
Applying Information Flow Tracking to the
Development Cycle

Thomas Lie and Pål Ellingsen
Department of Computing, Mathematics and Physics

Western Norway University of Applied Sciences
Bergen, Norway

Email: thomas.lie@student.hib.no, pal.ellingsen@hvl.no

Abstract—Information flow vulnerabilities such as Structured
Query Language (SQL) Injection and Cross-Site Scripting are
highly relevant issues in web applications. This article expands
on a an earlier paper by the authors to investigate how to apply
information flow tracking in the form of taint analysis to detect
this domain of vulnerabilities in. Different types of taint analysis
implementations exists and a challenge is how web application
frameworks are handled by the taint analysis implementation.
This technique is tested by a developing a prototype application
for a company covering a genuine need. This application also
functions as an artefact application in conducting taint analysis.
Using this artefact, a proposed solution for integrating taint
analysis in the process of developing Java EE web applications
is tested. Analysing the results, it is shown that it is possible to
integrate taint analysis in the development cycle, but it is also
made clear that the technique must be improved to properly
support its use in an automated build system.

Keywords–Information flow tracking; taint analysis; iterative
development; software security; injection attacks.

I. INTRODUCTION

A. Background

Web applications exposes its host system to the end-
user. The nature of this exposure makes all web applications
susceptible to security vulnerabilities in various ways. The
Open Web Application Security Project (OWASP) periodically
publishes a report that covers the ten most common security
problems. Two of the top problems are information flow based,
namely Injection and Cross-Site Scripting. Being information
flow based means that untrusted data enters the application to
eventually be executed as a part of a critical command. An
example of a common injection vulnerability, SQL injection,
is shown in Figure 1 as a snippet from a Java servlet [1].

The example is taken from a login servlet that gets two
user submitted parameters, username and password, and uses
them directly in a dynamic SQL query. The injection is
accomplished if the WHERE clause can be evaluated true
without providing a matching login credential. This can be
done by adding ’ OR ’1’=’1 in the password parameter because
the OR condition will always evaluate true.

A way to detect information flow based security flaws is
by performing static taint analysis. The idea is that variables
that directly or indirectly can be modified by the user is
identified as tainted. If a tainted variable is used to execute
critical commands a potential security flaw is detected. In
the example in Figure 1 the method request.getParameter(. . .)

Figure 1. Vulnerable code in a Java login servlet susceptible to SQL injection

gets user input and the variable in which the data is stored is
identified as a source in taint analysis. On the other side of the
information flow is the method st.executeQuery(query), which
is an endpoint executing a critical command, identified as a
sink in taint analysis.

In developing applications in general a popular approach
to work by is to implement some kind of agile software
development methodology. The main agile practice that this
article is highlighting is Iterative and Incremental development.
Being iterative means that the current state of the developed
functionality is improved, adding quality to the code for a
better product. Incremental development refers to breaking up
the work into smaller pieces. The pieces are scheduled to be
developed, usually in timeboxed cycles, and integrated in the
software as they are finished. This could also be done as a
response to new or changing requirements.

When using agile software development methodologies,
a principle from the Agile Manifesto is worth mentioning,
deliver working software frequently. This principle encourages
to develop functionality in small time frames so that the cus-
tomer frequently is presented the latest product increment. For
the developers it is tempting to maximize the deliverance of
functional requirements if the customer has not communicated
an emphasis on non-functional requirements such as software
security.

B. Problem Description

The main objective of this article is to study how to
integrate static taint analysis in an iterative and incremental
development process to detect information flow based security
vulnerabilities in Java EE web applications. This integration
was proposed by the authors in an earlier work [2], but
in this paper, we apply the proposed principle to an actual
development process.

A typical Java EE web application featuring several differ-
ent components will be developed in order to attain practical
experience using the technology. This application will be

397

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in use by a company in an industrial environment possibly
accessed through the internet. Potential security flaws may
expose confidential data through information flow security
vulnerabilities.

Because of the principle of frequent delivery in agile soft-
ware development methodologies, integrating security analysis
should be as cheap as possible in regards to the process of
analysis. The following aspects will be considered.

• Resources needed in form of preparing the application
for analysis parameters before execution of the taint
analysis

• Typically, how much time is needed to run the taint
analysis for a considerable large web application

• Resources needed in order to interpret and respond to
the taint analysis output

C. Article Outline

In the following, we want to study how taint analysis can
be integrated in the development process, and how suitable
the existing implementations are for this kind of integration.
To carry out this study, we have applied the analysis to the
development of a Java Enterprise Edition (Java EE) application
throughout the development process. The outline of the rest of
this paper is as follows. Section II describes the principles of
taint analysis, other works related to this and state of the art.
In Section III, the methodology used in this study is presented.
Then, an actual implementation of the proposed method is
demonstrated in Section IV. Based on this, the results and an
analysis of these is presented in Section V. Finally, our findings
are summed up in Section VI.

II. THEORETICAL BACKGROUND

A. Software Development

When developing software, a common approach is to estab-
lish a Software Development Life Cycle (SDLC). The SDLC’s
function is to cover all processes associated with the software
developed. Different types of SDLC models exists. However,
whether it being Waterfall, Agile or some other model the
processes in the SDLC can be identified in five phases. The
phases are named Requirements, Design, Development, Test
and Deployment [3].

Developing software requires planning of both functional
requirements and non-functional requirements in order to
deliver an acceptable end product. The functional require-
ments refer to the functionality of the software whereas non-
functional requirements refer to quality attributes, e.g., capac-
ity, efficiency, performance, privacy and security.

Requirements phase addresses the gathering and analy-
sis of requirements regarding the environment in which the
software is operating in. Non-functional requirements based
on security policies and standards and other relevant indus-
try standards that affect the type of software developed are
included in this phase.

Design phase is where the functional requirements of
the software developed is planned based on the mapping
of requirements in the first phase. This phase also includes

architectural choices that determines the technologies used in
the development of the software.

Development phase contains the actual coding of the
software developed. Both functional requirements and non-
functional requirements from the earlier planning phases are
being addressed. A usual approach is to develop the functional
requirements in small programs called units. These units is
then tested for their functionality, called Unit Testing.

Test phase is where test cases are built based on re-
quirements criteria from earlier phases. Both test cases for
functional requirements and non-functional requirements are
included. The test phase is iterative in nature meaning that the
problems found would need to be addressed and fixed in the
development phase. And when fixed, the system would need
to go through the test phase once again.

Deployment phase is the final phase that exists to install
the software and make it ready to run in its intended environ-
ment or released into the market. At this point both testing of
functional requirements and non-functional requirements are
finished [3].

B. Software Security

OWASP analyse data from software security firms and
periodically publishes a report about the top 10 most common
security vulnerabilities found in web applications. The data
analysed covers over 500,000 vulnerabilities over thousands
of applications making this list a well documented ranking of
the most common vulnerabilities present in web applications
today [1].

Two of the types of vulnerabilities at the top of the OWASP
top 10 list are information flow based, namely injection and
cross-site scripting. Being information flow based means that
in order for an attacker to successfully exploit the type of
vulnerability, untrusted data must enter the application. This
untrusted data then bypasses the validation due to a poor
validation routine or a complete lack of validation. When the
untrusted data eventually reaches the critical command the
attacker aimed for, the vulnerability is exploited.

In the category of injection based vulnerabilities resides
numerous exploitable implementations such as queries for
SQL, Lightweight Directory Access Protocol (LDAP), Xpath
or NoSQL and command injection in form of operatings sys-
tem commands or program arguments. Due to the widespread
use of database access based on SQL in web applications,
the most common injection vulnerability is therefore SQL
injection. Two other types of information flow vulnerabilities
that are worth briefly mentioning are path traversal and HTTP
response splitting. Path traversal allows an attacker to access
or control files that are not intended by the application. This
can happen if the application fails to restrict access to the file
system. Path traversal belongs in the category insecure direct
object references in the OWASP top 10 [1] [4].

HTTP response splitting is a technique that involves split-
ting the HTTP response enabling an attacker to gain control
over the second HTTP response. The HTTP response could
be split if the application includes malicious data in the HTTP
response header. Simply supplying a line break (CR and LF)
in the malicious data splits the response. Implications includes

398

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Require-
ments

Design Development Test Deployment

Figure 2. The Software Development Life Cycle [3].

web cache poisoning, cross-user defacements, page hijacking
and cross-site scripting [4].

C. SQL Injection

SQL injection can be further broken down into different
types of injection techniques. Tautology is a technique to
bypass authentication and access data through the WHERE
clause by making the query always evaluate to true. The SQL
injection example shown in Figure 1 is an example using that
technique. The following SQL query is a general SQL injection
example of the tautology technique. [5].
SELECT * FROM <tablename>WHERE userId = <id>and

password = <wrongPassword>OR 1=1;

A technique used in order to force the application to display
an error message sent from the database is called logically
incorrect queries. The idea is to make the SQL query fail
in order to acquire information about the database structure
such as table and column names. If the application does not
withheld such error messages from the users an attacker could
learn enough to forge an effectively targeted SQL injection to
access or modify the desired data. In the following example
SQL query an additional query delineation (’) is added after
the username parameter rendering the SQL query incorrect. In
this specific case the error message would reveal the name of
the password parameter [5].

SELECT * FROM <tablename>WHERE username =
<anyUsername>’ and password = <anyPassword>;

The next technique, named union queries, uses the UNION
clause in order to acquire information from other tables in the
database. In the following example an attacker needs a valid
user and password pair. The attacker adds the extended query
in the password field after the valid password. This example
fetches the current user’s credit card number [5].
SELECT * FROM <tablename>WHERE userId = <id>and

password = <rightPassword>UNION SELECT
creditCardNumber FROM CreditCardTable;

Piggy-backed queries is a technique to expand the number
of SQL queries the DBMS would execute by using the query
delimiter (;). The first query is the former query, which will be
executed normally and the following queries that are added by
the attacker are also executed. Since an attacker could construct
any SQL query, the possibilities for exploitation are extensive.
Some outcomes could be adding, modifying or deleting data,
performing denial of service and executing remote commands.
In the following example an additional query is constructed
deleting a table [5].
SELECT * FROM <tablename>WHERE userId = <id>and
password = <rightPassword>; DROP TABLE <tablename>;

The preceding SQL query examples are the simplest SQL
injection techniques. A couple of other techniques are also
worth mentioning that are slightly more advanced. Blind
injection could be used to acquire data if the application is

hiding database error messages from the attacker. The concept
is to query the database with queries evaluating true or false
in order to slowly accumulate information by elimination. The
prerequisite for this to work is to find a way to tell whether
the query evaluates true or false. This could be done in e.g.,
a login context [5].

In case a way to tell if the evaluation is true or false
is not found, the next technique could be applied, namely
timing attacks. With the help of an if-then statement and the
WAITFOR clause a delay could be set depending on how the
query evaluates. E.g., a database delay for 5 seconds could be
set if the query evaluates true and otherwise have no database
delay. By observing the response a conclusion could be made
in whether the query evaluated true or false [5].

D. Cross-Site Scripting

Cross-site scripting is a vulnerability that enables the
attacker to get a user visiting an infected website to run
malicious scripts. Some outcomes for the attacker is hijacking
the user’s session, redirecting to other websites and modifying
the compromised website’s presentation of its content. Three
types of cross-site scripting attacks exists. Non-persistent at-
tacks is the most common type and is an attack that is not
stored persistently, but reflected to the victim immediately. An
approach is that the attacker sends a URL to a vulnerable,
but seemingly trustworthy, web page. The link contains a
malicious script that will be executed if the victim clicks it.
Consider the following example URL exploiting a web page
search field susceptible to cross-site scripting because a lack
of validating both user input and output. The user input is the
search string and the output is what is outputted in the search
results web page [5].

http://vulnerable.site/search.php?query=<script>alert(0)</script>

In this example the script is only triggering an alert box.
This script could be crafted in order to steal the victim’s
cookies, session or other accessible information. The second
variation of cross-site scripting is called persistent attack.
Instead of crafting a malicious URL this technique goes hand
in hand with injection in that the malicious script are stored
persistently, e.g., in a database. The attacker first injects the
malicious script in the vulnerable web site and the victim visits
the web site serving the script at a later point in time. An
example could be a message board where users posts messages
accessible by other users [5].

The third cross-site scripting technique is called DOM
based cross-site scripting attack. This approach is different
in comparison to the other techniques in that it is a client side
issue. The idea is to manipulate the Document Object Model
(DOM) by injecting malicious data into the website, e.g.,
inserting a fake login form tricking the victim into submitting
sensitive information. Web sites are vulnerable to this type of
attacks because input are not validated and escaped properly.

399

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A web site could have good validation routines server side,
but since this type of attack opens for purely client side
manipulation validation of input data client side is crucial [5].

E. Mapping Threats

In order to eliminate security flaws when developing a web
application a crucial point is that the software developers need
to have an idea of how the web application is vulnerable. An
option is to use a threat analysis, which fits in the design phase
of the SDLC. The analysis typically consists of three steps. The
first step is to determine and categorize the system’s possible
threats. Then each threat are ranked by the expected security
risk. Finally, a mitigation plan regarding the ranked list is laid
out [3].

Another concept that can be used in threat analysis to
identify threats is mapping the application’s attack surface. An
attack surface is defined as all possible entry points an attacker
can use to attack the application. In a web application all web
pages the attacker can access contributes to the attack surface.
For the information flow based vulnerabilities included in the
threat analysis a mitigation plan could contain specific design
choices in order to counter these threats. However, additional
initiatives should be included in the testing phase to make sure
any developer mistakes are caught [3].

An approach in order to catch developer mistakes is to
initiate a manual code review by security experts. This strategy,
although usually highly effective, is both expensive and time
consuming. Automatic detection of vulnerabilities in some
form is the preferred way to go.

F. Methods for Detecting Vulnerabilities

Numerous approaches for detecting SQL injection and
cross-site scripting are documented. Some of them are briefly
described in the following paragraphs. SQLUnitGen is a tool to
detect SQL injection vulnerabilities in Java applications. First,
the tool traces input values that are used for a SQL query.
Based on this analysis, test cases are generated in form of unit
tests with attack input. Lastly, the test cases are executed and
a test result summary showing vulnerable code locations are
provided [6].

Fine-grained access control is more of a way of eliminating
the possibility for SQL injection rather than detecting it. The
concept is to restrict database access to information only the
authenticated user is allowed to view. This is done by assigning
a key to the user, which is required in order to successfully
query the database. Access control are in fact moved from the
application layer to the database layer. Any attempt to execute
SQL injection cannot affect the data of different users. [7].

SQLCHECKER is a runtime checking algorithm imple-
mentation for preventing SQL injection. It checks whether
an SQL query matches the established query grammar rules
and the policy specifying permitted syntactic forms in regards
to the external input used in the query. This means that any
external input is not allowed to modify the syntactic structure
of the SQL query. Meta-characters are applied to external
input functioning as a secret key for identifying which data
originated externally [8].

Brower-enforced embedded policies is a method for pre-
venting cross-site scripting vulnerabilities. The concept is to
include policies about which scripts are safe to run in the web
application. Two types of policies are supported. A whitelisting
policy provided by the web application as a list of valid hashes
of safe scripts. Whenever a script is detected in the browser, it
is passed to a hook function hashing it with a one-way hashing
algorithm. Any script whose hash is not in the provided list is
rejected [9].

The second policy, DOM sandboxing, is made to enable
the use of unknown scripts. This could be a necessary evil
for a web site for e.g., requiring scripts in third-party ads.
Contrary to the first policy, this is a blacklisting policy. The
web page structure is mapped and any occurrences of the
noexecute keyword within an <div> or element
enables sandbox mode in that element disallowing running
scripts [9].

The methods covered in the preceding paragraphs for
both detecting and/or preventing SQL injection and cross-site
scripting have one thing in common. All approaches present
detection solutions limited to their respective vulnerability
whether it being either SQL injection or cross-site scripting.
Since both types of vulnerabilities belong to the same category
of vulnerabilities, information flow vulnerabilities, a mutual
approach is desirable to explore. Such approach should also
be able to detect all forms of information flow vulnerabilities.

FindBugs is a popular static analysis tool for Java. It
has a plugin architecture allowing convenient adding of bug
detectors presently detecting both SQL injection and cross-
site scripting. The bug detectors analyse the Java bytecode in
order to detect occurrences of bug patterns. FindBugs states
the following:

“Because its analysis is sometimes imprecise, FindBugs
can report false warnings, which are warnings that do not
indicate real errors. In practice, the rate of false warnings
reported by FindBugs is less than 50% [10].”

Up to 50% false warnings may be acceptable if the goal of
the analysis is just to get a general idea of where to do coding
improvements in a development process. Having a much more
precise analysis reporting none or low false warnings saves the
developer’s time. Therefore, finding a method with a much
higher accuracy is preferable. The approach this article are
looking into in order to detect information flow vulnerabilities
is an approach called taint analysis.

G. Taint Analysis

Taint analysis resides within the domain of information
flow analyses. Essentially this means that tracking how vari-
ables propagate throughout the application of analysis is the
core idea. In order to detect information flow vulnerabilities
entry points for external inputs in the application needs to
be identified. The external inputs could be data from any
source outside the application that is not trusted. In other words
where there is a crossing in the application’s established trust
boundary. In a web application context this is typically user
input fetched from a web page form, but would also include
e.g., URL parameters, HTTP header data and cookies.

400

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. A tainted source variable containing an id to fetch data from a
HashMap indirectly induces taint on an object [11]

In taint analysis the identified entry points are called
sources. The sources are marked as tainted and the analysis
tracks how these tainted variables propagate throughout the
application. A tainted variable rarely exclusively resides in the
original assigned variable and thus it propagates. This means
that it affects variables other than its original assignment. This
can happen directly or indirectly. Directly in that e.g., a tainted
string object is assigned either fully or partly to a new object
of some sort. An example of indirect propagation is that a
tainted variable that contains an id is used to determine what
data is assigned to a new variable, see Figure 3 [11].

Tainted variables in itself are not harmful for any appli-
cations. It is when a tainted variable is used in a critical
operation without proper sanitization that vulnerabilities could
be introduced. Sanitizing a variable means to remove data or
format it in a way that it will not contain any data that could
exploit the critical command in which it will be used. An
example is that when querying a database with a tainted string
it could open for SQL injection if the string contains characters
that either changes the intended query or splits it into additional
new queries. Proper sanitization would remove the unwanted
characters eliminating the possibility of unintended queries and
essentially preventing SQL injection.

Contrary to input data being assigned as sources, meth-
ods that executes critical operations are called sinks in taint
analysis. When a tainted variable has the possibility to be
used within a sink a successful taint analysis implementation
would detect this as a vulnerability. Consider the SQL injection
example in Figure 1 the method request.getParameter(. . .)
reads input from the user. This input is stored in a string
making it tainted. On the other side of the information flow is
the method st.executeQuery(query), which is a sink. When the
tainted source string are used in the sink as part of the SQL
query without sanitization an information flow vulnerability is
evident.

Taint analysis can be divided into two approaches, dynamic
taint analysis and static taint analysis. The dynamic taint
analysis approach analyses the different executed paths in an
application specific runtime environment. Tracking informa-
tion flow between identified source memory addresses and
sink memory addresses is generally how this kind of analysis
is carried out. A potential vulnerability is detected if an
information flow between a source memory address and a
sink memory address is detected. Static taint analysis is a
method that analyse the application source code. This means
that ultimately all possible execution paths can be covered
in this type of analysis whereas in a dynamic taint analysis
context only those paths specifically included in the analysis
are covered.

The concept of taint analysis has been around for several
decades. The scripting programming language Perl introduced
taint mode with Perl 3 in 1989. Taint mode is implemented as
a native feature in Perl’s interpreter and is enabled if the Perl

script runs with the -T switch. When taint mode is enabled all
strings that originates from outside the program are marked
as tainted. If a critical operation is executed with a tainted
string the program fails with an error. Examples of sinks
are methods to write to files, executing shell commands and
sending information over the network.

In order to enable the use of tainted strings in sinks, Perl
taint mode policy is that the string needs to be untainted.
This process consists of sanitizing the string by using regular
expressions. Consider the use of regular expression in order to
e.g., remove a trailing character. In this case the developer
needs to be aware that doing this removes the taint from
the string. The lack of further sanitizing of the tainted string
renders it with an improper sanitization for safely being used
in sinks.

The Perl taint mode implementation is a dynamic approach
since the analysis tracks tainted strings in the program’s run-
time environment. Dynamic taint analysis has some variations
in areas of use and Perl taint mode resides within the category
unknown vulnerability detection. This is, as shown with the
Perl taint mode example, simply detecting misuses of user
input during execution with the goal being preventing code
injection attacks [12].

Further, dynamic taint analysis can also be used in test
case generation to automatically generate input to test ap-
plications. This is suitable for detecting how the behaviour
of an application changes with different types of input. Such
analysis could be desirable as a step in the development testing
phase of a deployed application since this could also detect
vulnerabilities that are implementation specific. Dynamic taint
analysis can also be used as a malware analysis in revealing
how information flows through a malicious software binary
[12].

Taking this analysis one step further enables malicious soft-
ware detection of e.g., keyloggers, packet sniffers and stealth
backdoors. The concept being marking input from keyboard,
network interface and hard disk as tainted and then tracking the
taint propagation to generate a taint graph. By using the taint
graph in automatically generating policies through profiling
on a malicious software free system detection of anomalies
are enabled. E.g., in the case of detecting keyloggers, the
profile includes which modules that normally would access the
keyboard input on a per application basis. When a keylogger
is trying to access a specific profiled application this could be
detected [13].

In both static and dynamic taint analysis implementa-
tions the precision of the analysis is important for it to be
trustworthy. Generally, two outcomes can affect the analysis
precision. The first scenario is when the analysis for some
reason marks a variable as tainted that has not propagated
from a tainted variable. This is called over tainting and leads
to false positives, which means that the reported error is truly
not an error. The second outcome is when the analysis misses
an information flow from a source to a sink. Thus, the analysis
does not report an error that actually is present. This is called
under tainting and the term false negative describes the absent
of an actual error [12].

Dynamic taint analysis has, as shown in previous para-
graphs, several types of applications. However, static taint

401

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

analysis may be a better fit for integration within the develop-
ment process due to the direct analysis of source code. There
are different ways to implement static taint analysis. Three of
them, which are implementations for Java, are elaborated on
in the following sections.

H. Taint Analysis for Java

The first implementation, Taint Analysis for Java, consists
of two analysis phases. The first phase performs a pointer
analysis and builds a call graph. Pointer analysis, also called
points-to analysis, enables mapping of what objects a variable
can point to. A call graph in this context is static, which
means that it is an approximation of every possible way to
run the program in regards to invoking methods. The paper
describes an implementation of specific algorithms, but the
analysis design is flexible in that using any set of desired
algorithms are feasible [14].

The second phase takes the results of the first phase as
input and uses a hybrid thin slicing algorithm to track tainted
information flow. Thin slicing is a method to find all the
relevant statements affecting the point of interest, which is
called the seed. In comparison to a traditionally program
slicing algorithm, thin slicing is lightweight in that it only
includes the statements producing the value at the seed. This
means that the statements that explain why producers affect
the seed are excluded in a thin slice. [15].

Thin slicing works well with taint analysis because the
statements most relevant to a tainted flow is captured. Hybrid
thin slicing essentially produces a Hybrid System Dependence
Graph (HSDG) consisting of nodes corresponding to load,
call and store statements. The call statements represent source
and sink methods. The HSDG has two types of edges, direct
edges and summary edges, that represent data dependence. The
data dependence information is computed in the first phase by
the pointer analysis. Tainted flows are found by computing
reachability in the HSDG from each source call statement
adding the necessary data dependence edges on demand [14].

The way this implementation defines sources and sinks
is through security rules. Security rules exist on the form
(S1,S2,S3). S1 is a set of sources. A source is a method having
a return value, which is considered tainted. S2 is a set of
sanitizers. A sanitizer is a method that takes a tainted input as
parameter and returns that parameter in a taint-free form. S3 is
a set of sinks. Each sink is defined as a pair (m,P), where m is
the method performing the security sensitive operation and P
defines the parameters in m that are vulnerable when assigned
with tainted data [14].

Taint Analysis for Java includes ways to incorporate web
application frameworks in the analysis. External configuration
files often define how the inner workings of a framework is
laid out. Therefore a conservative approximation of possible
behaviour is modelled. For the Apache Struts framework,
which is an implementation of the Model View Controller
(MVC) pattern, the Action and Action Form classes are spe-
cially treated. These classes contains execute methods taking
an ActionForm instance as a parameter. This instance contains
fields, which are populated by the framework based on user
input meaning it should be considered tainted. Thus, the

analysis implements a model treating the Action classes as
entry points [14].

Refer to Section II-K1 for more information on the article
describing Taint Analysis for Java.

I. Tainted Object Propagation Analysis

The second static taint analysis implementation is similar
to Taint Analysis for Java in that it is based on pointer
analysis and construction of a call graph, refer to Section II-H.
However, this implementation depends on pointer analysis
and call graph alone in detecting tainted flows. The analysis
uses binary decision diagrams in the form of a tool called
bddbddb (BDD-Based Deductive DataBase), which includes
pointer analysis and a call graph representation [4].

Binary decision diagrams can be utilized in adding com-
pression to a standard binary decision tree based on reduction
rules. In the context of this analysis the compression of the
representation of all paths in the call graph makes it possible
to efficiently represent as many as 1014 contexts. This allows
the analysis implementation to scale to applications consisting
of almost 1000 classes [4].

In order to detect vulnerabilities, specific vulnerability
patterns needs to be expressed by the user. A pattern consists of
source descriptors, sink descriptors and derivation descriptors.
Source descriptors specify where user input enters the ap-
plication, e.g., HttpServletRequest.getParameter(String). Sink
descriptors specify a critical command that can be executed,
e.g., Connection.executeQuery(String). Lastly, derivation de-
scriptors specify how an object can propagate within the
application, e.g., through construction of strings with String-
Buffer.append(String) [4].

Tainted Object Propagation Analysis does not implement
any handling of web application frameworks. Refer to Section
II-K2 for more information on the article describing Tainted
Object Propagation Analysis.

J. Type-based Taint Analysis

The third implementation, Type-based Taint Analysis, dif-
fers from the preceding approaches in that a type system is
the basis of the analysis. The implemented type system is
called SFlow, which is a context-sensitive type system for
secure information flow. SFlow has two basic type qualifiers,
namely tainted and safe. Sources and sinks are identified in that
methods and fields are annotated using these type qualifiers.
A type system is a system that intends to prove that no type
error can occur based on the rules established. This is done by
assigning a type with each computed value in the type system
and the flow of these values are then examined. This concept
is called subtyping [11].

The subtyping hierarchy is defined as safe <: tainted. This
means that a flow from tainted sources to safe sinks are dis-
allowed. The other way around, assigning a safe variable to a
tainted variable, is allowed. For an example of annotation, refer
to Figure 1 where the source request.getParameter(...) would
be annotated as tainted and the sink st.executeQuery(query)
would be annotated as safe [11].

A third type qualifier, poly, is included in order to cor-
rectly propagate tainted and safe variables through object

402

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

manipulation, e.g., with String methods append and toString.
All object manipulation methods, such as String append and
toString, would be annotated as poly. The poly qualifier in
combination with viewpoint adaptation rules ensures that the
implementation is context-sensitive. This means that param-
eters returned from such methods inherits the manipulated
inbound parameter’s type qualifier (tainted of safe). As a result
the subtyping hierarchy becomes safe <: poly <: tainted [11].

Another benefit with the poly qualifier implementation
is that tainted variables properly propagate in third-party
libraries. As a result all application code is included in the
analysis. Type-based Taint Analysis also supports web ap-
plication frameworks in the same way as regular Java API
is supported, namely by annotating the relevant fields and
methods. An example is that for the Apache Struts framework
the Action class containing the execute method is what needs
to be annotated. This method takes an ActionForm instance as
a parameter that contains fields, which are populated by the
framework based on tainted user input. Simply annotating the
ActionForm parameter as tainted would include the framework
in the analysis [11].

Type inference implies identifying a valid typing based
on the subtyping rules defined in the SFlow type system. A
succeeded inference means that there are no flows from sources
to sinks. If the type inference fails, a type error is evident
meaning that a flow from a tainted source to a safe sink is
present. Refer to Section II-K3 for more information on the
article describing Type-based Taint Analysis [11].

K. Related Work

In choosing which articles to be included as related work,
the emphasis is on articles describing practical taint analysis
implementations backed by analysis results. Theoretical im-
plementations can be a good starting points in expanding a
research topic. But since the main goal of this article is to study
how taint analysis can be integrated in a development process
an actual working taint analysis implementation is preferable.

1) TAJ: Effective Taint Analysis of Web Applications :
This paper describes the design and implementation of a static
Taint Analysis for Java (TAJ). The use of pointer analysis
and the construction of a call graph is the first step in the
analysis. Further, a hybrid thin slicing algorithm is used to
create a Hybrid System Dependence Graph (HSDG). Finally,
computation of reachability in the HSDG is conducted in
order to find tainted flows. Scalability is built in enabling
analysis of applications of any size with the help of a set
of techniques designed to produce useful results given limited
time and space. Techniques included are priority-driven call
graph construction and using bounds on other parts of the
analysis, e.g., to limit the size of a slice in the hybrid thin
slicing algorithm [14].

TAJ was designed to support a commercial product, IBM
Rational AppScan Developer Edition (AppScan DE), and has
therefore undergone extensive evaluation. 22 different applica-
tions that mostly make use of web frameworks are analysed
using 5 different variations of the thin slicing algorithm. This
was done in order to identify an efficient compromise on
performance and the number of false positives present because

the analysis introduces a high percentage of false positives.
However, few false negatives are reported by the analysis [14].

2) Finding Security Vulnerabilities in Java Applications
with Static Analysis : This paper proposes a static taint analysis
implementation based on a context-sensitive pointer analysis.
Based on the pointer analysis a call graph is generated. The
paper describes the class of information flow vulnerabilities as
the tainted object propagation problem. Users need to provide a
specification of which methods that can lead to a vulnerability
in the form of different types of descriptors. The specifications
are automatically translated into static analysers. Results of the
analysis are presented as a plugin for Eclipse IDE enabling
examination of each vulnerability found [4].

It is reported that this analysis scales to programs of almost
1000 classes. Further, the analysis is done at the bytecode-
level meaning that the approach can be applied to other forms
of bytecode, e.g., enabling the analysis of C# code. There
is no information on how this analysis can include other
web application frameworks other than the standard Java EE
implementation [4].

The analysis was run on nine popular open-source appli-
cations resulting in 29 detected vulnerabilities. Two of the
vulnerabilities resided in widely-used Java libraries. Further,
the analysis yielded 12 false positives, however, all false
positives came from one of the nine applications. The authors
concluded that their approach yields very few false positives
[4].

3) Type-based Taint Analysis for Java Web Applications
: This paper presents a type-based taint analysis approach.
SFlow, a context-sensitive type system for secure information
flow is implemented in a checking framework that the authors
has built in previous work. This framework infers and checks
object ownership and reference immutability. Users need to
annotate sources and sinks, and the analysis runs without
further input from the user reporting either a concrete typing
or type errors indicating information flow vulnerabilities [11].

The taint analysis approach handles reflection, libraries and
frameworks effectively. Handling reflection is possible because
SFlow does not require abstraction of heap objects, as the flow
is tracked through subtyping. Both libraries and frameworks
are also handled through subtyping together with the fact that
the analysis is modular. This means that it can analyse any
given set of classes. If the set contains an unknown callee, e.g.,
a library method with unknown source code, both source and
sink information flow are correctly tracked through subtyping
[11].

Evaluations that are performed on 13 relatively large Java
web applications have shown both precision and scalability. It
has zero false positives for most of the applications and about
15% false positives on average. An indirect comparison with
TAJ, [14], and F4F, [16], was done in that both implemen-
tations are included in the commercial tool AppScan Source.
In addition, another commercial tool was also included in the
comparison, Fortify SCA [11].

AppScan Source and Fortify SCA detect respectively 50%
and 61% of all vulnerabilities, while SFlow detects 100%.
The precision is 74% for AppScan Source, 81% for Fortify
SCA and 76% for the SFlow implementation. Precision P is

403

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defined in the following way where T indicates the number of
true positives meaning the correct detections, and F being the
number of false positives [11].

P =
T

T + F

4) F4F: Taint Analysis of Framework-based Web Appli-
cations : This paper describes F4F (Framework For Frame-
works), which is a framework for conveniently adding sup-
port to framework-based web applications in taint analysis.
Since framework implementations extensively use reflection,
conducting static taint analysis are often unable to detect
vulnerabilities correctly. F4F presents a way to generate a
specification of a program’s framework-specific behaviours
and integrate this specification into the taint analysis engine
without changes to the underlying analysis engine. [16].

The approach F4F uses is to utilize the Web Application
Framework Language (WAFL) in order to generate specifica-
tions. Futher, a helper tool, WAFL2Java, translates the WAFL
specifications to Java code for use with the taint analysis
implementation. A higher-level API for generating WAFL
specifications is also implemented easing the process of writing
WAFL generators. WAFL specification support is added to
the taint analysis implementation ACTARUS, which is an
improved version of TAJ, refer to Section II-H and II-K1. TAJ
includes a built-in framework support that is not included in
ACTARUS. However, the combination of ACTARUS and F4F
discovers more framework-related issues than TAJ [16].

F4F is evaluated by analysing nine subject programs.
The set of programs exercises four supported frameworks.
Eight use Struts, three use Spring, five use Tiles and six
use EL. F4F detected 525 new vulnerabilities compared to
ACTARUS taint analysis without F4F support. The number of
more vulnerabilities detected per program ranged from 1.1X-
14.9X with a harmonic mean of 2.10X. A manual inspection
of the new vulnerabilities detected revealed that many were
exploitable or reflected bad security practice [16].

5) Related Work Conclusion: Three practical implemen-
tations of taint analysis are included as related work. The
analysis methods for those implementations are described in
detail in Section II-H, II-I and II-J. Other variations of taint
analysis implementations exists, however, limiting to these
three implementations covers the most important methodolo-
gies present in the domain of taint analysis implementations.
Also, these implementations are crafted specifically for Java in
order to fit with analysis in the context of Java EE web appli-
cation development. Taint analysis implementations exists for
numerous programming languages, especially for the C/C++
programming language.

In addition to the taint analysis implementation articles an
article describing the use of taint analysis in framework-based
web applications is presented. The Java EE web application
implementation is in itself a framework and it can also be
extended by third-party framework implementations. Frame-
works introduce a layer of added complexity and it appears
to be a challenge to properly cover frameworks in static taint
analysis implementations. With this in mind and an overview
of different taint analysis implementations the course is set in
deciding the methodology.

III. METHODOLOGY

Taking a brief look at the core of the problem description,
refer to Section I-B, it is stating that this article will study how
to integrate static taint analysis in Java EE web applications.
Refer to Section II-F briefly stating some proposed methods for
detecting information flow vulnerabilities, static taint analysis
is explored in this article. Both because this type of analysis
embraces the detection of the whole domain of information
flow vulnerabilities. And that it may have significantly fewer
false warnings in comparison to e.g., analyses depending on
code patterns such as the FindBugs static analysis tool. The
research approach regarding the problem description is to carry
out a case study in two main parts.

The first part is to develop a prototype Java EE web
application of an acceptable size so that it is not too small in
regards to performing taint analysis on it. This means that the
prototype application should preferably have multiple modules
interacting with external processes, i.e., at a minimum imple-
menting a database connection. Further the user interaction
would naturally be done through a website utilizing specific
Java EE technologies.

For this type of article, why is such a development of a
prototype application necessary? One could simply argue that
using an open source Java EE web application as the artefact
for performing taint analysis is equally sufficient. However
a clear advantage is that when developing a new application
the developer gains an exceptional understanding of all the
inner workings of the application. E.g., knowing exactly which
technologies are used, how the application should function and
also be aware of all system critical commands implemented in
the application.

The goal of the last part in the case study is to architect a
solution to the taint analysis implementation. Many aspects
regarding this implementation would need to be clarified.
Based on the experiences with the implementation of taint
analysis in the specific prototype application general conclu-
sions regarding the problem description would be drawn.

Section II-G describes different approaches implementing
static taint analysis and thus is the basis in choosing the anal-
ysis method. The first two implementations described are not
freely available for use. However if one of those approaches
had been in any way superior to the third alternative, Type-
based Taint Analysis, an effort to acquire the implementation
might have been worth it. The choice of analysis method
is as implied the Type-based Taint Analysis. This choice is
convenient in that the analysis platform is available as an open
source project.

Type-based Taint Analysis also looks promising due to how
web application frameworks are handled. Analysing frame-
works are especially relevant in Java EE web applications,
e.g., in form of the Java Server Faces (JSF) framework
managing the application’s front-end. Based on how the article
are describing this analysis method it would seem that the
implementation is feasible as an integrated step in in a Java EE
web application development context, refer to Section II-K3.

404

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IV. PROTOTYPE APPLICATION DEVELOPMENT

In this chapter a description of the prototype application is
given. Additionally, an overview of the development process
for the prototype application is covered. Security aspects in
form of the prototype application’s attack surface is also
discussed.

A. Existing System

The prototype application is an application that is going
to replace a standalone SMS alarm system used at Findus’
food plant in Tønsberg, Norway. Currently, this SMS alarm
system is used to notify personnel of irregularities affecting
the production environment.

Two main applications of alarms are set up. The first
application covers fire and gas alarms. Fire alarms are of
course mandatory in any industrial building. However, gas
alarms are present because the cooling systems are using
hazardous coolants. Both alarms are prior notification alarms.
This means that when detectors are sensing increased levels of
either smoke/heat or gaseous particles respectively, alarms are
delivered to the desired people. This could in some situations
buy some time for investigating and reacting before the actual
alarm is activated triggering a call for the fire department.

The other application of the SMS alarm system is to
manually notify personnel, e.g., the supervisor or technical
assistance, of incidents regarding the process machines. These
types of alarms are mainly triggered by mechanical push
buttons located near critical places such as vegetable cutters,
conveyor belts and transport pumps.

B. Limitations

The standalone system is limited in how alarms are con-
nected. It does not support any kind of communication buses.
This means that every alarm needs to be electrically connected
resulting in a strict limitation to the number of alarms possible.
This has greatly prevented expansion of the system. The
system supports both digital and analogue alarm inputs limited
to 20 digital and 8 analogue. Digital alarms are typically
connected to either a manual push button or a relay output
from e.g., a fire alarm system.

Analogue alarms could be anything providing a measure-
ment such as a temperature sensor or a level indicator. Contrary
to a digital alarm triggering an alarm based on a binary signal,
an analogue alarm needs a set point indicating when an alarm
should trigger. Additionally, information whether the alarm
area of the analogue signal should be triggered above or below
the set point is also required. All 20 digital alarm inputs are
used, however, at the present time no analogue alarms are in
use.

Apart from the limited number of digital inputs the main
limitation is the connectivity process. Electrically connecting
alarm signals are expensive. Both because it is a time con-
suming task to physically connect an alarm signal to the alarm
system and expensive in regards to the cost of cables and the
occupation of a relay output.

Another limitation greatly preventing expansion is that
the alarm system has its phone book filled up. The alarm

system supports a maximum of 8 phone numbers. This means
that only 8 individuals has the possibility to receive alarm
messages. Further, no way of customizing the format of the
alarm message is possible. The alarm text simply shows the
alarm input number and a customizable alarm name consisting
of maximum 12 characters. Finally, it is worth mentioning that
the configuration of the alarm system is a cumbersome process.
Two possible approaches are supported. Either through sending
SMS command messages or connecting a computer to the
system’s serial configuration interface.

C. The New Alarm System Architecture

This section covers the initial planning phase for devel-
oping the new SMS alarm system ideally countering the
limitations of the existing system by choosing an appropriate
architecture.

D. Available Resources

In order to develop the SMS alarm system an initial
assessment of Findus’ existing resources and infrastructure are
mapped. This kind of mapping is done to be able to design
a system with the ability to utilize the available resources
reducing cost and overall complexity. Refer to Section IV-B
stating that the main limitation of the original alarm system is
the alarm input connectivity.

A look at how information from process machines is
accessed reveals that the use of a Supervisory Control and
Data Acquisition (SCADA) system is in place. This system
monitors and controls the process machines over Ethernet
network connectivity. This is possible because the process
machines are controlled by Siemens S7 Programmable Logic
Controllers (PLCs) equipped with Hilscher netLINK NL 50-
MPI adapters. This adapter enables Ethernet connection to the
process machines by acting as an Multi-Point Interface (MPI)
node on the PLC’s MPI network.

Utilizing the same process machine Ethernet communica-
tion as the SCADA system would eliminate both the limitations
regarding the maximum number of alarm inputs and the
expensive connectivity process. When it comes to running the
new SMS alarm system there is currently free server capacity
within the technical network, where also the SCADA system
resides.

E. Sending SMS Alarm Messages

The utilization of existing process machine Ethernet com-
munication and server capacity goes a long way. However,
the process of sending the SMS alarm messages needs a
solution. Two options are possible. Either using an external
SMS messaging service provider or sending SMS messages
with the help of a standalone GSM modem. An SMS mes-
saging service provider would be the easy solution simply
requiring a subscription and an implementation of the service’s
SMS message Application Programming Interface (API). The
GSM modem approach requires a dedicated SIM card with an
active subscription and a complete implementation of the GSM
modem communication in the new alarm system application.

Even though less work is needed with an SMS messaging
service provider it comes with some disadvantages. It would

405

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 4. Architectural sketch of the components in the new SMS alarm
system

require an internet connection at all times and would also
introduce an external dependency. Some risks regarding this
dependency is service downtime and delays reducing the
quality of the alarm SMS messages. An option in eliminating
these risks is to implement a failover routine to a second
SMS messaging service provider. This will lead to another
disadvantage: increasing the system’s complexity. And since
GSM modems are available at an inexpensive price, the GSM
modem approach is preferable.

F. Architectural Sketch

The initial planning phase leads to an overview of the dif-
ferent components the new SMS alarm system should consist
of. See Figure 4 for an architectural sketch of the component
composition. Two more concepts are added in addition to the
components established in the preceding sections. The first
concept is a user and a web application interface that represents
that the configuration of the SMS alarm system would be done
with a web application implementation. The second concept is
the alarm SMS receiver, which typically is a mobile phone
exactly like it is done in the original alarm system.

G. Development Technology Choices

Technologies chosen need to be able to meet the architec-
tural design requirements established for the application. The
framework chosen for developing the prototype application
is Java EE with the Java Server Faces (JSF) user interface
framework. By choosing a web application framework it is
easy to implement web pages for configuring the prototype
application. The goal for this implementation is to eliminate
the limitation regarding the cumbersome process of configur-
ing the original alarm system, refer to Section IV-B.

The IDE that will be used is Eclipse and the Java project for
the prototype application is managed by Maven build system.
An advantage with using Maven build system is that it contains
a definition file for defining which libraries that should be
included in the Java project. Building the application will
automatically download these dependencies from the Maven
repository. By using such a system it is straightforward to
deploy the application elsewhere, e.g., to a production server.

H. Development of the Prototype Application

Although a fully-fledged SDLC methodology was not
followed given the in this project, several concepts were

integrated in the SDLC in order to ensure deliverance of
an acceptable end product. Concepts derived from the agile
manifesto core value customer collaboration over contract
negotiation were embraced. Initially, this means that the design
choices and functionality of the prototype application were
discussed and determined through periodic communication
with the industial partner.

Further, enabling development of the prototype application
iteratively and incrementally was done by embracing contin-
uous delivery. This means that the functionality was split up
and developed in smaller tasks and delivered in predefined
iteration cycles of e.g., two weeks. When developing in this
way a common approach is to have a test server, called a
continuous integration server, for deployment. The test server
is a temporary server that is as similar as possible to the
production server. For the prototype application this means
that access to a PLC and connection to a GSM modem was
provided.

The continuous integration tool chosen is Jenkins. This is
a tool for use on a continuous integration server and it was
installed on the test server. It was configured to automatically
deploy the prototype application to Apache Tomcat, which is
the Java servlet container used. This works by pushing code
to a version control system, such as Git. When Jenkins detects
a change in the Git repository, the source code is pulled, built
and deployed on the test server.

Additionally, the Jenkins plugin SonarQube was set up to
automatically run on every build. This plugin includes various
code checking tools in order to improve the code quality by
suggesting changes. FindBugs, briefly mentioned in Section
II-F, is one of the tools included in SonarQube.

In order to establish the course of how the development of
the prototype application was conducted user stories was the
main tool used. This is a tool derived form the agile SDLC
methodology and is a brief description of a requirement stating
the desired feature. In other words splitting up functionality
into smaller manageable pieces fitting well in a continuous
delivery context. The functionality stated in the user stories
originated from collaboration with the customer.

Finally, a concept also used is sprints. Each sprint is a
defined period of time in order to complete a set of user stories.
The time frame of each sprint was defined to two weeks. The
application was developed in six sprints and had a total of ten
user stories defined. A brief description of the main modules
are provided in the following sections.

The prototype application can roughly be divided into the
following main modules.

• Communication with PLCs

• Sending triggered alarm SMS messages

• GUI for configuration of parameters

I. Communication with PLCs

The application communicates with the configured PLCs
through Ethernet in the same way the SCADA system does. All
PLC parameters that are configured for acquiring are fetched
and stored in a database residing on the same server as the

406

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

prototype application is running. The parameter update interval
is customizable and it is set to one second as the default setting.
It is worth noting that the PLC communication is conducted
unencrypted on a dedicated VLAN on the technical network.
Encrypted communication is not supported by the MPI to
Ethernet adapters currently in use.

J. Sending Triggered Alarm SMS Messages

This module is twofold in that first a determination if an
alarm is triggered are carried out and secondly if an alarm
triggers an alarm SMS message are sent. There are different
settings for each configured alarm defining the respective alarm
rule. Based on a comparison of the last and current parameter
value in light of the current alarm rule a decision about whether
or not the alarm triggered is made. On triggering of an alarm,
an SMS message is sent to the assigned phone numbers for
that alarm in particular. This is done using the GSM modem
connected serially to the server.

K. Interface for Configuration of Parameters

The application’s parameters are customizable using web
pages as the interface and the database as parameter storage.
The main functionality in the interface is the possibility to
define which PLC variables to retrieve, phone numbers to
be used, definition of alarm triggers based on PLC variables
available and mapping of the defined phone numbers to the
specified alarm triggers. Further, application specific parame-
ters is also included, such as alarm trigger check interval, PLC
variable update interval and default alarm message.

The GUI also includes monitoring of the PLC variables
fetched including a time stamp, logging of sent alarm messages
and the health status of the GSM modem in form of the GSM
signal quality. An utility for sending custom SMS messages
is also added to the interface. This is done in order to have
a convenient way of notifying users of special events, e.g.,
system downtime.

Lastly, it is worth mentioning that the GUI is implemented
with a basic built in login routine provided by the application
server, Apache Tomcat. All interactions with the configuration
web pages is also strictly enforced to always use encrypted
transport protocols, namely Secure Socets Layer (SSL).

L. Prototype Application’s Attack Surface

Analysing potential areas in the prototype application that
has a possibility of introducing vulnerabilities is advantageous
in that an awareness in those areas are raised. Preferably this
awareness could lead to implementing measures countering
potential vulnerabilities. A method in doing this is to conduct
a mapping of the attack surface, refer to Section II-B.

In order to map the prototype application’s attack surface
knowledge of what features the application has implemented is
required. For the prototype application a look at all the system
critical operations is the first step. These operations could be
seen as the attack target in the application and are covered in
the following list.

• PLC communication to acquire process machine data

• GSM modem for sending alarm SMS messages

• Database connection for storing process machine data,
sent SMS messages and all configuration parameters
on the configuration web pages

The listed attack targets can ultimately be exploited in
different ways. Both the PLC communication and the database
connection can pose vulnerable to information leakage and
data manipulation, while the GSM modem could be hijacked.
The next step is to analyse the different entry points that
contributes to the total attack surface. It is the entry points that
enables a potential attacker to reach the critical operations. The
following list contains possible entry points.

• All configuration web pages

• The server hosting the prototype application and the
database

• VLAN where PLC communication is conducted

In the following subsections aspects around each mapped
entry point are discussed. This includes thoughts about how
the application is vulnerable and suggested countermeasures.

M. Configuration Web Pages

The prototype application is developed for the possibility of
being accessed through the internet. Being accessible through
the internet contributes to this entry point being highly ex-
posed. With this consideration in mind security measures such
as a login system and the use of encrypted transport protocols
are implemented in the application.

The login system used is basic authentication, a login
implementation included in Apache Tomcat. For this prototype
application login credentials are simply statically added to
the configuration file tomcat-users.xml. Accessing any of the
configuration web pages renders a pop-up dialogue requiring
a valid user name and password combination.

Possible weaknesses that can lead to a vulnerable system
for this login implementation is brute force attacks, eavesdrop-
ping the login credentials and social engineering. In order to
counter brute force attacks Apache Tomcat has an option to
restrict access after a number of unsuccessful login attempts.
The default settings when implementing this feature is that
the user is locked for 300 seconds after 5 unsuccessful login
attempts. As for eavesdropping the login credentials this can be
possible if a third party has access to the communication data.
Countering this is done by restricting the communication for
the prototype application to always use an encrypted transport
protocol.

Having taken these technical considerations a last threat
cannot easily be avoided, namely social engineering. The
number of possible entry points increase proportionally with
the amount of users having access to the system. That being
said, as this topic is slightly out of scope of this article,
apart from being aware that this adds to the attack surface
no consideration on this point is taken.

N. Application and Database Server

The prototype application and its database server is hosted
locally on a server owned and maintained by the company
itself. The entry points regarding this server is by gaining

407

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

access to the server locally and through one of the VLANs
on the local network that it uses. With self-maintained servers
patching routines for fixing new vulnerabilities is important in
order to make these entry points the least possible accessible.

A special threat regarding the prototype application that
is worth mentioning is the GSM modem. With access to the
server comes direct access to the GSM modem enabling an
attacker to abuse any features possible by the GSM modem.

O. PLC Communication

The PLC communication could be accessed either through
the server or the dedicated PLC communication Virtual Local
Area Network (VLAN). The threat in conjunction with these
entry points is the acquisition of information about the com-
pany’s processes through the PLC communication. Further, if
the attacker has the possibility to transmit custom network
packets on the PLC communication VLAN the attacker would
also have the ability to write data to the PLCs. This means
essentially to have full control of the process machines in the
company.

Since the communication with the PLCs are currently
conducted unencrypted and with no means of authentication
countermeasures for this entry point are limited to securing the
PLC communication VLAN in the best possible way.

V. ANALYSIS AND ASSESSMENT

A. Role of the Prototype Application

The prototype application would ideally be developed in
iterations with an integrated taint analysis implementation as
a part of the static analysis step. However, the application was
fully developed before the taint analysis implementation was
set up. This means that the taint analysis is carried out after
all development iterations are finished.

As a result the experiences that would have been acquired
conducting taint analysis in the developing phase are absent.
Since the prototype application is limited in size with a
moderate number of iterations conducting taint analysis at the
end of the development are considered adequate in order to
draw a conclusion. The bigger the application the more value
of frequent analysis. This is because the issues found earlier
in a big application environment would contribute knowledge
to prevent making the same mistakes over and over as the
application progress. Thus saving developer resources.

B. Type-based Taint Analysis Implementation

Refer to Section III stating that the type-based taint analysis
approach is used in this article. This implementation is called
SFlow, refer to Section II-J for a brief overview of the
concepts. SFlow is made open source using the Apache Li-
cense (version 2.0), available at github.com/proganalysis/type-
inference. It is built as a compiler plugin to The Checker
Framework. This framework enhances Java’s type system in
order to detect a broader domain of errors at compile time.
In addition to command-line usage The Checker Framework
is also available as a plugin supporting various build systems
and IDEs. Two popular IDEs worth mentioning in this regard
are IntelliJ and Eclipse [11].

Figure 5. Annotation example identifying a method for getting a Java servlet
parameter as source

In a typical development environment the use of a contin-
uous integration tool is common practise. This tool includes
automated building of the application and running any desired
plugins, e.g., static source code analyses. An example for
such a tool for Java web applications is Jenkins. Integrating
taint analysis in the continuous integration tool and/or the
developer IDE is crucial for successfully conducting taint
analysis without needless overhead. In this regard SFlow looks
promising.

However, in order to enable analysis with SFlow an integra-
tion with build systems and IDEs is not sufficient alone. SFlow
also requires some preparations in identifying which fields and
methods are considered sources and sinks to actually detect
information flow errors. The Checker Framework is designed
to use annotations in order to identify fields and methods in
Java classes of interest.

C. Annotating Sources and Sinks with SFlow

Two approaches in annotating Java classes exists, a manual
and an automatic approach. The manual approach is that the
developer adds an annotation on each field or method of
interest. This is a cumbersome and time consuming task with
too much overhead for the developer. In addition such task
is prone to errors. The automatic approach is to compile an
annotated Java Development Kit (JDK), which is added to the
Java classpath of the SFlow analysis.

This JDK includes libraries the project uses with sources
and sinks annotated. This way the annotation process be-
comes a one time event and any involvement of the de-
velopers is avoided. However, all new libraries implemented
that introduces new methods for entry points (sources) or
executing system critical commands (sinks) would need to
be annotated and included in the annotated JDK in order
to detect errors for their implementations. At present time
SFlow comes with support for some of the Java EE classes
containing sources and sinks such as the getParameter method
in the javax.servlet.ServletRequest class and the executeQuery
method in the java.sql.Statement class, see Figure 1 as an usage
example [11].

Annotating sources and sinks is done respectively with the
annotations /*@Tainted*/ and /*@Safe*/. Notice that for a
standard Java compiler this additions to the code is unnoticed
since they are in fact commented out. The idea is that any
annotations specific to The Checker Framework would not
brake a standard Java compilation. See Figure 5 and 6 for
examples of how annotations are defined for sources and sinks
respectively.

Additionally, the SFlow annotated JDK comes with an-
notations for the Apache Struts Framework and the Spring
Framework. To be able to analyse the prototype application

408

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Annotation example identifying a method for executing an SQL
query as sink

fully, libraries and relevant Java EE classes missing from
the annotated JDK needs to be included. In order to map
which annotations are missing a look at the application’s attack
surface is a good indication, refer to Section IV-L. From this
knowledge the annotated JDK needs to include the methods
regarding PLC communication, GSM modem communication
and the configuration web pages.

Regarding the PLC communication standard Java classes
are used for sending and receiving data on a socket, namely
the write method in the java.io.DataOutputStream class and
the read method in the java.io.BufferedInputStream class.
SFlow includes annotations on methods for file read and write,
but does not annotate read and write methods on a socket.
Although the potential for vulnerabilities maybe lower working
with a socket, the fact that this opens for untrusted data
that can be forged by an attacker cannot be fully avoided.
Also depending on the application, external system critical
commands could be evident when writing to a socket.

As for the GSM modem communication the Java Simple
Serial Connector (jSSC) library is used to communicate seri-
ally with it. Data fetched could be malicious and would need
to be annotated as a source and commands would need to be
regarded as system critical and annotated as sinks. Similar to
working with a socket the need for annotation is considered a
task of lower priority.

The configuration web pages includes interactions with
users and are the most obvious place to make sure of having
proper annotations making this the highest priority to imple-
ment. Therefore, an attempt to annotate the Java Expression
Language (EL) implementation were made. Expression Lan-
guage enables the JSF user interface to interact with Java
Beans. In other words it acts as a communication bridge
between the front-end and the back-end for fetching user input
and presenting data to the user.

An attempt to annotate the setValue method in the BeanEL-
Resolver class was made. This method takes three parameters
in addition to the EL context parameter; base, property and val.
Base is the Java Bean, property is the name of the variable
to manipulate in the Java Bean and val is the user supplied
data to be assigned to that variable. See Figure 7 for the
annotation. Having annotated this method and compiled it into
the annotated JDK, a crafted example that would be found as
a vulnerability by the analysis was made in order to check if
the annotation was working correctly. The analysis however
did not report any vulnerabilities. Further research needs to
be done in finding out how to properly annotate the JSF user
interface interaction with Java Beans.

In order to prepare an application for type-based taint
analysis, annotations needs to be included and compiled in the
annotated JDK based on what technologies and libraries are

Figure 7. An attempt to annotate the setValue method in the BeanELResolver
class for defining user input as source from the configuration web pages

Figure 8. Manually annotated variable in the Java Bean used to store which
PLC data variables that should be fetched by the prototype application

implemented in the application. At the present time the SFlow
annotated JDK supports a limited variety of technologies and
libraries. Thus, in general requiring relatively much annotation
work depending on the size of the application.

D. Analysis Results

Since a successful annotation for the JSF user interface
interaction with Java Beans is yet to be done analysis results
for the prototype application is non-existing. However as a
simulated test the variables in the Java Beans that are user
manipulatable were manually annotated. See Figure 8 for an
example of a manually annotated variable in the Java Bean
that is used to store which PLC data variables that should be
fetched. The user provided variables are stored in the database.

The taint analysis detected no errors due to how the proto-
type application is managing SQL queries. Namely with SQL
query parametrization. This means that an SQL query is set
up with a predefined structure taking exactly the defined data
types as parameters, see Figure 9. This predefined structure
makes it impossible to split a query in multiple queries or add
more parameters than intended in the query. Thus, making this
approach a good practise countering SQL injection and the
analysis rightfully did not detect this as an information flow
vulnerability.

In order to detect a vulnerability with the taint analysis
implementation the SQL query was temporary changed to the
standard executeQuery method displayed in Figure 1. SFlow
then reported the type error shown in Figure 10. The first
code reference in the type error text refers to line 385 in
Database.java. This is where the string variable used in the
SQL query, named sql, is first initialised. Next, a reference to
line 387 in Database.java is made. This refers to where the safe
method is used with the tainted variable, which in this case is
statement.executeQuery(sql). Finally, the type error text reports
which class the safe method originates from. In this case it is
the java.sql.Statement class.

409

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. SQL query with parametrization used in the prototype application
to store connection information of a PLC data variable that should be fetched
in the prototype application

Figure 10. SFlow type error showing that there is an information flow
vulnerability in line 387 in Database.java in the executeQuery method

The type error identifies the tainted variable and the code
location of it first being initialised as well as the location of
the safe method using the tainted variable. This information
is sufficient for a developer in order to understand where
to start the work of countering the type error. For the SQL
query example the obvious countermeasure is to switch to the
SQL query parametrization approach. However, if SQL query
parametrization is not a possibility, or for other kinds of type
errors, a look at where the tainted variable first originated from
may be necessary. In this case the developer would need to
research the path of the tainted variable. This could take a lot
of valuable time if the application is big. It would have been
advantageous if the type error text also stated the code location
in where the tainted variable originated.

E. Integrating Taint Analysis in the SDLC

Considering modern development practises are team based,
and in fact multi-team based on big projects, it is important
to include this observation in assessing if static taint analysis
can efficiently integrate in the SDLC. An agile development
methodology including an iterative and incremental workflow
leads to developing a piece of software in numerous modules.
Being able to properly test both a single module and a set
of modules for detecting information flow vulnerabilities is
preferable.

According to Type-based Taint Analysis for Java Web
Applications technical report the taint analysis implementation
is modular meaning that a whole program is not necessary for
analysis. This is promising considering the modern develop-
ment practice described in the previous paragraph. Addition-
ally, the taint analysis implementation should be included in
the development phase along with other testing activities, refer
to Section II-A describing the different phases in the SDLC
[11].

In addition to the development phase, the testing phase
could include static taint analysis. However, the reason to avoid
integration within the testing phase is that anything added to
that phase adds unnecessary overhead. Even if overhead run-
ning the analysis is eliminated by making it fully automated,

a system for countering the output in form of requested fixes
for the next development phase iteration needs some resources.
Also, a known concept is that the earlier vulnerabilities are
found in the SDLC the cheaper it is to get them fixed. The aim
is therefore to craft a solution to integrate static taint analysis
into the development phase.

Some methods for detecting and/or preventing information
flow vulnerabilities are listed in Section II-F. Most of the
methods focus exclusively on either SQL injection or cross-
site scripting rendering detection of other information flow
attacks uncovered. Although FindBugs is an example of a
static analysis covering most, if not all, the information flow
vulnerabilities its detecting algorithm is prone to have a high
percentage of false positives. The choice of type-based taint
analysis in the form of SFlow is done because it could detect a
high number of vulnerabilities and also have a low number of
false positives. Refer to Section II-J showing that a comparison
of SFlow and two commercial security testing tools shows that
SFlow detects a significantly higher number of vulnerabilities.

Refer to the preceding sections stating that a working
implementation of SFlow is set up. Although the attempt
to add the Java EE JSF framework to the SFlow annotated
JDK was not successful, results exists by doing a manual
annotation. A challenge with this implementation is to properly
annotate external libraries, e.g., frameworks, in order to enable
a working analysis without developer intervention. Manual
annotations is not an option because in addition to creating
extra work for the developer it is prone to errors. For SFlow
to be a successful security analysis tool the annotation process
needs to improve.

One approach in changing the annotation process is to take
a concept from the paper F4F: Taint Analysis of Framework-
based Web Application, refer to Section II-K4. This paper
describes a framework as a solution for adding web application
frameworks to a taint analysis implementation. In a similar way
a framework for adding annotations to the SFlow annotated
JDK could be developed easing the work of figuring out how to
conduct the process of annotation. This framework could also
include verification routines for testing that the annotations are
working correctly [16].

Another change SFlow must undergo is the way the analy-
sis is conducted. In its current form SFlow exists as a manual
command-line tool. For this tool to exist in the development
phase without unnecessary overhead an automatic integration
of the analysis is required. Therefore, integrating SFlow as a
plugin in an IDE by utilizing this support by The Checker
Framework could be a good solution. This would make the
taint analysis convenient and seamless for the developer en-
abling analysis whenever the developer builds the application
and/or desires to run it. However, deciding if the integration is
not creating too much overhead for the developer boils down
to the running time of the taint analysis implementation.

Results from the Type-based Taint Analysis for Java Web
Applications technical report states that analysing 13 relatively
large application resulted in running times of less than four
minutes for all applications except one. The analysis ran on a
server with Intel Xeon X3460 2.8GHz CPU and 8GB RAM. As
for the smaller prototype application the running time is about
30 seconds on a laptop with Intel Core i5-3210M 2.5GHz CPU

410

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and 6GB RAM [11].

Even though the running time of the taint analysis is done
within minutes and may not introduce a significant overhead
for the developer running the analysis in the background,
implementation in a different way could be advantageous.
This solution is to incorporate taint analysis in a continuous
integration tool, e.g., Jenkins, by integrating SFlow in the build
system it uses, e.g., Maven. By doing this, the taint analysis
will automatically run on every build. The errors will then
show up as compiler errors and warnings in the continuous
integration tool for the developers to address.

SFlow needs to undergo at least two significant changes
in order to become a powerful taint analysis security tool for
integration in the development phase in the SDLC. First, the
annotation process for adding web application frameworks and
external libraries must become more user-friendly in order
to be practical. As suggested, a solution to this would be
to develop a framework for easing the annotation process.
And secondly, the analysis should be integrated either in the
developer’s IDE, or preferably within the build system of the
continuous integration tool.

VI. CONCLUSION

Information flow vulnerabilities can occur when appli-
cations handle untrusted data. SQL injection and cross-site
scripting are the most common information flow vulnerabil-
ities. There are numerous methods presented in countering
these vulnerabilities. One method, static taint analysis, looks
promising in that it has the ability to cover detection of all
kinds of information flow vulnerabilities. Out of three static
taint analysis implementations, Type-based taint analysis was
chosen as the preferred implementation. This approach looked
promising in the way web application frameworks are handled.
The implementation is also freely available as an open-source
project. A proposed solution in integrating this taint analysis
approach in an iterative and incremental development process
was presented.

The proposed solution used the developed prototype ap-
plication as a manageable sized concept application for im-
plementing taint analysis. Annotations of sources and sinks
are needed to detect information flow vulnerabilities. Some
libraries are already annotated in the taint analysis implemen-
tation, referred to as the annotated JDK. To properly analyse
an application all libraries containing sources and sinks in a
developed application needs to be included in the annotated
JDK.

The development of the prototype application gave a good
technical understanding of the inner workings of the applica-
tion. This was advantageous in order to identify what needed
to be annotated. The approach of mapping the attack surface
of the prototype application turned out to be an effective way
to identify the libraries containing sources and sinks.

Three main areas was identified: PLC communication,
GSM modem communication and the configuration web pages.
The configuration web pages was considered the highest
priority and an attempt to annotate the BeanELResolver class
was made. This class is used for communication between the
JSF user interface and the Java beans. However, the annotation

attempt was unsuccessful and more research is required in how
to get the annotation working properly.

In order to obtain taint analysis results a Java bean in the
prototype application was manually annotated. Changing the
SQL query method from the safer parametrized method to
the unsafe dynamic method was necessary in order to detect
a type error with the taint analysis. The type error contains
information about the code location of the tainted variable’s
initialization, the code location of the sink this variable is
used in and from what class the sink method originates. It
would also have been preferable if the type error contained
information of the code location of the source variable. This
could save valuable time for the developer investigating the
type error.

Preparing the taint analysis implementation for analysis
is mostly about making sure the libraries that are used are
included in the annotated JDK and are also working properly.
The experiences with annotation indicates that this is not a
straight forward process and could need much resources in
order to get it right. A framework for easing the process
of annotation including verification that the annotation works
correctly is proposed as a solution to this challenge.

Multiple approaches in conducting the taint analysis are
possible. Running the taint analysis manually in command
line, integrating it in the developer’s IDE and integrating it
in the continuous integration tool are all possibilities. The
latter suggestion is proposed as the most effective solution;
implementing taint analysis in the continuous integration tool’s
build system. This is considered an effective approach because
an analysis could take several minutes to complete depending
on application size. Also, processes done automatically and by
an external instance will not be a distraction for the developer.
When to counter any detected type errors is then up to when
the developer monitors the notifications given in the continuous
integration tool.

Considering the prototype application was finished without
having a proper taint analysis implementation ready for testing,
this proposition would need more research in order to draw a
finite conclusion in how this actually will work in an iterative
and incremental development process.

VII. FURTHER WORK

In order to support Java EE web applications using JSF user
interface, the next step in the taint analysis implementation is
to get the annotation of the BeanELResolver class to work.
Either this is just an annotation task or it may reveal other
fundamental challenges, e.g., how the taint analysis processes
the Java beans variables in conjunction with the BeanELRe-
solver class.

Further work also includes more research in the area of
how it is best to integrate taint analysis in a development
process. The proposed solution of integrating the analysis in a
continuous integration tool’s build system is worth exploring.
An actual proof-of-concept implementation could be using
Jenkins continuous integration tool with the Maven build
system.

The nature of the cumbersome annotation work presently
leads to the taint analysis implementation being for the en-

411

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

thusiast only. A course worth researching, as suggested, is to
develop a framework for easing the process of annotating.
A suggestion for even further work is to make the taint
analysis implementation mainstream. An extension of the taint
analysis implementation is possible because it is released as
an open-source application. Developers could then contribute
to the taint analysis implementation by providing working
annotations of frameworks and libraries.

Such a project would contribute a working out-of-the box
taint analysis tool that supports a large number of popular
frameworks and external libraries for others to easily include
in their development processes reducing the number of imple-
mented information flow vulnerabilities.

REFERENCES

[1] T. Lie and P. Ellingsen, “Integrating static taint analysis in an iter-
ative software development life cycle,” in Proceedings of SOFTENG
2017, The Third International Conference on Advances and Trends in
Software Engineering. International Academy, Research and Industry
Association (IARIA), 2017.

[2] OWASP Foundation, “OWASP top 10 - 2013: The ten most critical
web application security risks,” 2013, Accessed: 2017-04-13. [On-
line]. Available: https://www.owasp.org/images/f/f8/OWASP Top 10 -
2013.pdf

[3] M. S. Merkow and L. Raghavan, Secure and Resilient Software Devel-
opment. CRC Press, 2010.

[4] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in java
applications with static analysis.” in Usenix Proceedings of the 14th
Conference on USENIX Security Symposium, vol. 2013, 2005, pp. 271–
286.

[5] A. K. Baranwal, “Approaches to detect sql injection and xss in web
applications,” Term Survey paper-EECE 571b, University of British
Columbia, 2012.

[6] Y. Shin, L. Williams, and T. Xie, “Sqlunitgen: Test case generation
for sql injection detection,” North Carolina State University, Raleigh
Technical report, NCSU CSC TR, vol. 21, 2006, p. 2006.

[7] A. Roichman and E. Gudes, “Fine-grained access control to web
databases,” in Proceedings of the 12th ACM symposium on Access
control models and technologies. ACM, 2007, pp. 31–40.

[8] Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications,” in ACM SIGPLAN Notices, vol. 41, no. 1. ACM,
2006, pp. 372–382.

[9] T. Jim, N. Swamy, and M. Hicks, “Defeating script injection attacks
with browser-enforced embedded policies,” in Proceedings of the 16th
international conference on World Wide Web. ACM, 2007, pp. 601–
610.

[10] The FindBugs Project, “Findbugs,” 2015, Accessed: 2017-04-13.
[Online]. Available: http://findbugs.sourceforge.net/

[11] W. Huang, Y. Dong, and A. Milanova, “Type-based taint analysis for
java web applications,” in International Conference on Fundamental
Approaches to Software Engineering. Springer, 2014, pp. 140–154.

[12] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to
know about dynamic taint analysis and forward symbolic execution (but
might have been afraid to ask),” in 2010 IEEE Symposium on Security
and Privacy. IEEE, 2010, pp. 317–331.

[13] H. Yin and D. Song, “Whole-system fine-grained taint analysis for
automatic malware detection and analysis,” 2007, Accessed: 2017-04-
13. [Online]. Available: http://bitblaze.cs.berkeley.edu/papers/malware-
detect.pdf

[14] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman, “Taj:
effective taint analysis of web applications,” in ACM Sigplan Notices,
vol. 44, no. 6. ACM, 2009, pp. 87–97.

[15] M. Sridharan, S. J. Fink, and R. Bodik, “Thin slicing,” ACM SIGPLAN
Notices, vol. 42, no. 6, 2007, pp. 112–122.

[16] M. Sridharan, S. Artzi, M. Pistoia, S. Guarnieri, O. Tripp, and R. Berg,
“F4F: taint analysis of framework-based web applications,” ACM
SIGPLAN Notices, vol. 46, no. 10, 2011, pp. 1053–1068.

412

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

