
Measurement-based Cost Estimation Method for Multi-Table Join Operation
in an In-Memory Database

Tsuyoshi Tanaka∗ and Hiroshi Ishikawa†

Faculty of System Design, Tokyo Metropolitan University, Tokyo, Japan
Email: ∗tanaka-tsuyoshi@ed.tmu.ac.jp and †ishikawa-hiroshi@tmu.ac.jp

Abstract—Non-volatile memory is applied not only to storage
subsystems but also to the main memory to improve performance
and increase capacity. In the near future, some in-memory
database systems will use a non-volatile main memory as a
durable medium instead of the existing storage devices, such
as hard disk drives or solid-state drives. For such in-memory
database systems, the cost of memory access instead of I/O
processing decreases, and the CPU cost increases relative to
the most suitable access path selected for a database query.
Therefore, a high-precision cost calculation method for query
execution is required. In particular, when the database system
cannot select the proper join method, the query execution time
increases. Accordingly, a database join operation cost model
using statistical information measured by a performance monitor
embedded in the CPU is proposed and the accuracy of estimating
the change point of join methods is evaluated. The results show
that the proposed method can improve the accuracy of cost
calculations to more than 90% compared to the conventional
method. In conclusion, the in-memory database system using the
proposed cost calculation method can select the best join method.

Index Terms—Non-volatile memory; In-memory database sys-
tems; Query optimization; Query execution cost.

I. INTRODUCTION

This paper is the extended work of a paper presented at the
MMEDIA 2017 conference [1]. Improving the performance
and expanding the capacity of the non-volatile memory (NVM)
is applicable to both high-speed disk drives and main memory
units. Intel and Micron developed a NVM called 3D Xpoint
memory [2] for such use. An NVM is implemented as a byte-
addressable memory and assigned as part of the main memory
space. An application programming interface (API) [3] [4] for
accessing the NVM was proposed to make the development
of applications easier. Roughly speaking, the API provides
two types of access methods to the NVM from the software.
The first is the “load/store type,” which is the same method
used to access the conventional main memory from user
applications. The other is the “read/write type,” which is the
method used by existing input/output (I/O) devices, such as
hard disk drives (HDDs) or solid-state drives (SSD), through
operating system (OS) calls such as read/write functions. There
are two types of implementations of in-memory databases
through the application of a NVM to the main memory. The
load/store type must be implemented using array structures or
list structures on a main memory address area, such as the
durable media of the database (Figure 1(c)). The read/write
type can be easily applied to the existing database management
system (DBMS) because the database files stored on disk

drives (Figure 1(a)) are moved to files on the NVM defined
by the API for the NVM (Figure 1(b)). When accessing the
database, the performance of the load/store type is better than
the read/write type because the DBMS directly accesses the
database without any I/O device emulation operation. Database
administration operations (e.g., system configuration, backup,
etc.) do not have to be changed, which means that it is easy
for the administrators to introduce the in-memory database
system.

Client

CPU and Volatile Main Memory

DB Engine
Thread Database

Non Volatile
Main Memory

Disk Drive
(HDD/SSD)

Database Server

DB I/O
Thread

SQL
Read/Write

Client DB Engine
Thread

DB Buffer

Database
DB I/O
Thread

SQL

Read/Write

Client DB Engine
Thread Database

SQL
Load/Store

(a) Disk Based DB

(b) In-Memory DB
by Disk Based DB

(c) In-Memory DB

DB Buffer

Fig. 1. Disk-based database and in-memory database

The DBMS encounters a problem when preparing for the
execution of a query. In general, the DBMS performs several
steps prior to query execution. First, it analyzes the query.
Second, it creates multiple execution plans. Third, it estimates
the query processing cost for each execution plan. Finally, it
selects the minimum-cost execution plan from the plurality of
candidates. For example, when the DBMS joins two tables,
such as the R table and S table shown in Figure 2(a), it
generates the execution plan (Figure 2(b)) that minimizes the
number of rows to be referenced. At this time, the execution
time depends on the join method that the DBMS selects. The
DBMS estimates the cost of each join method using statistical
information from the database, and chooses the method with
the lowest cost. In general, the cost of a join operation is a
function of the ratio of the extracted records to all the records.
Hereafter, we refer to this ratio as the selectivity. In Figure 2,
the selectivity is determined by condition x for column R.C
in Figure 2(c). In Figure 2(c), two cost functions intersect at
Xcross. Join method 2 must be chosen from the left side of
Xcross, and join method 1 should be chosen from the right side
of Xcross. If the DBMS cannot estimate the selectivity Xcross

accurately, it will choose the wrong join method.

On the other hand, the query execution cost (cost) is
generally expressed as the sum of the central processing unit

459

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Selectivity

Q
ue

ry
 E

la
ps

ed
 T

im
e

Join Method 2

Join
Method 2

Join
Method 1

Join Method 1

Xcross

�R.C=x

R

Join

S

select count(*)
from R, S
where R.C = x

and R.A = S.B;

(a) SQL (b) Execution Plan (c) Selectivity and Elapsed time

Change Data
Selection Condition

Selection of
Join Method

Fig. 2. Cost estimation problem for the selection of join methods

(CPU) cost (cpu cost) and the I/O cost (io cost) [5] [6]. The
CPU cost is the CPU time, while the I/O cost is the latency
when accessing the disk drive:

cost = cpu cost + io cost (1)

For example, the cost formula for MySQL is given below [7].
The cost of scanning a table R is given by

table scan cost(R) = record(R)×CPR+page(R)×CPIO
(2)

where record(R) is the number of records of table R, CPR is
the CPU cost per record, page(R) is the number of pages of
table R, and CPIO is the I/O cost per page stored record for
DBMS access. When table R (inner table) and table S (outer
table) are joined, the cost of a join operation is given by

table join cost(R,S) = table scan cost(R) + record(R)

× selectivity × records per key(S)× (CPIO + CPR)
(3)

where selectivity is the selectivity ratio given by the dis-
tribution of attributes, and the selection conditions, such as
a where-clause definition in SQL and records per key(S),
are the number of join keys specified by table S’s records.
Here, CPR = 0.2 and CPIO = 1 are the default defined
values. However, this cost model was established under the
condition that I/O performance is the bottleneck of the query
execution time. A further improvement in disk performance
increases the CPU cost relative to the I/O cost. If the I/O cost
itself ultimately disappears with a native in-memory database
(Figure 1(c)), then it becomes necessary to accurately predict
the CPU cost.

To improve the accuracy of CPU processing cost prediction,
the estimation of CPU processing time must become more
accurate than with the conventional method mentioned above.
In general, the CPU processing time can be predicted by the
product of the number of executed instructions and the latency
until an instruction is completed. To estimate the latency
with high accuracy, it is necessary to consider the hardware
structure, such as instruction execution parallelism, cache miss
ratio, and memory hierarchy. These problems cannot be solved
by the software algorithm alone. In order to improve the
accuracy of cost calculation, we focused on constructing a
CPU operation model by considering the CPU architecture [1].

In general, two approaches exist for query cost calculation:
white-box analysis [8] and black-box analysis [9]. In the
white-box analytic approach, the cost calculation model for
a single DBMS system is the sum of CPU cost and I/O cost.
These cost calculation models are functions of the number of
records accessed by DBMS. The black-box analysis approach
does not compute the sum by using each operation cost like
accessing records of tables, accessing I/O, etc., but calculates
the cost using multiple regression, which analyzes the objec-
tive variable with the information that the user of the database
ordinarily obtains (explanatory variable such as the cardinality
of the table). In most of the open source and commercial
DBMSs, the white-box analysis approach is used because of
the ease of understanding the models. This study adopts the
white-box analysis approach for the same reason. The black-
box analysis approach can easily deal with any DBMS because
it does not use DBMS-dependent information. However, its
estimation accuracy worsens in cases where the value of cost
is small [9]. Therefore, this study aims to calculate an accurate
cost when the cost value is small, by modeling the CPU
activities.

In this study, we propose a method based on statistical infor-
mation on CPU operations to improve the accuracy of CPU
cost estimation for in-memory databases applied to existing
DBMSs (Figure 1(b)). Our method can be easily applied to
native in-memory databases (Figure 1(c)). Our contribution
can be summarized as follows:

• First, we propose a method for modeling CPU cycles and
estimating the join operation cost for a database. While
considering the CPU pipeline architecture, we classify the
CPU cycles into three components: a pipeline stall cycle
caused by instruction cache misses, a pipeline stall cycle
caused by branch misprediction, and an access cycle of
data caches or main memory. Using this classification, we
propose a CPU cycle modeling method that can express
the total CPU execution time. In addition, to estimate the
processing time of the join operation of a database, we
decompose the pattern of join processing into four parts
and estimate the join operation cost using a combination
of these parts (Section II).

• Second, we analyze the trends or characteristics of the
measured results for the join operation by using a perfor-
mance monitor embedded in the CPU and determine the
cost estimation formulas (Section III).

• Finally, we verify the accuracy of the proposed CPU
cost estimation formulas by comparing the actual CPU
processing cycle and conventional CPU cost estimation
formula of MySQL (Section IV).

II. PROPOSED CPU COST MODEL

In this section, we first analyze the CPU pipeline architec-
ture and categorize pipeline events. Second, we propose the
CPU operation cycle estimation method, which can express
whole CPU process cycles by considering the categorized
events. Third, we categorize join operations of the DBMS
and divide the join operation into several parts. We propose

460

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

an estimation model based on a combination of these parts.
Finally, we create the CPU cost formulas for estimating each
part of the join operation using statistical information mea-
sured by the performance monitor embedded in the CPU, and
then combine these join part formulas to obtain the complete
CPU cost estimation formula.

A. Model of CPU Operation Time

We chose the Intel Nehalem processor as a typical model of
a CPU for application to the database server because all of the
processors developed after Nehalem, namely Sandy Bridge,
Haswell, and Skylake, are based on the pipeline architecture
of Nehalem. Partial enhancements, such as additional cache
for micro-operations (µOPs), increased reorder buffer entries,
and increased instruction execution units, were added to the
successor CPUs of Nehalem.

L1
Instruction

Cache

Instruction
Fetch,
Branch

Prediction

Decoder
Resource
Allocation

Reorder
Buffer

Reservation
Station

Execution
Units

Register File

L1 Data
Cache

L2 Cache

Last Level
Cache

Main
Memory

Global
Queue

Front End Back End

Memory

Quick Path Interconnect

Active

Stall

Starvation

In-order Execution Out-of-order Execution

(1)

(2)

(3)

Resource Full, etc.

Fig. 3. Focus point of the CPU pipeline

The pipeline is composed of a front-end and back-end, as
shown in Figure 3 [10]. The front-end fetches instructions
from the L1 instruction cache (L1I) and decodes them into
µOPs in-order. The term “in-order” means that a subsequent
instruction cannot override the preceding instructions in the
pipeline. After decoding the instructions, the front-end issues
the µOPs to the back-end. Conversely, the back-end executes
the µOPs in execution units that are out-of-order. The back-end
can execute the µOPs in a different order than that issued by
the front-end to improve the throughput of operating µOPs.
An L1I miss causes the pipeline of the front-end to stall
until the missing instruction is fetched from the lower level
cache or main memory. A branch prediction miss causes a
dozen cycles of the instructions executed speculatively to be
flashed, and the front-end cannot issue µOPs. Such a condition
is referred to as an instruction-starvation state (Figure 3(3)).
There are cases in which the µOP issued in the front-end is
not executed because of the saturation of the reorder buffer
or reservation station in the back-end, or the data dependency
of the preceding instructions. We refer to this state as a stall
state (Figure 3(2)). In addition, we refer to the state in which
the µOPs are issued without an instruction-starvation state or
a stall state as an active state.

A summary of the notations related to CPU cost calculation
to be used later in the study is presented in Table I before
creating the CPU cost calculation model.

In this study, we focus on the boundary between the front-
end and back-end in the CPU pipeline (Figure 3) to model
the overall operation of the CPU. The µOPs are issued from
front-end to back-end, and are stored in buffers, i.e., the
reorder buffer and reservation station. The buffers allow us to
change the processing order of µOPs from in-order to out-of-
order across the boundary. The CPU-embedded performance
monitor can measure events such as the saturation of buffers,
de-queues from buffers by the completion of µOPs, and the
existence of µOPs to issue to the back-end [10]. Any CPU
cycle situation can be modeled by the performance monitor to
analyze these events. Therefore, we propose a measurement-
based estimation of the query execution cost. The active state
is estimated from the number of events in which the µOP
is issued without delay in the back-end buffer. The back-
end buffer holds the µOPs until the execution of the µOPs
is completed, and the µOPs are deleted from the buffer. The
stall state is estimated from the number of events for which
the buffer cannot receive µOPs. The starvation state is inferred
from the event count where there are no µOPs to be issued to
the back-end buffer. The total CPU cycle is composed of the
active state, stall state, and starvation state cycles. Therefore,
the following equation can be obtained:

CTotal =CActive+CStall+CStarvation (4)

The cycles per instruction (CPI) metric, which refers to
the number of CPU clock cycles per instruction, is widely
used for evaluating the CPU processing efficiency [11]. CPI
is calculated as the product of the number of references to the
memory and the latency of the memory access. Latency is the
delay time when fetching an instruction or data from memory.
CPI is given by

CPI =CPI0+{
LLC∑
i=2

(HLi × LLi×BFLi)

+(HMM × LMM×BFMM)} (5)

where LLC denotes last level cache and means the lowest
cache in the cache memory hierarchy; the blocking factor [11]
is a correction coefficient for concealing the latency by execut-
ing instructions in parallel. The second term on the right-hand
side of (5) is the product of the number of memory references,
latency, and blocking factor, i.e., the stall state. The product of
the second term on the right-hand side of (5) and the number
of instructions I is the pipeline stall cycle (CStall):

CStall =

LLC∑
Li=L2

(MLi×LLi×BFLi)

+(MMM×LMM×BFMM) (6)

CTotal =CPI×I=CPI0×I+CStall (7)

From (5)–(7), we can show that CPI0 includes the active
state and starvation state.

461

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. NOTATIONS FOR THE CPU COST CALCULATION MODEL

Symbol Description

I Number of instructions to complete a query
ILoad Number of load instructions
CPI Cycle per instruction (CPI)
CPI0 Cycle per instruction (CPI) on the condition that all of instructions and

data are stored in L1 cache
Mevents Number of events

events Description

MM References of instructions and data to main memory
MMI References of instructions to main memory
MMD References of data to main memory
Li References of instructions and data to Li cache
LiI References of instructions to Li cache
MP Branch mispredictions
LMMI References of instructions to local main memory
LMMD References of data to local main memory
LLLCI References of instructions to local LLC
LLLCD References of data to local LLC
RLLCI References of instructions to remote LLC
RLLCD References of data to remote LLC

Lmemory Latency of cache memory or main memory
memory Description

MM Main memory
Li Li Cache
MP Recovering latency from a branch misprediction
LMM Local main memory
LLLC Local LLC
RLLC Remote LLC

BFevents Blocking factor of events
events Description

MM References of instructions and data to main memory
MMI References of instructions to main memory
MMD References of data to main memory
Li References of instructions and data to Li cache
LiI References of instructions to Li cache
LiD References of data to Li cache
MP Branch misprediction and instruction cache miss

occur simultaneously
Hmemory Ratio of memory references to instructions

(Hmemory =Mmememory/I)
memory Description

MM References to main memory
Li References to Li cache memory
LiI References of instructions to Li cache
LiD References of data to Li cache

Cstate CPU cycles in state during executing a query
state Description

Total Total of all states
Active Not occurring stall
Stall Stall of CPU pipeline
Starvation Starvation of instructions to issue
ICacheMiss CPU cycles from occurrence of L1I miss until

the acquisition of an instruction from other
cache or the main memory

DCacheAcc CPU cycles in active state
MP Total CPU cycles when recovering from

branch mispredictions
Cjoin state CPU cycles of join in state

join Description

NLJ Nested Loop Join
Build Build phase of Hash Join
Probe Probe phase of Hash Join
CmdBld Combination build phase
CmdPrb Combination probe phase

state Description

ICacheMiss CPU cycles from occurrence of L1I miss until
the acquisition of an instruction from other
cache or the main memory

DCacheAcc CPU cycles in active state
MP Total CPU cycles when recovering from

branch mispredictions
RCI total(n)Total number of accessed records in n inner tables and entries of

indexes
P Selectivity of the tables for join
PO Selectivity of the outer table
PIk Selectivity of the inner tablek
RO Number of records in outer table
RIk Number of records in inner table k (k = 1, 2, · · ·)
RI total(n) Total number of accessed records in n inner tables
RCI total(n)Total number of accessed records in n inner tables and entries of

indexes

CPI0×I=CActive+CStarvation (8)

The starvation state is mainly caused by instruction cache
misses or branch mispredictions, and can be classified as
the number of CPU cycles from the occurrence of one of
these events until the acquisition of the next instruction to be
executed.

CStarvation =CICacheMiss+MMP×LMP×BFMP (9)

CICacheMiss =

LLC∑
Li=L2

(MLiI ×LLi×BFLiI)

+(MMMI ×LMM×BFMMI) (10)

Here, BF is a correction coefficient for considering that
both branch misprediction and instruction cache miss occur
simultaneously. ICacheMiss is expressed as 10 by modifying
6 because the operations after instruction cache misses and
data cache misses are the same. Only the terms relating to
branch misprediction are defined.

CMP =MMP×LMP×BFMP (11)

According to previous research [12], the CPI of the decision
support system benchmark is 1.5–2.5. In general, when the
CPI is 1, this means that one instruction is completed in one
cycle; thus the instructions are executed sequentially in query
execution. In addition, because the indices and tables of the
database are usually implemented with list or tree structures,
the next reference address becomes clear only after the stored
data that the pointer refers to is read out. In particular, the
characteristics of such a memory reference in the list structure
are applied to a benchmark program for measuring memory
latency [13]. Therefore, the stall state occurs because the
operation of the stalled instruction waits for the preceding data
reference processing to be completed. From the viewpoint of
memory reference, the active state can be considered as an
L1 data cache (L1D) reference, and the stall state can be
considered as a reference to a cache level lower than L1 or
a main memory reference. Therefore, the CPU cycles in the
active state and stall state can be integrated as CDCacheAcc

CDCacheAcc=CActive+CStall (12)

CDCacheAcc=

LLC∑
Li=L1

(MLiD×LLi×BFLiD)

+(MMMD×LMM×BFMMD) (13)

where (6) and (13) use the same symbols for both the latency
and blocking factor for convenience, but the contents are
different.

From the above discussion, the total number of CPU cycles
is calculated using

CTotal =CDCacheAcc+CICacheMiss+CMP (14)

In this study, each term on the right-hand side of (14) uses
statistical information obtained from actual measurements.

462

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

B. DBMS Operation Model

DBMS queries perform operations including selection, pro-
jection, and join. Queries performing the join operation depend
on the join method chosen by the DBMS’s optimizer. The
optimizer selects the join method to minimize the operating
cost of the join operation. The cost depends on the selectivity
of records defined by the clause of the SQL and the statistics
of the attribute value of the database. Most DBMSs calculate
the statistics during data loading to the database. This study
focuses on cost estimation for the optimization of join opera-
tions. There are three basic joins: nested loop join (NLJ), hash
join (HJ), and sort-merge join (SMJ).

NLJ searches records from the inner table every time it reads
one record from the outer table. The generalized operation
model of NLJ is shown in Figure 4. The process involves
tracing multiple tables and indices from the point of view
of memory access, which means repeatedly traversing linked
lists. Therefore, NLJ can be regarded as searching between
the outer table and the huge internal table created by tracing
multiple tables in the same way as loop expansion by a
compiler. Moreover, it is possible to calculate the cost of NLJ
for multiple tables using the cost estimation function with two
typical NLJs (Figure 4(a)), which is a function of the number
of total records to be referenced in the multitable join. NLJ
and HJ are regarded as part of our proposed cost estimation
method. In this work, we do not examine SMJ because it is
possible to apply the proposed method using the steps from
the other join methods, specifically dividing parts into sorting
and merging operations and then calculating the measured
statistical values for each model. Figure 4 also shows that
HJ is decomposed into a build phase (Figure 4(b-1)) and a
probe phase (Figure 4(b-2)) because each operation of HJ is
executed sequentially and can be modeled separately in the
cost calculation formula based on measurement results.

When more than three tables are joined, the DBMS op-
timizer chooses a combination of different join methods for
executing a query. Figure 5 shows a combination of HJ and
NLJ. The first table to operate a join is called the “outer table,”
while the other tables are called “inner table.” In addition,
the inner tables are called “inner table1” and “inner table2”
according to the joining order. A combination of different join
methods is divided into an HJ build phase (Figure 5 (c-1)).
The cost model of (c-1) is the same as (b-1). However, the cost
model of (c-2) is different from the one mentioned above. It is
presumed that the HJ probe phase and NLJ cannot be divided
because the DBMS repeatedly searches one record in table Y
using the hash table X, and searches table Z by NLJ. The (c-
1) phase is called the “combination build phase” and the (c-2)
phase is called the “combination probe phase.”

C. Cost Calculation Formula

Before considering the cost calculation formulas, we define
the inputs and outputs as listed in Table II. The information
input into the cost calculation formulas is recorded in the
database for management as statistical information, and is
collected generally by the DBMS when storing or updating

R S

T

U

R S

T

U

X Y X Y

Y

Nested Loop Join Case Hash Join Case

Divide into
parts

Degenerate
to two-table
join (b-1) Only build phase

(b-2) Only probe phase

(a) Two-table
join

Order of
reading tables X

Fig. 4. Degradation and split cost calculation method

Hash Join (HJ)

Combination Case

R S

T

U

Nested Loop
join (NLJ)

Y

Z

X

Divide and
degenerate

(c-1) Combination build phase

X Y
HJ probe

NLJ

(c-2) Combination probe phase

Only HJ build

Fig. 5. NLJ after HJ Case

the record. Information regarding memory latency and I/O re-
sponse time is also required. This information can be measured
with a simple benchmark program [13].

TABLE II. PARAMETER LIST FOR COST CALCULATION

Input Selectivity of outer table to join and number
of records of tables

Output Calculated cost expressed by number of CPU
cycles

Parameters of
cost calculation
formulas

Static information: Memory latency and I/O re-
sponse time
Information obtained from measurement: Rela-
tional formula between the input information and
number of CPU cycles of the events on the right-
hand side of (14) (e.g., slope and intercept if the
input information and the number of cycles of the
event of interest can be linearly approximated.)

In this section, we derive the cost calculation formulas (14)
for NLJ, HJ, and a combination of NLJ and HJ, where each
element of (14) is obtained as a function of the selectivity and
number of records in the joining tables. The cost formula of
NLJ

CNLJ Total(P,PIk,RO,RIk)

=CNLJ ICacheMiss(PO,PIk,RO,RIk)

+CNLJ MP (PO,PIk,RO,RIk)

+CNLJ DCacheAcc(PO,PIk,RO,RIk) (15)

is obtained by combining (10), (11), (13), and (14). The cost
related to each element of the instruction cache miss, branch
misprediction, and data reference are expressed as

CNLJ ICacheMiss(PO,PIk,RO,RIk)

=ML2I (PO,PIk,RO,RIk)×LL2×BFL2I

+MLLCI (PO,PIk,RO,RIk)×LLLC×BFLLCI

+MMMI (PO,PIk,RO,RIk)×LMM×BFMMI (16)

463

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CNLJ MP (PO,PIk,RO,RIk)

=MMP (PO,PIk,RO,RIk)×LMP ×BFMP (PO,RO,RIk) (17)

CNLJ DCacheAcc(PO,PIk,RO,RIk)

=ML1D(PO,PIk,RO,RIk)×LL1×BFL2D(PO,PIk,RO,RIk)

+ML2D(P,RO,RIk)×LL2×BFL2D(PO,PIk,RO,RIk)

+MLLCD(P,RO,RIk)×LLLC×BFLLCD(PO,PIk,RO,RIk)

+MMMD(P,RO,RIk)×LMM×BFMM (PO,PIk,RO,RIk) (18)

The structure of the cost calculation formulas is basically a
product-sum formula of the number of occurrences of the
event, its latency, and the correction coefficient. The number
of data references from the L1D cache, L2 cache, LLC cache,
main memory (ML1D, ML2, MLLC , and MMM), number
of branch mispredictions (MMP), and blocking factor BF
are expressed as a function of the selectivity PO, PIk , and
the number of rows of the table RO, RIk . The cost of the
instruction reference CNLJ ICacheMiss does not include L1I
hits because it means the L1I cache miss penalty. However,
the cost of the data reference CNLJ DCacheAcc includes L1D
hits because the data reference includes all of the data access.

The cost calculation formula of HJ is obtained in the same
way as that of NLJ with selectivity P

CPhase Total(P,R)=CPhase ICacheMiss(P,R)

+CPhase MP (P,R)+CPhase DCacheAcc(P,R) (19)

CPhase ICacheMiss(P,R)

=ML2I (P,R)×LL2×BFL2I (P,R)

+MLLCI (P,R)×LLLC×BFLLCI (P,R)

+MMMI (P,R)×LMM×BFMMI (P,R) (20)

CPhase MP (P,R)

=MMP (P,R)×LMP ×BFMP (P,R) (21)

CPhase DCacheAcc(P,R)

=ML1D(P,R)×LL1×BFL2D(P,R)

+ML2D(P,R)×LL2×BFL2D(P,R)

+MLLCD(P,R)×LLLC×BFLLCD(P,R)

+MMMD(P,R)×LMM×BFMMD(P,R) (22)

where

{Phase, P,R}=

{
{Build, PO, RO} build phase
{Probe, PIk , RI} probe phase

In the build phase, the cache and main memory references,
branch misprediction, and blocking factor are expressed as
functions of selectivity P and the number of records of the
outer table (RO). In the probe phase, these are expressed as
functions of selectivity P and the number of records of the
inner table (RIk). For a combination case like Figure 5(c-1),
the cost formula of the combination build phase can be created
with reference to the cost formula of the HJ build phase.

CCmbBld Total(PO,RO)

=CCmbBld ICacheMiss(PO,RO)

+CCmbBld MP (PO,RO)

+CCmbBld DCacheAcc(PO,RO) (23)

CCmbBld ICacheMiss(PO,RO)

=ML2I (PO,RO)×LL2×BFL2I (PO,RO)

+MLLCI (PO,RO)×LLLC×BFLLCI (PO,RO)

+MMMI (PO,RO)×LMM×BFMMI (PO,RO) (24)

CCmbBld MP (PO,RO)

=MMP (PO,RO)×LMP ×BFMP (PO,RO) (25)

CCmbBld DCacheAcc(PO,RO)

=ML1D(PO,RO)×LL1×BFL2D(PO,RO)

+ML2D(PO,RO)×LL2×BFL2D(PO,RO)

+MLLCD(PO,RO)×LLLC×BFLLCD(PO,RO)

+MMMD(PO,RO)×LMM×BFMMD(PO,RO) (26)

CCmbPrb Total(PO,PIk,RO,RIk)

=CCmbPrb ICacheMiss(PO,PIk,RO,RIk)

+CCmbPrb MP (PO,PIk,RO,RIk)

+CCmbPrb DCacheAcc(PO,PIk,RO,RIk) (27)

For a combination case like Figure 5(c-2), the cost formula
of the combination build phase can be created with reference
to the cost formula of NLJ.

CCmbPrb ICacheMiss(PO,PIk,RO,RIk)

=ML2I (PO,PIk,RO,RIk)×LL2×BFL2I

+MLLCI (PO,PIk,RO,RIk)×LLLC×BFLLCI

+MMMI (PO,PIk,RO,RIk)×LMM×BFMMI (28)

CCmbPrb MP (PO,PIk,RO,RIk)

=MMP (PO,PIk,RO,RIk)×LMP ×BFMP (PO,RO,RIk) (29)

CCmbPrb DCacheAcc(PO,PIk,RO,RIk)

=ML1D(PO,PIk,RO,RIk)×LL1×BFL2D(PO,PIk,RO,RIk)

+ML2D(P,RO,RIk)×LL2×BFL2D(PO,PIk,RO,RIk)

+MLLCD(P,RO,RIk)×LLLC×BFLLCD(PO,PIk,RO,RIk)

+MMMD(P,RO,RIk)×LMM×BFMM (PO,PIk,RO,RIk) (30)

The aim of this study is to improve the accuracy of
the CPU cost calculation. Therefore, we use a method to
statistically obtain the parameters of the calculation formula
from measured values using the performance monitor. One
of the parameters, memory latency, depends on the hardware
configuration, which includes the number of CPUs, the slot
position in which the main memory modules are installed,
and other factors. According to J. L. Lo et al. [14], the

464

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

memory access concentration is low when executing analytic
queries, such as the TPC-H benchmark, and does not increase
the memory latency.

III. EVALUATION OF PARAMETERS OBTAINED FOR THE
COST FORMULA

To obtain the parameters in Table II, actual measurements
were made. The measurement environment is listed in Ta-
ble III. We used Westmere CPUs as they have the same
architecture as Nehalem. The servers are equipped with two
CPUs. The main memory is connected to each CPU. The
memory connected to one CPU is called the local memory,
while the other is called the remote memory. In general, such a
memory architecture is known as non-uniform memory access
(NUMA). The latencies of the local and remote memory are
different. In this study, main memory modules are installed
in only one CPU to simplify the examination of measurement
results. An NVM Flash SSD was used as a disk device to store
the database to improve the experimental efficiency. We used
the open-source MariaDB [15] as the DBMS as it supports
multithreading and asynchronous I/O, can utilize the latest
hardware characteristics, and supports multiple join methods.
Specifically, the NLJ supported by MariaDB is a block NLJ,
which is an improvement of the NLJ. However, under the
conditions of the query and index used in this study, it behaves
like the general NLJ. The version of MariaDB used in this
study does not select the effective join method automatically;
it is specified based on the configuration parameters.

TABLE III. EVALUATION ENVIRONMENT

CPU Xeon L5630 2.13 GHz 4-core, LLC 12 MB [Westmere-
EP]) ×2

Memory DDR3 12 GB (4 GB ×3) physically attached to only one
CPU

Disk (DB) PCIe NVMe Flash SSD 800 GB ×1 (Note: maximum
throughput suppressed by server’s PCIe I/F(ver.1.0a),
about 1/4 of max throughput)

Disk (OS) SAS 10,000 rpm 600 GB, RAID5 (4 Data + 1 Parity)
OS CentOS 6.6 (x64)
DBMS MariaDB 10.1.8 with InnoDB storage engine (Note: stor-

age engine’s buffer cache size is scaled to be 1 TB if
database size is SF 100 TB.)

The query to be evaluated and its measurement conditions
are shown in Figure 6. In the SQL statement, we modified
Query 3 of TPC-H for an evaluation of two-table join and
extracted only join processing (Figure 6(a)). The order of
joining tables is shown in Figure 6(b). This query execution
plan is generated by Mariadb. The database size is scale factor
(SF) 5 defined in the TPC-H specification. SF5 means that
the total size of the database is 5 GB. In order to apply the
proposed technology to the actual system, we used small-scale
data to minimize the measurement time. The indices of the
database are created on the primary keys and the foreign keys
are defined in the specification of TPC-H [16].

We changed the search conditions of the query against
the c acctbal column of the outer table in order to change
the selectivity of the data to be referenced (Figure 6(c)). As

for NLJ, the selectivity and number of records of the inner
table were changed (Figure 6(c) and (d)). The purpose of
changing the selectivity is to change the total number of
records accessed by the DBMS. The purpose of changing the
number of records of the inner table is to change the number
of records that have the same key as the record selected from
the outer table. This means changing the length of the linked
lists that have the key to join with the inner table. As for
HJ, only the outer table was accessed in the build phase,
and the number of records of the outer table was changed
(Figure 6(e)). In the probe phase, only the inner table was
accessed, and the number of records of the inner table was
changed (Figure 6(d)). In order to accurately measure the CPU
events of the build phase, the empty inner table (Figure 6(f))
was used for joining with the outer table. In order to measure
CPU events without affecting DBMS behavior, the CPU events
that occurred during the probe phase are measured as follows:

(Number of CPU events during probe phase)

=(Number of CPU events during total query execution)

− (Number of CPU events during build phase) (31)

For the combination case, the query and its measurement
conditions are shown in Figure 7. This query is based on
Query 3 of TPC-H. The order of joining tables is shown
in Figure 7(b). This query execution plan is generated by
Mariadb. The search condition and selectivity of the outer
table are shown in Figure 7(c). This condition is used for
modeling Figure 5(c-1). In addition, the search condition and
those of the inner tables are shown in Figure 7(d). This
condition for the inner table1 and the inner table2 was used for
modeling Figure 5(c-2). The search condition (e) in Figure 7
was introduced to accurately measure instructions, LOAD
instructions, and branch mispredictions because we found that
these events were more highly affected than other events
through our preliminary experiment.

The CPU performance counter data was collected us-
ing Intel R⃝ Vtune

TM
Amplifier XE. We refer to Levinthal

(2009) [10] for a description of the content of those counters.
The measured data is mainly related to the number of accesses
to the cache and main memory, the state of the pipeline such
as the number of stall cycles, and the number of cache hits or
misses. All of the counters and the methods of preprocessing
them are presented in Table B.I and B.II in Appendix B.

It is necessary to analyze not only CPU time but also I/O
operation time to estimate the whole execution time of a query
(1). We measured the I/O count and response time using
systemtap and constructed the I/O cost calculation formulas
by analyzing the relation between I/O and the selectivity or
number of records.

IV. MEASUREMENT RESULTS AND COST CALCULATION
FORMULAS

In this study, we investigate the relationships between
selectivity, number of instructions, number of events related
to memory reference, and number of branch mispredictions.
For NLJ, the number of instructions and number of memory

465

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

select count(*)
from customer, orders
where
c_mktsegment = 'MACHINERY'
and c_acctbal > N
and c_custkey = o_custkey
and o_orderdate < date '1995-03-06‘;

�

�

customer

orders

N 9998 9978 9798 9200 9000
Selectivity PO (Condition 1) 3.62�10-05 4.00�10-04 3.67�10-03 1.45�10-02 1.82�10-02

(b) Query Plan
�

c_custkey=o_custkey

count(*)
Join method is
manually set.

(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity

Condition 1

Condition 2

(d) Condition of Inner Table

(Inner Table 1)

(Outer Table)

Number of Records in Inner Table 7,500,000 5,625,000 3,750,000 1,875,000

(e) Condition of Outer Table

Number of Records in Outer Table 750,000 562,500 375,000 187,500

(f) Condition of Inner Table for Measuring Build Phase
Number of Records in Inner Table 7,500,000 5,625,000 3,750,000 1,875,000
Number of Records in Outer Table 0

Fig. 6. Target query of measurement and cost estimation for two-table join

select count(*)
from customer, orders, lineitem
Where

c_mktsegment = 'MACHINERY'
and c_acctbal > N
and c_custkey = o_custkey
and l_orderkey = o_orderkey
and o_orderdate < date '1995-03-06'
and l_shipdate > date '1995-03-06';

N 9998 9978 9798 9200 9000
Selectivity PO (Condition 1) 3.62�10-5 4.00�10-4 3.67�10-3 1.45�10-2 1.82�10-2

Selectivity PI1 (Condition 2) 0.482 0.482 0.482 0.482 0.482

(b) Query Plan

Join method is
manually set.

(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity

(d) Condition of Combination Probe phase
Number of Records in Inner Table1 7,500,000 5,625,000 3,750,000 1,875,000
Number of Records in Inner Table2 37,500,000

Condition 3

�

customer

orders

�

c_custkey=o_custkey

count(*)

Condition 1

Condition 2

(Inner Table 1)

(Outer Table)

o_orderkey=l_orderkey

lineitem
(Inner Table 2)

�

�

Condition 3

(e) Condition of Combination Probe phase for Instruction,
LOAD Instruction and Branch Misprediction Events

Number of Records in Inner Table1 7,500,000 5,625,000 3,750,000 1,875,000

Number of Records in Inner Table2
52,500,000
37,500,000
22,500,000

Fig. 7. Target query of measurement and cost estimation
for three-table join

references are expected to increase because the number of
records accessed by the DBMS increases in proportion to the
increase in selectivity. Based on the assumptions, we now
analyze the measurement results and create formulas using
linear regression. For HJ, all of the records of the outer table
and inner table were accessed in both the build phase and
probe phase. The cost formulas were assumed to not have
selectivity as a variable; we analyzed the measurement results
based on this assumption. For the combination of HJ and NLJ,
the combination build phase was considered to be the same
as the build phase of HJ. We investigated the relationships
between the number of selected records from the outer table,
number of records in the inner tables, and number of CPU
events.

The CPU cost calculation formulas were obtained through
the following steps. First, the number of instructions, refer-
ences of each cache memory, and main memory and branch
mispredictions were analyzed using regression analysis, and

the regression models were created. In addition, the rela-
tionship between the sum of the product of the references
to each memory and its latency, and CICacheMiss (10) and
CDCacheAcc (13) were modeled. Here, CMP (11) was obtained
from the product of the number of pipeline stages of the front-
end, which is 12 in Nehalem, and the number of mispredictions
from the measurement results. Each value of memory latency
is referred from [10] [17]. The number of disk I/O was
modeled using the measured I/O access count and I/O response
time. Finally, the cost calculation formulas were evaluated
from the viewpoint of the accuracy of intersection of the two
join methods (Xcross in Figure 2) with the conventional method.

Figure 8(1) shows the relationship between the number of
records the DBMS accessed and load instructions. Figure 8(7)
shows the relationship between the total number of accessed
records and number of instructions. The number of records
is the product of the number of outer table records, number
of inner table records, and selectivity. The dotted line is
the linear regression line, and its slope and intercept are
listed in Table IV. The coefficient of determination (R2) is
near 1 and the P value on the F test is less than 0.05.
Therefore, the linear regression model is highly accurate. The
slope and intercept were used to create the cost calculation
model. Figures 8(2) and (8) show the relationship between the
number of instructions executed by the DBMS and the number
of L1 cache hits. Figures 8(3)–(6) and (9)–(12) show the
relationships between the number of accesses to L2, LLC, and
main memory, and the number of cache misses of the upper-
level cache. These relationships can be linearly approximated
because each R2 is near 1 and each P value is less than 0.05
in Table IV. In this work, a two-CPU server was used and
the LLC and main memory were connected to each CPU.
The LLC and main memory of the CPU on which DBMS
threads are running are called the local LLC and local main
memory. The others are called remote LLC and remote main
memory. The upper-level cache is the local LLC. There are
no references to the remote main memory because the main
memory is connected to only one CPU in our experimental
environment. Figure 8(13) shows the relationship between the
number of records accessed for the join operation and the
branch misprediction cycles CMP . Figure 8(14) shows the
relationship between the product of the number of instruction
accesses and latency, and the L1I miss cycles (miss penalty),
CICacheMiss . Figure 8(15) shows the relationship between the
products of the number of data accesses and latency, and the
data cache and main memory access, CDCacheAcc . Each graph
can also be approximated by a regression line because each
R2 is near 1 and each P value is less than 0.05 in Table IV.

Figures 9(a1)–(a15), (b1)–(b15) and Figures 10(1)–(15)
show the tendency of instructions, cache or main memory
accesses, branch misprediction cycles, instruction cache miss
cycles, and data cache access cycles. These events tend to
be similar to those of the NLJ. The dotted line is the linear
regression line, and its slope and intercept are shown in
Table IV and Table V. The coefficient of determination (R2)
is near 1 and the P value on the F test is less than 0.05.

466

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0E+00

1E+09

2E+09

3E+09

0E+00 5E+04 1E+05

Lo
ad

 In
st

ru
ct

io
ns

Accessed Records
in Inner Tables (RI_total(1))

0E+00

1E+09

2E+09

3E+09

0E+00 1E+09 2E+09 3E+09

L1
D

 H
it

Instructions

0E+00

1E+07

2E+07

3E+07

0E+00 4E+07 8E+07

L2
I H

it
(D

at
a)

L1D Miss

0E+00

1E+07

2E+07

3E+07

4E+07

0E+00 2E+07 4E+07

Lo
ca

l L
LC

 H
it

(D
at

a)

L2 Miss (Data)

0E+00

5E+05

1E+06

2E+06

0E+00 1E+06 2E+06

R
em

ot
e

LL
C

 H
it

(D
at

a)

Local LLC Miss (Data)

0E+00

2E+05

4E+05

6E+05

0E+00 1E+06 2E+06

Lo
ca

l M
ai

n
M

em
or

y
A

cc
es

s
(D

at
a)

Local LLC Miss (Data)

0E+00

5E+09

1E+10

2E+10

2E+10

0E+00 5E+04 1E+05

In
st

ru
ct

io
ns

Accessed Records
in Inner Tables (RI_total(1))

0E+00

5E+09

1E+10

2E+10

2E+10

0E+00 1E+10 2E+10

L1
I H

it

Instructions

0E+00

1E+08

2E+08

3E+08

0E+00 2E+08 4E+08

L2
 H

it
(I

ns
tr

uc
tio

n)

L1I Miss

0E+00

1E+07

2E+07

3E+07

4E+07

5E+07

0E+00 2E+07 4E+07 6E+07

Lo
ca

l L
LC

 H
it

(I
ns

tr
uc

tio
n)

L2 Miss (Instruction)

0E+00

2E+06

4E+06

6E+06

8E+06

0E+00 5E+06 1E+07

R
em

ot
e

LL
C

 H
it

(I
ns

tr
uc

tio
n)

Local LLC Miss (Instruction)

0E+00

1E+06

2E+06

3E+06

0E+00 5E+06 1E+07Lo
ca

l M
ai

n
M

em
or

y
A

cc
es

s
(I

ns
tr

uc
tio

n)

Local LLC Miss (Instruction)

0E+00

1E+08

2E+08

3E+08

0E+00 5E+04 1E+05

B
ra

nc
h

M
is

pr
ed

ic
tio

n
[c

yc
le

]

Total Access Records

0E+00

1E+09

2E+09

3E+09

4E+09

0E+00 3E+09 6E+09 9E+09In
st

ru
ct

io
n

A
cc

es
s

M
is

s
[c

yc
le

]

Total Instruction Access Latency

0E+00

2E+09

4E+09

6E+09

8E+09

1E+10

0E+00 5E+09 1E+10 2E+10

D
at

a
A

cc
es

s
[c

yc
le

]

Total Data Access Latency

7,500,000 5,625,000 3,750,000 1,875,000 Regression Line
Number of Inner Table Records

(1) Load Instructions
(2) L1D Hit (3) L2 Data HIt (4) Local LLC Data Hit (5) Remote LLC Data Hit

(6) Local Main Memory
Data Access (7) Instructions (8) L1I Hit (9) L2 Instruction HIt (10) Local LLC Instruction Hit

(11) Remote LLC Instruction Hit (12) Local Main Memory
Instruction Access

(13) Branch Misprediction (14) Instruction Cache Miss (15) Data Access

Fig. 8. CPU event count on executing NLJ

Therefore, the linear regression model is highly accurate. The
slope and intercept are used for creating the cost calculation
model.

In particular, the slope of the regression line in Figures 8(2)–
(5) and (9)–(11); Figures 9(a2)–(a5), (a9)–(a11), (b2)–(b5),
and (b9)–(b11); and Figures 10(2)–(5) and (9)–(11) represents
the cache hit rate because the definition of cache hit rate is
the quotient of the number of cache hits and number of cache
references, and the upper-level cache miss becomes the lower-
level cache reference.

In this study, the number of cache hits is chosen as an
explanatory variable, as shown in Figure 11(a), which is the
same graph as that in Figure 8(8). In general, the cache hit
ratio is more often used for modeling CPU memory access
than the number of cache hits. However, the cache hit ratio
graph (Figure 11(b)) has a hyperbolic shape. The CPU cost
calculation function should be simple in order to apply a
simple formula to the actual DBMS. In addition, the reason
why the cache hit ratio graph has a hyperbolic shape is
explained by the following expressions (32) and (33).

The regression line of Figure 11(a) is

ML1I =A×I +B, (32)

where A and B are the slope and intercept of a linear
regression on the two table join in Figure 6, respectively. The
cache hit ratio is obtained by dividing the number of cache
hits by that of instructions. Therefore, the cache hit ratio (33)

is obtained by dividing both sides of (32) by I .

(L1I Hit Ratio)=A+
B

I
, (33)

In order to apply the two-table join calculation model to
three or more tables, it is necessary to estimate the total
number of accessed records in the inner tables (Figure 4(a),
Figure 5 (c-1)). As shown in Figure 12, the number of accessed
records in inner table1 is RI0×PI0×rsk0 where rsk0 is ratio
of RI1 to RI0 (34). If RI1 < RI0 , then rsk0 = 1 because
the number of accessed records in inner table1 is as large as
the references from the outer table. The number of references
from inner table1 to inner table2 is RI0×PI0×rsk0×PI1×rsk1.
Therefore, the total number of accessed records in the inner
tables is (RI0×PI0×rsk0)+(RI0×PI0×rsk0×PI1×rsk1).
Based on the above, we introduce rsk and RI total(n), which
are written as (34) and (35).

rski=


RIi

RI (i−1)
RIi ≥ RI (i−1) where RI0 =RO

1 RIi < RI (i−1)

(34)

RI total(n)=RO×
n∑

j=1

j−1∏
i=0

(rski×PIi) (35)

where n of RI total(n) means the number of inner tables to
join.

In the combination probe phase, multiple inner tables are
traversed with the key of the records in the hash table.

467

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a12) Local Main Memory
Instruction Access

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

0.0E+00 4.0E+05 8.0E+05

Lo
ad

 In
st

ru
ct

io
ns

Outer Table Records

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

0.E+00 2.E+08 4.E+08 6.E+08

L1
D

 H
it

Load Instructions

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

5.E+06

0.E+00 2.E+06 4.E+06 6.E+06

L2
 H

it
(D

at
a)

L1D Miss

0.E+00

2.E+05

4.E+05

6.E+05

8.E+05

1.E+06

0.E+00 5.E+05 1.E+06

Lo
ca

l L
LC

 H
it

(D
at

a)

L2 Miss (Data)

0.E+00

5.E+03

1.E+04

2.E+04

2.E+04

0.E+00 5.E+04 1.E+05

R
em

ot
e

LL
C

 H
it

(D
at

a)

Local LLC Miss (Data)

0.E+00

2.E+04

4.E+04

6.E+04

8.E+04

0.E+00 5.E+04 1.E+05

Lo
ca

l M
ai

n
M

m
oe

ry
 A

cc
es

s
(D

at
a)

Local LLC Miss (Data)

0.E+00

5.E+08

1.E+09

2.E+09

2.E+09

0.E+00 5.E+05 1.E+06

In
st

ru
ct

io
ns

Outer Table Records

0.E+00

5.E+08

1.E+09

2.E+09

2.E+09

0.E+00 2.E+09
L1

I H
it

Instructions

0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

0.E+00 1.E+07 2.E+07

L2
 H

it
(I

ns
tr

uc
tio

n)

L1I Miss

0.E+00

2.E+05

4.E+05

6.E+05

0.E+00 5.E+05 1.E+06

Lo
ca

l L
LC

 H
it

(I
ns

st
ru

ct
io

n)

L2 Miss (Instruction)

0.E+00

1.E+04

2.E+04

3.E+04

7.0E+04 1.0E+05 1.3E+05

R
em

ot
e

LL
C

 H
it

(I
ns

st
ru

ct
io

n)

Local LLC Miss (Instruction)

6.E+04

8.E+04

1.E+05

7.0E+04 1.0E+05 1.3E+05

Lo
ca

l M
ai

n
M

m
eo

ry
 A

cc
es

s
(I

ns
tr

uc
tio

n)

Local LLC Miss (Instruction)

0.E+00

5.E+06

1.E+07

2.E+07

2.E+07

3.E+07

0.E+00 5.E+05 1.E+06

B
ra

nc
h

M
is

pr
ed

ic
tio

n
[c

yc
le

]

Outer Table Records

0.E+00

1.E+08

2.E+08

3.E+08

0.E+00 1.E+08 2.E+08 3.E+08
In

st
ru

ct
io

n
C

ac
he

 M
is

s
[c

yc
le

]

Total Instruction Access Latency

0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

0.E+00 1.E+09 2.E+09

D
at

a
A

cc
es

s
[c

yc
le

]

Total Data Access Latency

(a1) Load Instructions (a2) L1D Hit (a3) L2 Data HIt (a4) Local LLC Data Hit (a5) Remote LLC Data Hit

(a6) Local Main Memory Data Access (a7) Instructions (a8) L1I Hit (a9) L2 Instruction HIt (a10) Local LLC Instruction Hit

(a11) Remote LLC Instruction Hit (a13) Branch Misprediction (a14) Instruction Cache Miss (a15) Data Access

750,000 562,500 375,000 187,500 Regression Line
Number of Outer Table Records(a):HJ Build Phase

(b):HJ Probe Phase

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

0.E+00 5.E+06 1.E+07

Lo
ad

 In
st

ru
ct

io
ns

Outer Table Records

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

5.E+09

0.E+00 2.E+09 4.E+09 6.E+09

L1
D

 H
it

Load Instructions

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

0.E+00 4.E+07 8.E+07

L2
 H

it
(D

at
a)

L1D Miss

0.E+00

5.E+06

1.E+07

2.E+07

0.E+00 1.E+07 2.E+07

Lo
ca

l L
LC

 H
it

(D
at

a)

L2 Miss (Data)

0.E+00

1.E+06

2.E+06

3.E+06

0.E+00 2.E+06 4.E+06

R
em

ot
e

LL
C

 H
it

(D
at

a)

Local LLC Miss (Data)

0.E+00

1.E+05

2.E+05

3.E+05

0.E+00 2.E+06 4.E+06

Lo
ca

l M
ai

n
M

m
oe

ry
 A

cc
es

s
(D

at
a)

Local LLC Miss (Data)

0.E+00

5.E+09

1.E+10

2.E+10

2.E+10

0.E+00 5.E+06 1.E+07

In
st

ru
ct

io
ns

Outer Table Records

0.E+00

5.E+09

1.E+10

2.E+10

0.E+00 1.E+10 2.E+10

L1
I H

it

Instructions

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

0.E+00 1.E+08 2.E+08

L2
 H

it
(I

ns
tr

uc
tio

n)

L1I Miss

0.E+00

1.E+06

2.E+06

3.E+06

4.E+06

0.E+00 5.E+06

Lo
ca

l L
LC

 H
it

(I
ns

st
ru

ct
io

n)

L2 Miss (Instruction)

0.E+00

5.E+05

1.E+06

7.E+04 6.E+05 1.E+06

R
em

ot
e

LL
C

 H
it

(I
ns

st
ru

ct
io

n)

Local LLC Miss (Instruction)

0.E+00

2.E+04

4.E+04

6.E+04

8.E+04

7.E+04 6.E+05 1.E+06

Lo
ca

l M
ai

n
M

m
eo

ry
 A

cc
es

s
(I

ns
tr

uc
tio

n)

Local LLC Miss (Instruction)

0.E+00

5.E+07

1.E+08

2.E+08

2.E+08

3.E+08

3.E+08

0.E+00 5.E+06 1.E+07

B
ra

nc
h

M
is

pr
ed

ic
tio

n
[c

yc
le

]

Outer Table Records

0.E+00

1.E+09

2.E+09

3.E+09

4.E+09

0.E+00 1.E+09 2.E+09 3.E+09

In
st

ru
ct

io
n

P
en

al
ty

 [c
yc

le
]

Total Instruction Access Latency

0.E+00

2.E+09

4.E+09

6.E+09

8.E+09

0.E+00 1.E+10 2.E+10

D
at

a
A

cc
es

s
[c

yc
le

]

Total Data Access Latency

750,000 562,500 375,000 187,500 Regression Line
Number of Inner Table Records

(b1) Load Instructions (b2) L1D Hit (b3) L2 Data HIt (b4) Local LLC Data Hit (b5) Remote LLC Data Hit

(b6) Local Main Memory Data Access (b7) Instructions (b8) L1I Hit (b9) L2 Instruction HIt (b10) Local LLC Instruction Hit

(b11) Remote LLC Instruction Hit (b12) Local Main Memory
Instruction Access

(b13) Branch Misprediction (b14) Instruction Cache Penalty (b15) Data Access

Fig. 9. CPU event count on executing HJ: (a) build phase, (b) probe phase)

468

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0E+0

1E+9

2E+9

3E+9

4E+9

5E+9

6E+9

0E+0 2E+9 4E+9 6E+9

L1
D

 H
it

Load Instructions

0E+0

1E+7

2E+7

3E+7

4E+7

5E+7

0E+0 4E+7 8E+7 1E+8

L2
 H

it
(D

at
a)

L1D Miss

0E+0

1E+7

2E+7

3E+7

4E+7

5E+7

0E+0 2E+7 4E+7 6E+7

Lo
ca

l L
LC

 H
it

(D
at

a)

L2 Miss (Data)

0.E+0

5.E+5

1.E+6

2.E+6

2.E+6

0E+0 2E+6 4E+6 6E+6

R
em

ot
e

LL
C

 H
it

(D
at

a)

Local LLC Miss (Data)

1E+6

2E+6

3E+6

1E+6 2E+6 3E+6 4E+6 5E+6

Lo
ca

l M
ai

n
M

m
oe

ry
A

cc
es

s
(D

at
a)

Local LLC Miss (Data)

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

2.5E+10

0E+00 1E+10 2E+10 3E+10

L1
I H

it
Instructions

0E+0

1E+8

2E+8

3E+8

0E+0 1E+8 2E+8 3E+8 4E+8

L2
 H

it
(I

ns
tr

uc
tio

n)

L1I Miss

0E+0

1E+7

2E+7

3E+7

4E+7

0E+0 2E+7 4E+7 6E+7

Lo
ca

l L
LC

 H
it

(I
ns

st
ru

ct
io

n)

L2 Miss (Instruction)

0E+0

2E+6

4E+6

6E+6

0.0E+0 5.0E+6 1.0E+7 1.5E+7

R
em

ot
e

LL
C

 H
it

(I
ns

st
ru

ct
io

n)

Local LLC Miss (Instruction)

0E+0

2E+6

4E+6

6E+6

8E+6

1E+7

0.0E+0 5.0E+6 1.0E+7 1.5E+7

Lo
ca

l M
ai

n
M

m
eo

ry
 A

cc
es

s
(I

ns
tr

uc
tio

n)

Local LLC Miss (Instruction)

0E+0

1E+9

2E+9

3E+9

4E+9

5E+9

0E+0 2E+9 4E+9 6E+9 8E+9

In
st

ru
ct

io
n

P
en

al
ty

 [c
yc

le
]

Total Instruction Access Latency

0E+0

2E+9

4E+9

6E+9

8E+9

1E+10

1E+10

0E+00 1E+10 2E+10 3E+10

D
at

a
A

cc
es

s
[c

yc
le

]

Total Data Access Latency

7,500,000 5,625,000 3,750,000 1,875,000 Regression Line
Number of Inner Table 1 (Orders) Records

(2) L1D Hit (3) L2 Data HIt (4) Local LLC Data Hit (5) Remote LLC Data Hit

(6) Local Main Memory Data Access (8) L1I Hit (9) L2 Instruction HIt (10) Local LLC Instruction Hit

(11) Remote LLC Instruction Hit (12) Local Main Memory
Instruction Access (13) Branch Misprediction

(14) Instruction Cache Penalty (15) Data Access

0E+00

1E+08

2E+08

3E+08

4E+08

5E+08

6E+08

0.0E+0 5.0E+6 1.0E+7 1.5E+7

B
ra

nc
h

M
is

pr
ed

ic
tio

n
[c

yc
le

]

Accessed Records
in Inner Tables (RCI_total(1))

0.0E+00

2.0E+09

4.0E+09

6.0E+09

0.0E+0 5.0E+6 1.0E+7 1.5E+7

Lo
ad

 In
st

ru
ct

io
ns

Accessed Records
in Inner Tables (RCI_total(1))

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

2.5E+10

0.0E+0 5.0E+6 1.0E+7 1.5E+7

In
st

ru
ct

io
ns

Accessed Records
in Inner Tables (RCI_total(1))

(1) Load Instruction

(7) Instruction

Fig. 10. CPU event count on combination probe phase

7,500,000 5,625,000 3,750,000 1,875,000
Number of Inner Table 1 (Orders) Records

9.80E-01

9.82E-01

9.84E-01

9.86E-01

9.88E-01

9.90E-01

0.0E+00 1.0E+10 2.0E+10

L1
I H

it
R

at
io

Instructions

0.0E+00

5.0E+09

1.0E+10

1.5E+10

2.0E+10

0.0E+00 1.0E+10 2.0E+10

L1
I H

it

Instructions
(b) L1I Hit Ratio(a) Number of L1I Hits

Fig. 11. Problem of modeling cache hit ratio

���0=3 ���1=1

IndexIndex

: records with same key

Accessed Record

Record

00 II PR ×

000 rskPR II ×× 11000)(rskPrskPR III ××××

Outer table
Inner table1
records with
same key

Se
le

ct
 w

it
h

P
I0

Se
le

ct
 w

it
h

P
I1

Inner table2
records with
same key

key0
key1

Note: rsk is the number of records having
the same key value.

Fig. 12. Simple example of number of records
having the same key value (rsk)

The number of instructions, LOAD instructions, and branch
mispredictions are proportional to the number of inner table
records accessed by the DBMS. However, the number of these
events also depends on the number of entries in the hash table.
It is necessary to obtain the sum of these two kinds of records
with different properties. In general, the height of the index is
approximately 3 to 4 as more than 100 records are registered in
each node of the B+ tree. When the cost calculation equations
are a function of only the accessed records in the inner tables,
the traversing records among nodes and inside nodes can be
considered as constant and omitted from the cost calculation
model. However, in order to consider the scan of the hash
table at the same time, it is necessary to consider both index
height and records having the same key. Therefore, in the
combination probe phase, RCI total(n) was introduced to
construct a cost calculation formula. RCI total(n) is given
by (36) as follows:

RCI total(n)=RO×


n∑

j=1

j−1∏
i=0

(rski×PIi)

×
(
logt(RIi)+

rski+1

2

)
+1

}
(36)

where t is the number of entries stored in an index page. t is
100 because the B+ tree index stores more than 100 records
in an index page.

469

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The number of instructions, LOAD instructions, and branch
mispredictions in the NLJ and combination probe phase are
proportional to the number of referenced records in the inner
tables (Figure 8(1)(7)(13) and Figure 10(1)(7)(13)).

Based on the above considerations, the formula for calcu-
lating the cost of the join methods is

I=A1×R+B1 (37)
ML1I =A2×I+B2 (38)
ML2I =A3×(I−ML1I)+B3 (39)
MLLLCI =A4×(I−ML1I −ML2I)+B4 (40)
MRLLCI =A5×(I−ML1I −ML2I −MLLLCI)+B5 (41)
MLMMI =A6×(I−ML1I −ML2I −MLLLCI)+B6 (42)
ILoad =A7×R+B7 (43)
ML1D =A8×ILoad+B8 (44)
ML2D =A9×(I−ML1D)+B9 (45)
MLLLCD =A10×(I−ML1D−ML2D)+B10 (46)
MRLLCD =A11×(I−ML1D−ML2D−MLLLCD)+B11

(47)
MLMMD =A12×(I−ML1D−ML2D−MLLLCD)+B12

(48)
CICacheMiss =A13×(ML2I ×LL2+MLLLCI ×LLLLC

+MRLLCI ×LRLLC+MLMMI ×LLMM)+B13
(49)

CDCacheAcc=A14×(ML1D×LL1+ML2D×LL2

+MLLLCD×LLLLC+MRLLCD×LRLLC

+MLMMD×LLMM)+B14 (50)
CMP =A15×R+B15 (51)
where

R=



RI total(n) NLJ

RO
HJ build phase and combination
build phase

RI HJ probe phase
RCI total(n) Combination probe phase

The cost calculation formulas ((14), (37)–(51)) can become
the following single formula by focusing on R ((52), (53),
(54)). This formula suggests that our approach means estimat-
ing an accurate unit CPU cost per accessed record.

CTotal =α×R+β (52)

where

α=A1×A13×(LL2×A3×(1−A2)

+LLLLC×A4×(1−A3−A2+A2×A3)

+LRLLC×A5×(1−A2−A3+A2×A3−A4+A3×A4

+A2×A4−A2×A3×A4)

+LLMM×A6×(1−A2−A3+A2×A3−A4+A3×A4

+A2×A4−A2×A3×A4))

+A7×A14×(LL1×A8+A14×LL2×(A9−A8×A9)

+LLLLC×A10×(1−A9−A8+A8×A9)

+LRLLC×A11×(1−A8−A9+A8×A9−A10+A9×A10

+A8×A10−A8×A9×A10)

+LLMM×A12×(1−A8−A9+A8×A9−A10+A9×A10

+A8×A10−A8×A9×A10))+A15 (53)

β=A13×(LL2×(−A3×B2+B3)

+LLLLC×(−A4×B2+A3×A4×B2−A4×B3+B4)

+LRLLC×(−A5×B2+A3×A5×B2−A5×B3

+A4×A5×B2−A3×A4×A5×B2+A4×A5×B3

−A5×B4+B5)

+LLMM×(−A6×B2+A3×A6×B2−A6×B3+A4

×A6×B2−A3×A4×A6×B2+A4×A6×B3−A6×B4

+B5))+A14×(LL1×B8+LL2×(−A9×B8+B9)

+LLLLC×(−A10×B8+A9×A10×B8−A10×B9+B10)

+LRLLC×(−A11×B8+A9×A11×B8−A11×B9

+A10×A11×B8−A9×A10×A11×B8+A10×A11×B9

−A11×B10+B11)

+LLMM×(−A12×B8+A9×A12×B8−A12×B9

+A10×A12×B8−A9×A10×A12×B8+A10×A12×B9

−A12×B10+B11))+B13+B14+B15 (54)

Table IV lists the definitions of the parameters given in (37)–
(51) for NLJ and HJ. In the case of NLJ, the calculation
formula of the number of disk I/Os was created using the
regression line shown in Figure 13(a). The measured I/O
response time (io responcetime) was 154 µs. The I/O cost
of NLJ is as follows:

io cost=(A16×RO×RI1×PO+B16)×io responce time
(55)

0%

20%

40%

60%

80%

0.E+00

1.E+05

2.E+05

3.E+05

4.E+05

5.E+05

0.0E+00 2.0E+05 4.0E+05 6.0E+05

D
is

k
I/O

 R
at

io

D
is

k
I/O

 C
ou

nt

Total Access Records (Selectivity � Total Records)

Disk I/O Count
Disk I/O Ratio
Regression Line

0.0%

0.2%

0.4%

0.6%

0.8%

1.0%

0.0E+00

5.0E+01

1.0E+02

1.5E+02

2.0E+02

2.5E+02

0.0E+00 2.0E-02 4.0E-02 6.0E-02

D
is

k
I/O

 R
at

io

D
is

k
I/O

 C
ou

nt

Total Access Records (Selectivity �Total Records)

Disk I/O Count

Disk I/O Ratio

(a) Disk I/O of NLJ (b) Disk I/O of HJ

Fig. 13. Number of disk I/O and disk I/O processing time
during NLJ and HJ

However, in the case of HJ, the ratio of the processing time
of disk I/O and the query execution time of HJ was less than
1% in Figure 13(b). The cost calculation formula is composed
of only the CPU cost and disk I/O cost. In order to apply in-
memory databases (Figure 1(b)), it is sufficient to change the
disk I/O latency to the latency of the memory based disk.

In the combination probe phase, the calculation formula for
the number of disk I/Os was created using the multiple re-
gression line shown in Figure 14. The I/O cost of combination
probe phase is as follows:

470

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

io cost=(A17×RI1×PI1

+A18×RI1×
n∑

i=1

rski+B17)×io responce time

(56)

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

0.0E+00 5.0E+04 1.0E+05 1.5E+05 2.0E+05 2.5E+05

N
um

be
r

of

S
yn

ch
ro

no
us

 I/
O

s

Number of Selected Records in Inner Table 2 ()RI2�PI1

RI2 22,500,000
37,500,000
52,500,000

Fig. 14. Number of synchronous disk I/O count
during combination probe phase

The regression models for the combination join are also
expressed by the same equations, (37)–(51), as the two-table
NLJ and HJ. Table V lists the definitions of the parameters.

TABLE IV. SLOPE AND INTERCEPT OF THE REGRESSION MODELS

Type
Slope

(Regression Coefficient)

Intercept
(Regression Constant) R2

P value
on F test Reference

NLJ A1 1.745×105 B1 1.64×109 9.99×10−1 1.30×10−29 Figure 8(1)
A2 9.80×10−1 B2 1.26×107 1.00 2.18×10−58 Figure 8(2)
A3 8.08×10−1 B3 2.68×106 1.00 2.91×10−40 Figure 8(3)
A4 8.32×10−1 B4 5.23×104 1.00 3.93×10−39 Figure 8(4)
A5 7.43×10−1 B5 −1.18×105 1.00 3.77×10−34 Figure 8(5)
A6 2.58×10−1 B6 1.18×105 9.98×10−1 7.05×10−26 Figure 8(6)
A7 2.46×104 B7 4.63×108 9.99×10−1 5.97×10−31 Figure 8(7)
A8 9.72×10−1 B8 7.05×106 1.00 3.85×10−53 Figure 8(8)
A9 4.34×10−1 B9 1.95×106 9.99×10−1 5.17×10−28 Figure 8(9)
A10 9.44×10−1 B10 −2.87×104 1.00 2.06×10−44 Figure 810)
A11 7.61×10−1 B11 −4.84×104 1.00 2.80×10−35 Figure 8(11)
A12 2.39×10−1 B12 4.84×104 9.98×10−1 3.10×10−26 Figure 8(12)
A13 5.45×10−1 B13 1.41×108 9.98×10−1 1.21×10−25 Figure 8(13)
A14 8.59×10−1 B14 −1.25×109 9.67×10−1 9.00×10−15 Figure 8(14)
A15 2.90×103 B15 2.40×107 9.90×10−1 1.35×10−19 Figure 8(15)

HJ A1 2.05×103 B1 1.58×107 1.00 4.21×10−40 Figure 9(a1)
Build A2 9.88×10−1 B2 2.53×105 1.00 2.19×10−61 Figure 9(a2)

A3 9.71×10−1 B3 −7.48×104 1.00 1.79×10−49 Figure 9(a3)
A4 9.19×10−1 B4 −6.57×104 9.99×10−1 7.76×10−31 Figure 9(a4)
A5 3.32×10−1 B5 −1.64×104 9.29×10−1 8.38×10−12 Figure 9(a5)
A6 6.68×10−1 B6 1.64×104 9.82×10−1 4.49×10−17 Figure 9(a6)
A7 6.10×102 B7 2.85×105 9.99×10−1 4.46×10−30 Figure 9(a7)
A8 9.90×10−1 B8 −1.89×103 1.00 1.05×10−57 Figure 9(a8)
A9 8.03×10−1 B9 −2.39×104 1.00 6.00×10−33 Figure 9(a9)
A10 9.04×10−1 B10 1.58×102 1.00 8.94×10−46 Figure 9(a10)
A11 2.13×10−1 B11 −2.74×103 9.80×10−1 1.13×10−16 Figure 9(a11)
A12 7.87×10−1 B12 2.74×103 9.98×10−1 8.16×10−27 Figure 9(a12)
A13 1.20 B13 −8.24×106 9.98×10−1 2.14×10−25 Figure 9(a13)
A14 3.69×10−1 B14 2.02×107 1.00 6.83×10−32 Figure 9(a14)
A15 2.94×101 B15 6.41×105 9.97×10−1 2.86×10−24 Figure 9(a15)

HJ A1 1.90×103 B1 2.33×107 1.00 3.46×10−46 Figure 9(b1)
Probe A2 9.88×10−1 B2 3.88×105 1.00 3.69×10−62 Figure 9(b2)

A3 9.75×10−1 B3 −1.76×104 1.00 6.81×10−52 Figure 9(b3)
A4 8.13×10−1 B4 −2.44×104 1.00 1.12×10−41 Figure 9(b4)
A5 9.46×10−1 B5 −2.44×104 1.00 8.30×10−36 Figure 9(b5)
A6 5.45×10−2 B6 2.44×104 9.56×10−1 1.15×10−13 Figure 9(b6)
A7 5.76×102 B7 −3.57×107 9.99×10−1 6.14×10−27 Figure 9(b7)
A8 9.89×10−1 B8 −3.89×105 1.00 6.68×10−54 Figure 9 (b8)
A9 7.29×10−1 B9 1.58×105 9.88×10−1 7.30×10−19 Figure 9(b9)
A10 7.95×10−1 B10 2.81×104 1.00 5.98×10−33 Figure 9 (b10)
A11 9.34×10−1 B11 −6.04×104 1.00 7.79×10−34 Figure 9 (b11)
A12 6.60×10−2 B12 6.04×104 9.52×10−1 2.69×10−13 Figure 9(b12)
A13 1.48 B13 2.87×1007 9.87×10−1 1.40×10−18 Figure 9(b13)
A14 3.58×10−1 B14 6.61×107 9.98×10−1 1.75×10−25 Figure 9(b14)
A15 3.45×101 B15 −1.39×107 9.35×10−1 3.77×10−12 Figure 9(b15)

NLJ A16 1.02 B16 2.52×103 1.00 1.85×10−15 Figure 13(a)
(I/O)
HJ A16 0.000 B16 0.000 N/A N/A N/A
(I/O)

To evaluate the cost calculation formulas, we used a larger
TPC-H database than the database used for measurement
(SF100), and chose a combination of the following two tables,
customer and orders, supplier and lineitem, and part and
lineitem. In addition, in order to evaluate the join of more

TABLE V. SLOPE AND INTERCEPT OF THE REGRESSION MODELS
IN COMBINATION PROBE PHASE

Type
Slope

(Regression Coefficient)

Intercept
(Regression Constant) R2

P value
on F test Reference

Probe A1 2.01×103 B1 9.80×108 9.42×10−1 1.63×10−37 Figure 10(1)
A2 9.86×10−1 B16 1.79×107 1.00 1.11×10−44 Figure 10(2)
A3 8.53×10−1 B3 6.58×106 9.94×10−1 2.79×10−21 Figure 10(3)
A4 7.06×10−1 B4 −6.80×105 9.99×10−1 3.12×10−29 Figure 10(4)
A5 3.74×10−1 B5 −1.58×105 9.99×10−1 3.51×10−28 Figure 10(5)
A6 6.26×10−1 B6 1.58×105 1.00 3.21×10−32 Figure 10(6)
A7 5.76×102 B7 2.31×108 9.75×10−1 2.78×10−48 Figure 10(7)
A8 9.86×10−1 B8 1.83×106 1.00 1.75×10−41 Figure 10(8)
A9 4.79×10−1 B9 3.97×106 9.00×10−1 2.03×10−10 Figure 10(9)
A10 9.36×10−1 B10 −9.55×105 9.97×10−1 7.85×10−25 Figure 1010)
A11 3.70×10−1 B11 −9.15×104 9.75×10−1 6.97×10−16 Figure 10(11)
A12 6.30×10−1 B12 9.15×104 9.91×10−1 5.74×10−12 Figure 10(12)
A13 6.25×10−1 B13 6.85×108 8.75×10−1 1.51×10−9 Figure 10(13)
A14 4.49×10−1 B14 −2.66×108 9.72×10−1 2.16×10−15 Figure 10(14)
A15 4.93×101 B15 2.62×107 9.70×10−1 1.03×10−45 Figure 10(15)

Probe A17 7.84×10−1 B17 −3.24×10−4 9.77×10−1 7.43×10−21 N/A
(I/O) A18 2.43×103 N/A

than two tables, the following combinations were chosen:
(customer, orders, lineitem), (supplier, lineitem, part, orders,
customer), and (part, lineitem, supplier, orders, customer). In
the five-table join case, the STRAIGHT JOIN query hint was
used to keep the join order of tables. Detailed measurement
conditions are shown in Appendix A. The parameter setting
of the cost calculation formulas was generated from the
measurement values when joining customer and orders, whose
size is SF5. For the join cases of three or more tables,
the measurement values under joining customer, orders, and
lineitem were used. The I/O processing time was added to
allow comparison with the query execution time. The proposed
cost calculation method was compared with the measured
query execution time and conventional method (2)(3). The
conventional method is expressed as the sum of the CPU
cost and the I/O cost as mentioned in Section I. Each cost
is calculated as the product of the number of records and
the manually defined processing unit cost of CPU or I/O.
The conventional method and proposed method followed the
execution plan generated by MariaDB. In our measurement
environment, the HJ execution plan for joining more than
two tables is the combination case (Figure 5). We evaluated
whether the selectivity where the join method is switched can
be estimated accurately. However, because the conventional
method does not support HJ, single-table scans of the outer
and inner tables were used. Moreover, MariaDB, as used
in this experiment, cannot use the function to automatically
select the join method, and only the join method set by the
user was selected. The goal of this study is to accurately
find the intersection point of the NLJ and HJ graphs. As
a result, in all of the cases evaluated, the proposed method
was able to find the intersection point with an accuracy of
one significant figure or better compared to the conventional
method (Figure 15 and Figure 16). The improvement ratios of
the proposed method and conventional method are shown in
Table VI. The second and third rows indicate the difference
between the intersection point (selectivity) of the measured
result and that of the conventional method or proposed method.
The improvement ratio was obtained by dividing the difference
between the intersection selectivity of the conventional method

471

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VI. IMPROVEMENT RATIO FOR ESTIMATING INTERSECTION OF NLJ AND HJ

Join tables C-O P-L S-L C-O-L S-L-P-O-C P-L-S-O-C
Conventional method 1.5×10−2 3.5×10−3 2.2×10−3 7.5×10−3 8.9×10−2 2.2×10−5

Proposed method 1.3×10−4 3.2×10−4 1.9×10−4 8.8×10−5 3.0×10−4 2.2×10−7

Improvement ratio 99% 91% 91% 99% 97% 99%
Note: C: Customer, O: Orders, L: Lineitem, P: Part, S: Supplier

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

0

200

400

600

800

1,000

0.0E+00 1.0E-02 2.0E-02 3.0E-02

C
os

t b
y

C
on

ve
nt

io
na

l M
et

ho
d

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[s

ec
]

(M
ea

su
rm

en
t a

nd
 P

ro
po

se
d

M
et

ho
d)

Selectivity

1.5E-02

(a) Join of Customer Table and Orders Table (SF100)

Enlarged in figure (b)

90

95

100

105

110

115

2.7E-03 2.8E-03 2.9E-03 3.0E-03

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[s

ec
])

Selectivity

1.3E-04

(b) Enlarged Intercection Points of Figure (a)

0.0E+00

5.0E+07

1.0E+08

1.5E+08

2.0E+08

2.5E+08

3.0E+08

0

500

1,000

1,500

1.0E-03 3.0E-03 5.0E-03 7.0E-03 9.0E-03

C
os

t b
y

C
on

ve
nt

io
na

l M
et

ho
d

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[s

ec
]

(M
ea

su
rm

en
t a

nd
 P

ro
po

se
d

M
et

ho
d)

Selectivity

3.5E-03

(c) Join of Supplier Table and Lineitem Table (SF100)

Enlarged in
figure (d)

300

350

400

450

500

2.0E-03 2.5E-03 3.0E-03

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[s

ec
]

Selectivity

3.2E-04

(d) Enlarged Interception Point of Figure (c)

0.0E+00

2.0E+08

4.0E+08

6.0E+08

8.0E+08

1.0E+09

0

500

1,000

1,500

0.0E+00 1.0E-03 2.0E-03 3.0E-03

C
os

t b
y

C
on

ve
nt

io
na

l
M

et
ho

d

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[s

ec
]

(M
ea

su
rm

en
t a

nd
 P

ro
po

se
d

M
et

ho
d)

Selectivity

(e) Join of Part Table and Lineitem Table (SF100)

2.2E-03

Enlarged
the figure (f)

300

350

400

450

500

2.4E-03 2.6E-03 2.8E-03 3.0E-03

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[s

ec
]

Selectivity

1.9E-04

(f) Enlarged Interception Point of Figure (e)

NLJ (Proposed) HJ (Proposed) NLJ (Measured) HJ (Measured) NLJ (Conventional) HJ (Conventional)

Fig. 15. Cost Comparison of measured, proposed cost model, and conventional cost model results for joining two tables

and that of the proposed method by that of the conventional
method. Table VI shows that the proposed method improved
the accuracy of selecting the proper join method by 90% or
more.

V. DISCUSSION

In the acquisition of measurement data for constructing the
cost calculation formula, because the type of counters that
the hardware monitor can collect at one time is limited to
four, it is necessary to perform measurements several times
to obtain an accurate measurement of 40 events. Therefore, a
certain amount of time must be allocated for measurement. For
example, it took approximately 5 h and 30 min to perform the
measurements in this study. From the perspective of allocating
time for measurement, and given the fact that the CPU cost
calculation formula does not need to be changed unless there
is a change in hardware configuration or DBMS join operation
codes, it is appropriate to create the proposed CPU cost
calculation formula when integrating or updating a system.
With regard to the use of the cost calculation formula, the
proposed CPU cost formula was used in the optimization
process to be executed before executing a query. The CPU
cost of executing the query was calculated from the number
of records to be searched. As shown in references [18] [19], in
a general DBMS, the histograms representing the relationship
between the attribute value and appearance frequency are

automatically acquired when inserting or updating records.
From the histogram and condition of the clause of the query,
it is possible to estimate the number of records accessed by
the DBMS. In this way, the CPU costs can be calculated with
only the data already acquired by the DBMS; hence, the costs
can be calculated by the cost calculation formula before query
execution.

The combination join case modeled in this study was
the two or more tables join case, as shown in Figure 5.
Theoretically, there is a case in which HJ is assigned after
NLJ. In the case where HJ was executed after NLJ (Figure 17),
the cost model (d-1) was the same as (a), and the cost model
(d-3) was the same as (b-2). The cost model of (d-2) was
required because building the hash table from temporary table
X was not covered in the other case. Most of the join cases
seem to be classified as in Figures 4, 5, and 17, and creating
the cost models (a), (b-1), (b-2), (c-2), and (d-2) can support
most of the join cases. However, the NLJ–HJ case cannot be
implemented in our measurement environment. This problem
can be solved by using a different DBMS.

We proposed a cost calculation method for an in-memory
DBMS using a disk-based DBMS. The calculation formulas
were created using the data measured by the CPU-embedded
performance monitor. The results reveal that the proposed
method can estimate the intersection point of the join methods
more accurately than the conventional method. We used TPC-

472

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

��������	�
��
 �������	�
��
 ��������
����
 �������
����
 �����������������
 ����������������

0E+00

2E+07

4E+07

6E+07

8E+07

0

200

400

600

0E+00 5E-03 1E-02

C
os

t b
y

C
on

ve
nt

io
na

l M
et

ho
d

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[s

ec
]

(M
ea

su
rm

en
t a

nd
 P

ro
po

se
d

M
et

ho
d)

Selectivity

7.5E-03

(a) Join Customer, Orders and Lineitem
Tables (SF100)

Enlarged in figure (b)

120

160

200

7E-04 8E-04 9E-04 1E-03

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[s

ec
]

(M
ea

su
rm

en
t a

nd
 P

ro
po

se
d

M
et

ho
d)

Selectivity

8.8E-05

(b) Enlarged Intercection Points of Figure (a)

0E+00

1E+08

2E+08

3E+08

4E+08

5E+08

0

200

400

600

800

1,000

0E+00 5E-02 1E-01

C
os

t b
y

C
on

ve
nt

io
na

l M
et

ho
d

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[s

ec
]

(M
ea

su
rm

en
t a

nd
 P

ro
po

se
d

M
et

ho
d)

Selectivity

8.9E-02

(c) Join 5 Tables (SF100)
(Supplier, Lineitem, Part, Orders and Customer)

Enlarge in figure (d)

0

200

400

600

800

1,000

5.0E-04 1.0E-03 1.5E-03

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[s

ec
]

(M
ea

su
rm

en
t a

nd
 P

ro
po

se
d

M
et

ho
d)

Selectivity

3.0E-04

(d) Enlarged Intercection Points of Figure (c)

0.0E+00

4.0E+07

8.0E+07

1.2E+08

1.6E+08

0

500

1,000

1,500

0E+00 1E-05 2E-05

C
os

t b
y

C
on

ve
nt

io
na

l M
et

ho
d

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[s

ec
]

(M
ea

su
rm

en
t a

nd
 P

ro
po

se
d

M
et

ho
d)

Selectivity

�������

(e) Join 5 Tables (SF100)
(Part, Lineitem, Supplier, Orders and Customer)

Enlarged in figure (f)

0

500

1,000

1,500

2E-07 4E-07 6E-07

Q
ue

ry
 E

xe
cu

tio
n

T
im

e
[s

ec
]

(M
ea

su
rm

en
t a

nd
 P

ro
po

se
d

M
et

ho
d)

Selectivity

2.2E-07

(f) Enlarged Intercection Points of Figure (e)

Fig. 16. Cost Comparison of measured, proposed cost model, and conventional cost model results for joining three or more tables

R S

T

U

Hash
Join (HJ)

Nested Loop
join (NLJ)

Divide and
degenerate

(d-1) NLJ

X Y

Temporary table
on memory

(d-2) HJ build (d-3) HJ probe

Y YX

Z

X

Fig. 17. NLJ after HJ Case

H for measuring CPU activities. TPC-H has the advantage
of making it easy to analyze the evaluation results because
the data distribution is uniform. However, the actual data is
skewed in terms of the distribution of keys. The premise of the
technique proposed in this study is the accuracy of selectivity,
i.e., even if the distribution of data varies, if the selectivity
is the same, then the same measurement results are obtained.
Because a general DBMS acquires attribute values and their
distribution in a database is in the form of a histogram when
loading data to the database, the prerequisites for applying the
proposed technique are considered to be satisfactory. However,
it is necessary to develop a technique to derive histogram
information and input it as an input parameter of the cost
formulas.

As this technique sets parameters based on actual measure-
ments, it is difficult to deal with various patterns, such as the
presence or absence of indices and complex queries. Although
we have focused on the operation of all CPU cycles, it is
necessary for practical use to simplify the model by omitting
some parameters. For the collection of statistical data, it is
conceivable that actual measurements can be performed at the
time of initial installation and parameter setting. However,
when the DBMS code is modified, it is difficult to change
in real time; hence, a separate complementary technology is

required. As a breakthrough measure, it is possible to reduce
both the amount of data to be verified and the measurement
points.

In this study, only the cost model for join operations was
proposed. However, the query operation includes not only join
but also filter, group-by, and sorting operations. These opera-
tions are difficult to execute by using only a query. However,
part of the query can be extracted by taking the difference
between queries, similar to our approach for modeling the HJ
probe phase (31).

VI. RELATED WORK

Evaluation of the CPU performance using the performance
monitor for behavior analysis of a DBMS has long been
conducted. In particular, in the evaluation of the benchmark
TPC-D for decision support systems, the L1 miss and process-
ing delay owing to the L2 cache occupy a large part of the
CPI components, and are important in terms of performance.
However, these are only used for bottleneck analysis [20].

The query execution cost calculation approaches include the
white-box analysis [8] and the black-box analysis [9]. In the
white-box analytic approach, the cost calculation model for a
single server is composed of CPU cost and I/O cost. Based
on these approaches, there are some cost calculation methods.
One is the product of a unit cost and the number of accessed
records [5] [6]. Another is to estimate cost from the execution
time of several evaluation queries [8]. With the black box-
model analysis approach, a multiple regression is performed
using parameters that the DBMS user can refer easily, such
as the cardinality of tables. Our approach combines both
characteristics.

473

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

From a different viewpoint, there exist the macro-level and
micro-level approaches. The macro-level approach is suitable
for a heterogeneous DBMS system because it is composed of
different DBMSs (open source or commercial DBMSs) and
cost is calculated based on the processing time of commonly
executable queries. Our approach is a micro-level one. It
is created from measurement results of CPU events while
executing a query. The micro-level approach can create an
accurate model by considering the CPU operation, but it
cannot be applied to different DBMS.

Our cost calculation model uses the statistic information
of the CPU measured under a static environment. However,
multiple applications are executed on a real production system.
The cost model of a multiple-application environment is
based on multiple regression models and it uses sample-query
execution time and statistical calibration methods [21] [22].
Applying these methods to our approach will help achieve a
more accurate model.

Another study on the micro-level approach is the method
that applies a CPI measurement and focuses on a memory ref-
erence for cost calculations (5) of an in-memory database [23]
[24]. This research targeted a DBMS that use the load/store
type memory access (Figure 1(c)). In this work, the number of
cache hits or main memory accesses was predicted from the
data access pattern of the database, and the cost was calculated
as the product of the number of cache hits or main memory
accesses and the memory latency. The modeling of CPI0 ,
which is the state where all data exist in the L1 cache, and
modeling of instruction cache misses have not been considered
in previous studies. Although not explicitly mentioned in the
literature, it was presumed that it was impossible to reproduce
and measure the state in which all instructions and data were
on the L1 cache, which is the definition of CPI0 , using
methods such as a CPU-embedded performance monitor.

In our research, the performance of queries was considered
as a function of selectivity. Kester et al. [25] used not only
selectivity but also the concurrency of queries in the execution
to calculate the query execution cost. When many queries
are executed simultaneously in a cloud computing system,
hardware resources (e.g., memory bandwidth, disk bandwidth,
etc.) will become scarce. In this case, the hardware resource
utilization is affected by query performance. Our proposed
method can support concurrency by introducing the queuing
theory in the memory latency and I/O latency model.

VII. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a cost calculation method for
an in-memory DBMS using a disk-based DBMS. We focused
on a CPU pipeline architecture and classified the CPU cycles
into three types based on the operational characteristics of the
front-end and back-end. The calculation formulas were created
using data measured by the CPU-embedded performance mon-
itor. In the evaluation of the two-table join, three-table join,
and five-table join, the difference in selectivity corresponding
to the intersection points of NLJ and HJ, between the proposed
method and measurements, was increased in more than 90%

from the conventional method. This means that the cost for-
mulas can model the actual join operation with high accuracy.
By applying the proposed cost calculation formulas, the proper
join method can be selected and the risk of unexpected query
execution delay for users of the DBMS can be reduced. In
the future, we will evaluate different generation of CPUs and
analyze how the differences in CPU architecture affect the cost
formulas. We will also implement a DBMS that automatically
distinguishes CPU differences from the analysis results and
automatically corrects the parameters for cost calculation or
the calculation model itself.

APPENDIX A
QUERIES FOR EVALUATING COST CALCULATION

FORMULAS

The Queries used for evaluation of the proposed cost
calculation formulas are shown in Figure A.1, A.2, A.3, and
A.4.

select count(*)
from part, lineitem
where

(p_type='STANDARD ANODIZED TIN'
or p_type='STANDARD ANODIZED STEEL)
and p_size < N
and p_partkey = l_partkey
and l_shipdate < date '1995-03-06';

�

�

part

lineitem

N 6 8 10 20 30 40 50
Selectivity PO
(Condition 1) 1.33�10-3 1.87�10-3 2.40�10-3 5.07�10-3 7.73�10-3 1.04�10-2 1.31�10-2

(b) Query Plan
�

p_partkey=l_partkey

count(*)
Join method is
manually set.

(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity

Condition 1

Condition 2

(Inner Table 1)

(Outer Table)

Fig. A.1. Target query of cost estimation for part and lineitem join

select count(*)
from supplier, lineitem
where

s_acctbal > N
and s_nationkey = 0
and s_suppkey = l_suppkey
and l_shipdate > date '1995-03-06';

�

�

part

lineitem

N 9998 9978 9798 9200 9000 8000 7000
Selectivity PO
(Condition 1) 7.24�10-6 8.00�10-5 7.35�10-4 2.91�10-3 3.64�10-3 7.27�10-3 1.09�10-2

(b) Query Plan
�

p_partkey=l_partkey

count(*)

(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity

Condition 1

Condition 2

(Inner Table 1)

(Outer Table)

Fig. A.2. Target query of cost estimation for supplier and lineitem join

select count(*)
from

part
STRAIGHT_JOIN lineitem
STRAIGHT_JOIN supplier
STRAIGHT_JOIN orders
STRAIGHT_JOIN customer

where
(p_type='STANDARD ANODIZED TIN' or
p_type=''STANDARD ANODIZED STEEL‘)
and p_size < N
and p_partkey = l_partkey
and l_shipdate < date '1992-03-01'
and l_quantity = 10
and l_orderkey = o_orderkey
and o_custkey = o_custkey
and l_suppkey = s_suppkey;

N 6 8 10 20 30 40 50
Selectivity PO
(Condition 1) 1.33�10-3 1.87�10-3 2.40�10-3 5.07�10-3 7.73�10-3 1.04�10-2 1.31�10-2

(b) Query Plan(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity

�

�

part

lineitem

�

p_partkey=l_partkey

count(*)

Condition 1

Condition 2

(Inner Table 1)

(Outer Table)

l_suppkey=s_suppkey

supplier
(Inner Table 2)

l_orderkey=o_orderkey

(Inner Table 3)
orders

o_custkey=c_custkey

(Inner Table 4)
customer

Fig. A.3. Target query of cost estimation
for part, lineitem, supplier, orders, and customer join

474

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

select count(*)
from

supplier
STRAIGHT_JOIN lineitem
STRAIGHT_JOIN part
STRAIGHT_JOIN orders
STRAIGHT_JOIN customer

where
s_acctbal > 9998
and s_nationkey = 0
and s_suppkey = l_suppkey
and l_shipdate > date '1995-03-06'
and l_partkey = p_partkey
and l_orderkey = o_orderkey
and o_custkey = c_custkey;

(b) Query Plan
�

(a) SQL

Condition 1

Condition 2

(c) Selection Condition and Selectivity

N 9998 9978 9798 9200 9000 8000 7000
Selectivity PO
(Condition 1) 7.24�10-6 8.00�10-5 7.35�10-4 2.91�10-3 3.64�10-3 7.27�10-3 1.09�10-2

�

�

supplier

lineitem

s_suppkey=l_suppkey

count(*)

Condition 1

Condition 2

(Inner Table 1)

(Outer Table)

l_partkey=p_partkey

part
(Inner Table 2)

l_orderkey=o_orderkey

(Inner Table 3)
orders

o_custkey=c_custkey

(Inner Table 3)
customer

Fig. A.4. Target query of cost estimation
for supplier, lineitem, part, orders and customer join

APPENDIX B
MEASURED CPU COUNTERS

The list of CPU counters for modeling the CPU cost calcu-
lation are shown in Table B.I. The constants and intermediate
variable for modeling cost calculation formulas are shown in
Table B.II. The column of “Symbol” means variables in the
cost calculation formulas.

TABLE B.I. Lists of CPU Counters to Measure and Preprocess

No. Counter Name

E1 CPU CLK UNHALTED.THREAD
E2 INST RETIRED.ANY
E3 BR MISP EXEC.ANY
E4 DTLB MISSES.ANY
E5 ITLB MISS RETIRED
E6 L1I.CYCLES STALLED
E7 L1I.HITS
E8 L1I.MISSES
E9 L2 RQSTS.IFETCH HIT
E10 L2 RQSTS.IFETCH MISS
E11 MEM INST RETIRED.LOADS
E12 MEM LOAD RETIRED.HIT LFB
E13 MEM LOAD RETIRED.L1D HIT
E14 MEM LOAD RETIRED.L2 HIT
E15 MEM LOAD RETIRED.LLC MISS
E16 MEM LOAD RETIRED.LLC UNSHARED HIT
E17 MEM LOAD RETIRED.OTHER CORE L2 HIT HITM
E18 OFFCORE RESPONSE.DATA IFETCH.LOCAL CACHE 1
E19 OFFCORE RESPONSE.DATA IFETCH.LOCAL DRAM

AND REMOTE CACHE HIT 0
E20 OFFCORE RESPONSE.DATA IFETCH.OTHER LOCAL DRAM 1
E21 OFFCORE RESPONSE.DATA IFETCH.REMOTE CACHE HITM 0
E22 OFFCORE RESPONSE.DATA IFETCH.REMOTE DRAM 1
E23 OFFCORE RESPONSE.DATA IN.LOCAL DRAM AND

REMOTE CACHE HIT 0
E24 OFFCORE RESPONSE.DATA IN.OTHER LOCAL DRAM 0
E25 OFFCORE RESPONSE.DATA IN.REMOTE CACHE HITM 0
E26 OFFCORE RESPONSE.DATA IN.REMOTE DRAM 1
E27 RESOURCE STALLS.ANY
E28 RESOURCE STALLS.LOAD
E29 RESOURCE STALLS.ROB FULL
E30 RESOURCE STALLS.RS FULL
E31 RESOURCE STALLS.STORE
E32 UOPS ISSUED.ANY
E33 UOPS ISSUED.CORE STALL CYCLES
E34 UOPS ISSUED.CYCLES ALL THREADS
E35 UOPS ISSUED.FUSED
E36 UOPS RETIRED.ANY

REFERENCES

[1] T. Tanaka and H. Ishikawa, “Measurement-based cost estimation method
of a join operation for an in-memory database,” in MMEDIA 2017, The
Ninth International Conferences on Advances in Multimedia. Venice,
Italy: IARIA, April 2017, pp. 57–66.

[2] A. Foong and F. Hady, “Storage as fast as rest of the system,” in 2016
IEEE 8th International Memory Workshop (IMW), May 2016, pp. 1–4.

[3] A. Rudoff, “Programming models to enable persistent memory,” Storage
Developer Conference, SNIA, Santa Clara, CA, USA, September, 2012,
https://www.snia.org/sites/default/orig/SDC2012/presentations/Solid
State/AndyRudoff Program Models.pdf [retrieved: March, 2017].

[4] ——, “The impact of the NVM programming model,” Storage
Developer Conference, SNIA, Santa Clara, CA, USA, Septem-
ber, 2013, https://www.snia.org/sites/default/files/files2/files2/SDC2013/
presentations/GeneralSession/AndyRudoff Impact NVM.pdf [retrieved:
March, 2017].

[5] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie,
and T. G. Price, “Access path selection in a relational database
management system,” in Proceedings of the 1979 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’79.
New York, NY, USA: ACM, 1979, pp. 23–34. [Online]. Available:
http://doi.acm.org/10.1145/582095.582099

[6] W. Wu et al., “Predicting query execution time: Are optimizer cost
models really unusable?” in Data Engineering (ICDE), 2013 IEEE 29th
International Conference on, April 2013, pp. 1081–1092.

[7] O. Sandsta, “Mysql Cost Model,” http://www.slideshare.net/olavsa/
mysql-optimizer-cost-model [retrieved: March, 2017], October 2014.

[8] W. Du, R. Krishnamurthy, and M.-C. Shan, “Query optimization in a
heterogeneous dbms,” in VLDB, vol. 92, 1992, pp. 277–291.

[9] Q. Zhu and P.-A. Larson, “Building regression cost models for
multidatabase systems,” in Proceedings of the Fourth International
Conference on on Parallel and Distributed Information Systems, ser.
DIS ’96. Washington, DC, USA: IEEE Computer Society, 1996, pp.
220–231. [Online]. Available: http://dl.acm.org/citation.cfm?id=382006.
383210

[10] D. Levinthal, “Performance analysis guide for intel core i7 processor and
intel xeon 5500 processors,” Intel Performance Analysis Guide, vol. 30,
p. 18, 2009.

[11] P. Apparao, R. Iyer, and D. Newell, “Towards modeling &
analysis of consolidated CMP servers,” SIGARCH Comput. Archit.
News, vol. 36, no. 2, pp. 38–45, May 2008. [Online]. Available:
http://doi.acm.org/10.1145/1399972.1399980

[12] N. Hardavellas et al., “Database servers on chip multiprocessors: Limi-
tations and opportunities,” in Proceedings of the Biennial Conference on
Innovative Data Systems Research (CIDR), Asilomar, CA, USA, January
2007, pp. 79–87.

[13] L. McVoy et al., “lmbench: Portable tools for performance analysis.” in
USENIX annual technical conference, San Diego, CA, USA, 1996, pp.
279–294.

[14] J. L. Lo et al., “An analysis of database workload performance on
simultaneous multithreaded processors,” in ACM SIGARCH Computer
Architecture News, vol. 26, no. 3. IEEE Computer Society, 1998, pp.
39–50.

[15] (2017) The MariaDB foundation - ensuring continuity and open
collaboration in the mariadb ecosystem. [Online]. Available: https:
//mariadb.org/

[16] “TPC BENCHMARK
TM

H (decision support) standard specification
revision 2.17.1, Transaction Processing Performance council (TPC),”
http://www.tpc.org/tpc documents current versions/pdf/tpch2.17.1.pdf
[retrieved: March, 2017], 2014.

[17] (2017) 7-Zip LZMA Benchmark. [Online]. Available: http://www.
7-cpu.com/

[18] A. Aboulnaga et al., “Automated statistics collection in DB2 UDB,” in
Proceedings of the Thirtieth International Conference on Very Large
Data Bases - Volume 30, ser. VLDB ’04. VLDB Endowment, 2004,
pp. 1158–1169. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1316689.1316788

[19] I. Babae, “Engine-independent persistent statistics with histograms
in MariaDB,” Percona Live MySQL Conference and Expo 2013,
April, 2013, https://www.percona.com/live/london-2013/sites/default/
files/slides/uc2013-EIPS-final.pdf [retrieved: March, 2017].

475

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE B.II. Lists of Constants and Intermediate Variable

No. Symbol Events Value

E37 − CPU 　 frequency [GHz] (Xeon L5630) 2.13
E38 LL1 L1I Latency [cycle] 4
E39 LL1 L1D Latency [cycle] 4
E40 LL2 L2 Latency [cycle] 10
E41 LLLLC Local LLC Latency [cycle] 40
E42 LRLLC Remote LLC Latency [cycle] 200
E43 LLMM Local Main Memory Latency [cycle] E41 + 67[ns] × E37
E44 — Remote Main Memory Latency [cycle] E41 + 105[ns] × E37
E45 LMP Branchmiss prediction cycle 15

No. Symbol Events Calculation Formula for Preprocessing

E46 ILoad LOAD instruction E11
E47 ML1D L1D Hit (data) E46 × E13/(E12 + E13 + E14 + E15 + E16 + E17)
E48 — L1D Miss (data) E46 − E47
E49 ML2D L2 Hit (data) E46×((1−(E13/(E12+E13+E14+E15+E16+E17)))×(E14/(E14+E15+E16+E17)))
E50 — L2 Miss (data) E48 − E49
E51 MLLLCD LLC Hit (data) E46 × ((1 − (E13/(E12 + E13 + E14 + E15 + E16 + E17))) × (1 − (E14/(E14 + E15 +

E16 + E17))) × ((E16 + E17)/(E15 + E16 + E17)))
E52 — LLC Miss (data) E50 − E51
E53 MRLLCD Remote LLC Hit (data) E46× ((1− (E13/(E12+E13+E14+E15+E16+E17)))× (1− (E14/(E14+E15+E16+

E17)))×(1−((E16+E17)/(E16+E17+E15)))×((E23+E25)/(E23+E24+E25+E26)))
E54 MLMMD Local Main Memory (data) E46 × ((1 − (E13/(E12 + E13 + E14 + E15 + E16 + E17))) × (1 − (E14/(E14 + E15 +

E16+E17)))× (1− ((E16+E17)/(E16+E17+E15)))× (E24/(E23+E24+E25+E26)))
E55 — Remote Main Memory (data) E46 × ((1 − (E13/(E12 + E13 + E14 + E15 + E16 + E17))) × (1 − (E14/(E14 + E15 +

E16+E17)))× (1− ((E16+E17)/(E16+E17+E15)))× (E26/(E23+E24+E25+E26)))
E56 — Total Data Access Latency E47 × E39 + E49 × E40 + E51 × E41 + E54 × E43 + E55 × E44 + E53 × E42
E57 I Instruction E2 + E3
E58 ML1I L1I Hit (instruction) E57 − E8
E59 — L1I Miss (instruction) E57 − E58
E60 ML2I L2 Hit (instruction) E8 − E10
E61 — L2 Miiss (instruction) E59 − E60
E62 MLLLCI Local LLC Hit (instruction) E10 × ((E18/(E18 + E19 + E21 + E20 + E22)))
E63 — Local LLC Miss (instruction) E61 − E62
E64 MRLLCD Remote LLC Hit (instruction) E57 × ((E10/E57) × (((E19 + E21)/(E18 + E19 + E20 + E21 + E22))))
E65 MLMMD Local Main Memory (instruction) E10 × ((E20/(E18 + E19 + E20 + E21 + E22))))
E66 — Remote Main Memory (instruction) (E33 − E27) × ((E10/E57) × (E22/(E18 + E19 + E20 + E21 + E22)))
E67 — Total Instruction Access Latency E60 × E40 + E62 × E41 + E64 × E42 + E65 × E43 + E66 × E44
E68 CDCacheAcc Data Access E27 + E34
E69 CMP Branch Mispredition Penalty E3 × E45
E70 CICacheMiss Instruction Penalty E33 − E27 − E69

[20] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on a
modern processor: Where does time go?” in VLDB” 99, Proceedings of
25th International Conference on Very Large Data Bases, September 7-
10, 1999, Edinburgh, Scotland, UK, no. DIAS-CONF-1999-001, 1999,
pp. 266–277.

[21] A. Rahal, Q. Zhu, and P.-A. Larson, “Evolutionary techniques for
updating query cost models in a dynamic multidatabase environment,”
The VLDB Journal, vol. 13, no. 2, pp. 162–176, May 2004. [Online].
Available: http://dx.doi.org/10.1007/s00778-003-0110-4

[22] Q. Zhu, S. Motheramgari, and Y. Sun, “Cost estimation for large
queries via fractional analysis and probabilistic approach in dynamic
multidatabase environments,” in Proceedings of the 11th International
Conference on Database and Expert Systems Applications, ser. DEXA
’00. London, UK, UK: Springer-Verlag, 2000, pp. 509–525. [Online].
Available: http://dl.acm.org/citation.cfm?id=648313.755672

[23] S. Manegold, P. A. Boncz, and M. L. Kersten, “Optimizing database
architecture for the new bottleneck: memory access,” The VLDB Journal,
vol. 9, no. 3, pp. 231–246, 2000.

[24] S. Manegold, P. Boncz, and M. L. Kersten, “Generic database cost
models for hierarchical memory systems,” in Proceedings of the 28th in-
ternational conference on Very Large Data Bases. VLDB Endowment,
2002, pp. 191–202.

[25] M. S. Kester, M. Athanassoulis, and S. Idreos, “Access path
selection in main-memory optimized data systems: Should I scan
or should I probe?” in Proceedings of the 2017 ACM International
Conference on Management of Data, ser. SIGMOD ’17. New
York, NY, USA: ACM, 2017, pp. 715–730. [Online]. Available:
http://doi.acm.org/10.1145/3035918.3064049

476

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

