other products.
So as a result, a module is only applicable for a particular
architecture in a concrete version. On the other hand, if the
logical architecture is changing, than it could happen that not
all versions of a MAE meet the requirements. The checking
activity makes this visible by the set of violations.

2) Activity P-Check: Referring to our development cycle
(see Figure 2) the realization of new functions or even a
new product is triggered by activity PL to P, which defines
a project plan by selecting a concrete project and set of
MAEs. In addition, a concrete product can have some special
requirements, especially when we have a prototype realization
with the aim to evaluate a new complex function. Such re-
quirements, which are inserted by activity P-Requirement,
are considered in the Design activity and realized by
P-Implement.

The aim of the activity Check is to check whether all
the specifications of the product line architecture have been
adhered and if the additional developments at product level
fulfill the requirements of the planned product architecture.

During development, it might happen that some specifica-
tions defined by the product line and the product architecture
are violated, maybe the architecture is not realizable due to
technical reasons, for example. To prevent architecture erosion
a checking step as introduced in subsection V-A is performed
on the product level during the development cycles.

Input is the concrete realization of a product and further
developed architecture of the concrete product. Specialized
or additional added architecture rules are derived from this
architecture. If an inconsistency between implementation and
architecture exists, there are two ways to deal with these viola-
tions: Modifying the architecture or modifying the realization.
It is the aim of the checking activity to make violations visible
and to support this decision making process. If the developer
was perhaps not familiar with the architecture for example,
and this is the reason for the violations, it can still be fixed at
the product level so that no erosion can occur.

However, if it is decided that there will be an adaptation to
the architecture, this may have a major impact, as the concepts
of the product line architecture may no longer be fulfilled.
On the other hand, this also offers the opportunity to transfer
evaluated and tested modifications into the product line to roll
them out to all or nearly all other products.

3) Effects of the Checking Activities: The potential effects
of the checking activities to other activities are visualized in
Figure 8 (cases 1-3, red arrows). In every case the effects
belong to the detected violations between architecture and
realization and to eliminate them the architecture and/or im-
plementation has to be adapted.

Product line (PL)

PL-Design PL-Plan

PL-Check PL-Implement

PL-Requirements

P to PL

PL to P

P-Requirements

Product (P)

P-Design P-Plan

P-Check P-Implement

1

2

2

1

3

Figure 8. Potential effects of the checking activities

Case (1) describes the adaption of the implementation,
this effects the Implement activities both on product line
(PL-Implement) and product (P-Implement) level. This
case arises if the detected violation is declared as an implemen-
tation fault and the architecture should be realized as specified.

Case (2) effects the Design activities as well on product
line (PL-Design) as on product (P-Design) level. The
detected violation results in an adaption of the architecture not
the implementation. This typically occurs if an architectural
constraint is not realizable on technical level respectively it
was realized in a “better” way, so it was decided to bring the
implemented concept to the architecture level.

201

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Case (3) is similar to case (2) but can effect all products
of a product line. As mention it is very common to elaborate
new functionalities especially complex functions, which might
influence the software architecture. After testing, evaluating
and approving it in a single prototype product, the violations on
the product level can be resolved by case (1) or (2). But if there
are major changes, it might happen that the architecture of the
prototype does not fulfill all requirements of the product line
architecture. In this case the effects of these changes have to be
discussed on product line level. This can result in an adaption
of the whole product line, if it seems reasonable to integrate
the new developed concepts of the prototype in the product line
architecture to improve the existing products. In the other case,
if it is not reasonable to modify the product line architecture,
the product that was originally derived from the product line
will be marked as a special product variant. So deviation of a
product architecture from a product line architecture is handled
in a managed way.

The results from the checking activity support the syn-
chronization between product and product line, because it is
pointed out, where the product architectures differ from the
guidelines defined by the product line architecture. Therefore,
we have to keep in mind that in practice more than one product
variant is in development: there are many that are developed
in parallel, which leads to architectural changes, and, without
syncing these variants in a managed process, the changes will
force the erosion of the product architecture as well as the
product line architecture.

C. The “Checking” Tool Support
Due to the high number of product lines existing in parallel

and the high number of derived and realized product variants
it is not economical to implement such a checking activity
without a suitable tool support. Thereby the following use
cases have to be supported:

1) Creation of architecture rules,
2) selecting the implemented artifacts,
3) selecting the right rules,
4) performing the check and
5) visualizing the checking results to determine further

actions.

For performing the checking activity we use an approach
based on a logical fact base, as described in [13], [31].

In Figure 9 the checking process is visualized. First the
implemented artifacts that should be checked, have to be
selected as module architecture instance. This model instance
is transformed to a logical representation. In parallel, the
architect derives and/or selects the architectural rules, which
are representing the architectural concepts specified by the
corresponding logical architecture instance. Today this rule
creation step is a human centered process and not automated.

After transferring the software artifacts into a logical fact
base and describing the architectural concepts by first-order
logic statements, queries can be executed on the fact base
to validate the rules. This results in a list of violations or
in the best case the implementation fulfills all architecture
rules, so the implementation is conform to the specified logical
architecture.

Now it is the task of the developer respectively the software
architect to handle the violations. This is similar with the rule

creation, the second step, which is performed and based on
the experience of a human to resolve possible architectural
violations.

We define the Checking activity as a separate activity for
two reasons. On the one hand, it is a process composed of
several steps and, on the other hand, the checking is a snapshot
based step. So, related to a development process, it makes
sense to have an explicit activity triggered by launching new
snapshots of a system.

Focusing the tool support, an important open issue is
the creation of architectural rules, but also the extraction of
architectural concepts introduced by the developers best prac-
tice and making them explicit. Consequently, we have some
ongoing research in this field. One approach is to concentrate
on the implemented artifacts and extracting architectural con-
cepts from it with the help of machine learning techniques to
compare them with the given logical architecture to support the
decision making process described in the previous subsection.

VI. REAL WORLD EXAMPLE: BRAKE SERVO UNIT (BSU)
In this section, we present an example of a software system

we developed in cooperation with Volkswagen. The main task
of this system is to ensure a sufficient vacuum within the brake
booster that is needed to amplify the driver’s braking force. At
first, we describe the context the system is embedded in and a
view onto the system’s structure. We show how the system has
evolved. After the presentation of the mapping of the evolution
onto our approach, we give results and a discussion.

A. System Structure and Context of BSU
In vehicles, a vacuum brake booster (brake servo unit/BSU)

is mounted between the brake pedal and the hydraulic brake
cylinder. It consists of two chambers separated through a
movable diaphragm. If the driver is not braking, the air is
evacuated from both chambers. When he pushes on the brake
pedal a valve opens and atmospheric pressure air flows into one
chamber. Due to the differential air pressure within the BSU
the diaphragm starts to move towards the vacuum chamber
creating a force. This force is used to amplify the driver’s
braking force.

The vacuum can be generated using different techniques.
The BSU is either attached to the intake manifold using its
internal lower pressure or to an electrically or mechanically
driven vacuum pump. Using the intake manifold as vacuum
generator can be problematic. Special operating modes of other
vehicle’s subsystems can increase the intake manifold pressure
so much that its internal vacuum is not sufficient to evacuate
the BSU when needed.

The software system realizes a set of feedback controllers
to reduce the disturbances caused by other systems or to switch
on the vacuum pump, respectively. Since it makes no sense to
use all controllers at the same time it is necessary to coordinate
their activation. Besides the controlling of BSU vacuum and
the coordination of controllers, the software has to provide
valid pressure information all the time. For this purpose the
software selects from several sensors the one that provides the
best quality of pressure information. The logical view of the
designed architecture is presented in Figure 10.

The BSU hardware system is part of a wide range of
products within the huge family of cars. Since the diversity of

202

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Tool supported checking process

Control FunctionsSensors

BSU Sensor 1

 BSU Sensor MUXBSU Sensor 2

Control Function 1

Control Function 2

System DiagnosticsDESIGN

s1

s2

s1

s2

m1

m2

m3

m0

m1

m2

m0

m1

m2

m1

m2

Figure 10. Logical view of the software architecture of BSU

the used hardware components like sensors and actuators that
are mounted to the braking system and features that influence
the BSU software one important goal of the architecture
development was to support variability. The BSU software
system is decomposed into two major parts: Sensors and
Control Functions. The decomposition of the Sensors
component into parts for every sensor type each allows a
one to one mapping from features to components. To realize
variability in an efficient way, standardized interfaces are used
for communication. A coordinating component BSU Sensor
MUX just has to provide a sufficient amount of ports for the
interaction with the sensors and control functions.

The Control Functions component is decomposed
using a similar technique. Every control function is realized by
a specific component. These components provide standardized
interfaces for communication with subsequent vehicle func-
tions, which must follow the BSU commands, e.g., disable the
start-stop system (not depicted in Figure 10).

B. Evolution of BSU
As it was customary in the automotive domain, BSU’s

hardware and software have been implemented by various
suppliers in the past. The requirements for the functionalities
of the system were the same for all suppliers, but there
were differences in the type of implementation by the respec-
tive suppliers. During the further development of the system
over many years, new requirements had to be continuously
implemented. Examples of this are the support of various
engine variants such as otto, diesel and electric engines. As
the range of functions increased, the essential complexity
grew; however, the accidental complexity [32] has increased
disproportionately. The growth of accidental complexity results
from a “bad” architecture with strong coupling and a low

cohesion, which have evolved over the time. Despite extensive
further development of the system, the original structure of the
software was not adequately adapted. Overall, the monolithic
structure of the software remained. The software consisted of a
single software module, which, however, was internally char-
acterized by increasing accidental complexity. The variability
was realized completely by annotations. Thereby, the system’s
maintainability and expandability has been complicated addi-
tionally.

In recent years, many automotive manufacturers have be-
gun to develop software primarily in-house to save costs and
to secure important know-how. However, the hardware com-
ponents are still being developed by the supplier companies
in general. Against this background, Volkswagen decided to
develop the BSU in-house in the future. Together with our
institute, Volkswagen developed its own software for the BSU
in 2012 on the basis of the existing system. Configurability,
extensibility and comprehensibility were defined as essential
quality targets. In addition, new architecture and design con-
cepts have been introduced to meet these quality objectives in
the long term and permanently.

After successful introduction of the system into series
production, the software system was continuously developed
after 2012. In all, the BSU system was reused in more
than 140 project versions, some of them with adaptations.
There were, e.g., the introduction of five additional control
functions that were necessary because of changes to the system
environment. This includes, in particular, the introduction of
new components such as actuators, which were essentially
driven by the electrification of the powertrain. In the following
sections, we will present our methodology by means of the
BSU’s further development and discuss the results. However,
due to the obligation of secrecy, we can not name real-world
functions. Instead, we will abstract from real control functions,
actuators, and sensors in the following sections.

C. Application of our Approach to BSU Further Development
In this section, we will outline the evolution of BSU

further development, described in the previous section, mapped
to the overall development cycle visualized in Figure 2. As
mentioned in Section VI-B, the development started in 2012
and continues until today. We will pick out the milestones of
this evolution process and explain in detail, how our approach
supports the management of development. Therefore, we will
describe the further development of the BSU chronologically.

203

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The architecture of the BSU at this point is equivalent to
Figure 10.

The first considerable development activities leading to
architectural evolution results from two new control functions.
These new control functions are specified as product line
requirements (PL-Requirement). In the following activity
PL-Design, the new requirements including all open require-
ments and feedbacks from the ongoing product development
activities submitted by activity P to PL, are took into ac-
count by the designing of the new PLA (called “PLA vision”).
The resulting PLA includes two new components, whereby
each component represents one of the new control functions.

After assessing and determining the new PLA vision, the
PL-Plan activity starts. It was decided to realize the new
PLA vision in two iterations, per iteration cycle, one of the new
components should be implemented completely. Regarding to
the development plan in activity PL-Implement the first
component was implemented. PL-Check activity is triggered
after the new component is fully implemented. In this activity,
the conformance of the implementation is checked against the
planned architecture (PLA vision), as illustrated in Section IV.
An example for an architectural rule, which was checked, is
defined informally as follows: "Each BSU Sensor has
to communicate to Control Functions by the
BSU Sensor MUX". This rule can be easily derived from
the logical view shown in Figure 10. The outcome of the
checks was positive so the next iteration was started.

Parallel to the implementation of the second defined com-
ponent some concrete products are selected to integrate the new
developed control function in real products (activity PL to
P). It was decided to setup a new pilot product additionally.
The pilot got a special requirement by a P-Requirement
activity. The proving by prototypes or pilots is a common
approach in the automotive domain. Due to the specification of
the special requirement, which includes a new control function
with a coordinating feature, a prototyping approach was used
to realize this requirement. This simply means that we have
a main control function and a backup control function, if the
main function is not available the backup function should be
used.

The solution of the P-Design activity was a solution that
fulfills all requirements. It was decided to add a new compo-
nent representing the new control function and to establish
an additional coordinator component. The coordinator has the
responsibility of the controlling of main and backup functions
and realizing the coordinating feature.

In the P-Plan activity the iterations to be performed
had to be defined and scheduled. The outcome was a devel-
opment plan with two iteration steps. In the first step, the
new control function and the coordinator component should
be implemented. And in a second step, all existing control
functions had to be adapted, because they had to be defeatable
to perform as main or backup function.

According to the development plan, the P-Implement
activity was performed. After each iteration step, a confor-
mance check was done (P-Check). In our case study we
detected a violation of an architectural rule. Consequently,
it was evaluated and discussed, if the solution of the vio-
lation results in adapting the implementation or in adapting
the architectural rule itself - or in simple words, is there

a crummy implementation or an insufficient architecture (cf.
Section V-B). In terms of internal classification we cannot go
in detail at this point.

After evaluating the product realization all adaptations and
changes of architecture and implementation are forwarded to
the product line architecture level by a P to PL activity.
These are inputs for the next PL-Design activity, thereby it
had to be decided, which changes should be integrated into the
product line architecture and its implementation or otherwise,
which had to be declared as a “special” solution. In our
case the coordinator concept was established in the product
line. This leads, e.g., to the new architectural rule: "Each
Control Function must have a communication
connection to the Coordinator", which is now
mandatory for all products derived from this product line. The
final architecture is visualized in Figure 11 including all newly
developed control functions, the Coordinator component,
and the additional connections between the control functions
and the Coordinator for the controlling of activation.

Control Functions

Sensors

BSU Sensor 1

 BSU Sensor MUX

BSU Sensor 2

Control Function 1

Control Function 2

System DiagnosticsDESIGN

s1

s2

s1

s2

m0

m1

m2

m0

m1

m2

m0

m1

m2

m1

m2

Control Function 3
m3

m4

m3

Coordinator
c4 c3 c2 c1

c1

c2

c3

Control Function 4
m4

c4

m4

m3

m4

m3

Figure 11. Logical view of the software architecture of BSU including the
coordinator concept and the three new control functions (in 2012)

In summary, the architecture of the BSU is largely stable
after the introduction of the coordinator concept until today.

Overall we state that our approach can deal with many par-
allel activities at product line and product level. This becomes
apparent by the controlling character of the synchronization
points both in the development cycle on product line and
product level by activities PL-Check and P-Check and
between the product line and product level by activities PL
to P and P to PL. In this way, it was possible to detect
architecture erosion in an early state and to take adequate
countermeasures. Furthermore, we can take care of a planned
generalization on the one hand and a planned specialization or
exceptional case handling on the other hand. This is evidenced
by the coordinator concept: A concept designed and fully
realized and proved by a pilot product and than transferred into
the product line architecture and finally fully integrated within
the next development iterations in the product line architecture
and all products belonging to this architecture.

VII. EVALUATION AND DISCUSSION

In this section we present and discuss the results of a field
study of a five year BSU software development and evaluate,
if the main objectives introduced in Section I are fulfilled.

A. General Results of the Quantitative Analysis
To evaluate our methodology, we present the quantitative

analysis for the BSU software development that is realized

204

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II. RESULT OF THE QUANTITATIVE ANALYSIS FOR THE BSU
SOFTWARE FOR THE INTERVAL OF 5 YEARS.

Count Number
of ver-
sions

Average
number of
versions

Min.
number of
versions

Max.
number of
versions

LAE 15 15 15/15 = 1 1 1
MAE 15 57 57/15 ≈ 4 1 6
Projects 21 146 146/21 ≈ 7 1 12

and maintained in cooperation with our project partner over
a period of 5 years. In the following, we focus on the
applicability of the product line and product development
activities. Two criteria are important to evaluate. First, the
amount and kinds of modifications on architecture elements
calling this complexity controlling. Second, the amount and
kinds of design configurations calling this variant controlling.

Table II shows the result of the quantitative analysis. The
data record for the quantitative analysis refers to the develop-
ment of the BSU software and the product realizations con-
sisting of the BSU software and further vehicle functions. The
record contains the version control graph of the past 5 years of
BSU software development, called repository in the following.
Each node is a version of an architecture element or realized
product. Edges connect two subsequent versions. Table II
shows the number of logical architecture element (LAE) ver-
sions, of module architecture element (MAE) versions, and of
project versions from the record. Modifications were triggered
by the realization of BSU software PL-Requirements or
by the realization of products due to P-Requirements.

Table II shows the count of 15 LAE referring to mod-
ifications at the DESIGN layer and the count of 15 MAE
referring to modifications at the IMPLEMENT layer. The kind
of modifications refers to the connection structure and to the
architecture element structure of the appropriate MAE. Each
LAE is available in exactly one version in the repository.
Thereby, the current state of the logical architecture is repre-
sented, which is unmodified since the beginning of the record.
Unfortunately, the data of prior development stages of the
BSU software logical architecture is not considered by the
record due to data protection reasons. In total, 57 versions for
MAE exist. A module element of the module architecture was
modified in minimum 1 time, in maximum 6 times, and in
average 4 times. Thereby, each version of the MAE is mapped
in this case to exactly one version of the appropriate LAE.

Line “Projects” in Table II refers to the product devel-
opment of the BSU software and shows that 21 projects
containing the BSU software exist. A project defines a set
of architecture element versions from logical architecture and
from module architecture used to realize a product. In the
following, we call the set of versions of architecture elements
design configuration. Each time a project is modified, a new
version of that project is committed to be used for subsequently
realize the product. The project modifications resulting in a
new version commit always refers to changes of the design
configuration. In total, the project version number is 146. The
average number of versions is 7, the minimum number is 1,
and the maximum number is 12.

The data in Table III shows two quantitative aspects. First,
the number of BSU software architecture element versions
used in projects is 46 and the cumulated number of BSU

TABLE III. FURTHER RESULTS OF THE QUANTITATIVE ANALYSIS FOR THE
BSU SOFTWARE.

Number of
versions
used in
projects

Cumulated number
of versions used
over all project

versions

Average degree
of reuse of

each version

Number of
used design
configura-

tions

MAE 46 1611 1611/46 ≈ 35 n/a
Projects n/a n/a n/a 14

software architecture element versions used in all project
versions is 1611. Hence, the average degree of reuse of
each version of MAE is 35. Second, the number of different
design configurations of all project version concerning the
BSU software is 14. This induces the fact that 14 architecture
structure variants of the BSU software architecture (logical and
module) are used in projects to realize products in the past 5
years.
Complexity controlling: Complexity in BSU software is in-
duced by modifications on architecture elements of the logical
architecture and the module architecture, which are triggered to
realize the two kinds of requirements described by the record.
To handle complexity, each modification must be controlled for
violations on architecture elements and on violations referring
quality properties.

Our methodology aims to control violations of quality
properties in the Design activity and of violations of ar-
chitecture rules in the Check activity. The Design activity
provides the modified DESIGN layer in each iteration and
the Implement activity provides the modified IMPLEMENT
layer in each iteration. The BSU software modifications are
applied to realize requirements resulting in a product depen-
dent BSU software or in a new product independent realiza-
tion of the BSU software. Therefore, PL-Requirements
corresponding to new features triggers the controlling of BSU
software modifications during the product line development
activities, using the versions of logical architecture at the
DESIGN layer and of versions of module architecture at
the IMPLEMENT layer. New project related requirements
corresponding to P-Requirements triggers the product
development activities to control all modifications considering
project related versions and architecture related versions cor-
responding to the appropriate layers and of the EMAB meta
model.

After applying the methodology two important results are
observed: First, no violations on architecture quality properties
at the DESIGN layer were found. Second, after checking
the modifications of the BSU software applying inter alia
the rule described by the EMAB meta model in Section IV,
only one minor violation between the layers of the BSU
software was found. This evaluation result shows that nearly
all modifications of BSU software in the past 5 years preserved
the architecture conformance of the IMPLEMENT layer to the
DESIGN layer. Moreover, the structure of the DESIGN layer
is well realized considering the quality properties.
Variant controlling: The term variant in the case of BSU
software describes a software architecture variant reused to
realize a software product. Thereby, each project version
refers to exactly one design configuration to define architec-
ture elements for reuse that are contained in the software
architecture variant. Modifications of the logical and module

205

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

architecture can introduce violations on expected derivable
structure variants. To handle such violations the control of
variants must be applied to the modifications. The control of
such architecture rule violations is applied during the Check
activity of the product line development considering the ver-
sions corresponding to the IMPLEMENT layer and to the
DESIGN layer. After applying our methodology, no violations
are found in the past 5 years of development. This corresponds
to the result of complexity evaluation where conformance of
the EMAB layers is confirmed.

B. Evaluation with Regard to the Main Objectives of our
Approach

We will evaluate, if the main objectives introduced in
Section I are fulfilled by the BSU example. These objectives
are:

1) Maintaining stability of the PLA and minimizing
product architecture erosion even if extensive further
development of the system takes place.

2) Achieving high scalability, and a high degree of usage
of the modules.

The first objective focuses on the software architecture
issues whereas the second objective regards the software
components. Obviously, the following four sub-objectives can
be derived by the two major objects:

1) Stability of a product line architecture
2) Erosion indicator
3) Usage of a module
4) Scalability of a module

1) Definitions of Evaluation Criteria: We will explain each
sub-objective in detail and by proposing metrics to evaluate the
sub-objectives.

General notations:

• PLAt := active PLA at point t
• Pt,x := project variant at point t, which is correspond-

ing to the PLAt with the same t. This is feasible
because only one PLA is active at a point t in the case
study. No point t exists where two PLAs are active.

• pt,x := an explicit version of a project Pt,y at point t.
• |Pt,x| := number of explicit versions of a project

variant Pt,x at point t.
• Mt,x := module / realization artifact at point t, which

is corresponding to the PLAt with the same t.
• mt,x := an explicit version of a module Mt,y at point

t.
• |Mt,x| := number of explicit versions of a module

Mt,x at point t.
• ΦPLAt,P := {Pt,1, Pt,2, ..., Pt,n, is defined as the set

of all projects existing at point t and derived from the
given PLA.

• ΦPLAt,M := {Mt,1,Mt,2, ...,Mt,m}, is defined as the
set of all modules existing at point t and derived from
the given PLA.

• ΦPLAt
:= ΦPLAt,P ∪ ΦPLAt,M =

{Pt,1, Pt,2, ..., Pt,n,Mt,1,Mt,2, ...,Mt,m}, is defined
as the set of all projects and modules existing at point
t and derived from the given PLA.

Stability of a product line architecture:
is described by the amount of changes between two PLAs.
The stability Stab and the number of project versions existing
during the period a PLA is active, NAP , are defined as
follows:

Stab(PLAt) =
w(PLA∆t−1,t)

w(PLAt−1)+w(PLAt)
2

(1)

with weight w(PLAt) = |NPLAt | + |EPLAt |, whereby
NPLAt := set of nodes of PLAt and EPLAt := set if edges
of PLAt.

The delta-graph w(PLA∆t−1,t), which is containing the
changed elements, is defined by the edges that are added or
deleted comparing PLAt−1 and the following PLAt and all
nodes connected by these edges.

In addition Stab (PLAt)→ [0, 2(|NPLAt
|+ 1)], whereby

a high value indicates comprehensive changes and a low value
small diversities. The assumption is that the value should not
be higher than 1, but this had to be validated.

NAP (PLAt) =

|ΦPLAt,P |∑
x=1

|Pt,x| (2)

Erosion indicator
The erosion of a PLA is indicated by the number of violations
of project versions. Therefore the mean number of violations
MV is defined as,

MV (PLAt, Pt) =
v(PLAt, Pt)

|Pt,x|
(3)

with

v(PLAt, Pt) =

|Pt,x|∑
x=1

v(PLAt, pt,x) (4)

and v(PLAt, pt,x) is defined as the number of violations
of pt,x in PLAt.
Usage of a module
The usage of a Module Mt,x is defined as how many project
variants Pt at point t use a version of Mt,x. Therefore we
define τ as,

τ(pt,x,mt,y) =

{
1 , iff project pt,x uses module version mt,y

0 , otherwise
(5)

The same applies for τ(Pt,x,Mt,y), in this case it means
that any version of a Module Mt is used in any version of a
project Pt.

Furthermore we define τ for a set of projects of a PLA as,

τ(ΦPLAt,P
,mt,y) =

{
1 , iff a pt,x exists that uses mt,y

0 , otherwise
(6)

So the usage u is defined as,

206

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

u(ΦPLAt,P
,Mt) =

∑|ΦPLAt,P |
x=1 τ(Pt,x,Mt)

|ΦPLAt,P |
(7)

In addition u(ΦPLAt,P
,Mt) → [0, 1], where a value near

one means a high penetration of module Mt and a low value
corresponds to a minor usage of the module.

Scalability of a module
The scalability Scalof a module describes the parallel usage
of different versions of a module Mt and it is defined as,

Scal(ΦPLAt,P
,Mt) =

|Mt,x|∑
y=1

τ(ΦPLAt,P
,mt,y) (8)

The value for the scalability of a module should be one.
It is not profitable have a high value, because this means that
the variability of a module is realized by different versions of
a module, which results in a high maintainability effort. As
well as a scalability value of zero is not preferable, because
this indicates the non-use of a module.

2) Evaluation of the Defined Criteria: Next we apply our
metrics to the BSU example. The discrete timestamps for t are
the following five values t = {2012, 2013, 2014, 2015, 2016}
for the year 2012-2016.

Table IV shows the evolution of the BSU over the period
2012-2016 and is the basis for the following evaluations.
Column MAE vers. contains the version number of the MAE.
Version “1” is the first version of a MAE indicating a new
development of a MAE. The total number of MAE versions
is 57.

Stability of a product line architecture:

For the calculation of stability we consider the PLA of
2012 and 2013. The PLA for the year 2013 is shown in
Figure 12. Figure 11 in the previous section shows the PLA for
2012. In order to calculate the stability, we have constructed
a simple graph with the nodes and edges for both PLAs in
Figure 13. Hierarchical components such as Sensors are also
represented by nodes. Channels become edges in the graph.
Multiple channels between two nodes are combined into one
edge.

The graph for the PLA from 2012 is depicted on the left
side in Figure 13. The weight w is calculated from the sum of
nodes and edges and is 24 for PLA2012. On the right side the
graph for the PLA from 2013 is shown. There is a new node,
Control Function 5, and two additional connections.
However, there are also adjustments of the channels up to the
BSU Sensor MUX. All changes are indicated by the dashed
lines. In the middle of Figure 13, the delta graph is shown.
All added and modified edges with the associated nodes are
included there.

Below we calculate the stability for the years 2013-2016.
Since the stability always calculates the change to the previous
version, there is no calculation for 2012. As there was no
further development of the PLA in 2014 and 2016, the stability
is 0 in both years. Even in the years with adaptations of the

Control Functions

Sensors

BSU Sensor 1

 BSU Sensor MUX

BSU Sensor 2

Control Function 1

Control Function 2

System DiagnosticsDESIGN

s1

s2

s1

s2

m0

m1

m2

m0

m1

m2

m0

m1

m2

m1

m2

Control Function 3
m3

m4

m3

m5

Coordinator
c5 c4 c3 c2 c1

c1

c2

c3

Control Function 4
m4

c4

Control Function 5
m5

c5

m4

m3

m5
m4

m3

m5

Figure 12. PLA of the BSU in 2013

BSU
Sensor

1

BSU
Sensor

2

BSU
Sensor
MUX

Sensors

Coordi-
nator

Control
Function

1

Control
Function

2

Control
Function

3

Control
Function

4

Control
Func-
tions

System
Diag-

nostics

BSU
Sensor

1

BSU
Sensor

2

BSU
Sensor
MUX

Sensors

Coordi-
nator

Control
Function

1

Control
Function

2

Control
Function

3

Control
Function

4

Control
Func-
tions

System
Diag-

nostics

Control
Function

5

BSU
Sensor
MUX

Sensors

Control
Func-
tions

Coordi-
nator

Control
Function

5

Weight: 24 Weight: 27Weight: 9

Graph of PLA2013Delta-graphGraph of PLA2012

Figure 13. Building the delta-graph (graph in the middle) of PLA2012 (left)
and PLA2013(right)

PLA, a relatively small change effort results, which leads to a
low weight of the delta-graph. Overall, a high stability of the
PLA can be observed over the period.

Stab(PLA2013) =
w(PLA∆2012,2013)

w(PLA2012)+w(PLA2013)
2

= 9
24+27

2

≈ 0, 35

Stab(PLA2014) =
w(PLA∆2013,2014)

w(PLA2013)+w(PLA2014)
2

= 0
27+27

2

= 0

Stab(PLA2015) =
w(PLA∆2014,2015)

w(PLA2014)+w(PLA2015)
2

= 15
27+36

2

≈ 0, 48

Stab(PLA2016) =
w(PLA∆2015,2016)

w(PLA2015)+w(PLA2015)
2

= 0
36+36

2

= 0

In order to evaluate the stability of the product line archi-
tecture, we also want to relate Stab to the quantity of project
versions (NAP). After counting the versions of the projects
from 2012 to 2016, we get the following values:
NAP (PLA2012) = 9, NAP (PLA2013) = 9,
NAP (PLA2014) = 32, NAP (PLA2015) = 58,
NAP (PLA2016) = 38.

The values point to a high degree of further development,
especially from 2014 onwards. Nevertheless, the values for
Stab are relatively low so that the overall stability of the PLA
can be assessed as high.

207

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. EVOLUTION OF THE BSU SOFTWARE FROM 2012 TILL 2016.

2012 2013 2014 2015 2016

MAE
vers.

MAE
name

Creation
date

MAE
vers.

MAE
name

Creation
date

MAE
vers.

MAE
name

Creation
date

MAE
vers.

MAE
name

Creation
date

MAE
vers.

MAE
name

Creation
date

1 BSU-A 23.04.2012 2 BSU-F 22.02.2013 1 BSU-N 11.06.2014 6 BSU-A 16.01.2015 3 BSU-O 05.01.2016
1 BSU-B 24.04.2012 3 BSU-A 12.03.2013 3 BSU-D 18.06.2014 5 BSU-C 22.01.2015 6 BSU-C 25.04.2016
1 BSU-C 07.05.2012 2 BSU-D 15.03.2013 3 BSU-B 30.06.2014 4 BSU-H 11.03.2015 3 BSU-M 25.04.2016
1 BSU-D 07.05.2012 2 BSU-H 15.03.2013 3 BSU-G 30.06.2014 4 BSU-G 21.04.2015 7 BSU-C 28.04.2016
1 BSU-E 07.05.2012 2 BSU-I 15.03.2013 4 BSU-C 01.07.2014 5 BSU-H 22.04.2015 8 BSU-C 30.04.2016
1 BSU-F 07.05.2012 1 BSU-K 25.03.2013 5 BSU-A 01.07.2014 7 BSU-A 23.04.2015 9 BSU-C 11.05.2016
1 BSU-G 07.05.2012 4 BSU-A 28.08.2013 3 BSU-E 02.07.2014 1 BSU-L 26.05.2015 10 BSU-C 12.05.2016
1 BSU-H 07.05.2012 3 BSU-F 02.07.2014 1 BSU-M 27.05.2015 11 BSU-C 14.05.2016
1 BSU-I 09.05.2012 2 BSU-J 03.07.2014 8 BSU-A 02.06.2015
1 BSU-J 10.05.2012 3 BSU-H 03.07.2014 1 BSU-O 11.09.2015
2 BSU-E 19.07.2012 2 BSU-K 03.07.2014 2 BSU-M 05.10.2015
2 BSU-A 10.08.2012 3 BSU-I 03.07.2014 2 BSU-O 04.12.2015
2 BSU-B 05.09.2012 4 BSU-E 28.11.2014
2 BSU-G 05.09.2012 3 BSU-K 08.12.2014
2 BSU-C 11.09.2012
3 BSU-C 26.09.2012

Number of versions: 16 Number of versions: 7 Number of versions: 14 Number of versions: 12 Number of versions: 8

Erosion indicator

For a given PLA, architecture rules are derived as a means
to check conformity. In this context, the degree of erosion is
measured by counting the number of violations of architecture
rules for a PLA per year. Ideally, this value should be kept as
small as possible. Only one violation was detected in 2014.
Accordingly MV (PLA2014, P2014) = 1. In all other cases,
MV = 0.

Usage of a module

In Table V we specify the result of the usage calculation.
Some modules were developed after 2012. No value could
be calculated for the corresponding fields where the module
did not yet exist. Therefore, these fields are marked with
n/a. It is noticeable that module BSU-N is never used in
the period under consideration. Many fields have the value
1, which means a complete usage. For the modules created

TABLE V. USAGE OF A MODULE

MAE name 2012 2013 2014 2015 2016

BSU-A 1 1 1 1 1
BSU-B 1 1 0.8 0.2 0.1
BSU-C 1 1 1 0.7 0.8
BSU-D 1 1 1 0.7 0.8
BSU-E 1 1 1 0.7 0.8
BSU-F 1 1 1 0.7 0.8
BSU-G 1 1 1 1 1
BSU-H 1 1 1 1 1
BSU-I 1 1 1 0.6 0.7
BSU-J 1 1 1 1 1
BSU-K n/a 1 0.5 0.7 0.8
BSU-L n/a n/a n/a 0.4 0.8
BSU-M n/a n/a n/a 0.6 0.8
BSU-N 0 0 0 0 0
BSU-O n/a n/a n/a 0.3 0.8

in 2015 (BSU-L, BSU-M, BSU-O), the usage is initially
low but improves in 2016. With module BSU-B, the usage
deteriorates over the period of time. The causes of this should
be investigated.

Figure 14 illustrates the course of the usage. Modules
showing the same course of the usage are summarized.

0

0,2

0,4

0,6

0,8

1

1,2

2012 2013 2014 2015 2016

BSU_A,G,H,J

BSU_B

BSU_C,D,E,F

BSU_I

BSU_K

BSU_L

BSU_M

BSU_N

BSU_O

Figure 14. Usage of BSU modules A-O

Scalability of a module

In Table VI we show the calculated values of scalability.
The value 1 represents the optimum value and is therefore
represented by a green background color. Values greater than
1 indicate a negative scalability and are therefore shown as
yellow (value = 2) or red (value > 2). A value of 0 is also
generally seen as negative (BSU-N) because a version of the
module exists, but is not used in any project.

The development of the scalability of 2012-2016 is shown
in Figure 15. The number of respective values is counted here.
In 2014 and 2015 there is a deterioration in scalability. In 2016,
the scalability of the modules improves again significantly.

208

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI. SCALABILITY OF A MODULE

MAE name 2012 2013 2014 2015 2016

BSU-A 2 3 3 4 1
BSU-B 2 1 1 2 1
BSU-C 1 2 2 2 4
BSU-D 1 2 2 2 1
BSU-E 2 1 2 2 1
BSU-F 1 2 2 2 1
BSU-G 2 1 2 3 1
BSU-H 1 2 2 4 1
BSU-I 1 2 2 2 1
BSU-J 1 1 2 2 1
BSU-K n/a 1 2 2 1
BSU-L n/a n/a n/a 1 1
BSU-M n/a n/a n/a 2 3
BSU-N 0 0 0 0 0
BSU-O n/a n/a n/a 2 2

0

2

4

6

8

10

12

14

16

2012 2013 2014 2015 2016

>2

2

1

0

Figure 15. Number of modules with scalability 0, 1, 2, and >2

VIII. CONCLUSION AND FUTURE WORK

We proposed a holistic approach for a long-term manage-
able and plannable software product line architecture for au-
tomotive software systems. Our approach aims at a long-term
minimization of architecture erosion, and thereby guarantee a
constant high degree of reusability. Thus, we propose concepts
like architecture compliance checking with specific adaptations
to the automotive domain. The focus is on scalability, to
manage a huge number of variants in real world automotive
systems.

We introduced the description language EMAB and its
meta model for the specification of the software product line
architecture and the software architecture of the corresponding
products. The EMAB is applied for the architecture extraction
and the managed evolution approach presented in this paper.

In contrast to the validation checking of an EMAB model
instance, where a syntax and general low-level semantic check-
ing is performed, we proposed an approach for architecture
conformance checking to identify architecture violations as
a means to prevent architecture erosion. The architectural
concepts defined by the dedicated architecture and represented
by its architectural rules are the input for this architecture
conformance checking activity together with the implemented
modules, respectively the realized parts of the systems. Output
of a check is a set of violations, so a list of pointers where the
implementation does not fulfill the defined architecture.

We demonstrated our methodology on a real world case
study, a brake servo unit (BSU) software system from auto-

motive software engineering. In the case study, we could show
that we have met the two main objectives defined in Section I:

1) Maintaining stability of the PLA and minimizing
product architecture erosion even if extensive further
development of the system takes place.

2) Achieving high scalability, and a high degree of usage
of the modules.

As a result, with regard to objective (1), we could limit
architecture erosion to a minimum: Only one minor violation
occurred in a period of five years. All further developments
have followed the originally planned architectural principles
and thus resulted in a high stability of the PLA. Moreover, with
regard to objective (2) we were surprised at the high number of
usage of the modules: Most modules were used in all projects
existing at that time. Only the scalability deteriorated in 2014
and 2015. But in 2016, the value has improved considerably
again.

As a further observation a high degree of reuse could be
observed: Each module was reused on average in 35 projects.
Even the high number of potential variants could be managed
with the approach.

As a future work, we aim at realizing a tool-chain enabling
the architecture description of the different architectures (PLA,
PA, including versioning), the measure and evaluation of qual-
ity attributes, as well as the integration of the ArCh-Framework
[13]. Appropriate abstraction techniques are crucial to cope
with the huge set of adjustable parameters within the ECU
software and to manage variability. Thus, we are currently
developing a concept including a prototypical tool environment
that enables the description and visualization of variability.

REFERENCES
[1] C. Knieke, M. Körner, A. Rausch, M. Schindler, A. Strasser, and

M. Vogel, “A Holistic Approach for Managed Evolution of Automotive
Software Product Line Architectures,” in Special Track: Managed
Adaptive Automotive Product Line Development (MAAPL), along with
ADAPTIVE 2017. IARIA XPS Press, 2017, pp. 43–52.

[2] B. Hardung, T. Kölzow, and A. Krüger, “Reuse of Software in Dis-
tributed Embedded Automotive Systems,” in Proceedings of the 4th
ACM international conference on Embedded software. ACM, 2004,
pp. 203–210.

[3] A. Rausch, O. Brox, A. Grewe, M. Ibe, S. Jauns-Seyfried, C. Knieke,
M. Körner, S. Küpper, M. Mauritz, H. Peters, A. Strasser, M. Vogel,
and N. Weiss, “Managed and Continuous Evolution of Dependable
Automotive Software Systems,” in Proceedings of the 10th Symposium
on Automotive Powertrain Control Systems, 2014, pp. 15–51.

[4] L. de Silva and D. Balasubramaniam, “Controlling Software Architec-
ture Erosion: A Survey,” Journal of Systems and Software, vol. 85,
no. 1, Jan. 2012, pp. 132–151.

[5] B. Cool, C. Knieke, A. Rausch, M. Schindler, A. Strasser, M. Vogel,
O. Brox, and S. Jauns-Seyfried, “From Product Architectures to a Man-
aged Automotive Software Product Line Architecture,” in Proceedings
of the 31st Annual ACM Symposium on Applied Computing, ser.
SAC’16. New York, NY, USA: ACM, 2016, pp. 1350–1353.

[6] A. Pretschner, M. Broy, I. H. Krüger, and T. Stauner, “Software
Engineering for Automotive Systems: A Roadmap,” in 2007 Future of
Software Engineering, ser. FOSE ’07. IEEE Computer Society, 2007,
pp. 55–71.

[7] R. Cloutier, G. Muller, D. Verma, R. Nilchiani, E. Hole, and M. Bone,
“The Concept of Reference Architectures,” Systems Engineering,
vol. 13, no. 1, Feb. 2010, pp. 14–27.

[8] E. Y. Nakagawa, P. O. Antonino, and M. Becker, “Reference Architec-
ture and Product Line Architecture: A Subtle but Critical Difference,” in
Proceedings of the 5th European Conference on Software Architecture,
ser. ECSA’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 207–211.

209

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[9] E. Y. Nakagawa, F. Oquendo, and M. Becker, “RAModel: A Reference
Model for Reference Architectures,” in Proceedings of the 2012 Joint
Working IEEE/IFIP Conference on Software Architecture and European
Conference on Software Architecture, ser. WICSA-ECSA ’12. Wash-
ington, DC, USA: IEEE Computer Society, 2012, pp. 297–301.

[10] E. Y. Nakagawa, M. Becker, and J. C. Maldonado, “Towards a Process
to Design Product Line Architectures Based on Reference Architec-
tures,” in Proceedings of the 17th International Software Product Line
Conference, ser. SPLC ’13. New York, NY, USA: ACM, 2013, pp.
157–161.

[11] E. Y. Nakagawa, M. Guessi, J. C. Maldonado, D. Feitosa, and
F. Oquendo, “Consolidating a Process for the Design, Representation,
and Evaluation of Reference Architectures,” in Proceedings of the
2014 IEEE/IFIP Conference on Software Architecture, ser. WICSA ’14.
Washington, DC, USA: IEEE Computer Society, 2014, pp. 143–152.

[12] J. van Gurp and J. Bosch, “Design Erosion: Problems & Causes,”
Journal of Systems and Software, vol. Volume 61, 2002, pp. 105–119.

[13] S. Herold and A. Rausch, “Complementing Model-Driven Development
for the Detection of Software Architecture Erosion,” in 5th Modelling
in Software Engineering (MiSE 2013) Workshop at Intern. Conf. on
Softw. Eng. (ICSE 2013), 2013.

[14] I. John and J. Dörr, “Elicitation of Requirements from User Documen-
tation,” in Ninth International Workshop on Requirements Engineering:
Foundation for Software Quality. REFSQ ’03, 2003.

[15] H. Gomaa, Designing Software Product Lines with UML: From Use
Cases to Pattern-Based Software Architectures. Addison-Wesley
Professional, 2004.

[16] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison Wesley, 2001.

[17] J. Bosch, Design and use of software architectures: Adopting and
evolving a product-line approach. Pearson Education, 2000.

[18] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in software
product families: a case study,” Journal of Systems and Software,
vol. 74, no. 2, 2005, pp. 173–194.

[19] J. Bosch, “Maturity and Evolution in Software Product Lines: Ap-
proaches, Artefacts and Organization,” in Proceedings of the Second
International Conference on Software Product Lines, ser. SPLC 2.
London, UK, UK: Springer-Verlag, 2002, pp. 257–271.

[20] A. Strasser, B. Cool, C. Gernert, C. Knieke, M. Körner, D. Niebuhr,
H. Peters, A. Rausch, O. Brox, S. Jauns-Seyfried, H. Jelden, S. Klie, and
M. Krämer, “Mastering Erosion of Software Architecture in Automotive
Software Product Lines,” in SOFSEM 2014: Theory and Practice
of Computer Science, ser. LNCS, V. Geffert, B. Preneel, B. Rovan,
J. Stuller, and A. M. Tjoa, Eds., vol. 8327. Springer, 2014, pp. 491–
502.

[21] G. Holl, P. Grünbacher, and R. Rabiser, “A Systematic Review and an
Expert Survey on Capabilities Supporting Multi Product Lines,” Inf.
Softw. Technol., vol. 54, no. 8, Aug. 2012, pp. 828–852.

[22] S. Thiel and A. Hein, “Modeling and Using Product Line Variability
in Automotive Systems,” IEEE Softw., vol. 19, no. 4, Jul. 2002, pp.
66–72.

[23] H. Holdschick, “Challenges in the Evolution of Model-based Software
Product Lines in the Automotive Domain,” in Proceedings of the 4th
International Workshop on Feature-Oriented Software Development,
ser. FOSD ’12. ACM, 2012, pp. 70–73.

[24] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and
S. Ferber, “Introducing PLA at Bosch Gasoline Systems: Experiences
and Practices,” in Software Product Lines. Springer, 2004, pp. 34–50.

[25] The Standish Group International, Inc., “CHAOS Chronicles 2003
report,” West Yarmouth, MA, 2003.

[26] C. Knieke and M. Huhn, “Semantic Foundation and Validation of Live
Activity Diagrams,” Nordic Journal of Computing, vol. 15, no. 2, 2015,
pp. 112–140.

[27] International Organization for Standardization, “ISO/DIS 26262: Road
vehicles – functional safety,” 2009.

[28] H. Peters, C. Knieke, O. Brox, S. Jauns-Seyfried, M. Krämer, and
A. Schulze, “A Test-driven Approach for Model-based Development
of Powertrain Functions,” in Agile Processes in Software Engineering
and Extreme Programming. 15th International Conference on Agile

Software Development, XP 2014, G. Cantone and M. Marchesi, Eds.
Berlin, Heidelberg: Springer-Verlag, 2014, pp. 294–301.

[29] K. Beck, Test Driven Development. By Example. Addison-Wesley
Longman, 2002.

[30] E. Lehmann, “Time Partition Testing – Systematischer Test des kon-
tinuierlichen Verhaltens von eingebetteten Systemen,” Ph.D. disserta-
tion, Fakultät IV – Elektrotechnik und Informatik, TU Berlin, 2004.

[31] M. Mues, “Taint Analysis - Language Independent Security Analysis for
Injection Attacks,” Master’s Thesis, TU Clausthal, Institute for Applied
Software Systems Engineering, 2016.

[32] F. P. Brooks, Jr., “No silver bullet essence and accidents of software
engineering,” Computer, vol. 20, no. 4, Apr. 1987, pp. 10–19.

210

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

