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Abstract— In this paper, we propose a new zooming technique 

for binary images, using location and neighborhood adaptive, 

non-linear interpolation rules. These rules are inspired by the 

way an artist would draw an enlarged image. Using simple 

examples, we show that the output generated by popular 

interpolation techniques is very different from what a human 

does. Our rules are based on such observations for simple 

objects, and they try to mimic what an artist does. Using these 

rules, we interpolate complex images and demonstrate the 

impact. We compare our method with bicubic interpolation 

and show that our method gives better visual quality. We also 

show that, on an average, our method results in higher PSNR 

and a lower MPSNR. The SSIM of the output images are 

nearly the same for both methods. Our method overcomes a 

number of problems associated with known interpolation 

techniques, such as blurring and thickening of edges. Our 

method uses a set of sixteen rules in five categories. Each pixel 

in the interpolated image is computed by a chosen rule. The 

choice depends on the location of the pixel and the content in 

the neighborhood. The size of the neighborhood varies. Some 

rules can be influenced by distant pixels in the input and can 

impact distant pixels in the output. We present examples 

showing the effectiveness of our method. The results are 

visually appealing.  We show that lines and dots, with single 

pixel thickness, retain their thickness. Inclined lines and solids 

don’t develop as much jaggedness as happens with bicubic 

interpolation. Similarly, curves are also relatively smoother.    

Keywords- resolution; interpolation; binary-image; thinnes; 

location-adaptive; neighborhood-adaptiv; corner; slope. 

I.  INTRODUCTION 

When High Resolution (HR) images are created by 
interpolating Low Resolution (LR) images, unpleasant 
artifacts are seen. Interpolation artifacts are errors introduced 
into the HR image by the interpolation process. In [1], we 
proposed an interpolation method for binary images that 
generated visually appealing images. Popular methods like 
nearest neighbor, bilinear and bicubic [2] interpolation, 
generate more unpleasant artifacts like smoothing of edges 
and pixelation. Figure 1 shows the artifacts that are created 
when a dot and a line are interpolated using bicubic 
interpolation and Average of Nearest Neighbors (ANN) [3] 
interpolation. For clarity, the image shown is magnified by a 
factor of 8, and some of the unchanging regions have been 
removed. The interpolation is by a factor of 2. Figure 1B and 
1D show the outputs of bicubic and ANN interpolation, 
respectively. Interpolation introduces artifacts and these are 

the intermediate shades of gray. To bring this out clearly, the 
new shades have been assigned colors in Figure 1C and 1E. 
Different colors represent different magnitudes of gray. The 
specific colors have no significance here. We see that more 
pixels are distorted by bicubic interpolation. 

It can be seen that these kinds of errors will not be 
introduced by an artist. Also, a human can identify and 
eliminate many of the errors caused by popular interpolation 
methods. Our method tries to encapsulate some of the things 
that we feel an artist does to enlarge images. 

Interpolation artifacts are most likely to arise at object 
edges, on lines and curves that are one pixel thick, on 
inclined and curved solids or object intersections. Popular 
interpolation methods cause more unwanted artifacts in the 
case of binary image zooming. 

A large number of interpolation methods are available in 
the literature [1]–[15]. Some of these, like Nearest Neighbor, 
Bilinear and Bicubic [2] methods, use surface fitting 
techniques with pre-defined constraints. These methods often 
create undesirable artifacts in the output. Many methods 
have been proposed to minimize such artifacts. In [4], an 
orientation constraint is computed for each pixel to be 
generated. The pixel value is computed as a function of this 
constraint and the four surrounding neighbors. In an earlier 
work [3], we proposed an interpolation method called 
Average of Nearest Neighbors (ANN). This was based on 
the idea that each pixel in the interpolated image should be 
generated by using all the available nearest neighbors in the 
original image and none of the other pixels. 

In [5], curvature of the low resolution image is evaluated 
and this curvature information is interpolated using bilinear 
interpolation. The interpolated curvature information is used 
as a driving constraint to interpolate the complete image. In 
[6], the image is first interpolated using bilinear 
interpolation. As a second step, the quality is improved using 
a fourth order Partial Differential Equation (PDE) based 
method. A directional bicubic scheme is proposed in [7]. 
Here, the strongest edge in each 7x7 neighborhood is 
detected. If the edge strength is greater than a threshold, a 
one-dimensional bicubic interpolation is done along the 
edge. Our method shares some similarities with [7] because 
it also tries to find and preserves local edges. 

In [8] and [9], a two-step super resolution process is 
studied. In the first step, the low resolution image is 
interpolated using Bicubic interpolation. Then, the HR image 
is further processed to improve the quality at the edges. In 
[8], the gradient profile of the LR image is used as a driving 
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gradient prior to change the gradient profile of the 
interpolated image. This process makes the edges sharper. In 
[9], this idea is extended by splitting the feature space into 
multiple subspaces and generating multiple priors. 

In some scenarios, a frame from a video sequence needs 
to be interpolated. In [10] and [11], techniques to use 
information from adjacent frames to improve quality are 
discussed. The former uses an adaptive Wiener filter while 
the later uses Delaunay triangulation. 

A machine learning based approach is discussed in [12]. 
Unknown pixels in the interpolated image are generated 
using the training data set that best matches the region near 
the pixel. The patch around the unknown pixel is matched 
with patches in the training set. Using the best matched 
stored patch, the pixel is assigned a value. The algorithm to 
do the matching takes into account the LR patch and the 
neighboring patches. A training based method that 
incorporates an explicit noise model is used to expand binary 
text images in [13]. 

In [14], edges are found as a first step. The edges are 
used to compute unknown pixels using cubic spline. In [15], 
unknown pixels are assigned the value of the neighbor that is 
closest to the value got by bilinear interpolation.  

In this paper, we propose a Location and Neighborhood 
Adaptive (LNA) interpolation for binary images to be scaled 

by a factor of 2. Qualitatively, we show that the method 
generates visually pleasing images. For quantitative 
evaluation, we have compared LNA with bicubic 
interpolation using three standard metrics. These are Peak 
Signal to Noise Ratio (PSNR), Modified PSNR (MPSNR) 
and Structural Similarity (SSIM) index. PSNR represents a 
measure of the peak error while MPSNR is PSNR computed 
after applying a low pass filter. SSIM tries to measure the 
perceptual difference between two images.  

PSNR is computed as:   

 
 
Where Max is the maximum possible value of each pixel and 
has the value 1 in our examples of binary images. 

MPSNR is computed by passing the images being 
compared through a low pass filter, and then finding the 
PSNR of the filtered images. We have used a nine point, 
mean filter for our computations. 

SSIM is computed as follows: 
 

 
 

where x and y are two windows of equal size, μx and μy are 
the averages of the values in x and y, σx and σy their 
variances and σxy the covariance of x and y. c1 and c2 are 
constants of value (0.01 * L)

2
 and (0.03 * L)

2
 respectively, 

where L is the maximum value of a pixel magnitude. For our 
samples, the value of L is 1. 

SSIM index can be computed for different windows. We 
have divided the test images into equal blocks of size 8x8 
and computed SSIM index for each block. The average of all 
the block indices is the SSIM index of the image. 

To explain the LNA method and also to demonstrate 
some of its features, we have used a few synthetic images 
that we have created. To validate the method, we have used 
sixteen commonly used test images. These images are from 
USC [16], Kodak [17] and Hlevkin [18]. 

The rest of this paper is organized as follows. Section II 
explains the LNA process and gives an overview. Section III 
describes the interpolation process and the five categories of 
rules. Subsections A to E, in Section III, describe the 
categories and associated rules. Experimental results are 
given in Section IV.  Conclusions and suggestions for further 
extensions are given in Section V.  

II. THE LNA APPROACH TO INTERPOLATION 

LNA comprises of a set of rules. The rules try to mimic 
what an artist would do to define each pixel in the 
interpolated image. The outputs of a few popular 
interpolation techniques are shown in Figure 1. We see that 
the output is different from what an artist is likely to 
generate. Some of these differences are because, in Figure 1, 
the algorithms were allowed to generate pixels in grayscale, 
i.e., each pixel could take any one of 256 shades of gray. In 
Figure 2, we restrict the input and output to binary, i.e., each 

 
Figure 1.  Impact of interpolation by different methods. The input dot and 

line are one pixel thick. The original image has two shades of gray. 

Interpolation introduces pixels in shades of gray that were not present in 

the original. In C and E, the shades introduced by interpolation are shown 

in different colors for better visibility. 
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pixel can take one of two possible values. Figure 2 shows the 
difference in result when a simple binary image is 
interpolated using bicubic interpolation and when an artist 
enlarges it.   

Figure 2D overlays the results of the interpolation and the 
exact differences are seen. The artist has retained thin 
features as thin. As a result, the dot has remained a single 
pixel in HR and the line has retained single pixel thickness. 
Similarly, slopes are better formed when an artist enlarges an 
image.  

The rules of LNA try to mimic the interpolation process 
of the artist. The rules required to interpolate a typical color 
image with three color planes or a typical grayscale image 
with 256 gray shades are very complex. In this paper, we 
demonstrate the effectiveness of the LNA approach for 
binary images. The rules for binary images cannot be directly 
extended to grayscale or color images. 

The method consists of a set of sixteen rules, grouped 
into five categories. The rules are of widely varying 
complexities. The choice of rule to assign value to a pixel 
depends on its location and the content in the neighborhood. 
The size of the neighborhood is dynamic and depends on the 
content. Some rules can be influenced by distant pixels in the 
input, and some rules can influence distant pixels in the 
output. This can be seen in Rules 14 and 16, described in the 
next section. 

If the neighborhood meets certain conditions, our method 
implicitly tries to detect if an unknown pixel is part of an 
edge, a line or a corner. Based on this, it applies appropriate 
rules. To maintain smoothness of lines and edges, it both 
adds and deletes pixels in the foreground color when 

compared with simple pixel replication. The deletion ensures 
that smoothing does not cause extra thickening.  

The interpolation process and individual rules are 
explained in Section III. The explanation is with reference to 
simple geometric figures. In Section IV we show that by 
applying the same rules to binary versions of standard test 
images like Lena, Baboon, Monarch and Barbara, we get 
good visual results. 

Figure 3A shows the image used to explain our method. 
Figure 3B shows the image, interpolated using bicubic 

 
Figure 2.  A comparison of simple figures interpolated using bicubic 

interpolation and interpolated by an artist. 

 
Figure 3.  Comparison of our method with bicubic interpolation. 
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interpolation. The bicubic interpolation is done using Matlab. 
Figure 3C shows the same image, magnified using our 
method. As can be seen, the bicubic interpolation introduces 
more distortion than our method. The region in Figure 3C, 
shown in the red box, will be used to explain our method. 

III. THE INTERPOLATION PROCESS 

LNA categorizes unknown pixels in the HR canvas based 
on their locations. This is shown in Figure 4. The circles in 
the image represent individual pixels. At the start of the 
interpolation process, all these pixels are unknown. We 
categorize the pixels as O, H, V and D.  Pixels on the even 
rows and even columns are of type O. The O pixels are what 
would be retained if the HR image is decimated by 
subsampling, using a scale factor of 2. Pixels on even rows 
and odd columns are of type H. Pixels on the odd rows and 
even columns are of type V. Pixels on odd rows and odd 
columns are of type D. Every pixel in the image falls into 
one of these categories.  

Our method comprises of a set of rules and a decision 
tree to choose the rule for each pixel. Figure 5 shows a high 
level flowchart of the interpolation process. The first part 
depicts the initial setup. It starts with the LR image being 
read in. After this, a two pixel wide empty margin is added 
on all four sides of the LR image. This makes it possible for 
LNA to process the boundary pixels in the LR image without 
having additional logic to handle boundary conditions. After 
the interpolation process, this empty margin is stripped from 
the interpolated HR image.  

After the margin is added, an empty HR canvas, with 
twice the height and width of the LR image (including the 
empty margin), is created. Then, a four pixel wide margin is 
created in the canvas by setting all the pixels in this margin 
to background color. This ends the setup process. 

After setup, the HR canvas is scanned pixel by pixel. The 
scan starts at the top left corner (0, 0), and ends at the bottom 
right. We refer to the pixel at the current scan location as the 
current pixel. The first two decision boxes in the flowchart 
control the scan. 

The third decision box checks if the current pixel has 
already been assigned a value. This can happen if it is a part 
of the empty margin, or if the current pixel was assigned a 
value when the scan was at an earlier pixel. The latter is 
possible because LNA can assign values to multiple pixels in 
a single iteration. So, if the current pixel has already been 
assigned a value, the scan continues to the next location. 

The next three checks are to see if the current pixel is an 
'O' pixel, 'H' pixel or 'V' pixel. The 'O' pixel is assigned a 
value using the one rule in Category 1. This does not depend 
on the neighborhood.  

Some rules used to define ‘H’, ‘V’ and ‘D’ pixels, use 
multiple pixels in the neighborhood to decide the value of a 
single pixel. The number of pixels a rule considers and the 
locations of the pixels considered, depend on the values of 
the pixels, i.e., the image content.  The logic used to choose 
the relevant neighborhood for a rule is explained along with 
the rules in the subsections III A to III E. 

The 'H' pixel is assigned a value using Category 2 rules. 
An 'H' pixel has two immediate LR neighbors, one on the left 

and other to the right. Category 2 rules use the LR neighbors, 
and, under certain conditions, may use a bigger 
neighborhood. This is discussed in the next section when we 
discuss individual rules. 

 The 'V' pixel is assigned a value using Category 3 rules. 
These are similar to Category 2 rules. The only difference is 
that a 'V' pixel has LR neighbors above and below. 

If the current pixel is not of type 'O', 'H' or 'V', it is a 'D' 
pixel. These are assigned values using Category 4 rules. 
Some of the Category 4 rules assign values to pixels that are 
not in the current scan location. This is shown as the next 
step in the flow chart. If this path is not taken, there is a 
possibility that the neighborhood is such that Category 5 
rules are to be applied. This is the next step shown. 

After the rules pertaining to the current pixel and its 
neighborhood are applied, the scan moves to the next pixel 
and the process gets repeated. Once the scan completes, the 
margin that was added in the beginning is removed and the 
HR image is stored. 

In all the examples, we have used a white foreground and 
black background.  

In the interpolation process, we say that a pixel in the LR 
image is horizontally thin if its immediate horizontal 
neighbors, on the left and right, are of different magnitude 
from it. Similarly, we say that a pixel is vertically thin if the 
pixel’s immediate vertical neighbors, above and below, are 
of different magnitude from it. 

Some rules can assign values to pixels ahead of the 
current scan location. Some rules can override or pre-empt 
other rules, depending on the neighborhood conditions. 

Depending on the neighborhood of the pixel, one of the 
rules in the chosen category is invoked. The rules, in each 
category, have an order of precedence. If one rule is applied, 
the rules with lower precedence are not considered. In the 
following subsections, the rules are described in the order of 
their decreasing precedence. 

Category 5 has one rule and it can change values 
assigned by other rules. 

 
Figure 4.  A representation of the HR image showing the types of pixels 

that need to be generated through interpolation. 

 

529

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

 
 
 

Figure 5.  High level flowchart of the LNA process flow and decision tree. 
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The method is implemented as a single pass. It starts at 
the top left corner and scans through the image, row by row. 
For each pixel, it chooses the appropriate rule and applies it. 

We describe the method as a set of rules. Corresponding 
to each rule or a group of rules, we have a figure showing 
impact of the rule or group of rules. For example, Figure 6A 
represents the output if only Category 1 rules are applied and 
Figure 6B shows the output if both Category 1 and Category 
2 rules are applied. The change from Figure 6A to Figure 6B 
is the impact of the Category 2 rules. 

A. Category 1 rule 

This category has one rule and applies to all pixels of the 
type O. In Figure 4, these pixels are shown as filled, black 
circles. The rule maps all pixels in the LR image to the HR 
image. 

1) Rule 1: Assign the value of the pixel at location (x, y) 

in the original image (LR) to the pixel at location (2x,2y) in 

the interpolated (HR) image. 
For example, pixels at locations (4,4) and (6,4) in the HR 

image are assigned values of pixels at locations (2,2) and 
(3,2) respectively in the LR image. Figure 6A shows the 
enlarged portion of the HR canvas and it depicts how the 
empty canvas gets partially populated.  

B. Category 2 rules 

The three rules in this category apply to unknown pixels 
of the type H. H pixels have a known horizontal neighbor 
each on the left and right. In Figure 4, the neighbors of pixel 
H are shown connected to it by black lines. The values of 
these neighbors are known because they are the values in the 
LR image. 

1) Rule 2: If the neighbors on the left and right are equal, 

assign the value of the neighbors to the unknown pixel. 

2) Rule 3:  If the neighbors on the left and right differ 

and if only one of them is horizontally thin, assign the value 

of the pixel that is not thin to the unknown pixel. 

3) Rule 4: If none of the preceding rules assigned a value 

to the unknown pixel, set it to the background color.  

Figure 6B is generated by applying Rules 1 to 4. The 
changes from Figure 6A are caused by the category 2 rules. 
We see that the horizontal lines, in both colors, have become 
better formed. We also see that unknown pixels on either 
side of known pixels, in a vertical line in the foreground 
color, have been set to the background color. 

C. Category 3 rules 

These rules are similar to the category 2 rules but apply 
to unknown pixels of the type V. Such pixels have vertical 
neighbors with known magnitudes. In Figure 4, the 
neighbors of pixel V are shown connected to it by black 
lines. Here we will use the concept of vertical thinness that 
was defined earlier. 

1) Rule 5: If the neighbors above and below are equal, 

assign their value to the unknown pixel. 

2) Rule 6:  If the neighbors above and below differ and if 

only one of them is vertically thin, assign the value of the 

pixel that is not thin to the unknown pixel. 

3) Rule 7: If none of the preceding rules assigned a value 

to the unknown pixel, set it to the background color. 
Figure 6C shows the impact of these rules. The changes 

from Figure 6B to Figure 6C are caused by the category 3 
rules. We see that the vertical lines have become well-
formed and more unknown pixels near horizontal lines have 
been assigned values. 

D. Category 4 rules 

The eight rules in this category apply to the unknown 
pixels of the type D. Such pixels have four diagonal 
neighbors whose magnitudes are known. In Figure 4, the 
four neighbors of pixel D are shown connected to it by red 
lines. Unlike the rules in the preceding categories, some of 
the rules here impact more than one pixel. However, they do 
not change any pixel that was assigned value by Rule 1. 

1) Rule 8: If all four diagonal neighbors are equal, assign 

the value of the neighbors to the unknown pixel. 
Figure 6D is generated by applying Rules 1 to 8. The 

change from Figure 6C to Figure 6D is caused by Rule 8. We 
see that most of the unknown pixels have been resolved and 
solids are well-formed. Most of the unknown pixels that 
remain are at the edges. 

2) Rule 9: If all four neighbors are not equal and 

diagonally opposite neighbors are equal, then attempt to 

resolve as follows. If one and only one diagonal pair is both 

horizontally and vertically thin, then assign its value to the 

unknown pixel. Else, if all neighbors are horizontally and 

vertically thin, then assign it the foreground color. 
Figure 7A shows the impact of this rule. We see that the 

diagonal lines are better formed. Unknown pixels adjacent to 
the diagonal line and also at its end remain unresolved. 

3) Rule 10: If all four neighbors are not equal but the 

diagonally opposite neighbors are equal and the two 

diagonally opposite pixels in the foreground color are end 

points of two horizontal or two vertical line segments,   

assign the foreground color to the unknown pixel. After 

doing this, apply Rule 16. 

 
Figure 6.  Impact of different rules. The captions show the additional 

category of rules or specific rule applied. 
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Figure 7B shows the impact of this rule. This rule 
connects line segments forming longer lines or curves. 

4) Rule 11: If diagonally opposite neighbors are equal 

and the preceding rules did not resolve the unknown pixel, 

assign it the foreground color. 
Figure 7C shows the impact is similar to that of Rule 10. 

5) Rule 12: If the unknown pixel has three diagonal 

neighbors of the background color, set it to the background 

color. 
This rule makes corners of solids and dots better formed. 

The impact can be seen in Figure 7D. 
The next three rules use the following definitions. These 

are applicable when only three neighbors are equal to the 
foreground color. These pixels form two perpendicular 
segments. Each of these has a length of two pixels or is part 
of a longer segment. The lengths are from the LR image.   

Corner: If both the perpendicular arms have a length of 
two or if both of them are parts of longer segments. 

Slope: If one perpendicular arm is of length two and the 
other is part of a longer segment. 

Well-formed slope: If the longer arm of a slope does not 
have any adjacent pixel, on the same side as the shorter arm, 
having the foreground color. 

6) Rule 13: If the unknown pixel has three neighbors that 

are a part of a corner, set it to the background color. 
Figure 8A shows the impact of this rule. The corners 

formed by intersecting segments become better formed. 

7) Rule 14: If three neighbors are part of a slope, set the 

unknown pixel to the foreground color. If the slope is well-

formed, extend the unknown pixel in the direction of the 

longer arm by the length of the longer arm in the original 

image. Flag the extension to prevent overwriting. 
Figure 8B shows the impact of the rule. Rule 14 differs 

from the preceding rules as it can impact pixels far removed 
from the unknown pixel. It makes inclines smoother, as seen 
on the inclined edge of the solid element in the figure. 

This smoothness in the feature is achieved by converting 
each step like feature into two steps. This makes transitions 
smaller. This rule can impact pixels about half way across in 

the image, in either horizontal or vertical directions. The new 
step drawn is always on an odd numbered row or column. So 
it does not change any pixel that was assigned a value from 
the original image by Rule 1. 

8) Rule 15: If none of the preceding rules assigned a 

value to the unknown pixel, set it to the background color. 
Figure 8C shows the impact of this rule. After Rule 15 is 

applied, no pixel remains unknown. 

E.  Category 5 rule 

Category 5 has one rule. It is categorized separately 
because of its unique behavior. It is invoked whenever Rule 
10 is applied. If Rule 10 assigns a value to the unknown 
pixel, two of the diagonal neighbors of the pixel are end 
points of two horizontal or two vertical segments in the 
foreground color. 

1) Rule 16: Draw two segments from the unknown pixel, 

parallel to the two segments whose endpoints are diagonal 

neighbors. The length of the new segments should be half the 

lengths of the corresponding segments in the original image. 

Set the pixels corresponding to the two original segments 

that are now adjacent to the new segments, to the 

background color. Flag all the impacted pixels so that they 

are not changed later when subsequent pixels are considered.  
Figure 8D shows the impact of Rule 16. It is the only rule 

that changes pixels that were assigned values by Rule 1. Rule 
16 helps better interpolate inclined lines where the 
inclination is not 45 degrees. The impact is seen on curves 
also because curves are formed using segments and points. 

Figure 9 shows another comparison of our method with 
bicubic interpolation. The differences are clearly visible and 
the output of LNA is more pleasing. 

IV. EXPERIMENTAL RESULTS 

In this section we compare LNA with bicubic 
interpolation, with some recently reported work and with the 
ideal reference for simple geometric figures. We compare the 
computation time and interpolation quality. The comparisons 
are for standard test images and also simple geometric 

 
Figure 7.  Impact  of applying Rules 9-12. The captions show the 

additional rule and the red call outs show its impact. 

 

 
Figure 8.  Impact  of Rules 13-16. The captions show the additional rule 

and the red call outs show its impact.  
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shapes. The experiments are on a general purpose computer. 
Since the execution time for the same process and inputs 
vary, the experiment is done ten times and the minimum and 
average time taken is shown. To evaluate the output, we 
examine visual quality as well as three standard metrics 
namely PSNR, MPSNR and SSIM. The experiments are 
performed on 16 different test images from standard sources. 

A. Computation time 

Table I shows the execution time for LNA and bicubic 
interpolation. The time shown is from ten executions. The 
time was measured on a computer with an Intel i5-3210M 
CPU @ 2.50GHz, 4.00 GB RAM and 64 bit Windows 8. The 
bicubic and LNA interpolations were implemented using 
Visual C++ in Visual Studio 2010. While measuring time, no 
other user processes were running. The results show that 
LNA is faster. 

B. Visual comparison between LNA and bicubic 

interpolation 

In Figures 10 and 11, we compare the outputs when 
standard test images are interpolated. The figures shown are 
Lena, Baboon, Barbara and Monarch. Only a portion of the 
original images are shown in the figures. This is to ensure 
that the artifacts are clearly visible. The figures show the 
portion of the original, low-resolution, color image and its 
binary version in the first row. The second row shows the 
output of bicubic interpolation and the third row the output 
of LNA interpolation. 

The original color images were converted to grayscale 
using the formula:   

GRAY = 0.2989 * R + 0.5870 * G + 0.1140 * B 
The R (red), G (green) and B (blue) values were in the 

range 0 to 255 and the resultant GRAY value also is in the 
same range. The binary image was generated by setting all 
pixels with grayscale value greater than 127 to white and the 
rest to black.  

The figures clearly show the sharp edges that LNA is 
able to generate. In these images, the notion of foreground 
color and background color is difficult to define. Because of 
this, in certain situations, some of the rules in LNA do not 

perform the intended function fully. In spite of this, the 
visual quality is better than bicubic interpolation. The 
difference between the outputs generated by bicubic and 
LNA interpolation can be clearly seen at the edges, inclined 
lines and curves. We can also see that fine features are 
retained by LNA. This is particularly noticeable in the 
Monarch and Barbara images in Figure 11. 

C. PSNR and MPSNR 

When a reference image is available, PSNR and 
Modified PSNR (MPSNR) are often used as measures of 
interpolation quality. Table II shows the PSNR and MPSNR 
of sixteen standard test images, after they were interpolated 
using LNA and bicubic interpolation.  

The data in Table II is for the complete test image, and 
not portions of the image, as shown in Figures 10 and 11. 

We see that LNA gives better PSNR, while bicubic 
interpolation gives better MPSNR.  

It should be noted that some of the LNA rules, like rule 
16, reduce PSNR. However, as seen in Figures 10 and 11, 
this results in better visual quality. 

D. SSIM 

Table II also shows the SSIM index of sixteen standard 
test images after they were interpolated. We see that the 
SSIM index, for both LNA and bicubic interpolation, is 
similar. 

TABLE I.  COMPARISON OF EXECUTION TIME 

 Time in milliseconds 

 Bicubic LNA 

 Min Ave Min Ave 

lena 38.0 47.1 28.6 36.8 

baboon 37.3 43.0 29.8 34.9 

peppers 36.2 42.6 27.7 32.4 

airplane 39.4 47.1 27.0 33.9 

house 9.5 15.9 7.8 11.4 

splash 35.6 42.0 30.8 41.3 

jellybeans 8.8 11.7 6.9 9.5 

car 36.2 42.8 29.2 39.4 

sailboat 37.2 45.0 27.2 37.7 

san_diego 38.0 41.3 28.7 33.8 

earth 36.5 39.8 27.7 34.2 

kodim23 53.1 62.7 40.3 49.0 

tree 10.2 16.0 7.2 12.2 

monarch 54.8 62.5 41.0 51.5 

barbara 56.6 70.2 44.3 54.8 

goldhill 56.2 63.9 43.7 51.7 

Average 40.3 43.4 34.0 35.3 

 

 
Figure 9.  Comparison of zooming. The first image is the input; the second 

is generated by our method and the third by bicubic interpolation. 
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Figure 10.  Comparison using Lena and Baboon. Row 1: Original and binary version. Row 2: Output of bicubic. Row 3: Output of LNA. 
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Figure 11.  Comparison using Monarch and Barbara. Row 1: Original and binary version. Row 2: Output of bicubic. Row 3: Output of LNA. 
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E. PSNR comparison using ideal reference 

In this section, we evaluate our method using geometric 
shapes. This allows us to specify the desired result of 
interpolation and generate reference images in HR for 
comparison. 

The reference HR images, for a scale factor of two, are 
defined as follows. For a line thickness of one, a line of 
length l in LR should produce a line length 2l in HR, a circle 
of radius r should produce a circle of radius 2r and a 
rectangle of dimension h x w should produce a rectangle of 
size 2h x 2w. Each of the interpolated images should retain a 
line thickness of one pixel. 

If the source image has thickness, then the thickness is 
also to be doubled. A line of n pixel thickness and length l, 
should produce a line of thickness 2n and length 2l, if n > 1. 

The input images and reference images were drawn using 
Visual C++. Lines, rectangles and circles were drawn using 
the LineTo, Ellipse and Rectangle functions in the CDC 
class. Line thickness was set using the CreatePen function in 
the CPen class. 

Figure 12 shows the comparison of LNA with bicubic 
interpolation. In the figure, the first test case is a filled circle. 
The reference image was drawn as a filled circle of radius 
80. The input to bicubic interpolation and to our method was 
a filled circle of radius 40. The same approach was used to 
generate reference images for other shapes also. The Bicubic 
interpolation was done using Matlab. 

TABLE II.  COMPARISON OF LNA AND BICUBIC INTERPOLATION USING PSNR, MPSNR AND SSIM 

      PSNR in dB MPSNR in dB SSIM Index 

  Height Width Bicubic LNA Bicubic LNA Bicubic LNA 

lena 512 512 14.26 14.63 21.64 21.33 0.84 0.84 

baboon 512 512 8.73 8.75 16.2 15.14 0.55 0.53 

peppers 512 512 15.21 15.59 22.34 22.05 0.85 0.86 

airplane 512 512 15.76 15.53 22.93 21.64 0.89 0.88 

house 256 256 11.22 13.07 17.8 19.62 0.71 0.74 

splash 512 512 20.58 21.73 27.48 28.19 0.95 0.95 

jellybeans 256 256 15.63 15.61 22.55 21.78 0.89 0.88 

car 512 512 13.13 12.76 20.5 18.92 0.81 0.81 

sailboat 512 512 14.79 14.84 22.15 21.24 0.82 0.82 

san_diego 512 512 9.69 9.9 17.3 16.57 0.58 0.56 

earth 512 512 13.67 13.34 21.34 19.73 0.79 0.77 

kodim23 512 768 17.48 17.71 25.13 24.37 0.91 0.92 

tree 256 256 12.84 12.97 19.94 19.2 0.79 0.78 

monarch 512 768 16.28 16.64 23.7 23.34 0.89 0.89 

barbara 576 720 11.61 11.77 19.16 18.64 0.77 0.77 

goldhill 576 720 14.18 15.12 21.06 21.54 0.82 0.83 

Average     14.07 14.37 21.33 20.83 0.80 0.80 

 

 
Figure 12.  Comparison in Decibel (dB) of interpolation with 

ideal.reference.  
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TABLE III.  COMPARISON OF PSNR AND MPSNR 

  Thickness PSNR in dB MPSNR in dB 

  LR
 

HR
 Our 

method 
Bicubic 

Our 

method 
Bicubic 

Rectangle 1 1 match 22.98 match 27.33 

Circle 1 1 21.94 18.93 36 24.33 

Line - 45 degree 1 1 46.02 26.54 56.16 31.92 

Line - 10 degree 1 1 24.35 23.11 35.43 27.98 

Rectangle 3 6 22.37 21.10 27.57 25.13 

Circle 3 6 21.46 19.96 29.19 25.27 

Line - 45 degree 3 6 25.19 27.40 32.14 34.68 

Line - 10 degree 3 6 23.98 23.70 30.09 28.12 

Filled Rectangle  NA NA match 26.49 match 30.85 

Filled Circle  NA NA 25.23 22.03 33 26.76 

TABLE IV.  COMPARISON OF OUR METHOD WITH OTHER METHODS 

 
Percentage of PSNR (dB) improvement over Bicubic 

 
Our Method

 

CIM 

[5] 

Gradient 

Orientation [14] 

NNV 

[15]  PSNR MPSNR 

Lena 2.59 12.90 2.35 0.92  

Peppers 2.50 14.12 1.09 
 

1.71 

 
Table III shows the comparison for more simple images 

using both PSNR and MPSNR. We see good PSNR 
improvement by both measures. Table III also shows a 
PSNR decrease for a three pixel thick line at 45 degrees. In 
Figure 13, this image is analyzed. The figure shows a portion 
of the image, marked in red, magnified 8 times. In the 
magnified region, a set of colored squares with the same size 
as a pixel, have been shown just below the line. Using these 
pixels to help count, we see that the reference line is 8 pixels 
wide along the x axis, while our method has generated a line 
of width 7 pixels. This happens because, in many situations, 
our method assigns the background color when other rules 
don’t resolve an unknown pixel. This biases images towards 
thinness and the bias is of one pixel. This helps the image 
look sharp but the difference in thickness is reflected in the 
lower PSNR. 

F. Comparison with some similar, recent work 

A direct comparison of our method with results available 
in [1]-[15] is difficult because our method is only formulated 
for binary images. To do a comparison, we converted two of 
the commonly used images, Lena and Peppers, to binary and 
used these as the reference images. We decimated these 
images by a factor of 2 and then interpolated them back to 
original size. We compared the interpolated images with the 
reference. The results are shown in Table II. The results have 
to be viewed keeping in mind the fact that the input for our 
experiments is binary while the input to the other methods is 
a grayscale image. 

In [13], a text super-resolution is considered. Here the 
input is binary. It uses text images for training. It achieves an 
improvement between 0% and 19% in Mean Square Error 
(MSE), when compared with pixel replication. The results 
are for different text symbols. Our method improved MSE 
by 5.7% for Lena and 2.1% for Peppers. 

G. Analysis of the results 

The results presented in this section show that LNA is 
computationally more efficient than bicubic interpolation. 
The amount of processing required in LNA depends on the 
image content. 

Visual comparison shows that LNA generates visually 
pleasing output. This is true for the geometric shapes and 
also the standard test images. This is because LNA is 
designed to maintain sharpness and to generate smooth lines 
in the interpolated image. 

Quantitative quality comparison shows that LNA is better 
in terms of PSNR while bicubic is better in terms of 
MPSNR. This is because LNA is designed to keep features 
sharp and so, on an average, the error in pixels is lower. This 
reflects in the higher PSNR. LNA is inferior in terms of 
MPSNR because it is computed after passing the images 
through a low pass filter. This blurs the image edges. LNA is 
designed to keep the edges sharp and so when the PSNR is 
computed after filtering both the reference and target, the 
result is inferior.  

V. CONCLUSIONS 

To generate visually pleasing, magnified images, we 
have proposed a new technique for binary images. It uses 
non-linear zooming rules that are Location and 
Neighborhood Adaptive (LNA). These rules are inspired by 
the way an artist would enlarge an image. The method 
overcomes a number of problems, such as blurring and 
thickening of edges that are associated with known 
interpolation techniques. The results are visually appealing.  
Lines and dots, with single pixel thickness, retain their 
thickness. Inclined lines, curves and solids look much better 
compared to other interpolation methods. 

In LNA, some rules need the foreground color as an 
input. Some other rules assign a default color because the 
method could not determine a pixel’s color based on the 
inputs it considered. Furthermore, a study is required to 
improve these rules. Studies are required to analyze the 

 
Figure 13.  Magnified comparison of the outputs of interpolation.  
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possibility of using larger neighborhoods as input, to further 
improve the quality of interpolation.  

A consequence of LNA is that it may change relative 
sizes of some objects. Objects without thickness remain 
without thickness while those with thickness, increase in 
thickness. So, if an object is formed using both these kinds of 
components, the change in relative thickness becomes 
visible. Also, a study is required to devise mechanisms to 
scale all components of an object consistently. 

In the future, a study is needed to extend this method to 
grayscale and color images. A solution that is usable could 
probably be built by working with ranges of color values, 
and using functions to specify values for unknown pixels. 
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